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Introduction
In November 2012, Ptolemaeus Arabus et Latinus (PAL) was established by 
the Union of the German Academies of Sciences and Humanities as an Acad-
emy Project with five researchers for a period of 25 years. This was the result 
of a long application journey whose idea first originated on a Saturday night 
of August 2009. In the course of 2013, the project became established at the 
premises of the Bayerische Akademie der Wissenschaften in Munich.

The initial impetus of the project was the realisation that the reception of 
Ptolemy was still to a large extent a terra incognita of the history of science. 
This seemed to us a rather odd fact considering that Ptolemy wrote perhaps 
the two most influential texts both in mathematical astronomy (the Almag-
est) and in astrology (the Tetrabiblos). From late Antiquity to the seventeenth 
century, Ptolemy was to the ‘science of the stars’ what Aristotle was to logic, 
natural philosophy and metaphysics, Euclid to geometry and Hippocrates and 
Galen to medicine in the Western tradition. Both the Almagest and the Tetra-
biblos were translated several times into Arabic and into Latin and were heavily 
discussed and commented upon in the Islamic world and in Christian Europe. 
Yet the Arabic and Latin versions of the Almagest and the Tetrabiblos were 
unavailable in modern editions, their manuscripts remained largely unexplored 
and, generally speaking, their history until the seventeeth century had never 
been systematically studied.

From the outset, it was clear to us that we could not limit ourselves to 
the Almagest and the Tetrabiblos. Ptolemy also produced several astronomical 
works of lesser importance, including the Planetary Hypotheses, the Phaseis, the 
Analemma, the Planispherium and the Handy Tables, all of which survive, in 
one form or another, in Arabic and/or Latin. Moreover, a number of works 
were falsely attributed to Ptolemy, the most famous of which is the Karpos 
(Kitāb al-Thamara, Centiloquium), a collection of one hundred astrological 
aphorisms which enjoyed extraordinary popularity throughout the Middle 
Ages and whose ascription to Ptolemy was never questioned until the sixteenth 
century. Last but not least, the Almagest, the Tetrabiblos and the Karpos gave 
rise to a large number of commentaries in Arabic and Latin, which were an 
integral part of the Ptolemaic tradition and hence could not be ignored. As a 
result, our Corpus Ptolemaicum had considerably expanded. In view of the time 
restriction (25 years being the maximum granted by the Union of the German 
Academies), we had to limit the scope of the project and to make a number of 
choices. Already at an early point we had decided to focus on the science of the 
stars and to exclude from our enquiry the non-astronomical/astrological works, 
i.e. the Geography, the Optics and the Harmonics. Likewise, we were aware that 
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2 INTRODUCTION

Arabic and Latin, however central, represent only two languages of the medi-
eval scientific tradition. The Ptolemaic corpus also has a history in Byzantine 
Greek, Syriac, Hebrew, Persian, Sanskrit and the European vernaculars, but 
taking these languages into account would have made the project unrealisable. 
We do, however, consider works in other languages when they have an imme-
diate bearing on the Arabic or Latin tradition. A good example of this is the 
Syriac version of the Tetrabiblos, which may have served as an intermediary 
between the Greek and Arabic versions and which is in the process of being 
edited by Bojidar Dimitrov as part of the project.

Despite these restrictions and choices, we are confident that the project can 
significantly contribute to several research areas. First, we see it as an essential 
step towards a fuller and better understanding of medieval and early modern 
astronomy and astrology, and, more generally, of the worldview that dominated 
Islamic, Jewish and Christian cultures from the Middle Ages to the sev-
enteenth century. Contrary to received opinion, Arabic and Latin scholars 
deployed remarkable intelligence and creativity, as well as sharp criticism, in 
their enquiry into Ptolemy’s models and theories, in order to develop a good 
understanding of them, but also to question, improve on, or refute them. More-
over, research into medieval conceptions of the universe has suffered from the 
fact that astrology was for a long time neglected by historians of science on the 
grounds that it is irrelevant to modern science. But we should remember that 
most medieval astronomers were also astrologers and, in the context of Aristo-
telian natural philosophy, astrology was conceived as a science, both physical 
and mathematical, leading to the knowledge of man, nature and God. By con-
sidering astrology along with astronomy, this project stands in agreement with 
Ptolemy’s vision, as well as with Greek, Arabic and Latin mainstream science 
up to the time of Galileo and Kepler inclusively.

The project will also lay the foundations for a fresh approach to the Coper-
nican Revolution. Since the seminal studies of Alexandre Koyré and Thomas 
Kuhn, the Copernican Revolution has been the subject of intense scholarship 
around the world. Yet, this scholarship — including, remarkably, the most 
recent scholarship — has been carried out to a large extent in ignorance of 
the medieval tradition, partly because of methodological biases, partly because 
of the lack of studies and editions. The fact that the Copernican Revolution 
started with an attack launched against the Almagest (Copernicus’s De revo-
lutionibus orbium celestium, 1543) underlines the importance of studying the 
medieval Ptolemaic tradition, and makes it all the more remarkable that the 
very Latin text that Copernicus sought to replace is still today unavailable in 
a modern edition.

Last but not least, the retrieval of the Arabic and Latin Ptolemaic corpus will 
shed light on the authenticity, form and content of the Greek original texts. 
As is often the case for ancient scientific and philosophical texts, most extant 
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Greek manuscripts are late Byzantine copies which sometimes preserve incom-
plete or corrupt texts. Ptolemy’s works are no exception to this rule. Arabic and 
especially Latin manuscripts pre-date Greek manuscripts for all the texts dealt 
with in this project, with the exception of the Almagest. Moreover, three of 
them (Planetary Hypotheses, Analemma and planispherium) are for the most 
part lost in Greek and survive in Arabic and/or Latin only. Even though the 
Arabic and Latin texts are the result of translation — and hence, inevitably, 
of alteration —, it may be that some of them preserve a more authentic text 
than that of the extant Greek manuscripts. A case in point is the Tetrabiblos. 
The Greek manuscript tradition of this text is problematic because the earliest 
complete witness (out of a total of 47 extant manuscripts) is a Byzantine copy 
dating from c. 1300 (Vatican, BAV, Vat. gr. 1038). The text has received four 
critical editions, by Franz Boll and Emilie Boer (1940), Frank Robbins (1940), 
Simonetta Feraboli (1985) and Wolfgang Hübner (1998), all of whom ignored 
the Syriac, Arabic and Latin traditions. Yet, the Tetrabiblos survives in a Syr-
iac translation, in at least three Arabic translations, dating from the ninth to 
the eleventh century, and thirteen Latin translations, six of which were made 
before 1300. In 2015, Gudrun Vuillemin-Diem and Carlos Steel published a 
critical edition of the Latin translation made directly from the Greek by Wil-
liam of Moerbeke between 1266 and 1269. The editors demonstrate that the 
Greek manuscript used by William of Moerbeke (now lost) is far better than 
all the surviving copies. As a result, while they confirmed 301 readings adopted 
or conjectured by Hübner in his edition of the Greek text, they also identified 
63 instances which definitely confirm ‘a reading not adopted by Hübner’, 143 
instances where they ‘propose to modify Hübner’s edition’ and 109 instances 
of a reading that ‘seems also possible’.1 It is also likely that the other Latin 
translations, and especially the Syriac and Arabic translations, will allow us to 
improve on the Greek text.

The primary aim of the project is to make the Arabic and Latin Ptolemaic 
corpus on the science of the stars available to research. The first step towards 
this aim is to establish the Corpus Ptolemaicum, survey the works and cata-
logue the manuscripts. The works are arranged in three categories as follows:

A. Authentic works: Almagest, Tetrabiblos, Planetary Hypotheses, Phaseis, 
Analemma, Planispherium and Handy Tables.

B. Pseudepigrapha: besides the Karpos, some thirty astronomical and 
astrological works falsely attributed to Ptolemy have been identified 
in Arabic and Latin.

1 Gudrun Vuillemin-Diem and Carlos Steel, Ptolemy’s Tetrabiblos in the Translation of 
William of Moerbeke. Claudii Ptolemaei liber iudicialium, Leuven: Leuven University Press, 
2015, pp. 95–129.
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C. Commentaries: commentaries are understood in the broad sense, so 
as to include epitomes, paraphrases, critiques, university lectures, etc., 
in fact all texts that derive their substance primarily and explicitly 
from one of the above works (categories A and B). The most influ-
ential commentaries include Thābit ibn Qurra’s Tashīl al-Majisṭī 
and Jābir ibn Aflaḥ’s Iṣlāḥ al-Majisṭī (both of which were translated 
into Latin), the anonymous Almagesti minor, Regiomontanus’s Epit-
ome Almagesti, ʿAlī ibn Riḍwān’s commentary on the Tetrabiblos and 
Abū Jaʿ far Aḥmad ibn Yūsuf ibn al-Dāya’s commentary on the Kar-
pos (both of which were also translated into Latin). Other works that 
relate to Ptolemy less directly (however important their Ptolemaic 
component might be) have been excluded, for example al-Farghānī’s 
Kitāb jawāmi‘ ‘ ilm al-nujūm wa-uṣūl al-ḥarakāt al-samāwiyya and 
the various Latin versions of the Theorica planetarum.

Altogether the corpus (A-B-C) amounts to over 80 works preserved in at least 
500 manuscripts for the Arabic and to c. 170 works preserved in c. 670 manu-
scripts and over 100 early printed editions for the Latin.

While it is not possible to prepare critical editions for all these works, we 
deemed it important to make the primary material available to scholars at a 
relatively early stage of the project. The editing of texts has therefore been 
designed in three steps. In the first place, each work (including each version in 
cases of multiple translations) receives an online digital reproduction in scanned 
form from one selected witness (manuscript or early printed edition). Next, 
the digital images are gradually linked with online standardised transcriptions 
based on the same selected witness, so as to make each text searchable. Finally, 
as a third step, the online transcriptions are gradually supplemented by proper 
critical editions based on examination of all extant witnesses. All authentic 
works (A) and pseudepigrapha (B) are expected to receive a critical edition. In 
cases of multiple translations, only the most influential versions will be edited. 
This includes, for example, two versions of the Arabic Almagest (al-Ḥajjāj and 
Isḥāq ibn Ḥunayn revised by Thābit ibn Qurra) and two Latin translations of 
the Tetrabiblos (by Plato of Tivoli and Aegidius de Tebaldis). Likewise, only 
the most influential commentaries (C) will be edited, including at least those 
listed above.

Besides the Corpus Ptolemaicum, we also take into account a further cate-
gory of related material, namely astronomical tables, almanacs (or ephemerides) 
and horoscopes, insofar as these represent the main products of astronomical 
and astrological activity in the Ptolemaic tradition. The aim here will be to 
design a database of astronomical tables, almanacs and horoscopes, to produce 
a critical survey of them and to edit some of the most representative and/or 
influential ones. To this end, computer programs for editing and analysing 
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astronomical tables, almanacs and horoscopes will be written. First steps in 
this direction have been made by collaborating in the project of a database of 
tables and other materials from astronomical and astrological manuscripts led 
by Matthieu Husson of the Observatoire de Paris.

Another resource developed as part of the project is a glossary of Greek-Ara-
bic-Latin-English mathematical, astronomical and astrological terms. This glos-
sary is designed as a constantly growing tool based on the texts already edited 
in the project.

Finally, the project will inevitably give rise to new questions, the most 
important of which are the subject of international conferences and workshops 
organised by the project. Special attention is paid to three research areas: the 
reception of Ptolemy in the Arabic world and Western Europe up to 1700 ad; 
a comparative study of Arabic and Latin astronomy and astrology in their his-
torical contexts; and the place of Ptolemy in the Copernican Revolution.

The progress of the project can be followed on the PAL website (https://
ptolemaeus.badw.de), which has been active since December 2016 and updated 
almost on a daily basis since. The catalogue of texts and manuscripts, the crit-
ical editions and the studies will also appear in print in the new series Ptole-
maeus Arabus et Latinus published by Brepols. The first volume in the sub-
series Texts came out in 2018,2 whereas the present volume is the first in the 
subseries Studies.

One of the missions of the project is to organise an international confer-
ence or a workshop every three years. The first PAL conference was held at 
the Warburg Institute (University of London) from 5 to 7 November 2015 
and this book is the result of it. The title Ptolemy’s Science of the Stars in the 
Middle Ages (already the title of the conference) was deliberately kept wide in 
scope so as to encompass the reception of Ptolemaic astronomy and astrology 
in the Arabic world and in Western Europe up to 1700 ad. Our aim was to 
gather together leading scholars and younger researchers in Ptolemaic studies 
and, while obtaining as broad an overview as possible, we tried to keep some 
balance between Arabic and Latin, on the one hand, and between astronomy 
and astrology, on the other. Two speakers at the conference are not represented 
in this volume, because further research in their respective topics led them 
to considerable developments which deserve to be published separately: Flora 
Vafea on the Dhāt al-kursī attributed to Ptolemy and Maria Mavroudi on the 
Greek and Arabic versions of the Karpos. At the same time, two contributions 
included here are by scholars who joined the project after the conference and 
who offered to contribute to the volume (José Bellver and Paul Hullmeine). 
With this volume, we therefore hope to present the state of the art of Ptole-

2 Henry Zepeda, The First Latin Treatise on Ptolemy’s Astronomy: The Almagesti minor 
(c. 1200).
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maic studies in the Islamic and Christian cultures in the long Middle Ages. 
The 15 articles are arranged roughly chronologically.

Alexander Jones establishes the corpus of Ptolemy’s authentic works, a task 
made arduous by our almost complete ignorance of his life and the circum-
stances of his writings, so much so that ‘anything that we can know of him has 
to come from his writings’. How do we know what Ptolemy wrote? Most texts 
that are attributed to Ptolemy either refer to the Almagest or bear the dedica-
tion to Syros, but this is no definite proof of their authenticity (the Karpos is 
also dedicated to Syros). Previous discussions about the authenticity of Ptol-
emy’s works have rested on doctrinal and stylistic comparison with his other 
works and on testimony of later authors, but these have their limitations too. 
Jones identifies a number of ‘verbal fingerprints’, that is, expressions used in 
two or more works attributed to Ptolemy, but (virtually) nowhere else before 
the end of the fourth century. This allows him to confirm Ptolemy’s author-
ship for most of the texts commonly attributed to him and to securely confirm 
the authenticity of On the Criterion. Jones also discusses works that are lost in 
Greek, as well as lost works known to us only through quotations by Ptolemy 
or others, and concludes with a reconstruction of the chronology of Ptolemy’s 
writings and an assessment of his scientific interests.

Nathan Sidoli reconstructs the mathematical methods found in Ptolemy’s 
Analemma, which is extant in full in Latin only, in the context of Greek math-
ematical practices. The analemma is a plane figure obtained by rotating and 
orthogonally projecting arcs, lines and points from the heavenly sphere into the 
plane, basically mimicking the operations that can be carried out with a com-
pass and a set square. In this process the magnitudes of lines and arcs on the 
sphere are preserved, and the same object may be represented in multiple ways. 
The analemma thus allows the de ter mination of arc lengths on the sphere by 
means of plane trigonometry (or by direct measurement). Ptolemy uses it in 
particular to specify the solar position with respect to the horizon and the 
local meridian as a function of its declination, the geographical latitude and 
the time of day. After giving an explanatory table of contents of the 15 sections 
of Ptolemy’s Analemma, Sidoli explains in detail Ptolemy’s model of the world 
and his determination of one of the three analogous pairs of angles in which 
he expresses the local coordinates of the solar position.

Paul Hullmeine discusses the question whether the ninth sphere, which 
was commonly associated with the Ptolemaic cosmos in medieval Arabic, Latin 
and Hebrew descriptions of the universe, in fact originated with Ptolemy. The 
ninth sphere is a starless sphere beyond the eighth sphere of the fixed stars. 
Since the ninth sphere is not mentioned in the Almagest, Hullmeine carries 
out a detailed analysis of the extant Greek and Arabic versions of the Planetary 
Hypotheses, investigating both the vocabulary related to spheres, orbs and circles 
and other aspects of Ptolemy’s physical descriptions of the planetary models. 
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He concludes that Ptolemy did not intend to establish a nine-sphere cosmos 
and finds that John Philoponus (sixth century) was the first Greek scholar to 
associate the ninth sphere with Ptolemy. Finally, an interesting quotation from 
India (c. 1030) by al-Bīrūnī, who was intimately familiar with the Almagest 
and the Planetary Hypotheses as well as Philoponus’s works, reveals that Philo-
ponus indeed introduced the ascription of the ninth sphere to Ptolemy into the 
medieval Arabic astronomical tradition.

In his doctoral dissertation, Bojidar Dimitrov edits the (incomplete) Syriac 
translation of the Tetrabiblos and compares it in detail with the Greek text as 
edited by Hübner (1998), the Latin version by William of Moerbeke as edited 
by Vuillemin-Diem and Steel, and the Arabic versions by ʿUmar ibn al-Far-
rukhān and Ḥunayn ibn Isḥāq in the preliminary edition by the late Keiji 
Yamamoto, visiting fellow at PAL in September 2014. The significant variants 
from all five sources are specified in the apparatus to the Syriac text. As a fore-
taste, Dimitrov here presents a linguistic comparison of ten cases in which the 
five versions show significant differences. He finds, among other results, that 
the Latin version of William of Moerbeke is generally closer to the Greek and 
Syriac than the two Arabic versions.

Johannes Thomann, who has previously published several articles on the 
Almagest commentary by al-Fārābī (tenth century), here makes use of a short 
critique by Ibn al-Ṣalāḥ (mid twelfth c.) on al-Fārābī’s commentary to iden-
tify passages from the otherwise lost early Arabic translation of the Alma - 
gest made for the caliph al-Maʾmūn before that of al-Ḥajjāj. These passages are 
quoted by Ibn al-Ṣalāḥ from al-Fārābī’s commentary. By comparing the techni-
cal vocabulary in these passages with the Greek original of the Almagest, with 
the extant parts of al-Fārābī’s commentary, with the Arabic translations by 
al-Ḥajjāj and Isḥāq ibn Ḥunayn (revised by Thābit ibn Qurra), and with other 
early ninth-century astronomical works, he concludes that the passages can be 
assumed to be early and hence to most likely stem from the early Maʾmūnic 
Almagest translation.

In his article, Dirk Grupe identifies five Arabic and Persian sources that 
used the version of the Almagest by Thābit ibn Qurra recently identified by 
him (c. 890, to be distinguished from the translation by Isḥāq ibn Ḥunayn that 
was revised by Thābit). These include an epitome of the Almagest in a manu-
script from a private collection (originally in Iran), Ibn Sīnā’s Kitāb al-Shifā ,ʾ 
an abridged reworking of Thābit’s Almagest extant in the Senate Library in 
Tehran, the Talkhīṣ al-Majisṭī by Quṭb al-Dīn al-Shīrāzī and a commentary 
on the Alma gest by Athīr al-Dīn al-Abharī. Furthermore he argues that MS 
20 of the Maharaja Sawai Man Singh Museum Library in Jaipur contains an 
unshortened copy of Books I-V of the Thābit version.
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Tzvi Langermann demonstrates the importance of the Islamic commen-
tary tradition by investigating in detail how three important authors from the 
Islamic world treated Ptolemy’s proof of the sphericity of the earth and of the 
heavenly motion in Almagest I.3. In his introduction he discusses in general 
terms the role of commentaries, which also took the form of epitomes or cri-
tiques, as perceived by their Islamic authors. Then he goes on to analyse the 
way in which Ptolemy’s treatment was explained and criticised in three works: 
Ibn al-Haytham’s Commentary on the Almagest (c. 1000), Jābir ibn Aflaḥ’s 
Book of Astronomy or Correction of the Almagest (early twelfth century) and 
al-Bīrūnī’s zīj al-Qānūn al-Masʿūdī.

José Bellver carries out a detailed comparison of the different extant versions 
of Jabīr ibn Aflaḥ’s Book of Astronomy, which was a very important reedition 
of Ptolemy’s Almagest. He first establishes that the title by which it is gener-
ally known in modern scholarship–Iṣlāh.  al Majisṭi (Correction of the Alma-
gest)–is probably not the original title, since it only appears on the title page of 
a manuscript far removed from the original work. Rather, the original title of 
the work was most likely to be Kitāb al-Hay aʾ (Book of Astronomy). He then 
analyses the differences between the four extant Arabic manuscripts in Arabic 
characters, namely two at the Escorial, one in Berlin and one recently discov-
ered in the Parliament Library in Tehran, also taking into account the Latin 
translation by Gerard of Cremona from the late twelfth century, to determine 
the chronological order of the four different recensions and to find that at least 
three of them most likely stem from Jābir ibn Aflaḥ himself.

In the Arabic tradition, several mathematical methods applied to astrology 
are attributed to Ptolemy and Hermes. These methods concern the house sys-
tems (domification), the projection of rays and the progressions. Josep Casul-
leras reviews the various methods attributed to Ptolemy and Hermes and notes 
that these attributions are not justified by the extant works of either Ptolemy 
or Hermes.

It is commonly assumed that the Almagest was hardly read in Europe before 
the time of Peurbach and Regiomontanus. Evidence to the contrary is shown 
by over ten surviving Latin commentaries on the Almagest written between 
c. 1200 and 1450, as well as by glosses present in numerous manuscripts before 
1450. In his contribution, Henry Zepeda offers the first study of glosses found 
in the Latin manuscripts of the Almagest. After an overview based on an inti-
mate knowledge of the Almagest manuscripts, he presents the outstanding case 
of Paris, BnF, lat. 7256, a thirteenth-century manuscript displaying several lay-
ers of glosses, a good deal of which turn out to be by Campanus of Novara.

Carlos Steel examines Henry Bate of Mechelen’s views on three astronomi-
cal/astrological topics concerning the time for which the horoscope of the rev-
olution of the year should be cast (i.e. for the time of the entry of the Sun into 
Aries or for the time of the syzygy preceding it), the incertitude of astronom-
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ical observations and the commensurability of celestial motions. These views 
are found in the preface of, and additions to, Bate’s translation of Abraham 
Ibn Ezra’s Book of the World (completed in 1281), where Bate defends Ptolemy 
against a number of attacks by Abraham Ibn Ezra. The article is accompanied 
by an edition and a translation of Bate’s preface and additions.

With over 200 extant manuscripts, the Centiloquium is by far the most 
popular Ptolemaic work in the Latin tradition. Jean-Patrice Boudet, who is 
preparing a critical edition of the medieval Latin versions on the basis of the 
work left unfinished by the late Richard Lemay, offers here a survey of these 
medieval versions (of which six are identified, all translated from Arabic prob-
ably in the twelfth century) and evaluates their quality by comparing selected 
aphorisms.

Michael Shank explores the vivid controversy that surrounded the study of 
the Almagest between Regiomontanus and George of Trebizond in the second 
half of the fifteenth century. This controversy concerned the whole Almagest, 
of which George of Trebizond had produced a new translation from the Greek 
and an extensive commentary in 1451. Sometime after 1461, Regiomontanus 
embarked on a no less extensive and particularly sharp criticism of George’s 
commentary in his Defensio Theonis contra Trapezuntium, a text that has been 
very little studied. In this article, Shank conducts a detailed analysis of Regi-
omontanus’s discussion of Almagest IX.1 on planetary order and distances, a 
question which had been notoriously problematic — in fact unsolved — since 
Antiquity, in particular as regards the inferior planets (the Sun, Mercury and 
Venus). Some of Regiomontanus’s developments echo Copernicus’s treatment of 
the planetary order.

Copernicus was not the first to launch a frontal assault against Ptolemy’s 
science of the stars. Some fifty years earlier, Pico della Mirandola produced one 
of the most devastating refutations of astrology ever written, which was pub-
lished posthumously in 1496 under the title Disputationes adversus astrologiam 
divinatricem. Darrel Rutkin examines Pico’s multi-faceted use of Ptolemy, 
who features 376 times in the Disputationes, as the author of the Almagest, the 
Tetrabiblos and the Centiloquium, whose authenticity was not doubted by Pico. 
Rutkin shows in particular how Pico rebukes Ptolemy, whom he calls the ‘best 
of the bad ones’ (‘optimus malorum’), and at the same time uses his silence 
regarding a particular doctrine (e.g. the decans) to castigate other astrologers 
who expounded this doctrine, so making Ptolemy his ‘anti-astrological ally’.

Ptolemaic astronomy continued to be pursued after Copernicus and even 
after Kepler well into the seventeenth century. This is perhaps best exhibited 
by Longomontanus (Christian Sørensen Longberg), a former assistant of Tycho 
Brahe in Denmark and in Prague, who became professor of mathematics at 
the University of Copenhagen in 1605 and published in 1622 his Astronomia 
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Danica, a large volume of 550 pages which modern scholarship has called the 
‘Tychonian Almagest’. In this paper, Richard Kremer analyses and reconstructs 
the theory of Mars developed in several steps by Longomontanus. Proceeding 
step by step he shows how Longomontanus respectively solved the problems of 
the first and second anomaly (the latter with a highly original approach), the 
Mars-Sun and Earth-Sun distances, and finally the mean motions, for which 
he made use also of observations from Ptolemy’s Almagest.

The editors



I. The Greek and Near Eastern Traditions





The Ancient Ptolemy

Alexander JoneS

1. Introduction

Before the medieval Ptolemy — Ptolemaeus Arabus and Ptolemaeus Latinus, 
not to forget Ptolemaeus Byzantinus — was the ancient Ptolemy. Or rather, 
there were ancient Ptolemies, starting with a man who composed a wide range 
of scientific texts and tables in Antonine Roman Egypt, and trailing after him, 
the shadowy Ptolemies who were the images of this author as he was known 
to people of the four remaining centuries of antiquity following his own career. 
For within a few decades of his time, a process of disintegration of Ptolemy’s 
unity had set in, because even his earliest readers, users, and commentators 
were unable to mirror the breadth of his scientific interests or grasp the phil-
osophical and didactic agenda that shaped his approach across his individual 
fields of study; even today, historians tend to specialize according to disciplines 
whose boundaries cut across Ptolemy’s œuvre. My object in the present essay is 
to explore the extent to which we can know the original, in-the-round Ptolemy, 
and to identify some aspects of his thought that become more apparent from 
consideration of the full breadth of his work and that might affect how we 
receive the specifically astronomical and astrological works that constitute the 
core of the ‘Ptolemaeus Arabus et Latinus’ project.

The crucial limitation to our knowledge of the historical Ptolemy is the lack 
of useful information independent of his writings. This should come as no sur-
prise to any student of antiquity, who knows how rare it is that a Greco-Roman 
scientific author whose works survived into the medieval manuscript tradition 
was also a personality traceable in references in literature or in archeologically 
recovered artifacts and documents from his own time. The case of Archime-
des, in which we have on the one hand a corpus of technical mathematical 
treatises preserved through three early minuscule Byzantine codices and on 
the other various anecdotes and legends pertaining to his life, is not really an 
exception, since the biographical reports are only known to us through such 
later writers as Cicero and Plutarch. A more instructive comparand for Ptol-
emy is his contemporary Galen. The immense Galenic corpus contains enough 
autobiographical material for us to reconstruct a detailed if parti pris life of 
a figure whom Bowersock memorably and accurately describes as a lion of 

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 11–34
© F  H  G  10.1484/M.PALS-EB.5.120172
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Roman society, yet contemporary and near-contemporary allusions to him are 
few and scarcely reflect the stature and strong personality conveyed by Galen’s 
self-references.1 Ptolemy’s virtues walked a narrower round, for second-century 
Alexandria was a provincial intellectual center compared to Galen’s Rome — 
and besides, by the standards of the so-called Second Sophistic movement that 
served as the gaudy public face of Antonine intellectual life, Ptolemy was an 
introvert.2 Perhaps Galen himself came into contact with Ptolemy during his 
youthful sojourn in Alexandria in the mid-150s (around when Ptolemy pub-
lished the Almagest), and perhaps many years later he included Ptolemy in a list 
of important but under-read astronomical authors in his commentary on Airs, 
Waters, Places — though the circumstance that in the extant Arabic trans-
lation of Galen’s commentary he appears as ‘Ptolemy king of Egypt’ invites 
suspicion that his presence here is the result of a medieval interpolation.3 
Otherwise any impact Ptolemy the man had on his contemporaries is invis-
ible to us. Effectively, anything that we can know of him has to come from  
his writings.

2. Establishing the Ptolemaic corpus

How sure are we what were his writings were? The starting point, of course, is 
the presence of Ptolemy’s name at the header or footer of a text as preserved in 
the extant manuscripts. As we learn from Galen’s On My Own Books, however, 
an author — even of technical literature, for which the market was presumably 
somewhat restricted — could have the disconcerting experience of finding his 
own name attached fraudulently to a bookseller’s wares, to say nothing of false 
attributions from later times. And unlike Galen, Ptolemy left no catalogue of 
his literary production.

If we take the Almagest as par excellence the authentic Ptolemaic text, we can 
say of several others ascribed to Ptolemy that they must either be his or have 
been intentionally falsified so as to appear to be his, since they have either an 
opening address to Syros, the dedicatee of the Almagest, or an explicit back-ref-
erence to the Almagest, or both:

1 Moraux, Galien de Pergame; Bowersock, Greek Sophists, p. 66; Nutton, ‘Galen in the 
Eyes’.

2 It has been vigorously disputed whether Galen qualifies as a figure of the Second So-
phistic, e.g. Bowersock, Greek Sophists, pp. 59–75; Brunt, ‘The Bubble’, esp. pp. 43–46; von 
Staden, ‘Galen’. No one, to my knowledge, has associated Ptolemy with the movement.

3 Toomer, ‘Galen on the Astronomers’, esp. p. 204; Strohmaier, ‘Galen’s Not Uncritical 
Commentary’.
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Work Primary language Address Reference
of preservation to Syros to Almagest

Planetary Hypotheses Greek (parts Arabic) Yes Yes
Arr. and Comp. Handy Tables Greek Yes Yes
Tetrabiblos Greek Yes Yes
Karpos (Centiloquium) Greek/Arabic/Latin Yes No
Geography Greek No Yes
Analemma Latin (parts Greek) Yes No
Planispherium Arabic/Latin Yes Yes

Table 1. Authorship evidence from dedications and cross-references

The remaining texts ascribed to Ptolemy in the manuscripts and that recent 
scholarship has treated as plausible contenders for authenticity despite the 
absence of reference to the Almagest or dedication to Syros are the Phaseis, 
Canobic Inscription, Criterion, Harmonics, and Optics.

On the other hand, there exist many texts that, though ascribed to Ptolemy 
in the manuscripts, it is unlikely anyone would now make a case for as his 
work. In Greek, we have the Karpos of course, though it has been maintained 
that the Greek version is a translation of an Arabic original, and Musica, a 
short text partly adapted from the final cosmic-harmonies section of the Cano-
bic Inscription but otherwise devoted to musical terminology unrelated to Pto-
lemy’s Harmonics.4 Claudii Ptolomei [sic] de Speculis is William of Moerbeke’s 
Latin translation of a short treatise on catoptrics that was certainly present in 
Greek in one of the two lost codices from which William translated several 
works of Archimedes and Eutocius as well as Ptolemy’s (authentic) Analemma; 
the attribution has universally been rejected since the early nineteenth century, 
and modern editions present it either as a work of Heron of Alexandria or as 
anonymous.5 Additionally, numerous manifestly spurious astrological and astro-
nomical texts are extant in Latin or Arabic under Ptolemy’s name, for which 
there is no evidence of Greek originals.6

The foregoing discussion has not touched on the Handy Tables. In fact 
what we now understand to be Ptolemy’s Handy Tables is a modern recon-

4 On the Karpos and the Arabic and Latin traditions of the Centiloquium see Juste, ‘Pseu-
do-Ptolemy, Centiloquium’ and the article by Jean-Patrice Boudet in this volume. Musica is 
edited in von Jan, Musici Scriptores, pp. 411–20, and discussed by Swerdlow, ‘Ptolemy’s Har-
monics’, esp. pp. 176–78.

5 Jones, ‘Pseudo-Ptolemy De Speculis’. The manuscript in which William found the text is 
listed in the 1311 inventory of the papal Greek manuscripts as ‘undecim quaternos… in quibus 
est liber Tholomei de resumptione [i.e. the Analemma], perspectiua ipsius [i.e. the De Speculis], 
perspectiua Euclidis, et quedam figure Arcimenidis [sic]’; thus the ascription to Ptolemy was al-
ready in this manuscript, not a guess of William’s. See Jones, ‘William of Moerbeke’, esp. p. 19.

6 For Arabic pseudepigrapha see Sezgin, Geschichte, vol. VII, pp. 46–47; for Latin, https://
ptolemaeus.badw.de/works/.
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struction obtained as a subset of collections of astronomical tables preserved in 
numerous Byzantine manuscripts, in particular four dating from the ninth and 
tenth centuries, the selection being guided chiefly by Ptolemy’s Arrangement 
and Composition of the Handy Tables and Theon’s two commentaries on the 
Handy Tables.7 Most of the manuscripts in question present the tables anon-
ymously, and the occasional appearance of Ptolemy’s name in association with 
them (which of course would apply on the face of it to all tables in the col-
lection, not just the subset modern scholarship endorses) does not constitute a 
robust ascription.8

Since modern philological methods began to be systematically applied to 
ancient scientific texts, the works in the Ptolemaic canon whose authenticity 
has been the subject of serious discussion include the Tetrabiblos, the Karpos 
(Centiloquium), the Criterion, the Canobic Inscription, and the Optics. Follow-
ing Boll’s 1894 ‘Studien über Claudius Ptolemäus’, in which he argued exten-
sively for the authenticity of the Tetrabiblos and more briefly for the spurious-
ness of the Karpos, the status of those two works has effectively been settled.9 
Concerning the Criterion, however, Boll writes:10

Dass die Schrift nur dem Mathematiker Claudius Ptolemäus gehören kann, bedarf 
keines Beweises: Anschauung und Stil zeigen dies selbst dem flüchtigsten Blick.

But the very fact that he felt the need to make this assertion implies that the 
question of authorship was not entirely straightforward, and in this instance 
Boll’s authority failed to establish a consensus.11 Any doubts about the Canobic 
Inscription vanished following Hamilton’s demonstration that a certain passage 
in the Almagest (4.9) alluding to parts of Ptolemy’s lunar and planetary the-

7 Tihon, ‘Les Tables Faciles’.
8 For manuscripts identifying their contents as ‘Ptolemy’s Handy Tables’ (Πτολεμαίου 

πρόχειροι κανόνες) see Heiberg, Opera astronomica minora, pp. cxc–cciii. None of the earliest 
copies has such a heading, and in those that do, it is likely to be a Byzantine scholar’s conjec-
ture.

9 Boll, ‘Studien’, pp. 111–80 (Tetrabiblos) and 180–81 (Karpos).
10 Boll, ‘Studien’, p. 77.
11 Rose, De Aristotelis librorum, p. 45 had already baldly denied Ptolemy’s authorship of 

the Criterion (‘ad astronomum certe cui adscribit editor [scil. Boulliau] nihil pertinentem’). 
More recent dissenters include Toomer, ‘Ptolemy’, esp. p. 201 (‘There is nothing in its contents 
conflicting with Ptolemy’s general philosophical position, but the style bears little resemblance 
to his other works; and the ascription, while generally accepted, seems dubious’.); Taub, Ptole
my’s Universe, p. 9 (‘a work whose attribution to Ptolemy has been questioned’); and Swerdlow, 
‘Ptolemy’s Harmonics’, pp. 179–80 (‘Concerning the short work on epistemology attributed to 
Ptolemy, On the Criterion, I have nothing to say except to doubt its authenticity, or at least its 
pertinence to the subjects considered here… It contains not a single reference to the subjects 
of Ptolemy’s other works, all in the mathematical sciences, and parallels that have been drawn 
with the Harmonics seem to me vague.’).
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ories that he had revised refer in fact to the parameters in the inscription.12 
Though the Optics has been regarded as authentic by most scholars from the 
nineteenth century to the present, Rome expressed doubts while more recently 
Knorr contended that the ascription to Ptolemy was sufficiently insecure that 
it would be preferable to take as a working hypothesis that it was by a different 
author.13

Arguments for or against the authenticity of writings attributed to Ptolemy 
have rested chiefly on three types of evidence: comparison of thought with 
other works accepted to be Ptolemy’s, comparison of style, and testimony of 
later authors. Boll’s discussion of the Tetrabiblos applies all three, and the abun-
dance and (in large part) the quality of the arguments render his case for Ptole-
my’s authorship thoroughly persuasive. The Criterion’s authorship is supported 
by no ancient testimony beyond the attribution in the work’s manuscript tradi-
tion, and Boll backs up his assertion, quoted above, that Ptolemy’s authorship 
is obvious merely by referring to arguments offered by Boulliau in his 1644 
editio princeps, which are in reality not particularly impressive. The Optics is 
transmitted minus its entire first book, the conclusion of the fifth, and perhaps 
further books if there were any, and only in an intermittently incoherent Latin 
translation of an Arabic translation, such that most stylistic traits of the orig-
inal Greek text can scarcely be discerned. The testimonia do not correspond 
to any passages in the extant work, leaving the question open whether they 
refer to material in the lost Book 1 or to another work entirely. Arguments 
regarding the Optics’s authorship have thus operated primarily at the level of 
thought, which is the most subjective of the criteria, especially considering that 
the subject matter of the Optics has little overlap with the accepted writings of 
Ptolemy.

Stylistic arguments that are adduced in favor of the common authorship of 
two or more texts often depend on similarities in vocabulary and idiom, and 
care must be taken to ensure that the presence of such shared expressions is 
truly significant. Boll’s long list of stylistic features shared by the Tetrabiblos 
and by Ptolemy’s acknowledged works includes some that are indeed specially 
characteristic of Ptolemy as well as others that are not. An example of the lat-
ter is the qualifying phrase οὐ τὸ τυχόν (in whatever gender and case is appro-
priate), meaning ‘not just any,’ or effectively ‘significant’; Ptolemy is fond of it, 

12 Hamilton et al., ‘The Canobic Inscription’.
13 Rome, ‘Notes sur les passages’, esp. p. 36; Knorr, ‘Archimedes’, esp. pp. 96–104. (Knorr 

offers as a potential alternative author Ptolemy’s approximate contemporary, the peripatetic So-
sigenes.) Ptolemy’s authorship of the Optics had previously been put in question by Caussin de 
Perceval, ‘Mémoire sur l’Optique’, esp. pp. 26–29. See also now Siebert, Die ptolemäische Optik 
for an extended argument that the Optics is a work from late antiquity.
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but it turns up about as frequently in several other authors, including Athe-
naeus, Galen, and Lucian.

The availability of a near-comprehensive searchable corpus of ancient Greek 
texts preserved through the medieval manuscript tradition, the Thesaurus Lin
guae Graecae (TLG), has made it possible to identify an unexpected trait of 
Ptolemy’s writing that allows a secure test of his authorship applicable to all 
the texts preserved in Greek that are attributed to him and that include a sig-
nificant quantity of prose, that is, everything but the Canobic Inscription and 
the Handy Tables. Ptolemy’s style is, by the standards of his time, not florid, 
but it is not exactly plain either. In particular, certain words and phrases that 
he used across multiple works — not specialized technical expressions con-
nected with his subject matter — turn out to be otherwise so rare that, in the 
TLG corpus, they occur in no other author before the fourth century, or in 
extremely few, and these are often authors who wrote under the strong influ-
ence of Ptolemy’s writings.

Consider for example the opening sentence of Almagest Book 2, a typical 
example of the transitional passages in which Ptolemy sums up retrospectively 
the contents of the preceding part of a work before announcing the topic to 
follow:

διεξελθόντες ἐν τῷ πρώτῳ τῆς συντάξεως τά τε περὶ τῆς τῶν ὅλων σχέσεως κατὰ 
τὸ κεφαλαιῶδες ὀφείλοντα προληφθῆναι, καὶ ὅσα ἄν τις τῶν ἐπ᾿ ὀρθῆς τῆς σφαί-
ρας χρήσιμα πρὸς τὴν τῶν ὑποκειμένων θεωρίαν ἡγήσαιτο, πειρασόμεθα κατὰ  
τὸ ἑξῆς…
Having in the first [book] of the composition gone through in summary manner the 
matters concerning the arrangement of the universe that ought to be assumed before-
hand, and all the matters in the sphaera recta situation that one would suppose to be 
useful for the investigation of the subject at hand, we shall next try…

The phrase κατὰ τὸ κεφαλαιῶδες, here translated ‘in summary manner’, turns 
up also in the Tetrabiblos in the retrospective part of four transitional passages 
(1.3.20, 2.4.1, 2.14.12, 3.14.9) as well as in one passage (3.4.4) that lists a series 
of ensuing topics unprefaced by a retrospection. For example, the transition in 
2.4.1 is as follows:

αἱ μὲν οὖν συνοικειώσεις τῶν τε ἀστέρων καὶ τῶν δωδεκατημορίων πρὸς τὰ κατὰ 
μέρος ἔθνη καὶ τὰ ὡς ἐπίπαν αὐτῶν ἰδιώματα κατὰ τὸ κεφαλαιῶδες τοῦτον ἡμῖν 
ὑποτετυπώσθωσαν τὸν τρόπον. ἐκθησόμεθα δὲ καὶ…
Let the shared affinities of the stars [i.e. the Sun, Moon, and planets] and the zodi-
acal signs with respect to the individual peoples and their overall characteristics 
have been sketched by us in summary manner in this way. We shall also set out…

In the Criterion it occurs in the prospective part of a transitional passage (15.1):
τούτων δὲ οὕτως ἐφωδευμένων, ὅτι μὲν ἡγεμονικὸν γίνεται τοῦ σώματος, ἐν ᾧ τὸ 
ἡγεμονικὸν τῆς ψυχῆς, οὐδὲ εἷς ἂν ἀπορέσειεν, εἰ δ᾿ αὐτὸ τὸ ἡγεμονικὸν οὕτως 
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ἁπλῶς ληπτέον καὶ οὐχ ὡς τῶν πρός τι ὄν, ὡδί πως κατὰ τὸ κεφαλαιῶδες διορι-
στέον.
Now that these things have been treated methodically, no one would have difficulty 
with the fact that there is a hêgemonikon of the body, in which is the hêgemonikon 
of the soul, but if this very hêgemonikon is to be taken thus absolutely and not as 
relative to something, one ought to draw distinctions in a summary manner in some-
thing like the following way.

What makes this instance of the phrase in the Criterion significant is the fact 
that, outside of the Almagest and Tetrabiblos, it is only attested in authors 
later than Ptolemy who were heavily influenced by him. In the TLG corpus it 
occurs only in two passages of the astrologer Hephaestion of Thebes (1.20 = 
Epitome IV 15, and 1.25) which respectively are close paraphrases of the pas-
sages from Tetrabiblos 2.4 and 2.14 cited above, and in section 6 of the anony-
mous ‘Geographiae expositio compendiaria’ (Müller, Geographi Graeci Minores 
2.494–509), an opuscule of uncertain but definitely late date for which Ptole-
my’s Geography was a major source.14

The transitional passage from Tetrabiblos 2.4 quoted above also contains the 
perfect passive imperative verb ὑποτετυπώσθωσαν, following the manuscript 
reading adopted by Hübner and by Robbins, or ὑποτετυπώσθω following the 
reading preferred by Boll and Boer (either form is grammatically admissible). 
This perfect passive imperative of ὑποτυπόω turns out to be another special 
word for Ptolemy, occurring in the recapitulative parts of transitional passages 
in the Tetrabiblos (2.4 as already mentioned), the Harmonics (1.4, 2.3, 2.11, 
and 3.4), and the Geography (1.2.1, 1.18.1, and 2.1.1). And once again, there is 
an occurrence in the Criterion (3.3):

ἐκ πόσων μὲν οὖν καὶ οἵων καὶ τίνα τρόπον συνέστηκεν τὸ κριτήριον ὑποτετυπώ-
σθω διὰ τῶν ἐφωδευμένων. ἐπεὶ δὲ…
Let [the questions] out of how many and what sort of things and in what manner 
the criterion is composed have been sketched by means of the things that have been 
treated methodically. But since…

The only other occurrence in a text from antiquity in the TLG corpus is in 
Hephaestion’s paraphrase (1.20) of Tetrabiblos 2.4.15

These are just two of many words and phrases that turn up in more than 
one work attributed to Ptolemy but hardly anywhere else — in some cases 

14 Although the phrase κατὰ τὸ κεφαλαιῶδες does not occur in the Geography, Ptolemy’s 
prose description of the known world and its principal features in Geography 7.4 is character-
ized in the chapter title as well as at the end of the preceding chapter as a ὑπογραφὴ κεφαλαι-
ώδης, ‘summary caption’; this might have triggered a memory of an expression encountered in 
other works of Ptolemy’s.

15 There is an instance in the astrological dialogue Hermippus (ed. Kroll and Viereck, p. 57 
line 23), a work of disputed authorship but definitely of Byzantine date.
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nowhere — in texts written up to the end of the fourth century of our era. 
Table 2 summarizes the patterns of occurrence of fourteen such verbal finger-
prints (see the detailed discussion in the appendix to this paper). Every work of 
continuous prose surviving even partially in Greek in the accepted Ptolemaic 
corpus (i.e. excluding the Handy Tables and the Canobic Inscription) is linked 
by at least one shared expression to at least two other works. As one might 
expect, the Almagest has the largest number of shared expressions — eight 
of the fourteen — while the Tetrabiblos has seven; but the Criterion also has 
seven, making it in this peculiar sense one of the most characteristic works in 
the Ptolemaic corpus! This is the more remarkable, because the Almagest runs 
to more than 1150 Teubner pages, and the Criterion to just 23.

Either the Criterion is indeed by Ptolemy, then, or it was composed by some-
one after Ptolemy using a vocabulary that was strongly influenced, consciously 
or unconsciously, by Ptolemy’s. It is not a work to which Ptolemy’s name was 
accidentally attached, say, merely because it came after genuine works of Ptol-
emy in a manuscript or because it was written by a different Ptolemy. But the 
same apparent remoteness of its subject matter from that of Ptolemy’s ‘scientific’ 
treatises that has led many to doubt its authenticity argues against its being a 
deliberate forgery or a mistaken ascription of an imitator’s composition to the 
master. The Criterion is thus validated as an authentic work of Ptolemy’s, and 
the features of it — such as its very subject matter — that have given rise to 
doubts about its authorship actually broaden our understanding of Ptolemy’s 
system of thought and perhaps also its development.

The verbal fingerprint test is obviously inapplicable to works that come 
down to us only in languages other than Greek. In the case of two of the 
astronomical texts ascribed to Ptolemy, the Planetary Hypotheses and the Ana
lemma, Greek text whose authenticity is confirmed by verbal fingerprints sur-
vives for less than half of each work as represented respectively in Arabic and 
in Latin. The Analemma’s Greek remnants reach us through palimpsest leaves 
(sixth century?) in the manuscript Ambrosianus L99sup that correspond to 
roughly the middle third of the ostensibly complete text in William of Moer-
beke’s translation; the parts not covered by the palimpsest were obviously pres-
ent in the lost Greek manuscript used by William, and there is no reason to 
suspect that they are inauthentic.16 The Greek Planetary Hypotheses, on the 
other hand, is roughly the first half of Book 1 as we know it from the Arabic, 
breaking off in mid-sentence, which suggests descent from a mutilated exem-

16 William’s autograph translation of the Analemma in Ottob. lat. 1850 cuts off abruptly at 
the bottom of the last page of a quire, with the first of what the text leads the reader to expect 
will be a set of tables, and, unlike the other translations in the manuscript, this one lacks a 
subscription giving the work’s title and the date of the translation’s completion. There may 
thus have been a continuation for which we have neither Greek nor Latin.



 THE ANCIENT PTOLEMY 21

A
lm

Ph
as

PH
A

C
H

T
A

na
T

et
ra

C
rit

H
ar

m
G

eo
g

ot
he

r a
ut

ho
rs

 
(u

p 
to

 c.
 a

d
 4

00
)

ἀμ
ετ

άπ
ισ

το
ς

1
2

ἐπ
ιπ

ολ
υπ

ρα
γμ

ον
έω

1
1

εὐ
κα

τα
νό

ητ
ος

28
1

2
Po

ly
bi

us
 (1

)
H

ip
pa

rc
hu

s (
2)

Pa
pp

us
*†

 (1
)

T
he

on
 A

lex
.*†

 (3
)

Po
rp

hy
ry

*†
 (2

)
Se

re
nu

s (
1)

εὐ
με

θό
δε

υτ
ον

2
1

T
he

on
 A

lex
.*†

 (3
)

ἐφ
ω

δε
ύμ

εν
ος

 (c
f. 

πρ
οε

φω
δε

υμ
έν

ος
)

7
1

4
2

1
ἰδ

ιο
τρ

οπ
ία

3
35

1
1

1
A

ris
tid

es
 Q

ui
nt

ili
an

us
 (1

)
C

leo
m

ed
es

 (1
)

H
ep

ha
es

tio
n*

† 
(1

8)
ps

-G
al

en
 D

e D
ec

ub
itu

 (1
)

κα
τὰ

 σ
υν

εγ
γι

σμ
όν

1
2

H
ip

pa
rc

hu
s (

2)
κα

τὰ
 τ

ὸ 
κε

φα
λα

ιῶ
δε

ς
1

5
1

H
ep

ha
es

tio
n*

† 
(2

)
κα

τὰ
 τ

ὸ 
ὁλ

οσ
χε

ρέ
ς /

 ὁ
λο

σχ
ερ

έσ
τε

ρο
ν

5
1

2
G

em
in

us
 (2

)
H

ep
ha

es
tio

n*
† 

(2
)

κα
τὰ

 τ
ὸν

 ἁ
ρμ

όζ
ον

τα
…

 λ
όγ

ον
 / 

τρ
όπ

ον
3

1
πρ

οε
ντ

άσ
σω

4
1

H
er

on
 M

etr
ica

 (1
)

A
sc

lep
io

do
tu

s (
1)

 
Ph

ilo
 Ju

da
eu

s (
1)

πρ
οε

φω
δε

υμ
έν

ος
9

St
ra

bo
 (1

)
πρ

οσ
πα

ρα
μυ

θέ
ομ

αι
1

1
2

1
πρ

ου
πο

τε
τυ

πώ
σθ

ω
 / 

πρ
ου

πο
τε

τυ
πώ

σθ
ω

σα
ν

2
H

ep
ha

es
tio

n*
† 

(1
)

συ
νε

χέ
στ

ερ
α 

πα
ρα

τή
ρη

σι
ς

1
1

T
he

on
 A

lex
.*†

 (2
)

ὑπ
οτ

ετ
υπ

ώ
σθ

ω
 / 

ὑπ
οτ

ετ
υπ

ώ
σθ

ω
σα

ν  
(c

f. 
πρ

ου
πο

τε
τυ

πώ
σθ

ω
)

2
1

4
3

H
ep

ha
es

tio
n*

 (1
)

* 
Te

xt
 r

ef
lec

tin
g 

in
flu

en
ce

 o
f P

to
lem

y’s
 w

or
ks

. †
 A

t l
ea

st
 o

ne
 in

st
an

ce
 is

 a
 p

ar
ap

hr
as

e 
or

 q
uo

ta
tio

n 
fr

om
 P

to
lem

y.

Ta
bl

e 
2.

 S
om

e 
of

 P
to

lem
y’s

 v
er

ba
l f

in
ge

rp
rin

ts



22 ALEXANDER JONES

plar; and there are changes of subject matter soon after this point as well as  
between Books 1 and 2 such that no one having just the part existing in Greek 
would have been able to predict how Ptolemy was going to continue through 
the rest of the work. But testimonia in Proclus and Simplicius correspond 
to passages in both Books 1 and 2 that survive only in Arabic, confirming 
their authenticity (or at a minimum, that these passages existed in Greek in 
late antiquity).17 The Planispherium seems to be adequately accredited by its 
references to the Almagest and dedication to Syros and by the consistency of 
its subject matter and mathematical methods with the authenticated astro-
nomical writings, notwithstanding that the only testimonium for it in Greek 
is its apparent listing in the Suda (s.v. Πτολεμαῖος ὁ Κλαύδιος χρηματίσας) 
by the title ἅπλωσις ἐπιφανείας σφαίρας, ‘flattening of a surface of a sphere’.

The Optics confronts us with the least satisfactory evidence for its author-
ship among all the texts whose ascriptions to Ptolemy are not patently spurious. 
We have testimonia from Simplicius and Damianus in late antiquity and from 
Symeon Seth in the eleventh century to the existence in Greek of an Optics 
ascribed to Ptolemy, but they do not correspond to passages in the extant, 
mutilated Latin Optics. The Simplicius passage (In Arist. de Caelo, ed. Heiberg, 
Simplicius, p. 20) cites both Ptolemy’s Optics and another work of Ptolemy’s 
‘on the elements’ (ἐν τῷ περὶ τῶν στοιχείων βιβλίῳ) for a non-Aristotelian 
principle that the elements — apparently including both the four ‘mundane’ 
elements and the fifth etherial one — have a natural rectilinear motion only 
when they are outside their natural places; the fact that this principle is also 
found in Planetary Hypotheses Book 2 strengthens the case that the Optics that 
Simplicius knew was indeed by Ptolemy.18 Arguments for the authenticity of 
the extant Optics, however, rest largely on a general sense that it exhibits an 
intellectual level, engagement with contemporary philosophical concerns, and 
empirical approach worthy of Ptolemy. Moreover, the extended mathematical 
discussion of the effect of refraction on observed positions of heavenly bodies 
in Optics 5.23–30 ties one aspect of the treatise’s subject to Ptolemy’s astro-
nomical interests. A still stronger indication that the author was an astrono-

17 The end of the authentic Greek text as given, e.g., in Vat. gr. 1594 is at Heiberg, Opera 
astronomica minora, p. 104, line 23 after ‘ἰσοταχῶς’ in the middle of the description of the 
model for Saturn; the continuation in some manuscripts, which Heiberg retains in his edition, 
is a mechanical duplication of the preceding description of Jupiter’s model with the numerical 
parameters replaced by blank spaces. Proclus, In Timaeum 258a summarizes material from the 
later part of Planetary Hypotheses Book 1, whereas Simplicius, In Arist. de Caelo (ed. Heiberg, 
p. 456) paraphrases a passage in Book 2.

18 cf. Nix’s translation in Heiberg, Opera astronomica minora, pp. 112–13. However, since 
Simplicius also cites the peripatetic Xenarchus and Plotinus in the same context, one cannot 
maintain that this principle of the rectilinear motion of displaced elements was exclusive to 
Ptolemy.
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mer is that the circular bronze plaque used for the measurements of angles of 
reflection and refraction in 3.8 and 5.8 is to be inscribed with a division of 
the circle into degrees, since this appears to be one of only two known ancient 
instances of use of degrees as a measure of arcs or angles outside of astronomy, 
astrology, and geography.19 Though one might wish for something in the Optics 
that marks it specifically as Ptolemy’s work, this is barely enough, I believe, to 
make the transmitted attribution to him convincing.

3. Lost works

It is impossible to be certain how much of Ptolemy’s literary production is lost, 
but from the indications that we have, it is likely to have been significantly 
less than what survives. Leaving aside the portions known to be missing from 
extant works — the first book and the conclusion of the fifth of the Optics, 
the last three chapters of Harmonics Book 3, and the promised tables at the 
ends of the Analemma and Planetary Hypotheses — the only non-extant text 
explicitly mentioned in any of the surviving ones is the ‘dedicated treatise on 
this subject’ (ἡ κατ᾿ ἴδια σύνταξις τῆσδε τῆς πραγματείας) cited at the open-
ing of the Phaseis, in which Ptolemy states that he provided a full mathemati-
cal treatment of the conditions determining the dates of first and last morning 
and evening risings of the fixed stars.20 Since the Suda lists among Ptolemy’s 
works ‘two books on phases and weather-signs of fixed stars’ (περὶ φάσεων  
καὶ ἐπισημασιῶν ἀστέρων ἀπλανῶν βιβλία β), whereas the extant Phaseis 
(transmitted under a slightly different title, φάσεις ἀπλανῶν ἀστέρων καὶ 
συναγωγὴ ἐπισημασιῶν) is in just one book, it is generally assumed that what 
we have is Book 2 of a work, the lost Book 1 of which is summarized in its 
opening sentence, but Ptolemy’s wording does not seem to fit a back-reference 
to a previous part of the same treatise.

A scholion in some manuscripts of the Almagest cites a work by Ptolemy ‘on 
paradoxical phases of Venus’.21 The ‘paradoxical’ phenomena in question clearly 
consist of Venus’s highly variable intervals of invisibility, in particular around 
inferior conjunction, which are a topic dealt with in Almagest 13.8.22 The scho-

19 The other instance is a circular plate graduated in degrees, which forms part of a set 
of surveyor’s instruments of unknown provenance and dating from late antiquity; see Turner, 
Mathematical Instruments, pp. 10–11 and fig. 12d.

20 Occasionally Ptolemy employs πραγματεία in the sense of ‘treatise’ (e.g. Almagest 13.11), 
but it can hardly have this meaning here since σύνταξις already designates a composition in 
its own right.

21 Jones, ‘A Posy’, esp. pp. 75–77.
22 The qualification ‘paradoxical’ does not appear in the Almagest, but is applied by Pro-

clus, Hypotyposis 1.17–22 and 7.9–18 to these phenomena and certain visibility phenomena of 
Mercury also treated in Almagest 13.8. Proclus may be making reference to the separate work 
cited in the scholion as well as to the Almagest.



24 ALEXANDER JONES

lion is not referring to Almagest 13.8, however, since it states that the work 
in question contained an explanation of positional terminology in Babylonian 
planetary observation reports, which is in fact not to be found anywhere in 
the Almagest. Like the lost work on stellar visibility, this seems to have been 
Ptolemy’s in-depth handling of a subject that he treated more cursorily in  
the Almagest.

In his commentary on the Almagest, Pappus supplements his discussion of 
the armillary astrolabe whose construction Ptolemy sets out in Almagest 5.1 
with information about a more complex version of the instrument, with nine 
rings instead of seven, derived from another work of Ptolemy’s that Pappus des-
ignates as ‘the constructed instrument that is called meteoroskopeion’ (ἐν δὲ τῷ 
διακατασκευασμένῳ ὀργάνῳ ὂ καλεῖται μετεωροσκοπεῖον).23 References to 
the meteoroskopeion also appear in Ptolemy’s Geography 1.3 and Proclus, Hypo
typosis 6, though without citation of a specific lost writing.24

If the foregoing trio of lost astronomical writings could be classified under 
the heading, ‘more of the same,’ others that receive mostly glancing references 
in later authors hint at facets of Ptolemy’s intellectual activity that the extant 
works represent poorly if at all, especially concerning physics (in the ancient 
sense). The very first work of Ptolemy’s listed in his Suda article is Mechan
ics (Μηχανικά) in three books. We know nothing about its contents beyond 
the implication of its title that it concerned manmade devices and machines, 
but, presuming it was authentic, it would have counted among Ptolemy’s major 
compositions, and one would imagine that it took at least as theoretical an 
approach as Heron’s Mechanics (which interestingly was also in three books). 
Works On the Elements (περὶ τῶν στοιχείων) and On Weights (περὶ ῥοπῶν) 
— or could they be a single work designated by two different descriptive quasi- 
titles? — are cited by Simplicius, In Arist. De Caelo (ed. Heiberg, pp. 20 and 
710 for discussions of the behavior of mundane material bodies in and out of 
their natural places, while Eutocius, In Archim. De Planorum Equil. (ed. Hei-
berg, p. 306) attributes to Ptolemy’s On Weights a definition of weight.

Simplicius, In Arist. De Caelo (ed. Heiberg, p. 9) also refers to a work in a 
single book (μονόβιβλος) called On Dimension (περὶ διαστάσεως), in which 
Ptolemy presented the same argument as appears in the Analemma that there 
can be only three orthogonal dimensions. Lastly, we have no title for the text 
(‘in some book’, ἔν τινι βιβλίῳ) in which, according to Proclus, In Eucl. Ele
menta (ed. Friedlein, pp. 191 and 362–67) and al-Nayrīzī’s commentary on the 
Elements (ed. Besthorn & Heiberg, p. 118; ed. Curtze, pp. 65–66), Ptolemy 

23 The verb διακατασκεύω is a hapax legomenon, and perhaps the passage is corrupt, but 
Pappus clearly has a text attributed to Ptolemy since he follows the phrase quoted above with 
‘he says’ (λέγει).

24 Rome, ‘L’Astrolabe’.
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attempted a proof of Euclid’s fifth postulate and applied this result to variant 
proofs of several propositions in Elements Book 1.

4. Chronology of the works

Knowing the order in which Ptolemy wrote his works might cast some light 
on the development of his thought. The cross references to the Almagest in 
the majority of his surviving astronomical writings as well as in the Tetra
biblos and Geography suffice to show that all these works were completed, if 
not entirely written, after the Almagest. This must also be true of the Phaseis 
and the lost book on the mathematical theory of stellar visibility phenomena 
summarized in the Phaseis’s introduction, since in Almagest 8.6 Ptolemy writes 
of stellar visibility theory as a complex and uncertain undertaking that he has 
chosen to dispense with ‘for the time being’ (ἐπὶ τοῦ παρόντος). The Alma
gest in turn cites astronomical observations that Ptolemy asserts that he made 
over a span of years from 127 through 141, and even if some of these are not 
genuine and untampered observations, one can safely presume that he would 
not have claimed to make an observation at a date manifestly before he was 
capable of doing so. Moreover, the allusion in Almagest 4.9 to repudiated ear-
lier astronomical parameters that can be identified in the Canobic Inscription 
establishes that the treatise was not completed in the form we have it before 
the explicit date of the inscription’s erection, the tenth regnal year (according 
to the Egyptian calendar) of Antoninus Pius, or ad 146–147. Hence almost all 
Ptolemy’s other works on astronomical, astrological, and cartographical subjects 
are known to have been finished in the period after the Almagest, whereas only 
the Canobic Inscription, which is not a writing in the normal sense, can be 
dated with certainty to the twenty-year interval of Ptolemy’s career preceding 
the Almagest’s completion.

Certain developments in Ptolemy’s geographical knowledge and astronom-
ical theories make it possible to obtain a plausible sequence for some of the 
post-Almagest works. In Almagest 2.6, Ptolemy asserts that the regions around 
the Earth’s equator are ‘untrodden’ (ἄτριπτοι) by people from his part of the 
world (ἡ καθ᾿ ἡμὰς οἰκουμένη) so that one can only guess what the climate 
there is like. The astrological geography and ethnography of Tetrabiblos 2.2 
likewise extends southward only as far as the equator. In the Geography, how-
ever, Ptolemy has learned (from the writings of Marinus of Tyre) of peoples 
and places located, so he believes, as far south as 16 5/12° south of the equa-
tor. Now the core of the Geography is a list of several thousand localities with 
their coordinates in longitude and latitude, grouped by ‘provinces and satra-
pies’ and ordered appropriately to provide the basis for systematically drawing 
a map of the known part of the world; a few hundred of these are singled 
out as ‘noteworthy cities’ (πόλεις ἐπίσημοι). The table of Noteworthy Cities in 
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the Handy Tables turns out to comprise this same subset from the Geography, 
listed in the same order which had been determined by practical convenience 
for drawing the map. Turning now to astronomical considerations, the models 
and parameters built into the Handy Tables and presented in the Planetary 
Hypotheses occasionally differ from those of the Almagest and each other. In 
particular, the distinct models for the planets’ motions in latitude in the three 
works make best sense as resulting from a process of simplification in which 
the Planetary Hypotheses represents the final stage.25

The concluding section of the Canobic Inscription associates the heavenly 
bodies and the mundane elements one-to-one (or in a few cases two-to-one) 
with a scale of musical pitches, such that the pitches ascend with increasing 
distance from the center of the cosmos. This same correlation, which so far as 
we can tell was devised by Ptolemy himself, was discussed as a harmonic foun-
dation of astrological affinities between the heavenly bodies in Harmonics 3.16, 
one of the lost three closing chapters of the Harmonics; the evidence, which 
is compelling, is a surviving fragment either from the chapter itself or from a 
scholion or commentary.26 No trace of the scheme can be found in the Tetra
biblos, though a different application of harmonics to astrological relations is 
introduced in Tetrabiblos 1.14. The Harmonics thus seems likely to have been a 
comparatively early work of Ptolemy’s, perhaps completed before the Almagest. 
More subjectively, the epistemological discussions of the Criterion impress one 
as both simpler and cruder than those of the Harmonics, suggesting that the 
Criterion could belong to the very beginning of Ptolemy’s career.27

For the remaining major treatise, the Optics, three considerations have 
been adduced as favoring a comparatively late date. First, there is the contrast 
between the extended discussion of refraction as affecting observed positions 
of heavenly bodies in Optics 5.23–30, which we have already mentioned, and 
the absence of anything comparable in the Almagest.28 Second, in Almagest 1.3 
and 9.2 Ptolemy refers to the phenomena that apparent sizes of heavenly bod-
ies, and apparent angular distances separating heavenly bodies, appear larger 
when they are near the horizon, but in one passage he mistakenly attributes 
the effect to refraction in the atmosphere while in the other he provides no 
cause; by way of contrast, in Planetary Hypotheses 1B.7 and in Optics 3.59 he 
explains the phenomena psychologically, which is essentially correct.29 Third, in 
Geography 1.1 Ptolemy seems to invoke the theory (familiar, e.g., from Euclid’s 

25 Swerdlow, ‘Ptolemy’s Theories’, pp. 41–71.
26 Swerdlow, ‘Ptolemy’s Harmonics’.
27 Feke, ‘Mathematizing the Soul’, offers further more or less subjective arguments that the 

Criterion antedated the Harmonics.
28 Smith, Ptolemy’s Theory of Visual Perception, p. 2.
29 Smith, Ptolemy’s Theory of Visual Perception, p. 2.
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Optics) that visual perception occurs through rectilinear visual rays fanning out 
from the eyes with gaps between the rays that enlarge with greater distance, 
whereas in Optics 2.50–51 he rejects the concept of discrete rays.30 However, 
none of these considerations constitutes a truly compelling argument for the 
sequence of the works in question.

Table 3 summarizes what we know or can plausibly guess about the sequence 
of Ptolemy’s writings, where the Canobic Inscription and Almagest serve as the 
chronological anchor.

Firmly dated Subjectively dated

On the Criterion
Harmonics

Canobic Inscription (ad 147/147)
Almagest
Tetrabiblos

Treatise on theory of stellar visibility
(possibly Book 1 of Phaseis)
Phaseis (possibly Book 2)

Handy Tables
Arr. and Comp. Handy Tables
Geography
Planetary Hypotheses

Optics

Table 3. A plausible chronological sequence for some of Ptolemy’s works. The Planispherium 
is also firmly dated to after the Almagest, and the work describing the meteoroskopeion to be-
tween the Almagest and the Geography, but their places in the sequence cannot be further 
narrowed.

5. Range and connectedness of Ptolemy’s interests

Table 4 groups Ptolemy’s works, both extant and lost, according to the dis-
ciplines by which one would most likely classify them on the basis of their 
overall subject matter. The primacy of astronomy — defined as the science 
concerning the nature, movements, and phenomena of the heavenly bodies in 
their own right — in this list is obvious, both by the number of the works 
and by their including the Almagest, the largest (by a considerable margin) and 
most highly structured treatise among them.31 Moreover, significant references 
to astronomy occur in the Harmonics, Tetrabiblos, Geography, and Optics. At 
the same time, taking the lost works into consideration reinforces the realiza-

30 Berggren and Jones, Ptolemy’s Geography, p. 57, n. 2.
31 The Geography comes next in bulk, but approximately five of its eight books consist sim-

ply of the cartographical data for constructing maps, and most of the eighth book is devoted 
to captions for the regional maps.
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tion that Ptolemy was also deeply interested in phenomena of the sublunary 
world, whether these phenomena were such as he believed to be amenable to 
mathematical modelling or not. Conspicuously absent from the list is any work 
on a strictly biological topic.

Discipline Work Preservation

Astronomy
Canobic Inscription Greek
Almagest (13 books) Greek
Arr. and Comp. Handy Tables Greek
Handy Tables Greek
Planetary Hypotheses (2 books) Greek (parts Arabic)
Phaseis (possibly Book 2) Greek
Treatise on theory of stellar visibility Lost
(possibly Book 1 of Phaseis)
On Paradoxical Phases of Venus Lost
Description of the meteoroskopeion Lost
Analemma Latin (parts Greek)
Planispherium Arabic/Latin

Astrology
Tetrabiblos (4 books) Greek

Cartography
Geography (8 books) Greek

Epistemology
On the Criterion Greek

Music theory
Harmonics (3 books) Greek

Optics
Optics (5 books) Latin

Physics and Mechanics
Mechanics (3 books) Lost
On the Elements Lost
On Weights Lost

Mathematics
On Dimension Lost
Work related to Euclid’s Elements Lost

Table 4. Ptolemy’s known works arranged by primary discipline

Cutting across classification by discipline are certain prevailing themes. One 
that is especially prominent in several of the more ambitious treatises is episte-
mology. Thus the Harmonics and the Almagest are both deeply concerned with 
appropriate strategies for applying sense perception (i.e. empirical observations 
and measurements with or without specially constructed apparatus) and reason 
(in particular mathematical analysis) to deduce knowledge of the ‘hypotheses’ 
or models underlying the phenomena respectively of musical pitch relations and 
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the apparent behavior of the heavenly bodies; the explicit discussions in the 
Harmonics of the complementary roles of sense perception and reason as crite-
ria (in the Greek philosophical sense) turn out to be highly relevant for grasp-
ing the more complex though largely unarticulated deductive structures of the 
Almagest. Book 1 of the Geography has an extended discussion of the relative 
value of different kinds of empirical data for determining absolute and relative 
locations of terrestrial places, and of methods for evaluating and correcting dis-
torted data. The Optics, as a systematic study applying empirical observation, 
experiment, and deductive analysis to the nature visual perception and the 
relations (which are often subject to error) between perceived bodies and our 
perceptions of them, could be described as a study in the scientific epistemol-
ogy of epistemology itself. In the light of these sophisticated treatments of the 
processes of acquiring knowledge about the external world, we might be less 
surprised that Ptolemy wrote a monograph largely devoted to the general topic 
of criteria than that this part of On the Criterion appears comparatively banal 
and disconnected from scientific applications.

The two central principles of Ptolemy’s cosmology are the (originally Aris-
totelian) four-plus-one elements theory and the division of the cosmos into an 
inner ‘sublunary’ sphere in which the four elements earth, water, air, and fire 
predominate and an outer celestial spherical shell composed of bodies of ether. 
In the Almagest these principles are mostly kept in the background, though 
Ptolemy does ground his assumption that the heavenly bodies move with eter-
nally uniform circular revolutions in a characterization of etherial bodies as 
eternal, unchanging, and divine (see for example 13.2). The three-dimensional 
geometry of these celestial bodies of ether, both visible and invisible, is the 
chief subject of Planetary Hypotheses Book 2, while the Tetrabiblos invokes the 
physical relationship between the celestial outer part of the cosmos and the 
enclosed sublunary sphere, such that the heavenly bodies are agents of gener-
ation and change in the complex, irregularly evolving sublunary world, as the 
rationale for the viability but inherent inexactness of astrological prediction. 
Among the non-astral-sciences works, the Criterion is particularly interesting 
for offering a materialistic theory of the composition of human souls, accord-
ing to which ether is present in the soul and responsible for its intellectual 
capacity. This would provide a bridge between Ptolemy’s notions of the human 
soul as having mathematical structures (Harmonics Book 3) and as having the 
power to introduce mathematically structured features into the external envi-
ronment — by making music (Harmonics Book 1) and even simply by seeing 
through the rectilinear emission of a visual ray (Optics) — and his belief that 
the coordinated motions of the celestial etherial bodies are generated by celes-
tial souls (Planetary Hypotheses Book 2).

Lastly, didactically appropriate, mathematically defined modes of represen-
tation of aspects of the cosmos are a broad concern of Ptolemy’s. The Plani
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spherium, for example, is about representing celestial circles and revolutions 
in a single plane through stereographic projection, while in the Almagest and 
Planetary Hypotheses Ptolemy writes respectively about the formats of numeri-
cal tables and mechanical constructions as means of displaying underlying real-
ities behind astronomical phenomena. Ptolemy’s most extensive contribution to 
this theme, however, is the Geography, since this work is more or less entirely 
concerned with the best ways of displaying geographical information on planar 
surfaces and globes, in the latter case providing a terrestrial counterpart to the 
construction of a star globe in Almagest Book 8.

Appendix: Words and phrases characteristic of Ptolemy

The fourteen expressions discussed in this appendix are almost certainly not 
an exhaustive list of those that occur in more than one of Ptolemy’s works 
but rarely or never in other authors; they were found by reading the texts with 
an eye for candidate expressions, followed by a TLG search. Unless otherwise 
noted, occurrences of the expressions are according to the editions used in the 
TLG. Occurrences in authors later than Hephaestion are excluded.

ἀμετάπιστος, ‘not subject to change of belief ’. While ἀμετάπειστος, thus 
spelled, is a frequent term in Aristotle and hence also in the Aristote-
lian commentators (as well as Plutarch and, with one instance, Diodorus), 
ἀμετάπιστος appears to be distinctive to Ptolemy: Almagest 1.1, Crite
rion 2.6 and 12.5. The two words are not identical in meaning, since 
ἀμετάπειστος is applicable to a belief or a believer that is not subject to 
alteration, whereas ἀμετάπιστος characterizes an object of thought about 
which belief cannot be altered.

ἐπιπολυπραγμονέω, ‘to busy oneself additionally’. Unique to Ptolemy: 
Tetrabiblos 3.6.4, Criterion 8.3.

εὐκατανόητος, ‘easily comprehended’. Very frequent in the Almagest (28 
instances); also Tetrabiblos 1.11.5, Harmonics 1.1 and 1.11. Instances in 
texts not obviously influenced by Ptolemy: Polybius 18.30.11, Hipparchus 
In Arati et Eudoxi phaenomena 1.1.11 and 2.4.6, Serenus, De sectione coni 
ed. Heiberg p. 250 line 25. In texts influenced by Ptolemy: Porphyry, 
Commentary on Harmonics ed. Düring p. 20 line 9 (quoting Harmonics) 
and p. 133 line 13 (paraphrasing Harmonics), Pappus, Commentary on 
Almagest ed. Rome p. 98 line 27 (quoting Ptolemy), Theon of Alexan-
dria, Commentary on Almagest ed. Rome p. 502 line 17 (quoting Pto-
lemy), p. 564 line 7, and p. 569 line 7. Ptolemy may have picked up the 
word from familiarity with Hipparchus.

εὐμεθόδευτον, ‘easily carried out’. Almagest 1.10 and 13.4, Planetary Hypo
theses 1.2. Theon of Alexandria, Commentary on Almagest ed. Rome 
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p. 451 line 2 (quoting Ptolemy), p. 602 line 8, Great Commentary on 
Handy Tables ed. Mogenet and Tihon v. 1 p. 102 line 20.

ἐφωδευμένος, ‘worked out’ or ‘carried out’. Unique to Ptolemy: Almagest 
2.13, 3.1, 3.4, 6.5, 12.9, 13.8, 13.11, Analemma ed. Heiberg p. 195 line 
8, Tetrabiblos 3.1.1, 3.12.1, 4.9.1, 4.10.1, Geography 8.1.2, Criterion 3.3, 
15.1. The compound προεφωδευμένος, ‘previously worked out’, occurs in 
Almagest 3.4, 9.9, 12.2, 12.7, 12.9 (3 instances), 13.4 (2 instances), and 
otherwise only in Strabo 12.8.8.

ἰδιοτροπία, ‘characteristic tendency’. Very frequent in the Tetrabiblos (35 
instances); also Almagest 1.1, 8.4, 9.2, Harmonics 3.7, Geography 2.1.8, 
Criterion 4.3. In texts not obviously influenced by Ptolemy: Aristides 
Quintilianus 3.26, Cleomedes 2.4, pseudo-Galen, Prognostica de decubitu, 
ed. Kühn (v. 19) p. 538 line 5. Influenced by Ptolemy: Hephaestion (18 
instances). In the Tetrabiblos (and hence also Hephaestion) the term takes 
on a quasi-technical status.

κατὰ συνεγγισμόν + genitive, ‘by adjustment to fit’. In this usage, unique 
to Ptolemy: Planetary Hypotheses 1.5, Geography 1.13.1, 2.1.2. The only 
other occurrences of κατὰ συνεγγισμόν, without genitive object and with 
the meaning ‘by way of approximation’, are in Hipparchus, In Arati et 
Eudoxi phaenomena 1.11.7 and 2.4.6.

κατὰ τὸ κεφαλαιῶδες, ‘in summary manner’. Almagest 2.1, Tetrabiblos 
1.3.20, 2.4.1, 2.14.12, 3.14.9, 3.4.4, Criterion 15.1. Influenced by Pto-
lemy: Hephaestion 1.20.1 (paraphrasing Ptolemy), 1.25.25.

κατὰ τὸ ὁλοσχερές, ‘in a rough manner’. Almagest 9.5, Tetrabiblos 3.3.5. 
In texts not obviously influenced by Ptolemy: Geminus 2.20, 18.14. 
Influenced by Ptolemy: Hephaestion 1.1.13, 2.2.6 (paraphrasing Ptolemy). 
κατὰ τὸ ὁλοσχερέστερον, ‘in a rougher manner’. Almagest 6.11, 8.6, 10.6, 
11.5, Arrangement and Computation of the Handy Tables 1 (ed. Heiberg 
p. 161 line 1), Tetrabiblos 3.2.6.

κατὰ τὸν ἁρμόζοντα… λόγον/τρόπον, ‘in the rationale/manner fitting for…’ 
Unique to Ptolemy: Tetrabiblos 1.1.2, 3.7.1, 4.10.27alt,32 Harmonics 2.9.

προσεντάσσω, ‘to insert additionally’. Almagest 6.11, 8.3 (2 instances), 8.6, 
Phaseis 9 (ed. Heiberg p. 12 line 14). In texts not obviously influenced by 
Ptolemy: Heron, Metrica 2.15, Asclepiodotus 6.1, Philo Judaeus, In Flac
cum 131.

32 This refers to the ‘alternate’ conclusion of the Tetrabiblos’s final chapter, which Boll and 
Hübner did not adopt but is now widely regarded as the authentic version.
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προσπαραμυθέομαι, ‘to remark additionally’. Unique to Ptolemy: Phaseis, 
ed. Heiberg p. 13 line 21, Arrangement and Computation of the Handy 
Tables, ed. Heiberg p. 185 line 6, Harmonics 3.4, Criterion 4.2, 6.1.

συνεχεστέρα παρατήρησις, ‘more sustained observation’. Almagest 1.8, Pla
netary Hypotheses 1.2. Influenced by Ptolemy: Theon, Commentary on 
Almagest, ed. Rome p. 338 line 15, p. 437 line 14 (quoting Ptolemy).

ὑποτετυπώσθω/ὑποτετυπώσθωσαν, ‘let there have been sketched’. Tetra
biblos 2.4.1 (Boll adopts the variant reading ὑποτυπούσθω), 4.8.6, 
Harmonics 1.4, 2.3, 2.11, 3.4, Geography 1.2.1, 1.18.1, 2.1.1, Criterion 
3.3. Influenced by Ptolemy: Hephaestion 1.25.25. προυποτετυπώσθω/
προυποτετυπώσθωσαν, ‘let there have been sketched beforehand’. Tetra
biblos 1.3.20 (variant reading not adopted by Boll or Hübner), 4.10.13. 
Influenced by Ptolemy: Hephaestion 2.26.12 (quoting Ptolemy).
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Mathematical Methods in Ptolemy’s Analemma

Nathan Sidoli

1. Introduction

This paper is an attempt to understand the mathematical methods found in
Ptolemy’s Analemma in the context of Greek mathematical practices. I first
present an overview of the concepts we will need to read the text, followed by a
close reading of select passages, which provide a clear overview of the structure
of the argument and give examples of the mathematical methods involved.

In general terms, the Analemma provides a method for specifying the location
of the sun in three pairs of locally orientated coordinate arcs as a function
of three ostensibly empirical variables, namely the declination of the sun as a
function of its longitude, δ(λ), the terrestrial latitude, φ, and the hour, η. The
key to the approach is to represent the solid configuration in a plane diagram
that Ptolemy calls the analemma. The mathematical argument begins with the
presentation of a general argument that the analemma figure, or model, can be
used to map arcs and lines of the solid configuration, through the example of
a proof that this mapping is sound for one of the angles in question. It then
proceeds to show that the analemma figure can be used to make computations
of arc lengths of the solid sphere through two different methods: chord-table
trigonometry, or what we can call analog, or nomographic, computation.1 The
final section of the received text details a series of physical manipulations
through which we can compute the values of three pairs of coordinate arcs
given the three variables δ(λ), φ, and η.

The Analemma has been the subject of a number of important studies, upon
which I have drawn. The medieval Latin translation, accompanied by many
useful notes that make sense of the mathematical methods, was first printed by
F. Commandino in 1562, with no textual apparatus.2 J. L. Heiberg made use

1 The terminology of ‘analog computation’ is common in describing technical devices that
use physical manipulation to produce a numerical result—such as a slide rule, or an astrolabe.
The usage ‘nomographic computation’ follows that of Neugebauer, A History, pp. 839–856,
in denoting a tradition of graphic procedures through which line segments or arcs can be
physically measured.

2 Commandino, Ptolemaei Liber de analemmate. This publication also contains Commandi-
no’s own work, Liber de horologiorum descriptione, which explains how to use the analemma
methods set out in Ptolemy’s Analemma to produce sundials.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 35–77
© F  H  G  10.1484/M.PALS-EB.5.120173
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of this version in his critical edition of the Latin translation and the Greek
fragments.3 An excellent study of the mathematical conceptions underlying the
text was made by P. Luckey.4 All of this material was used by Neugebauer in
his overview of ancient analemma methods.5 D. R. Edwards provided a new
critical edition of the Latin translation with an English translation, as well as a
careful textual study of the work in his 1984 dissertation.6 R. Sinisgalli and S.
Vastola made an Italian translation, in 1992, accompanied by many useful notes
and diagrams.7 Finally, a full appreciation of the analemma methods must also
involve some study of the substantial evidence of the medieval Arabic sources.8

In this paper, I make a close reading of key passages of the text, showing
how each step of the argument can be understood as justified by other ancient
mathematical sources, and how certain arguments are meant to be a justification,
or summary of, mathematical practices that are not made explicit in the text.
This results in an articulation and development of the approach of Luckey,
Neugebauer and Edwards, which fleshes out many of the mathematical details
in the context of ancient methods and which, I hope, helps us to understand
Ptolemy’s claim to be producing a more mathematical natural science.

2. Concepts and terminology

In this section, I introduce the concepts and terminology that we will need to
read Ptolemy’s text, without showing in detail how they can be derived from
the sources.9 This order of presentation—which may strike some readers as
backwards—is motivated by the fact that the analemma approach is unknown
to most modern readers, whereas it appears to have been well-known to ancient
and medieval readers familiar with the mathematical sciences. Following this, I
will make a close reading of key passages of the Analemma, arguing along the
way that all of these concepts and techniques can be derived directly from
the ancient and medieval concepts.

3 Heiberg, ‘Ptolemäus de Analemmate’. Heiberg somewhat revised this version in his Opera
astronomica minora, pp. 189–223. I have mostly relied on the later version in this study.

4 Luckey, ‘Das Analemma’.
5 Neugebauer, A History, pp. 839–856.
6 Edwards, Ptolemy’s Περὶ ἀναλήμματος.
7 Sinisgalli and Vastola, L’Analemma.
8 An incomplete selection of such material are the following: Schoy, ‘Abhandlung’; Id, ‘An

Analemma Construction’; Kennedy and ʿId, ‘A Letter of al-Bīrūnī’; Kennedy, ‘Ibn al-Haytham’s
Determination’; Berggren, ‘A Comparison’; Berggren, ‘Ḥabash’s Analemma’; Carandell, ‘An
Analemma’, and Suzuki, ‘A Solution’.

9 This material takes its point of departure from the work of Luckey, ‘Das Analemma’;
Neugebauer, A History, pp. 839–856, and Edwards, Ptolemy’s Περὶ ἀναλήμματος. Between when
I wrote this paper and when it appeared in press, a useful summary of the text, including
excellent diagrams, was made by Guerola Olivares, El Collegio Romano, pp. 67–132.
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Figure 1: Analemma methods 1: (left) perspective diagram of a point A on a sphere to be
mapped to both a lesser circle orthogonal to the analemma and to the great circle joining it
with the poles of the analemma circle in the receiving plane, in solid gray; (right) representation
in the plane of the analemma of A, which appears in three different representations: (1) as
A �→ A ′ in its orthogonal projection into the analemma, (2) as A �→ A ′′ in its location on a
lesser circle orthogonal to the analemma, and (3) as A �→ A ′′′ in its location on the great
circle joining point A with the pole of the analemma circle. The original point A does not
appear in the analemma representation, because, visually, it coincides with A ′.

2.1. Analemma methods

The key to the use of the analemma as a problem-solving device lies in the
application of four projective constructions, namely
(M.1) orthogonal projection of individual points into the receiving plane of

the analemma,
(M.2) orthogonal projection of great and lesser circles into the lines of their

diameters in the receiving plane of the analemma,
(M.3) orthogonal rotation of individual points into the receiving plane of the

analemma, and
(M.4) orthogonal rotation of great and lesser semicircles into semicircles in

the receiving plane of the analemma.

In all of these geometric transformations, the magnitudes of lines and arcs are
preserved, and in the analemma figure we find the same object represented in
multiple ways. Some examples will suffice to show the strategy.

A common way of mapping a point in two ways onto the analemma—which
we will see Ptolemy perform three times in this account—is seen in Figure 1.
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Here we see point A on the sphere in Figure 1 (left), which we will represent
both on a lesser circle perpendicular to the analemma, in gray, and on the great
circle that joins point A with the poles of the great circle of the analemma.
In order to do this, in Figure 1 (right), we represent A by its orthogonal
projection in the plane of the analemma, A ′ (M.1), and draw through A ′ a
line as the diameter of a lesser circle in the sphere that is perpendicular to
the analemma, which can also be regarded as the orthogonal projection of
the lesser circle into the analemma (M.2). We then rotate this lesser circle
into the plane of the analemma by constructing a semicircle on this line and
erecting A ′A ′′ perpendicular to the diameter of the lesser circle (M.4 and
M.3). The length of line A ′A ′′ on the analemma will be constant no matter
what lesser-circle diameter we draw through A ′ and it is equal to AA ′ on the
sphere. Next, we effect the mapping of A in its location on the great circle
joining A with the poles of the analemma onto the plane of the analemma
by a two-stage process. First, (1) we join the orthogonal projection, A ′ with
that of the poles, the center of the sphere (M.1)—that is, by joining A ′ with
the center of the circle of the analemma. This gives us the diameter of this
great circle as the orthogonal projection of the great circle into the plane of
the analemma (M.2). Next, (2) we find the orthogonal rotation of A on the
sphere to A ′′′ on the analemma by rotating point A along the circumference
of a circle of radius AA ′, shown in a gray dotted line, with the axis of rotation
being the diameter of the great circle into which we project A (M.3). We do
this in the analemma by producing a circle around A ′ with distance A ′A ′′,
since this length is equal to AA ′ on the sphere. This circle, shown in a gray
dotted line, however, is not drawn in the plane of the analemma—presumably
because arc lengths are not preserved on this circle.10 In this way, we can
exhibit A mapped to A ′ by orthogonal projection, and to both A ′′ and A ′′′

by rotation into either a lesser circle or the great circle that joins A with a
pole of the analemma.

In Figure 2 (left), if points A and B in the sphere lay on a great circle passing
through the poles of the gray analemma circle, they can be projected into
the analemma plane orthogonal to the great circle between them by dropping
perpendiculars to the plane of the analemma meeting the diameter of the
great circle joining them at A ′ and B ′ (M.1). When this is represented in the
analemma, Figure 2 (right), the line joining A ′ and B ′ must pass through the
center of the circle, because A and B lie on a great circle that passes through
the pole of the analemma (M.2). Arc α of the great circle between A and B
is found in the plane of the analemma by constructing perpendiculars at A ′

and B ′, mapping them to A ′′ and B ′′ (M.1 and 2). In this way, lines A ′A ′′

10 That is, while AA ′′′ is always a quadrant on the sphere, A ′′A ′′′ is not generally a
quadrant on the analemma.
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the analemma plane orthogonal to the great circle between them by dropping
perpendiculars to the plane of the analemma meeting the diameter of the
great circle joining them at A ′ and B ′ (M.1). When this is represented in the
analemma, Figure 2 (right), the line joining A ′ and B ′ must pass through the
center of the circle, because A and B lie on a great circle that passes through
the pole of the analemma (M.2). Arc α of the great circle between A and B
is found in the plane of the analemma by constructing perpendiculars at A ′

and B ′, mapping them to A ′′ and B ′′ (M.1 and 2). In this way, lines A ′A ′′

10 That is, while AA ′′′ is always a quadrant on the sphere, A ′′A ′′′ is not generally a
quadrant on the analemma.
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Figure 2: Analemma methods 1: (left) perspective diagram of two points A and B on a sphere,
and the great-arc distance between them, α, to be mapped to the receiving plane, in gray;
(right) representation in the analemma of A and B as orthogonally projected onto the analemma
such that A �→ A ′ and B �→ B ′, along with orthogonal rotation of the great circle into the
analemma such that A �→ A ′′ and B �→ B ′′. The original points A and B do not appear in the
analemma representation, because, visually, they coincide with A ′ and B ′.

and B ′B ′′, in the analemma, are equal to the perpendiculars dropped from A
and B into the receiving plane, in the sphere, and the length of arc α, the
great-arc distance between the two points, is preserved in the transformation.

In Figure 3 (left), if points A and B in the sphere lay on a lesser circle
perpendicular to the gray analemma circle, they can be mapped into the
plane of the analemma circle by rotating the lesser circle into the plane of
the analemma—or rather, folding it into two semicircles that are rotated into
the same position in the plane of the analemma. This is represented in the
analemma, Figure 3 (right), by dropping perpendiculars into the receiving
plane, such that A ′ and B ′ represent points A and B in the analemma (M.1),
and the line joining them is a diameter of the lesser circle and its orthogonal
projection into the analemma (M.2). The lesser circle is then folded and rotated
into the analemma by erecting a semicircle on the diameter of the lesser circle
(M.4). Arc α of the lesser circle is rotated into the plane of the analemma
by constructing perpendiculars at A ′ and B ′ meeting the semicircle, such that
A maps to A ′′ and B to B ′′ (M.3).11 Once again, lines A ′A ′′ and B ′B ′′, in
the analemma, are equal to the perpendiculars, AA ′ and BB ′, in the sphere,

11 The practice, in dealing with a solid configuration, of rotating one plane into another by
constructing the objects in the plane to be rotated directly in the receiving plane is common in
Greek geometry. See, for example, the solid constructions by Diodorus or Eutocius; Hogendijk,
‘The Geometrical Works’, pp. 56, 70–71, and Sidoli, ‘Review of The Works of Archimedes’,
pp. 160–61.
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Figure 3: Analemma methods 2: (left) perspective diagram of two points A and B on a lesser
circle of a sphere, and the lesser-arc distance between them, α, to be mapped to the receiving
plane, in gray, which must be perpendicular to the lesser circle and pass through its poles;
(right) representation, in the analemma, of a semicircle of the lesser circle as rotated into the
plane of the analemma, such that A �→ A ′ and B �→ B ′, by orthogonal projection, and to
A �→ A ′′ and B �→ B ′′, by rotation.

dropped from A and B into the receiving plane, and arc α is equal to the
lesser-arc distance between the two points.

In this section, I have used the term analemma as synonymous with the
receiving plane of a projection, or mapping. This understanding of the term
agrees with Ptolemy’s usage in his Analemma, and, as Edwards has argued, best
conforms with the various functions of the term in ancient sources.12 Hence,
the analemma is the receiving plane of a projection, which is performed by
carrying out constructions directly in the plane.13

In Ptolemy’s Analemma, we will see evidence for these various projective
operations. Although he explicitly refers to rotating the semicircles of lesser
circles, Ptolemy has no special terminology for orthogonal projection of points
and circles, and the text speaks only of producing perpendiculars and of taking
the diameters of circles in the analemma. Nevertheless, as we read through
Analemma 6, below, we will see that the underlying solid configuration is
essentially that described in this section.

12 Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 1–10.
13 This way of producing projective constructions is also found in Ptolemy’s Planisphere;

see Sidoli and Berggren, ‘The Arabic Version’.
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2.1.1. Geometrical constructions and instrumental practice
Although there are almost no synthetic theorems in analemma texts—and only
one in Ptolemy’s Analemma—there are constructions in all uses of the analemma
in geometric problem-solving, in both ancient and medieval texts. The types
of constructions employed, however, are clearly restricted. In fact, I am not
aware of any constructive step in an ancient or medieval analemma problem
that uses an operation that cannot be reduced to applications of Elements
I.posts.1–3, I.11, and 12—that is, the first three postulates of Euclid’s Elements
and the two problems that produce perpendicular lines.14 Even more, analemma
constructions can all be regarded as abstractions of the use of a compass and a
set square. Indeed, the three ancient texts that deal with the analemma make
explicit mention of various types of instrumental practice, indicating that the
mathematical methods of the analemma were closely associated with certain
instruments.

As well as referring to operations performed on instruments such as specially
prepared plates and hemispheres, analemma texts prescribe the instruments used
to carry out geometric constructions. The analemma described by Vitruvius,
Architecture IX.7, although not addressing a problem, is explicitly produced
with a compass,15 and Ptolemy, as we will see below, explicitly introduces both
the compass and the set square. It seems clear that constructions in analemma
texts were limited to abstractions of the operations that can be performed
with these instruments—that is, a finite set square whose side is just a bit
greater than the diameter of the great circle of the analemma, and a finite
compass whose radius is just a bit greater than that of the great circle of the
analemma, and which can be operated with a given radius.

In order to make this underlying instrumental practice explicit, in the
following I will note how each construction on the analemma can be performed
with either the compass or the set square.

2.2. Ptolemy’s notion of ‘model’

Ptolemy’s uses of the term hupothesis (ὑπόθεσις), and the cognate verb (ὑποτίθεται),
are far ranging. These terms often have the sense—implied by the basic meaning
of the words—of what is set down in the beginning to be built upon, and,
indeed, they are translated literally by Moerbeke, in his Latin translation of
the Analemma, with suppositio and supponere. They may also, however, indicate
the assumption of a fully elaborated depiction of the structure and function
of the objects under investigation.

14 As we will see below, the proof in Analemma 6 also requires Elements XI.12, but this is
a theorem, not a problem.

15 See Soubiran, Vitruve. De l’architecture, pp. 26–30.
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Moreover, a Ptolemaic hupothesis, unlike a modern scientific hypothesis, is
not subject to testing; in fact, it may sometimes be demonstrated, or even
saved—as occasionally in the Almagest or in Harmonics I.2.16 G. J. Toomer
emphasized that Ptolemy’s understanding of a hupothesis is often far removed
from the modern sense of a hypothesis in scientific discourse, and pointed out
that it was closer to our idea of a model.17

An hupothesis in Ptolemy’s writings can be as simple as the assumption
of the immobility and sphericity of the earth, or as complicated as the full
geometric configurations for the moon or Mercury;18 either purely arithmetical,
as in harmonics, or fundamentally geometric, as in astronomy;19 an idealized
mathematization, as we will see in the Analemma, or closely connected with a
physical representation, as in Planetary Models (commonly Planetary Hypotheses)
I.1 and 2, or Almagest XIII.3.20

This broad notion of a conceptual tool for explanation and computation
has more overlap with our concept of model than our concept of hypothesis.
Hence, in my translation of passages of the Analemma I will translate ὑπόθεσις
and its cognates with model and its cognates.21 Some readers may find this
excessively modern, but I hope the discussion here will help us avoid unwanted
anachronism.

Ptolemy’s use of modeling can be compared to that of Hellenistic authors
working in the exact sciences such as Autolycus, Euclid, Aristarchus, Archimedes
and Eratosthenes—all of whom used geometric modeling as the basis of their
work in astronomy, mechanics, optics and harmonics.22 A distinction can be
drawn, however, between Ptolemy’s use of hupothesis and that of Aristarchus
in On the Sizes and Distances of the Sun and the Moon and that attributed to
Eratosthenes by Cleomedes in On Heavens I.7.23 Aristarchus and Eratosthenes
used hypotheses both (a) to set out the overall geometrical configuration that

16 Heiberg, Syntaxis mathematica, vol. II, pp. 26, 180, 461, and Düring, Die Harmonielehre,
p. 5.

17 Toomer, Ptolemy’s Almagest, pp. 23–24.
18 Heiberg, Syntaxis mathematica, vol. I, pp. 26, 350; vol. II, p. 255.
19 Düring, Die Harmonielehre, p. 5.
20 See Heiberg, Opera astronomica minora, pp. 70–74; Hamm, Ptolemy’s Planetary Theory,

pp. 72–76; Murschel, ‘The Structure’; Heiberg, Syntaxis mathematica, vol. II, pp. 532–533.
Jones, ‘Ptolemy’s Mathematical Models’, gives an overview of the various ways mathematical
modeling functions in Ptolemy’s work.

21 This is also done, for example, by E. Hamm, Ptolemy’s Planetary Theory, in her translation
of Ptolemy’s Planetary Models I, Part A.

22 There has been much debate over whether or not Euclid composed the Division of the
Canon, but there seems to be no objective way to decide the issue; see Barbera, The Euclidean
Division, pp. 3–29.

23 Heath, Aristarchus of Samos, pp. 352–411, and Todd, Cleomedis Caelestia, pp. 35–37.
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serves as the basis of the model, and also (b) to set out quantitative assumptions
that are, at least in principle, empirically decidable and which serve as a basis
for computation.24 Ptolemy, however, does not use hupothesis in this second
sense. For Ptolemy the hupothesis is only the general geometric configuration
of the model, whereas the quantitative parameters to be determined through
observation are not referred to by the term hupothesis.

Hence, by Ptolemy’s time, and probably for a long while before, there was a
fairly clear distinction between what we would think of as the model as a basis
for computation and the given values that are used in the computation. As we
will see in the Analemma, although there is no discussion of empirical practice
and both the geometric model and the quantitative parameters are simply
assumed in the course of the argument, there is a clear linguistic distinction
between the two—the model itself is asserted as assumed and the parameters
are asserted as fixed, or determined, although they may, of course, vary.

2.3. The two-sphere model

The two-sphere model is a name given by modern scholars to the model of
the cosmos found in texts such as Autolycus’ Moving Sphere and Risings and
Settings, Euclid’s Phenomena, and Theodosius’ Days and Nights and Habitations.
In this model, the sun is taken as located in varying positions on the ecliptic as
a great circle in the sphere of the cosmos, which contains the fixed stars. The
sphere of the cosmos, carrying the ecliptic, rotates about the celestial poles,
Pn and Ps, creating the celestial equator, to which the ecliptic is skew at the
angle known as the obliquity of the ecliptic, ε. The sphericity of the earth is
only accounted for by the fact that the horizon, which is also a great circle, is
generally skew to the ecliptic and the celestial equator, and divides the cosmos
into two hemispheres—above and below. In Figure 4, if the eastern point is
taken to be in the direction of the viewer, since the horizon is immobile, the
sphere of the cosmos is imagined to rotate clockwise. This configuration was
used by ancient mathematicians to model the phenomena we associate with
spherical astronomy—namely, the solar and stellar phenomena related to local
coordinates, determined by the horizon and the local meridian.

Whatever the mathematicians of the Hellenistic period may have thought
of this construction, by Ptolemy’s time it must certainly have been thought of
as a model in the sense discussed above—that is, as a simplified configuration
that was known to not be a strict representation of reality, but which could
be used mathematically without any significant loss of accuracy. Trivially, the
earth is not actually a point, but a sphere—which is what allows us to speak

24 Berggren and Sidoli, ‘Aristarchus’s On the Sizes and Distances ’, pp. 231–234; Carman, ‘Two
Problems’, pp. 55–58; Carman and Evans, ‘The Two Earths’; Sidoli, ‘Mathematical Discourse’.



44 NATHAN SIDOLI44 NATHAN SIDOLI

Ps

P
n

E

ecliptic

horizon

equator

Figure 4: The ‘two-sphere’ model

of a region above and below the horizon. It is so small in comparison to the
cosmos, however, that it can be regarded as a point. That this is a strictly false,
but observationally adequate, simplifying assumption must also have been clear
to the Hellenistic mathematicians. Secondly, at least by Ptolemy’s time, the sun
was not actually a point in the celestial sphere, but was rather closer to the
earth, below the outer planets, and with a varying distance from the earth.
Hence, the two-sphere model could not have been regarded as an accurate
depiction of the sun in its relation to the earth, but simply as a mathematical
model depicting the perceived location of the sun on the sphere of the cosmos
from the perspective of the earth.

There are clear indications in Analemma 2 and 3 that Ptolemy thought of
the overall model of the cosmos in just these sorts of perceptual terms. In
Analemma 2, Ptolemy calls this simplified model of the sun in the cosmos,
orientated to the local horizon, the ‘world sphere’, and he says that the great
circles in this sphere that can be taken to determine the position of the sun
‘move with the sun’.25 Hence, they can be imagined to be great circles of the
world sphere laying in planes that pass through the sun. Furthermore, when
he describes the position of the sun in more detail, both in Analemma 2, in
general terms, and in Analemma 3, in setting out the model with letter-names,
he refers to the solar position as the ‘solar ray’—which we can understand as
the line along which we see the sun, drawn from the earth, through the sun,
out to the sphere of the cosmos.

25 These great circles are discussed in detail below.
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2.4. The analemma model

The analemma model can be found in three ancient sources—Vitruvius’
Architecture IX.7, Heron’s Dioptra 35, and Ptolemy’s Analemma—and a few
medieval Arabic sources. Although in medieval sources, analemma methods
are used to solve a range of problems in spherical astronomy, in the extant
ancient sources, they are almost always used on the analemma model described
in this section.26 The model itself is naturally suited to handle the seasonal
hours of Greco-Roman daily life, ηs, and hence was closely associated with
gnomonics (γνωμονική), the science of sundials. Here, I simply describe the
model, with no attempt to derive this description from the sources.

The ancient analemma model is orientated towards a coordinate system of
the local horizon and meridian, and can model the motion of the sun, on
both its annual and daily paths—that is, the model can be used to specify the
location of the sun, relative to local coordinates, given the terrestrial latitude,
φ, the declination of the sun as a function of its longitude, δ(λ), and the time
of the day, in hours, η.

In Figure 5, the local meridian is the great circle of the analemma NBSA,
line NS is the orthogonal projection of the great circle of the horizon, line
CD is that of the great circle of the equator, and line PnPs is the line joining

26 An exception is Ptolemy’s Planisphere 18, which employs an analemma construction; see
Sidoli and Berggren, ‘The Arabic Version’, pp. 132–133.
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the celestial poles, perpendicular to CD. The orientation of lines NS and CD
determine the terrestrial latitude, φ, because, in great circle NBSA, arc NPn is
the elevation of the pole—that is, arc NPn = φ.

Since the horizon is motionless, while the cosmos rotates about PnPs, the
orthogonal projection of both the horizon and the equator into the meridian
will remain fixed. The same is not true, however, of the ecliptic. Indeed,
the ecliptic will only be orthogonal to the analemma twice daily, when the
solstitial colure coincides with the local meridian—and, indeed, the ecliptic is
not represented as such in Ptolemy’s Analemma.

The proper position of the sun on the ecliptic, λ, can, however, be modeled
on the analemma with the use of an auxiliary circle, FHGI, arranged such that
its center lies on the diameter of the equator and it cuts the great circle of the
analemma so that the arcs CH and CI are both equal to the obliquity of the
ecliptic, ε. In this case, where F represents the vernal equinox, H the summer
solstice, G the autumnal equinox, and I the winter solstice, if arc FJ = λ is
cut off equal to the arc of solar longitude from the vernal equinox at Ari 0°,
then arc CK of the analemma will be equal to the declination of the sun at
this time, δ(λ).27

Then, since throughout the course of a day the sun will travel on a course
roughly coinciding with the circle of its declination, which we can call its
day-circle, the local position of the sun can be modeled on the day-circle
folded and rotated into the plane of the analemma.28 In Figure 5, when the
sun is at FJ = λ, in its annual course, it can be imagined to travel uniformly
on semicircle KOL throughout the course of the day; or when it is at the
winter solstice, FJI = λ, it will travel on semicircle IQM. For example, if a
given day in the spring or summer begins at midnight, the sun will start at,
say, K and move along arc KO until sunrise, passing over the horizon at point
O, and then move up to midday at L and return back along LO in the
afternoon to sunset at O, finally returning to K at the following midnight. In
fact, the second position of K will be somewhat altered because of the daily
longitudinal movement of the sun of about 1°, but analemma methods do not
take this into account.

The final given magnitude, the hour η, is marked off along the day-circle.
In the case of the seasonal hours of daily life, ηs, each of the arcs LO, OK, or
MQ, QI are divided into six equal parts for the six hours between the horizon
and the meridian. Although this is not discussed in the ancient sources, it

27 Neugebauer, A History, p. 845, shows this using methods consistent with Greek geometric
practice.

28 Heron, in his Dioptra 35, refers to this circle as the ‘daily circle’ (ἡμερήσιος κύκλος); see
Schöne, Herons von Alexandria Vermessungslehre, pp. 302–306, or Acerbi and Vitrac, Metrica,
pp. 103–106.
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say, K and move along arc KO until sunrise, passing over the horizon at point
O, and then move up to midday at L and return back along LO in the
afternoon to sunset at O, finally returning to K at the following midnight. In
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The final given magnitude, the hour η, is marked off along the day-circle.
In the case of the seasonal hours of daily life, ηs, each of the arcs LO, OK, or
MQ, QI are divided into six equal parts for the six hours between the horizon
and the meridian. Although this is not discussed in the ancient sources, it

27 Neugebauer, A History, p. 845, shows this using methods consistent with Greek geometric
practice.

28 Heron, in his Dioptra 35, refers to this circle as the ‘daily circle’ (ἡμερήσιος κύκλος); see
Schöne, Herons von Alexandria Vermessungslehre, pp. 302–306, or Acerbi and Vitrac, Metrica,
pp. 103–106.
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would also be possible to model the astronomer’s equinoctial hours, ηe, by
dividing the complete semicircle of the day-circle into twelve equals parts.

In fact, however, Ptolemy’s Analemma works with further simplifying
assumptions. In the first place, the circle FHGI, which is called the menaeus
(from μηναῖος, meaning ‘monthly’) by Vitruvius,29 is not found in Ptolemy’s
presentation. Instead, he simply takes δ as given at one of four solar declinations
corresponding to the beginnings of the twelve zodiacal signs—namely,

δ = 0° for λ ≈ 0°, 180°,
δ = 11 2/3°(= 11;40°) for λ ≈ 60°, 120°, 240°, 300°
δ = 20 1/2°(= 20;30°) for λ ≈ 30°, 150°, 210°, 330°, and
δ = 23 1/2 1/3°(= 23;50°) for λ ≈ 90°, 270°,

and refers to the semicircle constructed at a given declination as the ‘monthly
circle’ (μηνιαῖος κύκλος). Hence, in what follows, for the sake of explicating
his text, I will use Ptolemy’s terminology and refer to the day-circle of the
sun as its month-circle.

These three declinations may have been determined, for example, through
a table such as that in Almagest I.15, or they may have been values taken
by Ptolemy from previous work in gnomonics, having been computed using
chord-table trigonometry directly on the analemma model.30 Whatever the
case, although these declinations are those of evenly distributed longitudes of
30°, they are, as declinations themselves, rather unevenly distributed—since
their differences are 11;40°, 8;50°, and 3;20° respectively. This is perhaps an
indication that, in the Analemma, Ptolemy was more interested in the symmetry
of his presentation, and the role of symmetry in his instrumental practice,
than in the precision of any device that might be made with these methods.

As we have just seen, both Vitruvius and Ptolemy speak of a ‘monthly’
division of the annual solar cycle, presenting us with a kind of zodiacal month.
Of course, there is no discussion of the duration of these months, and given
the level of precision evident in Ptolemy’s presentation this is probably not
important, but these months are clearly a division of the sun’s annual progress
through the stars into twelve parts. The ancient tool that was used to track
the course of the sun through the stars, often noting its passage into each of
the twelve zodiacal signs, was the parapegma.31 Hence, the analemma appears
to have been directly related to the two most conspicuous devices used to

29 Soubiran, Vitruve. De l’architecture, p. 29.
30 It may be significant that Ptolemy states the declination using the proper parts (unit

fractions) of standard Greek arithmetical practice, not the sexagesimal fractions of his mathematical
astronomy. The values used in the Analemma are what we would get if we rounded the values
in the Almagest to the nearest 0;05°—see Almagest I.15, Heiberg, Syntaxis mathematica, vol. I,
p. 72. We do not know if Ptolemy derived these values in this way.

31 See Lehoux, Astronomy, especially pp. 70–97.
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regulate the cycles of daily life in the Greco-Roman world: the sundial and
the parapegma.32

From the description given in this section, it is clear that, like the two-sphere
model, the analemma model functioned as a simplified geometrical configuration
that facilitated geometrical and computational problem-solving. We will see
below, in reading passages of the Analemma, that Ptolemy’s mathematical
practice clearly distinguished between the assumption of the model itself, as
an overall geometrical configuration, and the assumption of given values that
may be assumed as parameters of the problem-solving activity.

3. Ptolemy’sAnalemma
The text of the Analemma is known to us from two sources—fragments of
a 5th–7th century text palimpsested in Ambrosianus graec. L 99 sup., Am,
and a 13th century Latin translation by William of Moerbeke contained in
Vaticanus Ottobonianus lat. 1850, O—which is probably also incomplete. The
Ambrosianus codex is an 8th century copy of Isidore’s Etymologiae that contains
eight bifolia that were repurposed from manuscripts that once contained
mathematical material, of which twelve pages came from a copy of Ptolemy’s
Analemma.33 The Ottobonianus codex is an autograph by Moerbeke of his
translations of Greek mathematical works, focusing on Archimedes, of which the
final three folia contain his translation of the Analemma (ff. 62–64)—ending
somewhat abruptly with a single mathematical table and no colophon. The
Latin text, with many corrections, was first published by Commandino,34 the
Greek fragments and the Latin text were critically edited by Heiberg,35 and
the Latin was reedited by Edwards, who also provided an English translation.36

32 It is worth noting that Ptolemy’s own parapegma text, the Phases of the Fixed Stars,
does not work with zodiacal months, but rather divides a solar year into the twelve 30-day
months of the Egyptian calendar, which was also used for astronomical purposes; see Lehoux,
Astronomy, pp. 261–309. On the other hand, given the low level of precision evidenced in the
Analemma itself, it is possible that Ptolemy regarded his ‘monthly circles’ as corresponding to
these Egyptian months.

33 The pages of the codex that contain the Analemma, in the order of the Ptolemaic text,
are as follows: 119, 120, 139, 140, 137, 138, 143, 144, 129, 130, 117, 118.

34 Commandino, Claudii Ptolemaei Liber de analemmate.
35 Heiberg, ‘Ptolemäus de Analemmate’, and Id., Opera astronomica minora, pp. 189–223.
36 Edwards, Ptolemy’s Περὶ ἀναλήμματος. Since we do not have Greek for the whole text, I

will often use the Latin text as the primary source. By relying on Moerbeke’s translation of
Ptolemy’s Tetrabiblos and of the Archimedean corpus, I will not always translate the Latin
literally, but will make some informed guesses about the original Greek terminology behind
the Latin even where we do not have corresponding fragments in the palimpsest. See Clagett,
Archimedes; and Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos.

Although I have made my own translation of the text, I have often been guided by that of
Edwards, and in the mathematical passages there is little significant difference.
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Although the Greek manuscript numbers the text differently than Heiberg,
and the Latin manuscript presents the treatise in continuous prose, I will follow
Heiberg’s numbering in presenting a short outline of the text:37

1: A short dedication to Syrus, explaining that we will take the approach
‘of those men in lines’ (uirorum illorum in lineis),38 since there is
need of a more mathematical conception of natural theory and a more
natural-theoretic conception of mathematics.

2, 3: A discussion of the coordinate system from first principles, explaining that
three dimensions are used to measure a volume, both in magnitude and in
number, and that a point on a sphere can be determined by the motion of
three circles of the ‘world sphere’ (spera mundi)—the horizon, the meridian
and the vertical—about one of their own diameters as determined by
their intersections, producing three pairs of angles—hectemorius-meridian,
horarius-vertical, and descensivus-horizon.39 A description of the analemma
model using letter-names.

4: A description of the system of ‘the ancients’—which did not use the
hectemorius circle.

5: A few refinements to the conventions so that no coordinate arc need be
taken as greater than a quadrant.

6: (a) An introduction of the mathematical goal of the treatise—an instrumental
determination, using the analemma, of the six arcs set out in the introduction;
(b) followed by a synthetic proof that a certain angle in the analemma
diagram is equal to the hectemorius angle on the sphere.

7: Geometric construction of an analemma diagram containing all six angles,
with no proof, for the situation in which the sun is near an equinox.

8: Geometric construction of an analemma diagram containing the same for
any other longitudinal position of the sun.

9: (a) A short discussion of instrumental practice, in which Ptolemy points out
that on the analemma any of the six principal arcs can be determined using
‘linear demonstrations’—that is, computational, indeed, trigonometric
methods (διὰ τῶν γραμμῶν; per lineares demonstrationes, per numeros);40
(b) followed by a metrical analysis for the determination of all six arcs
in the case in which the sun is at an equinox.

37 Since not all of the numbers in the Greek fragments have been preserved, it is not
possible to be certain where all of the divisions were placed in this version of the text.

38 Presumably geometers.
39 These angles are defined below; see page 51.
40 See note 74 for a discussion of the meaning of the phrase διὰ τῶν γραμμῶν.
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10: A metrical analysis for the determination of all six arcs for any other
longitudinal position of the sun.

11: (a) General description of the drawing and the instruments (compass and
set square) used to make analog, or nomographic, computations; (b)
followed by a detailed description of the production of an analemma
plate used for carrying out analog calculations.

12: Instructions for producing all six angles on the analemma plate while
drawing no new lines, for the situation in which the sun is near an
equinox.

13: Instructions for producing all six angles on the analemma plate while
drawing no new lines, for any other longitudinal position of the sun.

14: (a) Instructions for producing the angles of ‘the ancients’ on the analemma
plate; (b) followed by a discussion of which pairs of angles, and taken
in which direction, determine the position of the sun.

15: Table of all six angles for the latitude of Meroe, φ = 16;25°, when the
sun is at Can 0°, δ(λ = 90°) = 23;50°, for the position of the sun at the
horizon, at the end of each of the five pairs of seasonal hours between
the horizon and midday, and at the meridian.

It is likely that there were once more tables—perhaps 28 or 49, filling out
the seven latitudes mentioned in the text and the four declinations of the
beginnings of the twelve signs of the ecliptic.41 It might be supposed that
there was once more text following these tables, but nothing in the extant
treatise compels us to this position.

In order to follow Ptolemy’s mathematical approach, we will focus on
explaining in detail only a few sections of the treatise—in each case, explicating
only the meridian-hectemorius angle pair, since the three pairs are mathematically
analogous and an understanding of one pair will suffice to grasp the overall
approach. We will first look at the general exposition of the world sphere in
Analemma 2 and 3. This will be followed by the synthetic proof in Analemma
6 that a certain angle of the analemma diagram is equal to the hectemorius
angle. We will then read passages from the metrical analysis in Analemma 10,
showing that if the terrestrial latitude, φ, solar declination, δ(λ), and seasonal
hour, ηs, are given, then the hectemorius and meridian angles are also given.

41 Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 106, n. 506, states that the total number of tables
should have been 49 tables—that is, the seven latitudes by the four declinations, three of which
must be taken both to the north and to the south. Neugebauer, A History, pp. 854–855, states
that there should have been 28 tables—presumably believing that Ptolemy would have made
further use of the symmetries between the sets of seasonal hours to reduce the total number of
tables.
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Figure 6: The world sphere as described in Analemma 2 (modern figures)

Finally, we will follow through the nomographic calculation of the hectemorius
and meridian angles on the analemma plate in Analemma 13.

4. Ptolemy’s world sphere
In Analemma 2, Ptolemy explains that three dimensions are sufficient to
determine a volume (moles) in both magnitude and number, so that, in the
world sphere, we need only three great circles and their diameters, set at right
angles.42 Because the discussion in Analemma 2 concerns the world sphere itself,
it does not make reference to a lettered diagram—which makes it somewhat
difficult to follow. In order to explicate this section, however, we will describe
the objects that Ptolemy introduces using a modern diagram, Figure 6, which
does not correspond to anything in the manuscript sources.

In Figure 6 (left), the three great circles of the world sphere will be
taken as (a.1) the horizon, NESW, dividing the hemisphere above the earth
from that below, (a.2) the meridian, NBSA, dividing the eastern and western
hemispheres, and (a.3) the vertical, EBWΑ, dividing the northern and southern
hemispheres; and the diameters will be (b.1) the equatorial diameter, EW,
(b.2) the meridional diameter, SN, and (b.3) the gnomon, AB. Clearly, in this
context, we are describing the cosmos using local coordinates, orientated to
the position of the observer on the earth.

When these three circles are moved ‘with the sun’ (cum sole) about
their diameters, (c.1) the horizon produces the hectemorius, rotating about
the equatorial diameter, (c.2) the meridian produces the horarius, rotating

42 Moerbeke often uses moles to translate ὄγκος, which in this context would mean
‘volume’—see Clagett, Archimedes, p. 34.
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about the meridional diameter, and (c.3) the vertical produces the descensivus
(καταβατικός), rotating about the gnomon. When any one of these circles is
raised ‘above the earth with the solar ray’ (cum solari radio super terram) it will
produce two inclinations: (1) an angle contained by lines, between the solar ray
and the diameter about which the circle rotates, and (2) an angle contained
by planes, between the movable plane and its stationary counterpart—and ‘as
far as they are given, the position of the [solar] ray is also fixed’ (quibus datis
et positio radii determinatur). The final section of Analemma 2 is somewhat
obscure because Ptolemy is setting out his own terminology at the same time
as that of the ancients, but the main point is that each of the angle pairs
hectemorius-meridian, horarius-vertical, and descensivius-horizon can be used to
specify the location of the solar ray.

For example, in Figure 6 (right), when the hectemorius, ERMW, is inclined
with the solar ray, RO, the equatorial diameter, EW, and RO create the
rectilinear ̸ EOR, which can be measured by arc ER, while the plane of
the hectemorius creates an angle with its stationary counterpart, the horizon,
ESWN, which can be measured by arc MS of the meridian. Hence, the position
of the sun can be determined by arc ER of the hectemorius and arc MS of
the meridian. Indeed, it is clear that if arc ER has the range 0°–180° and
arc MS the range 0°–360°, any point on the sphere can be named in these
coordinates. In fact, however, Greek geometers did not consider angles greater
than 180°, and Ptolemy will introduce conventions in Analemma 5 that will
insure that these six principal arcs will always have a range of 0°–90°.43

Analemma 2 is a discussion of how we can understand the position of the
real sun in term of local coordinates—it speaks of the world sphere and of
movable circles being carried with the sun with no reference to a lettered
diagram. The angles that determine the position of the sun are described in
terms relative to the position of the observer in the center of the cosmos. The
use of the diagrams in Figure 6 helps a modern reader to follow Ptolemy’s
description, but it is not faithful to his approach, which is to describe the
situation as taking place around us—with no appeal to the terminology of
modeling or supposing.

This changes in Analemma 3, which Ptolemy introduces with the following
words: ‘In order that the sequence (consequentia) of the angles and what is
modeled (quod supponitur) should fall more within our view, in fact, let there
be a meridian circle, ABGD.”44 He then proceeds to give a description using a

43 There may have been practical reasons for this. For example, the graduated quadrants on
his analemma plate only measure 0°–90°—which may have to do with the fact that a compass
large enough that its radius would be equal to the diameter of his analemma plate would be
rather cumbersome.

44 In translating this and the following Latin passages, I have not attempted to render the
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Figure 7: Analemma 3: (left) manuscript figure of the world sphere; (right) modern figure. All
of the elements in the diagram are on the eastern hemisphere, which faces us.

lettered diagram, Figure 7, of the meridian circle and the circles to the east.
Hence, Figure 7 depicts the eastern hemisphere of the model, such that all of
the lines we see are on the outer surface of the sphere, facing us. Circle ABGD
is the meridian, semicircle AEB is the horizon, and semicircle GED is the
vertical. The semicircles HZET, AZKB and GZLD are the hectemorius, the
horarius and the descensivus, respectively. Thus, the arcs which were mentioned
as determining the solar ray are (ZE,AH ) as hectemorius-meridian, (ZA,GK )
as horarius-vertical, and (ZG,EL ) as descensivius-horizon.

Analemma 3 is devoted to the description of a certain geometric object
and it does not deal with the world sphere, the real sun, or the actual solar
ray.45 Hence, the purpose of Analemma 3 is to describe a model—namely the
geometric object introduced—that will henceforth stand in for objects in the
real world. The rest of the Analemma deals only with this geometric model.

5. Themathematical approach

In order to understand the mathematical methods of the Analemma, we will
follow through the determination of a solar position in local coordinates for
one of the three angle pairs, namely the hectemorius-meridian pair.

Latin literally but have been guided by the fact that scilicet and various forms of qui, ipse,
idem, and so on, are used by Moerbeke to translate various functions of the definite article,
whose usage in Greek mathematical prose is well known; see Clagett, Archimedes, pp. 43–44;
Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 14, and Federspiel, ‘Sur l’opposition’.

45 The mention of the ‘ray’ that appears at the beginning of Analemma 3 is actually a
reference back to the solar ray introduced in Analemma 2, stating that point Z marks its
position in the model.
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Figure 8: Analemma 6. Elements in gray do not appear in the manuscript diagram.

5.1. A synthetic proof

Analemma 6 begins with an introduction to the rest of the work. Ptolemy states
that, with the foregoing as preliminaries, we will now set out the ‘instrumental
determinations’ (ὀργανικαὶ λήψεις, instrumentales acceptiones)46 of the coordinate
angles. This appears to be a reference to the overall aim of the treatise of
producing a physical analemma plate for making analog computations. Indeed,
Ptolemy makes it clear that he will only supply a proof (ἀπόδειξις) for a single
determination (λῆψις)—that of the new hectemorius arc, which he himself has
introduced.47 Hence, if we think of the remaining mathematical sections as
establishing the methodological soundness of carrying out analog computations
on the analemma plate, we can understand why Ptolemy would refer to this
material generally as addressing ‘instrumental determinations’.

Brushing off the case in which the sun is at one of the equinoxes as trivial,
for the remaining solar positions Ptolemy gives a proof that a certain arc on
the analemma is equal to the hectemorius arc, as follows (Figure 8 (left)):48

Now, as for the remaining monthly [circles],49 let there be a meridian circle, ABGD,
in which a diameter of the horizon is AB, and at right angles to this along the

46 The Greek is a conjecture by Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 94, n. 454, based
on the Greek of the following passage.

47 Heiberg, Opera astronomica minora, pp. 194–195; Edwards, Ptolemy’s Περὶ ἀναλήμματος,
pp. 94–95, 136.

48 The Greek for this passage is essentially complete, so I have translated Heiberg’s text, but
kept the letter-names of Moerbeke’s Latin. In the palimpsest, this passage concludes Section 1.

49 That is, besides the month-circles at the equinoxes.
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gnomon is GD, and the center of the sphere of the sun is E,50 while ZHT is a
diameter of one of the monthly parallels north of the equator, upon which, in the
same plane let an eastern semicircle, ZKT, be imagined (νοείσθω).51
And let KH be produced upright upon ZT,52 such that section (τμῆμα) ZK of the
parallel [circle] is made to be above the earth, and with arc KL being cut off,53 let a
perpendicular, LM, be produced from L to ZT.54 And, with center M and distance
ML, let a point, X, be determined on the meridian,55 and let EL, MN, EX, and MX
be joined,56 and let EO be produced upright upon EN.57 I say that angle OEX is
equal to the sought angle.58

For, let semicircle ZLT be imagined (νοείσθω) as rotated (ἐπεστραμμένον) to its
proper position, that is, the perpendicular to the plane of the meridian. And let
a perpendicular, EP, be produced, as the equatorial diameter, to the same plane.59
Then, LM being a perpendicular to the meridian, it is obvious that straight lines
EN, ML, and EP are in a single plane perpendicular to ABGD.60 Likewise, [it is
obvious] that EN is the common section of the hectemorius circle and the meridian,61
while LE is in line with the solar ray,62 and the sought angle, which is contained by
the ray and the equatorial diameter, is LEP. For, since EL is equal to EX,63 and
ML to MX,64 and EM is common, therefore angle MEL is equal to angle MEX.65
But angle MEP is right, and angle MEO,66 therefore the remaining angle LEP 67

50 This is a clear indication that Ptolemy thinks of the analemma model as a simplifying
assumption, since by his time it was well known that the sun does not orbit the earth in a
simple sphere—although the model may have been developed at a time when this was still
held to be so.

51 The MS reads νοείσθαι, Heiberg corrects to νοείσθω.
52 Elements I.11; set square.
53 This is the arc of the seasonal hour, ηs.
54 Elements I.12; set square.
55 Elements I.post.3; compass. See the discussion of this construction below.
56 Elements I.post.1; side of set square.
57 Elements I.11; set square.
58 Namely, the hectemorius arc.
59 Elements XI.12. That is, the line about which the hectemorius rotates.
60 Elements XI.6, 7 and 18.
61 Elements XI.3.
62 Note the clear language of modeling here. Ptolemy does not assert that LE is the line of

the solar ray, but is in line with it—that is, models it.
63 They are both radii of the sphere.
64 By construction.
65 That is, because △MEX ∼= △MEL, by Elements I.8.
66 Following this, both the Greek and the Latin include the phrase ‘and since angle EML’

(έπει καὶ ἡ ὑπὸ τῶν ΕΜΛ, quoniam et qui sub EML), which appears to be an interpolation,
and has been noted as such by the modern editors.

67 Here the manuscript includes the phrase ‘to angle MEX, that is’ (τῇ ὑπὸ ΜΕΞ τουτέστιν,
ei qui sub MEX hoc est), which does not make sense and has been marked as an interpolation
by the modern editors.
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Figure 9: Perspective diagram for Analemma 6. Elements in gray do not correspond to any
element in the manuscript diagram.

is equal to angle XEO. Which was to be shown.68

The key to understanding Ptolemy’s argument is to consider the analemma
figure as a representation of the solid sphere. There are a number of indications
that this was Ptolemy’s intention. The expression that he uses when he speaks
of the monthly parallel, ‘let it be imagined’ (νοείσθω), is a standard expression
in Greek geometric texts used to introduce solid constructions that cannot be
fully, or accurately, represented by the plane figure.69 When the semicircle of
the parallel month-circle is introduced in the construction, it is imagined to be
in the plane of the analemma, because it is, in fact, perpendicular to this plane.
Ptolemy makes this clear in the proof when this circle is imagined rotated into
its ‘proper position’—namely, where it is found in the solid configuration. It
seems likely that Ptolemy’s readers could be expected to know how to view
an analemma diagram as a solid configuration, or perhaps to have read the
text while working with a solid sphere.

In order to illustrate this point, we will explain the argument with a
perspective diagram. Considering Figure 9, let BPA be the local horizon and
BGA the local meridian. Then the terrestrial latitude, φ, and the annual position

68 Heiberg, Opera astronomica minora, pp. 195–198; Edwards, Ptolemy’s Περὶ ἀναλήμματος,
pp. 43–46.

69 See, for examples, Elements XII.13, 16, Conics I.52, 54, 56, and Theo. Spher. I.19. The
expression is also found many times in Archimedes’ corpus. For a discussion of the various
ways in which this verb is used to introduce objects, see Netz, ‘Imagination’.
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of the sun, δ(λ), are given by the inclination of the pole and the declination of
the month-circle of the sun, TKLZ. Ptolemy makes no mention of this, simply
assuming that they are fixed by the geometry of the figure. With TKLZ as the
month-circle, section KLZ, being above the horizon, represents the motion of
the sun from sunrise in the east to midday. Hence, the seasonal hour, ηs, must
be taken as given along this arc, say as arc KL. This arc is taken as arbitrary
in the construction. Because Analemma 6 is a theorem of synthetic geometry,
however, there is no mention of any objects being given.70

Then, since L is the position of the sun and P is the east point of the
local horizon, the hectemorius is the great circle PLN passing through P and
L, and the hectemorius arc is PL. The construction then amounts to using
analemma methods to project these points onto the analemma plane, while
the proof amounts to showing that the arc that results from this projection is
equal to arc PL.

The hectemorius circle is first projected orthogonally onto the analemma
as line NMEN ′, such that P maps to E, and L to M (M.1, M.2). Next, the
location of L on the hectemorius is rotated into the plane of the analemma
in two ways, by the method set out in the first example treating analemma
methods above, Section 2.1. That is, L is mapped to the intersection of the
circle about center M with distance ML, which is perpendicular to line EN,
with the analemma circle, at point X. This construction is effected by taking
X as the intersection of a circle drawn about center M with distance ML. In
this way, L maps to X. The circle that produces X is not actually drawn in
the plane of the analemma—probably because arc lengths are not preserved
on it. Then, we project one of the endpoints of the diameter about which
the hectemorius rotates into the analemma by erecting a perpendicular to the
orthogonal projection of the hectemorius circle, NEN ′, at E, so that P maps
to O (M.3)—effectively, rotating the hectemorius circle into the plane of the
analemma (M.4). Ptolemy does not talk about the hectemorius circle as rotated,
he simply constructs the points X and O in the plane, first with the distance
of a circle that is not itself drawn and then by constructing a perpendicular.
The production of point X with distance ML is an interesting construction
because it differs from any construction performed in the problems of Elements
I–VI, insofar as the circle about center M is not actually drawn—only the
point that is cut off by the circle is produced. In the Elements, such points
are cut off on lines, as justified by Elements I.3, but not on circular arcs. We
may regard this construction as an analemma construction, and we will see

70 In general, Greek mathematicians only use the language of givens when treating problems,
or in theorems written to facilitate certain problem-solving practices—for example, we do not
read of objects being given in the synthetic theorems of the Elements; see Acerbi, ‘The Language’,
and Sidoli, ‘The Concept’.
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that such constructions are often employed in the nomographic procedures
on the analemma plate. Finally, with points X and O produced, it is a
matter of elementary geometry to show that △MEL ∼= △MEX, so that
90°− ̸ MEL = 90°− ̸ MEX, that is arc LP = arc XO.

The analemma diagram, Figure 8, represents three circles in three different
planes superimposed upon one another in the plane of the figure—which is
the analemma. The circle of the meridian, ADBG, lies in the plane of the
figure. The circle of the hectemorius, NPN ′, is perpendicular to the plane
of the figure and intersects it in line NEN ′. The month-circle, TKLZ, is
perpendicular to the plane of the figure and intersects it in line THMZ.
Although I have spoken of rotations and projections to help explain the solid
configuration that motivates the construction, all but one of the constructive
steps presented in the proof in Analemma 6 are carried out directly in the
plane of the analemma—following what appears to have been a common
practice among Greek geometers for handling solid configurations.71 Moreover,
because this is ostensibly a purely geometric argument, I have justified each
constructive step with a problem, or postulate, from the Elements as well as
by operations of a set square and compass as described in Analemma 11.

The next two sections of the Analemma set out the constructions for the
remaining five angles with no proofs.72 For our purposes, here, we will simply
note that the arc of the meridian, which completes the angle pair with the
hectemorius, is equal to arc AO in Figures 8 and 9.

This synthetic proof—which makes explicit reference to the solid sphere—pro-
vides the background to understanding analemma methods. Since we will not
return to the solid configuration in this discussion, it may be helpful to
summarize the analemma construction of the hectemorius-meridian angle pair.
The hectemorius arc is found as follows:
Hec.1: The diameter of the hectemorius circle is found by taking the orthogonal

projection of the solar position, L, onto the meridian plane, M (M.1);
and then joining this with the center, E, extended to produce NMEN ′

(M.2).
Hec.2: The hectemorius arc is found by rotating the hectemorius circle into

the plane of the meridian circle about its diameter, NMEN ′ (M.4), such
that P, or E, the east point, maps to O, and L, the solar position, maps
to X. Using analemma methods, we find X by taking the intersection of a

71 See note 11, above.
72 Luckey, ‘Das Analemma’, cols 25–26, gives a clear account of how the remaining analemma

constructions are related to the solid sphere. Following these descriptions it would be a relatively
simple matter to reconstruct proofs along the lines of Analemma 6. For a summary of the
constructions of all the arcs in the analemma, see Guerola Olivares, El Collegio Romano,
pp. 81–101.
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circle of radius ML about center M, or a perpendicular erected to NEN ′

at M, with the analemma, and we find O by taking the intersection of a
perpendicular to NEN ′ erected at E with the analemma (M.3).

Because the meridian circle is in the same plane as the figure, which is the
analemma plane, the analemma construction of the meridian arc is somewhat
simpler:
Mer.1: The diameter of the hectemorius circle is found, as before, by taking

the orthogonal projection of the solar position, L, onto the meridian
plane, M (M.1); and then joining this with the center, E, extended to
produce NMEN ′ (M.2).

Mer.2: The meridian arc is found by rotating the hectemorius circle about
NMEN ′, such that, as before, P, or E, maps to O, and the meridian arc is
cut off on the meridian circle between O and A—the south point (M.4).
Again, using analemma methods, we simply erect the perpendicular from
E to NEN ′ (M.3).

5.2. A metrical analysis

In Analemma 9, after introducing the methods of nomographic computation
discussed above, Ptolemy explains that each of the six principal arcs can also
be calculated using geometric, indeed trigonometric, means:73

Such a determination, for those who prefer, would also exist precisely by means
of lines (διὰ τῶν γραμμῶν),74 although it would be easily brought about through

73 Again, I have translated the Greek for this passage.
74 Διὰ τῶν γραμμῶν is a technical expression in Ptolemy’s writings; see Heiberg, Syntaxis

mathematica, vol. I, pp. 32, 42, 251, 335, 380, 383, 416, 439; vol. II, pp. 193, 198, 201,
210, 321, 426, 427, 429; Heiberg, Opera astronomica minora, pp. 202, 203. It designates the
geometric means through which a computation can be, or has been, carried out, either by
elementary geometry, or by chord-table trigonometry. When it is used in the Almagest, it is in
reference to either an actual calculation or to a metrical analysis, where the later is understood
as showing that the former is, in principle, possible. As Edwards, Ptolemy’s Περὶ ἀναλήμματος,
p. 107, n. 512, suggests, the phrase is closely related to chord-table trigonometry, and in a
number of places in the Almagest it clearly must indicate computation through chord-table
trigonometry; see Heiberg, Syntaxis mathematica, vol. I, pp. 251, 335, 380, 439; vol. II,
pp. 321, 426, 427. In a number of other places it refers to a computation, which, considering
the context, was almost certainly carried out through chord-table trigonometry; see Heiberg,
Syntaxis mathematica, vol. I, pp. 383, 416, 439; vol. II, p. 429. And, finally, in some cases it
refers to a metrical analysis that is intended to justify a computation; see Heiberg, Syntaxis
mathematica, vol. II, pp. 193, 198, 201, 426.

We find two uses of the phrase διὰ τῶν γραμμῶν in reference to the same metrical analysis,
which, taken together, make it clear that we must understand this metrical analysis as justifying,
or standing in for, trigonometric calculation; see Heiberg, Syntaxis mathematica, vol. II, pp. 426,
427, and Nathan Sidoli, ‘Mathematical Tables’, pp. 25–26.
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the analemma itself, even if it is not exactly the same as that through geometrical
demonstrations (διὰ γραμμικῶν ἀποδείξεων), but rather near enough for theory in
agreement with the senses, to which the practical goal of the proposed task leads.75

He then provides what I call a metrical analysis to show that given the
declination of the sun, δ(λ), terrestrial latitude, φ, and seasonal hour, ηs, each of
the six angles is also given—for λ = 0° and λ = 180° in Analemma 9, and for
all other λ in Analemma 10. A metrical analysis is a type of argument about
what is given that is found in the writings of both Heron and Ptolemy, in
which each step can generally be justified by reference to theorems of Euclid’s
Data, but which itself justifies, or establishes the possibility of, a computational
procedure involving arithmetical operations—adding, subtracting, multiplying,
dividing, and taking square roots—and, in the case of Ptolemy, entries into a
chord table.76 After reading one of Ptolemy’s metrical analyses, we will discuss
the significance of this type of argument.

In the foregoing passage, the distinction between producing the final
determinations ‘by means of lines’, or ‘through geometrical demonstrations’, on
the one hand, and those brought about ‘through the analemma itself ’, on the
other, addresses the fact that there will probably be slight differences in the
values obtained through chord-table trigonometry, as justified by the metrical
analyses of Analemma 9 and 10, and those obtained through the analog,
or nomographic, methods, that will be provided in Analemma 12–14. Here,
Ptolemy claims that the minor differences in these values will not undermine
the overall validity of the analog calculations, which will produce values good
enough for the practical goals of the treatise.

After giving the metrical analysis for the six angles in the case where the sun
is at one of the equinoxes, in Analemma 9, the passages of metrical analysis
in Analemma 10 that concern the hectemorius-meridian pair read as follows
(Figure 10):77

75 Heiberg, Opera astronomica minora, pp. 202–203; Edwards, Ptolemy’s Περὶ ἀναλήμματος,
p. 50.

76 Metrical analysis is my terminology, but this type of argument is called an ‘analysis’ by
Heron throughout his Measurements, and by Pappus in his commentary on Ptolemy’s Almagest
V; see Rome, Commentaires, p. 35. I have not found a passage where Ptolemy himself refers
to this type of argument as an ‘analysis’. I have discussed elsewhere the role of this type of
argument with respect to mathematical tables in the Almagest; see Sidoli, ‘Mathematical Tables’,
pp. 25–26. See also the discussion by Acerbi, ‘I codici stilistici’, pp. 201–208; note, however,
that his attempt to rewrite Ptolemy’s prose should be treated with caution—there is good reason
why Ptolemy does not include the passages that Acerbi adds to the text (see n. 107, below).

77 Only the beginning of this passage is preserved in Greek; I have translated first from the
Greek and then from the Latin. In the palimpsest this passage begins Section 5. Here I translate
only those passages necessary for the determination of the hectemorius-meridian angle pair.
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77 Only the beginning of this passage is preserved in Greek; I have translated first from the
Greek and then from the Latin. In the palimpsest this passage begins Section 5. Here I translate
only those passages necessary for the determination of the hectemorius-meridian angle pair.
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As for the remaining monthly [circles],78 let meridian ABGD be set out along with
the diameters upright upon one another and axis EZ. And let a diameter, HTK, of
any of the southern monthly parallels to the equator be produced through, upon
which let semicircle HLK imagined (νοούμενον)79 to the east be drawn.80 And let axis
EZL be extended,81 obviously bisecting diameter HTK at T and semicircle HK at L.82
And let line MN be produced through [as a perpendicular] to HT,83 dividing the
section, HN, of the semicircle above the earth from that below the earth. And with
arc NX being determined as the given hours,84 let a perpendicular, XO be produced
from X to HM.85 And through O let perpendiculars upon AE, POR, and upon GE,
SOC, be produced through.86

Then, since arc HTK of the meridian is given,87 and the double of line ET
subtends its remainder in the semicircle, the ratio of HTK and ET to the diameter of
the meridian will be given.88 Likewise, since arc AZ, of the elevation [of the pole], is
given,89 angle MET of right-triangle MET will also be given. So, the ratio of ET to
each of EM and MT will also be given,90 and, moreover, that of diameter HK to each
of them.91 But, the double of line MT subtends the double of arc LN, so arc LN will

78 That is, besides the month-circle at the equinoxes.
79 The use of ‘imagined’ is a reminder that, in order to understand the analemma diagram,

we must consider it as a representation of a solid configuration.
80 The assumption of this configuration produces the first two given magnitudes: φ and δ(λ).
81 Elements I.post.2; side of the set square.
82 Elements III.3, I.def.17.
83 Elements I.11; set square. The location of M on the horizon is specified in the phrase that

follows. The fact that this line must be perpendicular is made explicit in Moerbeke’s Latin.
84 This is the final given magnitude, ηs.
85 Elements I.12; set square.
86 Elements I.12; set square.
87 In terms of the Data, this is so because both meridian ADBG and line HK are assumed

to be given in position, so that, by Data 25 and 26, line HK is given in position and in
magnitude, so that, by Data Def.8, arc HTK is given in position and magnitude. Edwards,
Ptolemy’s Περὶ ἀναλήμματος, p. 111, n. 537, points out that computationally this follows since
arc HZK = 180°−2δ(λ).

88 That is (HTK : diameterm) and (ET : diameterm) are given. The first ratio is given by
Data 1. The second ratio is given because, by Data 88, ̸ HEK is given, so that, by Data 2, half
of it, ̸ HET is given. Then, by Elements I.32 and Data 4, the angles of △HET are given, so
that, by Data 40, △HET is given in form. Then, by Data Def.3, (ET : EH ) = (ET : radiusm)
is given, so that, by Data 8, (ET : diameterm) is given. In terms of computation, the use of
Data 88 would involve entering into a chord-table, as would the computation of ratios based
on angles implied by the use of Data 40.

89 This is φ—assumed to be given by the geometric configuration, or by taking the meridional
altitude of the pole, in degrees.

90 That is, since by Elements I.32 and Data 4, the angles of △MET are given, by Data 40,
(ET : EM ) and (ET : MT ) are given. The computation of these ratios would involve entering
into a chord-table.

91 That is, by Data 8, (EM : diameterm) and (MT : diameterm) are given.
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also be given,92 as well as the remainder NXH from a quadrant.93 But NX is given,94
therefore both LX and XH will be given.95 But, the double of line XO subtends the
double of arc HX, and the double of line OT [subtends] the double of arc XL,96 so
the ratio of XO and OT to diameter HK is given,97 and because of this also to that of
the meridian.98 But, since the ratio of TM [to diameterm] is also given,99 the ratio of
MO [to diameterm] will be given.100 And it is that as EM to MO, so is TM to MP
and ET to OP,101 for the triangles EMT and OPM are equiangular.102 Therefore, the
ratio of MP and OP to the diameter of the meridian is given.103 On account of this,
also the ratio of ES [to diameterm], and of the whole of EMP, which is OS [to
diameterm, will be given].104

With these things demonstrated, with center O and distance OX let a point of
the meridian, Y, be determined.105 […] And let EY […] and EO […] be joined.106

92 That is, since by Data 2, 2MT is given, arc 2LN is given by Data 88. Computationally,
we enter into a chord-table.

93 Data 4.
94 This is determined by ηs. Geometrically, it is simply assumed as given by taking the

seasonal hour from sunrise to noon going from N through X to H, or from noon to sunset
going back from H to N. Arc NH can be divided into six parts using one of the various
trisections of an angle preserved in Greek sources; see Heath, A History, vol. I, pp. 235–244.
Computationally, arc NX = ηs · arc NH/6; see Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 112,
n. 542.

95 Data 3 and 4.
96 That is, in semicircle HLK, by Data 87, 2XO and 2OT are given; so by Data 2, XO and

OT are given.
97 Data 1.
98 That is, by Data 8, (XO : diameterm) and (OT : diameterm) are given. The Greek

fragment ends here—we continue with Moerbeke’s Latin. With regard to my translation choices,
see note 44, above.

99 That is, (TM : diameterm) is given, as shown above.
100 That is, since (TO : diameterm) and (TM : diameterm) are given, by Data 8, (TO : TM )

is given. Hence, by Data 5, (TO : (TO − TM )) is given. Hence, again by Data 8,
((TO−MT ) : diameterm) = (MO : diameterm) is given.

101 Elements VI.4.
102 Elements I.15 and 32.
103 That is, (EM : TM ) = (MO : MP ), and (EM : ET ) = (MO : OP ), and each of

(EM : TM ) and (EM : ET ) are given, so by Data 8, (MP : diameterm) and (OP : diameterm)
are given.

104 That is, since (ME : diameterm) and (MP : diameterm) are given, by Data 8, (ME : MP )
is given. Hence, by Data 6, ((ME + MP ) : (ME )) is given. Hence, again by Data 8,
((ME+MP ) : diameterm) = (OS : diameterm) is given.

105 Elements I.11; compass.
O reads G in place of Y—which error was noted by the modern editors.

106 Elements I.post.1; side of the set square. Heiberg, Opera astronomica minora, pp. 206–209,
Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 54–56.
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Figure 10: Analemma 10: Partial diagram of the analemma. Objects which do not concern
the hectemorius-meridian angle pair have been omitted. Elements in grey do not appear in the
manuscript diagram.

As before, in Figure 10, the solar position is projected into the analemma in
two ways. Since O is the orthogonal projection of the solar position, X, onto
the plane of the meridian—produced by dropping a perpendicular from X to
the diameter of the solar month-circle, HK (M.1)—the line OE, joining O
with the orthogonal projection of the east point, E, will be the diameter of the
hectemorius circle (M.2). Hence, the hectemorius arc, YE ′′, will be produced by
rotating the hectemorius circle into the meridian (M.4)—that is, by taking Y
on the analemma circle such that OY = OX, and erecting EE ′′ perpendicular
to OE (M.3). Since, by Elements I.29, ̸ YEE ′′= ̸ EYO, Ptolemy will simply
work with ̸ EYO—probably to avoid having to produce EE ′′ in an already
cluttered diagram. The meridian arc is found by extending the diameter of the
hectemorius circle, OE, to meet the meridian at E ′, and taking the arc between
this intersection and the south point, arc AE ′. Since arc AE ′= ̸ PEO, Ptolemy
simply works with this angle—again to avoid producing any unnecessary lines.

Up to this point in the metrical analysis, Ptolemy has dealt with all lines
in terms of ratios to other lines. This practice agrees with that found in the
Almagest for plane trigonometry, and derives from the fact that when we
enter into a chord table with an angle, the resulting chord is always given in
terms of the radius of the circumscribing circle—that is, as a ratio.107 In what

107 This is the reason why Acerbi, ‘I codici stilistici’, pp. 204–208, has gone too far in
attributing to Ptolemy claims about given lines in his rewriting of the ancient text.
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follows, however, he will assert that the radius of the meridian is given, and
he will then state the other lengths as also given—that is, given in terms of
the diameter of the meridian.

The foregoing passage continues to argue that the six principal arcs are
all given. We read only those passages pertaining to the hectemorius-meridian
pair:108

Since, then, in the preceding, the angle EOY was shown to be right,109 while
hypothenuse EY, being a radius of the meridian, is given,110 as well as OY, being equal
to OX,111 angle EYO, containing that of the hectemorius circle, will be given.112 […]
Then, since both OP and EP, of right-angled [triangle] EOP are given,113 hypothenuse
EO and angle OEP, which makes the meridian arc, will be given.114 […]115

The foregoing metrical analysis constitutes a general argument that, where
δ(λ), φ, and ηs are assumed as given, the two arcs of the hectemorius-meridian
angle pair are also given—that is fixed, or determined. The argument, as all
extant metrical analyses, works on two levels: (1) as a purely geometrical
proof, in which each step can be justified by theorems of the Data, and (2) as
the articulation of an effective computational procedure, involving the basic
arithmetic operations, taking square roots and entries into a chord-table.116 That
is, in the Analemma, for Ptolemy, given means both geometrically given—that is,
producible using the constructive methods of Elements I–VI—and numerically
given—that is, computable as some numerical value.117

As he stated at the beginning of Analemma 9, this argument constitutes
a demonstration that these arcs can be determined ‘by means of lines’ (διὰ
τῶν γραμμῶν)—that is, they are computable through geometric, or rather

108 There is no Greek for this passage.
109 This is a reference to the argument in Analemma 6, in which it was shown, in Figure 8,

that △LME ∼= △XME and LM was imagined as constructed perpendicular to the plane of
the meridian.

110 That is, assumed as given—given by the geometry of the figure, or taken, as say 60p,
following the practice of the Almagest.

111 Data 2, since (OX : diameterm) was shown to be given.
112 Data 43. Computationally, this involves entering a chord-table.
113 Data 2, since (OP : diameterm) and (OS : diameterm) were shown to be given.
114 EO is given by Data 52, 3 and 55; so that, by Data 39, ̸ OEP is given. Calculating this

angle would involve Ptolemy’s usual convention of taking OP when OE is assumed as given,
and entering a chord-table.

115 Heiberg, Opera astronomica minora, p. 209; Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 56.
116 Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 115–117, gives an example calculation following

Ptolemy’s methods that proceeds along the same lines as that established by Ptolemy’s metrical
analysis.

117 Ptolemy does not express any concern with the fact that the numerical value used to
express certain geometric objects will not be perfectly precise.
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trigonometric, methods.118 In the context of this treatise, this is contrasted
with the analog computations that will be outlined below. The determinations,
and likewise computations, ‘by means of lines’ are said to be more precise than
those of the nomographic procedures to which we now turn.

5.3. An analog computation

In Analemma 11, Ptolemy describes the production of an analemma plate, on
which ‘with only the compass and the set square’ (διὰ μόνου τοῦ τε καρκίνου
καὶ τοῦ ὀρθογωνίου πλατύσματος)119 constructions of the six principal arcs can
be carried out.120 The plate is a ‘drum-shaped plane’ (τυμπανοειδὲς ἐπίπεδον) on
which certain, permanent lines are drawn. Ptolemy gives instructions for how
this plate should be made using a lettered diagram that serves as a sort of
mathematical recipe for a physical construction. The finished plate, however,
would probably not have had labels on it, as in Figure 11.

The plate may be made of inscribed lines on bronze or stone, or colored
lines drawn on wood, which is then covered with wax so that the horizon and
gnomon can be drawn in the wax.121 The wooden tablet—which we will treat
here—is inscribed with red lines for the meridian and the diameter of the
equator and black for three month-circles. Quadrants, graduated at 1° intervals,
are produced on one or both sides of the equator, as well as in one of the
quadrants of the outer circle. In each quadrant of the outer circle a set of seven
marks is drawn for the elevation of the pole at seven well-known latitudes, φ, of
Greco-Roman geography: 16 1/3 1/12°, 23 1/2 1/3 °, 30 1/3 °, 36°, 40 1/2 1/3 1/12°, 45°,
and 48 1/2°.122 Three month-circles are inscribed corresponding to the following
solar declinations, δ(λ): 23 1/2 1/3°, 20 1/2°, and 11 2/3°.123 The first month-circle
is used when the sun is at the tropics, in the signs of Cancer or Capricorn
(λ ≈ 90°, 270°); the second is used when the sun is in Gemini, Leo, Sagittarius
or Aquarius (λ ≈ 60°, 120°, 240°, 300°); the third is used when the sun is
in Taurus, Virgo, Scorpio or Pisces (λ ≈ 30°, 150°, 210°, 330°); while the
equator is used when the sun is in Aries or Libra (λ ≈ 0°, 180°). The wooden
plate is orientated by rotating it such that the elevation corresponding to the
given terrestrial latitude, φ, is in the zenith and drawing the horizon and the
gnomon in the wax. In the operations to be described below, arcs will be set

118 See note 74 for a discussion of the meaning of the phrase ‘by means of lines’ (διὰ τῶν
γραμμῶν).

119 Literally, ‘crab’ and ‘rectangular plate’.
120 Heiberg, Opera astronomica minora, p. 212.
121 Presumably working with bronze or stone involved having a number of different sets of

plates for the different latitudes.
122 These latitudes should be compared with those in Almagest II.6 and Geography I.23.
123 These should be compared with the declinations in Almagest I.5.
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Figure 11: Analemma 11: The wooden analemma plate, rotated to carry out computations at
the latitude of Rhodes, φ = 36°. Red lines are shown in gray, dotted lines are to be drawn in
the wax.

out on the meridian. These arcs can then be measured by carrying them, with
the compass, to one of the graduated quadrants at the side, which have the
same diameter as the meridian.

In order to follow the method of the analog computation, we will read
Analemma 13 closely, with a new diagram for each step of the procedure.124
Analemma 13, in which Ptolemy describes the analemma-plate computation
for the six principal angles, begins as follows:125

Again, [1] let a diameter of any one of the monthly circles be modeled, and let it be
ZHTK, upon which is the eastern semicircle ZLK.126 [2a] And with center T and

124 Luckey, ‘Das Analemma’, cols 32–39, gives a complete account of the nomographic
computation for all of the angles. See also the account by Guerola Olivares, El Collegio Romano,
pp. 122–131.

125 There is no Greek text for this part of the treatise; I translate Moerbeke’s Latin—omitting
those passages unnecessary to the computation of the hectemorius-meridian pair.

126 L has not actually been produced yet, so at this point it serves as an unspecified name
for the semicircle. The positioning of L and M in the diagram provided by Heiberg, Opera
astronomica minora, p. 219, which accurately reflects that on O f. 64v, is incorrect.
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Figure 12: Analemma 13: Computing on the analemma plate, steps [1] and [2]: (left) initial
set up, determination of δ(λ) and φ; (right) determination of L, the position of the horizon
on the month-circle.

distance TA, let a point of the meridian, L, be determined,127 by which ZL—the
semicircle above the earth—and LK—below the earth—are separated. [2b] But point
L is determined with the set square (per platinam rectangulam) if the angle will have
been brought to H such that the other side is fitted to ZK—for what the remaining
side cuts on the semicircle will be the point [L ], because the perpendicular produced
from H of HK will be the [common] section of the planes of the horizon and the
monthly circle.128

In the first step, [1], we orientate the plate to the given latitude—say
φ = 36°, the latitude assumed for Rhodes—and draw the horizon, AB, and the
gnomon, GD, into the wax on the plate. In the actual procedure, we would
not need to label these lines, but we label them in Figure 12 for the sake of
clarity. We then chose one of the month-circles, which will determine H and
T—the plate can be rotated 180° so that any month circle can be taken in
the northern or southern direction.

The second step, [2], can be carried out in two ways. We determine the
point on the month-circle that divides between day- and night-time, L, by [2a]
either using the compass to take the intersection of a length TL = TA on the
month-circle, [2b] or using the set square to take the perpendicular from H,
the intersection of the diameter of the month-circle and the horizon. That we
must set TL = TA is clear from considering the solid configuration—as hinted

127 The fact that TA = TL can be shown by considering the solid configuration—see below.
128 Heiberg, Opera astronomica minora, p. 219; Edwards, Ptolemy’s Περὶ ἀναλήμματος,

pp. 68–69.
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Figure 13: Analemma 13: Computing on the analemma plate, steps [3] and [4]: (left)
determination of the day- and night-time hours; (right) projection of the hours onto the
diameter of the month-circle.

at in the text. If ZLK is rotated into its proper position, A and L will both lay
on the great circle of the horizon and T is some point on the gnomon. Since
the gnomon is perpendicular to the horizon and passes through its center, by
an argument similar to that in Theodosius’ Spherics I.1, the distances from T
to every point on the great circle of the horizon are equal.

Analemma 13 continues, as follows:
Then, [3] let each section [ZL and LK] be divided equally in 6, and with these points,
[4] by an application of the set square let points on ZK made by perpendiculars to
it from the divisions determined on the semicircle be determined.129

It is not stated, in step [3], how to perform the division of the daytime
arc into six parts. Various possibilities come to mind. We could use one of
the purely geometrical solutions to this problem that are extant in the ancient
sources—for example, one from among those treated by Pappus in Collection
IV.130 Indeed, Pappus tells us that he showed how to trisect an angle in his
lost commentary to the lost Analemma of Diodorus.131 Alternatively, the plate
itself could be used to perform this division as follows:

• We draw an auxiliary circle with the same radius as the month-circle,
concentric with the meridian,

129 Heiberg, Opera astronomica minora, p. 219, Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 69.
130 See Hultsch, Pappi Collectionis, pp. 272–288, and Sefrin-Weis, Pappus. Book 4, pp. 146–155.

Heath, A History, vol. I, pp. 235–244, gives an overview of the ancient solutions to trisecting
an angle.

131 See Hultsch, Pappi Collectionis, pp. 244–246.
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Figure 13: Analemma 13: Computing on the analemma plate, steps [3] and [4]: (left)
determination of the day- and night-time hours; (right) projection of the hours onto the
diameter of the month-circle.
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it from the divisions determined on the semicircle be determined.129

It is not stated, in step [3], how to perform the division of the daytime
arc into six parts. Various possibilities come to mind. We could use one of
the purely geometrical solutions to this problem that are extant in the ancient
sources—for example, one from among those treated by Pappus in Collection
IV.130 Indeed, Pappus tells us that he showed how to trisect an angle in his
lost commentary to the lost Analemma of Diodorus.131 Alternatively, the plate
itself could be used to perform this division as follows:

• We draw an auxiliary circle with the same radius as the month-circle,
concentric with the meridian,

129 Heiberg, Opera astronomica minora, p. 219, Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 69.
130 See Hultsch, Pappi Collectionis, pp. 272–288, and Sefrin-Weis, Pappus. Book 4, pp. 146–155.

Heath, A History, vol. I, pp. 235–244, gives an overview of the ancient solutions to trisecting
an angle.

131 See Hultsch, Pappi Collectionis, pp. 244–246.
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Figure 14: Analemma 13: Computing on the analemma plate, steps [5] and [6]: (left)
determination of the solar position, M, and its projection onto the diameter of the month-circle;
(right) determination of the solar position on the hectemorius circle in the plane of the
meridian, X.

• we transfer the daytime arc to this auxiliary circle with the compass,
such that one endpoint falls on the axis that bounds the outer graduated
quadrant,

• we project the other endpoint onto the outer graduated quadrant with
the set square,

• we read off the angle measure on the graduated quadrant and divide this
value by six,

• we mark this value off on the graduated quadrant and project this arc
back onto the auxiliary circle, and

• we transfer this arc back to the month-circle with the compass and mark
it off six times.

Since both the geometrical and analemma plate methods of producing the
hours are non-trivial, it seems likely that Ptolemy took his readers to have
some familiarity with these sorts of constructive procedures.

Step four, [4], is carried out by lining up one side of the set square on
the diameter of the month-circle such that the other side passes through the
hour points—as is made explicit in the text. The points on the diameter of
the month-circle are then marked at the angle of the set square.

The text continues, as follows:
But, [5] let one of them that is above the earth be that at M,132 and the ordinate

132 This is the given hour, ηs.
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Figure 15: Analemma 13: Computing on the analemma plate, steps [7] and [8]: (left)
determination of the diameter of the hectemorius circle and of the east point of the hectemorius
circle in the plane of the meridian; (right) determination of the hectemorius-meridian pair, XF
and OA.

with it, N, of those on ZH. Then, [6] with center N and distance NM, let point X
be determined on the meridian.133

Step five, [5], simply consists in choosing a pair of corresponding points
along arc LZ and line HZ for the solar position of the sun at the given hour,
M, and its projection onto the diameter of the month-circle, N.

In step six, [6], we find the projection of the solar position onto the rotation
of the hectemorius into the plane of the meridian—that is, the plane of the
analemma. Following the first example of the analemma methods in Section
2.1 and the construction provided in Analemma 6, this is found by setting the
stationary end of the compass on N, the mobile end on M, and then marking
the intersection of the mobile end with the meridian at X.

The material from Analemma 13 that concerns the hectemorius-meridian
pair concludes as follows:

And, [7] with the side of the set square brought to points E and N such that it
cuts the meridian at O, [8] arc XO will make the complement of the hectemorius,134
and that from X to the other intersection of the set square and the meridian, [F,] is
the hectemorius […] Again, arc AO will make that of the meridian […]135

133 Heiberg, Opera astronomica minora, p. 219; Edwards, Ptolemy’s Περὶ ἀναλήμματος, p. 69.
134 O reads ZO in place of XO—which error was noted by the editors.
135 Heiberg, Opera astronomica minora, pp. 219–220; Edwards, Ptolemy’s Περὶ ἀναλήμματος,

p. 69.
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In step seven, [7], we determine the diameter of the hectemorius circle by
placing the angle of the set square at the center of the figure and passing one
side over point O so that the other side falls above the earth, at point F.

In the final step, [8], we note that XF is the hectemorius arc and AO is the
meridian arc. These can be measured by placing the compass points at their
endpoints and then transferring them to the graduated quadrant at the equator.

By following a series of physical manipulations of this sort, each of the six
principal arcs can be computed nomographically.

6. Conclusion

Following the details of Ptolemy’s presentation of the Analemma, as we have
done in this paper, has made it clear that the analemma methods, as a loose
collection of problem-solving methods in the science of gnomonics, were closely
associated with various instrumental practices. We have seen both a restriction
to operations that can be performed by abstractions of realizable instruments
and explicit instructions for the production and use of an analemma plate as
a tool for analog computations. This basis in instrumental practice, and its
justification through metrical analysis, appears to have been a significant part
of Ptolemy’s mathematical bequest to scholars of the mathematical sciences in
the late ancient and medieval periods. This explicitly instrumental approach,
which is not found in the extant writings of authors like Euclid or Diophantus,
was, nevertheless, an important aspect of the Greek mathematical sciences.136

Although there is one theorem in the Analemma, the analemma methods,
as they are preserved in ancient and medieval sources, were clearly focused
around problem-solving—based on operations that can be performed with a
real compass and set square. This provides us with an interesting example of a
mathematical practice that is clearly the articulation and abstraction of an actual
instrumental practice. In fact, the contrast between the constructive methods
of gnomonics and those of Euclid’s Elements, allows us to cast the Euclidean
problems in a new light. It is often claimed that Euclid’s postulates derive from
the operations of a compass and a straightedge,137 but in fact they are more
abstract than this. For example, Elements I.post.1 can be used to join points
that are any distance apart, such as in Elements I.2, which a straightedge cannot
do. Of course, one could argue that the postulates in the Elements suppose
an indefinitely long straightedge—but there is no such thing. Again, Elements
I.16 requires that Elements I.post.2 be used to extend a line to any assumed
length, which a straightedge cannot do, since every actual straightedge is finite.

136 I have used this interpretation of Ptolemy’s Analemma as both computational and
instrumental to give an interpretation of the mathematical methods underlying Heron’s Dioptra
35 as an application of analemma methods; see Sidoli, ‘Heron’s Dioptra 35’.

137 See, for one of many examples, Mueller, Philosophy, pp. 15–16.
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Elements I.post.3 is used to produce a circle about a given point as center and
passing through another given point, which can be at any distance from the
center. Again, this is not possible with a real compass—since every compass
has a fixed finite radius. Moreover, as its application in Elements I.2 shows,
Elements I.post.3 cannot be used to produce a circle about a given point with
a given radius—but any actual compass can perform this operation. Hence, it
has sometimes been argued that Elements I.post.3 concerns the operation of
a compass that closes when it is no longer in contact with the plane—but
again, there is no such compass.138 In this way, we can contrast the level of
abstraction allowed in the Elements with that allowed in the Analemma, in
which every problem can be carried out with constructive operations that are
direct abstractions of the physical manipulations of a compass that can operate
with given radii and a set square—both of some preassigned, definite size.

Another interesting feature of the Analemma is its concern with providing
multiple methods for computing the same value. It is clear from the way in which
Ptolemy presents his procedures that a primary goal of the text is to provide
nomographic techniques, but this is proceeded by a full argument that the values in
question are both geometrically determined and computable through chord-table
trigonometry. This presentation constitutes a multilevel argument that the pro-
cedure—geometrical, computational, and nomographical—is complete. At the
most basic level, the theorems of the Data implied by the steps of the metrical
analysis insure that the geometric magnitudes are fixed; at the next level, the
metrical analysis itself provides confirmation that there is an effective procedure
for computing the value; and at the final level, the articulation of a geometric
and computational procedure assures us that the physical manipulations of the
analog computation will produce results that, although perhaps not terribly
precise, are, in principle, sound.

Although there is no evidence that Ptolemy’s Analemma was translated into
Arabic, the gnomonics of his predecessor Diodorus certainly was, and there
is clear evidence that mathematicians working in Arabic were familiar with
analemma methods already at the time of Ḥabash al-Ḥāsib in the early 9th
century.139 These methods must have come directly or indirectly from Greek
sources—since there is no evidence of analemma methods in other ancient
cultures.140 Hence, since Ptolemy’s Analemma presents the most complete

138 Heath, A History, vol. I, p. 246, recounts this interpretation of Euclid’s postulate by
Augustus De Morgan.

139 Edwards, Ptolemy’s Περὶ ἀναλήμματος, pp. 152–182, gives a full study of what is known
of Diodorus’ life and work. For evidence of the translation of, at least parts of, Diodorus’ work
into Arabic, see Kennedy, The Exhaustive Treatise, pp. 157–166, and Hogendijk, ‘Geometrical
Works’.

140 It used to be argued that analemma methods provide the best explanation for certain
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explanation we have of the mathematical conceptions underlying analemma
methods, and since these methods were so fruitfully applied in the classical
Islamic period, if we want to fully understand the medieval development of
analemma methods, we should begin with a firm basis in Ptolemy’s text. The
key features of the Analemma that should inform our reading of the medieval
sources are (1) its essentially projective approach and (2) its interest in the
mathematical justification of the methods of analog computation.

Finally, the Analemma provides a well-contained example of the approach to
mathematical astronomy developed in the Hellenistic period and still practiced
by Ptolemy and others in the Roman Imperial period.

• A geometric model is posited, with relatively little attempt to argue that
it is a sound representation of the physical world.

• The model itself becomes the object of geometrical investigation and
geometrical claims that can be made about the model are assumed,
without comment, to apply also to the world.

• Numerical values, which are ostensibly empirical, enter into the model
as given parameters for computation.

• The mathematical methods of computation (λογιστική) are mixed with
the constructive methods of geometry, with no evidence for the division
of these two areas of mathematics that we find, for example, in the
Elements and certain philosophical authors.

• The geometrical methods of the Data are used as a theoretical basis for
a computational practice that is understood as producing measurements
of various aspects of the underlying geometric model.

Mathematical scholars of the late ancient and medieval periods, who read
Ptolemy as a mathematician, found in these aspects of his approach various
methods to articulate, critique and revise in their effort to further develop the
mathematical sciences.
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Was there a Ninth Sphere in Ptolemy?∗

Paul Hullmeine

An important part of ancient and medieval cosmology was the determination 
of the total number of spheres needed for any given astronomical model to 
account for the celestial phenomena.1 Notorious in this respect is Aristotle’s 
conclusion in Metaphysics XII.8 that there are up to 55 spheres, exceeding the 
amount reckoned by his predecessors Callippus and Eudoxus. Aristotle arrives 
at this large number for two reasons. First, he needs to account for the complex 
motions of the stars and planets. Second, he strives in his cosmological setup to 
adhere to the presuppositions and foundations of his physics.2 Without delving 
too deeply into the various pre-Ptolemaic systems, the core idea of the Aristo-
telian model is the following. All celestial bodies, namely, the Sun, Moon, and 
the five planets visible to the naked eye — Mercury, Venus, Mars, Jupiter, and 
Saturn — are fixed in a sphere homocentric with the centre of the universe, 
the immobile earth. Since one sphere through itself can only move with one 

* I am grateful to the editors for allowing me to publish this article in the present volume 
although I did not attend the conference in 2015. I want to thank Charles Burnett and Peter 
Adamson for their careful reading of a previous version of this text and for their ongoing sup-
port. My gratitude goes also to the anonymous referee for helpful comments and references. 

1 See Lloyd, ‘Saving the Appearances’, and especially the discussion of Ptolemy’s Planetary 
Hypotheses on pp. 215–17. There, Lloyd discusses the question whether Ptolemy aims at estab-
lishing a functioning physical picture of the universe in addition to his mathematical calcula-
tions. He concludes (p. 217): ‘But the fundamental point remains that to represent Ptolemy in 
general as interested purely in the mathematics of his problems cannot be right given first the 
appeal to physical arguments in chs. 3 and 7 of the Syntaxis and second in the straightforward-
ly realist account offered in the second book of the Planetary Hypotheses.’

2 The main passage on the number of spheres and celestial movers is Metaph. XII.8, 1073b3–
1074a18. See for example Lloyd, ‘Metaphysics Λ 8’, and Beere, ‘Counting the Unmoved Mov-
ers’. The physical foundations underlying his astronomical system are spread throughout the 
De caelo, for example the nature of the fifth element, the aether (I.3), the nature of the circular 
motion (I.4), the spherical motion of the heavens and the stars (II.3–8), and the sphericity of 
the earth (II.14). The fragments by Eudoxus are collected in Eudoxus of Cnidus, Die Frag-
mente. For the relationship between the astronomical models by Eudoxus, Callippus and Aris-
totle and their different calculations of the total numbers of spheres and celestial movers, see 
Neugebauer, A History, pp. 675–89; Heglmeier, ‘Die griechische Astronomie’; Yavetz, ‘On the 
Homocentric Spheres’; Mendell, ‘The Trouble with Eudoxus’. Additionally, a brief but concise 
overview is offered by Alberto Jori in his commentary added to his German translation of the 
De caelo, see Aristotle, Über den Himmel, pp. 296–301.
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motion, further orbs need to be added to account for the complex motion of 
the planets. Above all these spheres lies the sphere of the fixed stars, which is 
moved by the Prime Mover. This sphere, in turn, transmits the diurnal west-
wards rotation to every planet below it. In order to make certain that only this 
diurnal rotation is transmitted to, for example, Jupiter, the combined motion 
for Saturn must be cancelled, which happens by means of Aristotle’s notorious 
‘counter-acting’ spheres. This results in a model that assigns multiple spheres to 
every planet, thereby generating the 55 or 49 spheres posited by Aristotle.

However, one could also reduce the number of spheres by assigning one 
‘main sphere’ to every planet, which then consists of a variable number of orbs 
responsible for the seemingly irregular motion of the planets. This approach 
results in assuming eight ‘main spheres’, one for each of the five planets, one 
for the Sun, one for the Moon, and one for the fixed stars. Such a reduced 
version can be found in Alexander of Aphrodisias.3 In this context, István M. 
Bodnár has posed the question whether Alexander actually argued only for the 
existence of eight spheres in total or of eight ‘bundles’ of spheres (i.e. what 
I called ‘main spheres’), deciding for the latter option.4 Subsequently, Damien 
Janos argued that a model similar to that of Alexander can be found in two 
of the most important representatives of the medieval Arabic philosophical 
tradition, al-Fārābī and Avicenna. Interestingly, al-Fārābī as well as Avicenna 
adopt a model that consists not of eight, but rather of nine such ‘bundles’ 
of spheres, each of these carrying within itself a certain number of eccen-
trics and epicycles.5 In fact, this model of nine concentric main spheres was 
widespread in medieval Arabic philosophy.6 To put forward one telling exam-
ple, the metaphysical part of Avicenna’s Kitāb al-Šifāʾ (Book on the Healing) 
addresses the number of celestial movers. Already for Aristotle and Alexander 
the question of the number of spheres was not only a purely astronomical one 
to account for the phenomena, but rather had some severe philosophical con-
sequences regarding the further question on the number of Unmoved Movers, 
since they assigned one celestial mover to every celestial motion. Leaving aside 
the philosophical background of this question, Avicenna tells us that there 

3 Alexander of Aphrodisias, On the Cosmos, pp. 10 and 93–95. Genequand refers to a sim-
ilar passage in Alexander’s Quaestiones, I.25, see Alexander of Aphrodisias, Quaestiones, p. 40: 
23–26, tr. Sharples, Quaestiones 1.1–2.15, p. 85.

4 See Bodnár, ‘Alexander on Celestial Motions’, pp. 196–98.
5 For al-Fārābī, see Janos, Method, Structure, and Development, pp. 119–28 (and for a pos-

sible influence by Alexander, pp. 152–53); for Avicenna, see Janos, ‘Moving the Orbs’, p. 174.
6 Another example from the philosophical side are the Iḫwān al-Ṣafā ,ʾ see Iḫwān al-Ṣafā ,ʾ 

On the Natural Sciences, epistle 16, ch. 3, where they pose a system of nine spheres and connect 
this system to the Qurʾānic report that eight angels, which they compare to the eight spheres 
of the planets and the fixed stars, carry God’s throne, which they compare to the outermost 
ninth, starless sphere (Qurʾān 69:17). Thereby, they provide the ninth sphere with a theological 
fundament.
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are two opinions about the nature of the first sphere (al-kura al-ūlā). Before  
Ptolemy, according to Avicenna, the first sphere was thought to be the sphere 
of the fixed stars (kurat al-ṯawābit). However, the scientists following Ptolemy 
claimed the existence of a starless sphere outside that of the fixed stars.7 Thus, 
Avicenna reports that it was Ptolemy who first introduced an additional sphere 
above the fixed stars, a move which the majority of the later tradition followed. 
The fact that the departing point of this report is the debate on the number 
of celestial movers highlights the philosophical importance of this question. 
In addition, the acceptance of a starless outermost sphere contradicts Aristo-
telian cosmology. Aristotle emphasizes that there is no body outside the realm 
of the cosmos, which means outside the sphere of the fixed stars.8 In addition, 
he poses the question why it is that the single primary motion carries a huge 
mass of stars, whereas the inner spheres carry only one planet each. Of the two 
arguments Aristotle puts forward, the stronger is that the fact that the outer-
most sphere carries all the fixed stars is an indication for its superiority above 
the others.9 This argument leads Averroes to reject a ninth sphere, thereby con-
sciously pitting himself against Ptolemy, since Ptolemy described the precession 
that is additional to the diurnal motion.10 This critique stands in the context 
of a development in al-Andalus that tried to replace Ptolemaic cosmology with 
a system that was compatible with Aristotelian physics.11 Finally, the discussion 
about the number of spheres is also found in Jewish thought, where we like-
wise find traces of the ascription of a ninth sphere to Ptolemy.12

While these implications belong to the philosophical reception of a ninth 
sphere, we also have evidence for its mathematical-astronomical reception 

7 Avicenna, The Metaphysics, p. 317:9–13. Marmura’s translation reads as follows: ‘[The 
first sphere,] for those who preceded Ptolemy, is the sphere of the fixed stars; and for those 
who learned the sciences that became manifest to Ptolemy, [it] is a sphere outside the [for- 
mer] which surrounds it and is without stars’. On pp. 328:28 and 331:8, this sphere is called 
al-ǧirm al-aqṣā and al-falak al-aqṣā, i.e. ‘the utmost body/sphere’. It may be noted here that 
Avicenna does not enumerate the different spheres or movers. He does not call this ‘the ninth 
sphere’. Nevertheless, since the topic of the ninth sphere was so common in the Islamic world 
from the early ninth century onwards, Avicenna surely must have an independent main sphere 
in mind.

8 De caelo I.9, 279a11-b3, II.10, 291a34-b9 and Metaph. XII.6–7.
9 De caelo II.12, 292a10–15 and 292b25–293a12. See also Metaph. XII.8, 1074a26–28, 

where Aristotle writes that all motions exist for the sake of the stars.
10 See his account in his Epitome of Aristotle’s Metaphysics, in Averroes, On Aristotle’s 

Metaphysics, p. 146, and further Endress, ‘Averroes’ De caelo’, pp. 43–44.
11 See Sabra, ‘The Andalusian Revolt’.
12 See Tanenbaum, ‘Nine Spheres or Ten?’, esp. p. 310. The author addresses mostly the 

philosophical and theological implications. The ascription of nine spheres to Ptolemy can be 
found in a gloss on Ibn Ezra, which also gives evidence for a reception of Ptolemy’s Planetary 
Hypotheses. See also Sela, ‘Maimonides and Māshaʾallāh’ on the ninth sphere in a more astro-
logical context in medieval Jewish thought.
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already in the early ʿAbbāsid period. A very early, ninth-century critique of the 
ninth sphere that deals with the problem of how two concentric orbs interact 
with each other, survives in a citation by Quṭb al-Dīn al-Šīrāzī.13 It is interest-
ing that the author of this cited treatise, whom Saliba identified with one of 
the Bānū Mūsā, namely Muḥammad ibn Mūsā, seems to consider himself as 
belonging to the Ptolemaic tradition. The citation, as it survives in al-Šīrāzī, 
begins with two references to Ptolemy’s Almagest that Muḥammad ibn Mūsā 
uses to strengthen his point that the first universal motion is produced by a 
deity and not by a bodily ninth sphere.14 The fact that al-Šīrāzī draws on this 
treatise provides evidence that the astronomical tradition in Marāġa also dealt 
with the question of the ninth sphere’s existence.15

So far, I have shown that the doctrine of a ninth sphere was, firstly, adopted 
as well as rejected in medieval Arabic and Jewish philosophy and astronomy 
and, secondly, that its introduction is sometimes ascribed to Ptolemy. However, 
the puzzle is that there is no information on a ninth sphere in Ptolemy’s most 
important astronomical work, the Almagest. In Almagest I.8, Ptolemy discusses 
the first two primary motions, the precession of the equinoctial points and the 
diurnal rotation of the heavens.16 Although from antiquity onwards the discov-
ery of precession was considered as the reason for introducing a ninth sphere, 
as we will see, Ptolemy does not mention anything along these lines in the 
Almagest. Instead, modern scholars have referred to the Planetary Hypotheses, 
which is extant in its entirety only in an Arabic and a Hebrew version,17 in 

13 This citation is edited and translated in Saliba, ‘Early Arabic Critique’, pp. 130–37.
14 Saliba, ‘Early Arabic Critique’, p. 131.
15 At this point one can refer to Naṣīr al-Dīn al-Ṭūsī, al-Šīrāzī’s teacher, who includ-

ed a ninth sphere in his description of the physical arrangements of the celestial spheres in 
his al-Taḏkira fī ʿilm al-hay aʾ (Memoir on Astronomy), see Ragep, al-Ṭūsī’s Memoir, vol. I, 
pp. 108–11 and 124–25, and vol. II, pp. 389–90 (in the same book, Ragep gives some valuable 
insights into questions of the relationship between the eighth and ninth sphere and the trans-
mission of motion in his commentaries, see Ragep, al-Ṭūsī’s Memoir, vol. II, pp. 400–10). On 
the reception of the ninth sphere within the Marāġa-tradition and its dependence on falsafa, 
see Morrison, ‘Falsafa and Astronomy’, pp. 313–16. But also astronomers outside of Marāġa 
did employ a ninth sphere in their astronomical works, for example the Andalusian al-Biṭrūǧī 
(see Mancha, ‘Al-Biṭrūjī’s Theory’, pp. 147–61) who became well-known in the Latin tradition. 
Thus, Pierre Duhem’s account that this conception was adopted by nearly all Islamic astron-
omers of the Middle Ages might generally speaking still be true, see Duhem, Le système du 
monde, vol. II, p. 204.

16 For Ptolemy’s report of the discovery of precession, see Ptolemy, Almagest, VII.2 and 3. 
Further, see Neugebauer, A History, pp. 292–98.

17 The extant Greek text of the Planetary Hypotheses only covers the first part of the first 
book, see Ptolemy, Hypotheseōn (an English translation is available in Hamm, Ptolemy’s Plane-
tary Theory, pp. 44–64). An English translation (from the Arabic) of the second part of Book I  
can be found in Goldstein, The Arabic Version, pp. 5–9, and an edition of the Arabic version 
of the entire Book I with a French translation in Morelon, ‘La version arabe’.
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order to show that Ptolemy might have argued for such a ninth sphere.18 Inter-
estingly, there are indeed some passages that seem to justify this course of the 
story.

In order to look for the textual basis of this claim, in what follows I will 
investigate the terminology Ptolemy uses throughout the Planetary Hypotheses 
for referring to the different kinds of spheres, orbs, and circles.19 The first part 
of the first book, which is also extant in Greek, deals with the mathemati-
cal models and the basic data of the motions of the planets. Before he gives 
detailed numerical values for the revolutions of the different planets, Ptolemy 
provides short introductory statements. In chapter I.3,20 he introduces different 
spheres and circles with their specific names. For example, he starts as follows:

νοείσθω μέγιστος κύκλος περὶ τὸ κέντρον τῆς τοῦ κόσμου σφαίρας μένων καὶ 
καλείσθω ἰσημερινός
Let there be imagined a stationary great circle that is centered on the center of the 
sphere of the cosmos and let it be called the ‘equator’ […]21

النهار معدّل  فلك  ولتسمّ  ثابتة  العالم  مركز  على  مخطوطة  العظام  الدوائر  من  دائرة  فلنتوهّم 
Let us imagine one of the great circles drawn about the center of the world, fixed, 
and it shall be called the ‘circle of the equator’ […]22

Besides the minor point that the Arabic does not translate the Greek sphaira 
here, it is interesting to point at the way in which the Arabic translator ren-
ders the Greek kyklos (‘circle’). As one would expect, the corresponding Arabic 
term is dāʾira, which is the usual term for a geometrical circle. However, where 
the Greek omits a reiteration of the term kyklos as reference for the adjective 
isēmerinos (‘equator’), the translator choses to render this as falak muʿaddal 
al-nahār (which can mean both, ‘orb’ or ‘circle of the equator’).23 Thus, falak 

18 See, for instance, Saliba, ‘Early Arabic Critique’, pp. 118 and 121, and Janos, Method, 
Structure, and Development, p. 120, n. 16. On the other hand, scholars did point out that there 
might be some problems with this ascription, for example Richard Sorabji, see Sorabji, ‘Adras-
tus’, p. 588, and also Damien Janos in Janos, ‘Moving the Orbs’, p. 168, n. 7, where he writes 
that ‘the remarks on the ninth orb in this work [i.e. the Planetary Hypotheses] are somewhat 
ambiguous’.

19 The most accurate analysis of the Planetary Hypotheses can be found in Murschel, ‘Struc-
ture and Function’.

20 I follow the chapters suggested in the edition and German translation in Ptolemy, Hy-
potheseōn.

21 Ptolemy, Hypotheseōn, p. 74:3–4; English translation in Hamm, Ptolemy’s Planetary The-
ory, p. 46.

22 Morelon, ‘La version arabe’, p. 19:4–5, the English translation is my own. Morelon, ‘La 
version arabe’, p. 18 translates as follows: ‘Représentons-nous l’un des grands cercles traces au-
tour du centre du monde, fixe, appelé orbe de l’équateur’.

23 One finds a parallel passage in Ptolemy, Almagest, I.8. There, Ptolemy writes that ‘the 
greatest of these circles is called the equator’ (tr. Toomer, Ptolemy’s Almagest, p. 45). The Greek 
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is used here as in the rest of the first seven chapters to describe circles. The 
same pattern, namely translating falak when the Greek text does not specify 
an adjective any further, is also used in the case of a moving circle, which is 
simply pherōn in the Greek and al-falak al-muḥarrik in the Arabic.24 Also, in 
these first seven chapters, the Arabic term kura (‘sphere’) is only used for the 
sphere of the fixed stars, translating literally sphaira.25

From I.8 onwards, Ptolemy discusses the geometrical models and the math-
ematical data of the revolutions in more detail with respect to every planet. In 
these chapters, he describes the sphere (sphaira in Greek and kura in Arabic) 
of the planet, which in its entirety contains all the various circles needed for 
describing the course of the planet. Take I.10 on Mercury as an example:

ἐπὶ δὲ τῆς τοῦ Ἑρμοῦ σφαίρας νοείσθω κύκλος ὁμόκεντρος τῷ ζῳδιακῷ […] 
φερέτω δὲ οὗτος ὁ κύκλος ἓτερον κύκλον ἐγκεκλιμένον πρὸς αὺτὸν
Concerning the sphere of Mercury, let there be imagined a concentric circle with the 
zodiac circle […] Let this circle carry another circle inclined to it […]26

هذا وليحرّك   [...] البروج  فلك  مركز  مركزه  فلكًا  كرته  في  نتوهّم  فإناَ  عطارد  وأمّا  عطارد  أفلاك  حال 
عنه  مائلًا  آخر  فلكًا  بحركته  الفلك     

The situation of the circles of Mercury. Regarding Mercury, we imagine in its sphere 
a circle, the center of which is the center of the zodiac […] By its motion, this circle 
shall move another circle that is inclined to it.27

The Arabic manuscripts add the phrase ‘the situation of the spheres of ’ at the 
beginning of the discussion of every planet. In the case of the Sun, this is ḥāl 
falak al-šams, where the singular is used, since in what follows only one eccen-
tric circle is described to account for the Sun’s motion.28 For all other planets, 
the Arabic has the plural, aflāk, just as in the above cited example. Afterwards, 
in the Greek phrase stating ‘concerning the sphere of ’ sphaira is always trans-
lated as kura, and the various circles, Greek kyklos, are rendered as falak. We 

text has hōn ho megistos kyklos isēmerinos kaleitai (Ptolemy, Syntaxis, p. 26:19–20), which is 
analogous to the text from the Planetary Hypotheses. However, the Arabic reads wa-yusammā 
aʿẓam hāḏihi l-dawāʾir muʿaddal al-nahār (cited from the translation by Isḥāq ibn Ḥunayn and 
Ṯābit ibn Qurra, extant in the manuscript Tunis, National Library, 7116, fol. 5v:12). There, 
the translator did not use the additional falak as in the Planetary Hypotheses.

24 See Ptolemy, Hypotheseōn, p. 74:11 and Morelon, ‘La version arabe’, p. 19:8.
25 Compare, for example, the edition in Ptolemy, Hypotheseōn, pp. 76:28, 78:3–4 and 

78:17–18 with Morelon, ‘La version arabe’, p. 21:17, p. 23:2, and p. 23:16.
26 Ptolemy, Hypotheseōn, p. 84:24–29; English translation in Hamm, Ptolemy’s Planetary 

Theory, p. 53.
27 Morelon, ‘La version arabe’, p. 33:1–4, the French translation (ibid., p. 32) reads as fol-

lows: ‘Situation des orbes de Mercure. Quant à Mercure, nous nous représentons dans sa sphère 
un orbe dont le centre est celui de l’écliptique […]; que, par son mouvement, cet orbe meuve 
un autre orbe incliné’.

28 See Morelon, ‘La version arabe’, p. 27:1.
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can infer two important details from these descriptions. First, Ptolemy (in this 
case the Greek version, which is available to us for this chapter) indicates that 
there is a sphere for every planet, in which the reader is supposed to imag-
ine the various geometrical circles. Second, the Arabic translator now choses 
to translate kyklos as falak rather than dāʾira.29 For the five planets Mercury, 
Venus, Mars, Jupiter and Saturn, there is another expression that might deserve 
our attention. When it comes to the construction of the epicycle, he calls this 
the ‘sphere of the epicycle’, both in Greek as well as in the Arabic, hē epikyklou 
sphaira and kurat falak al-tadwīr. This indicates that Ptolemy uses the term 
sphaira, rendered in Arabic as kura, to describe the entirety of the epicycle, 
which then consists of different circles.30

From this point onwards, the remainder of the Greek text has not survived.31 
Consequently, the possibility to compare the Arabic translation to the Greek 
text also comes to an end here. The upshot of the comparison drawn so far 
is the following: In these first chapters of the Arabic translation of Ptolemy’s 
Planetary Hypotheses, in which Ptolemy deals with the geometrical representa-
tion of the model of the planets and with the numerical values of their motions, 
the term falak is exclusively used for geometrical circles. These circles, on the 
other hand, are integrated into the spheres of the planets. For the spheres, the 
Arabic translator uses kura, always corresponding to the Greek sphaira. Kura is 
used in a similar way in the following, last chapters of the first book.32 In I.16 
to 18, Ptolemy turns to the order and distances of the planets.33 He signifies 
their order by referring to ‘the sphere of the Moon’, ‘the sphere of the Sun’, etc. 
Thereby, he means the main sphere, carrying with it the planet, whereas it may 
contain all these aforementioned circles. It is interesting to highlight that Ptol-
emy does not mention the ninth sphere at this point, although this might eas-
ily be explained by the fact that it was supposed to be starless.34

29 On the different meanings of falak in Ibn al-Hayṯam, see Langermann, ‘A Note on the 
Use’.

30 A discussion of the mathematical values given in the description of these models can be 
found in Neugebauer, A History, pp. 901–13.

31 In fact, the text stops in the middle of a description of Saturn. Some extant Greek man-
uscripts complete the text for Saturn so that it is analogous to the previous models. However, 
they leave empty spaces for the numerical data, which Heiberg fills in with the data that are 
found in the Arabic manuscripts. See Ptolemy, Hypotheseōn, pp. 104–07.

32 These chapters, which are neither part of Heiberg’s edition nor of Nix’s German trans-
lation, were first discovered and translated by Bernard R. Goldstein, see Goldstein, The Arabic 
Version. They are included in Morelon’s edition, see Morelon, ‘La version arabe’, pp. 56–85.

33 See Morelon, ‘La version arabe’, pp. 62–81. In Goldstein, The Arabic Version, these are 
chapters 2 to 4.

34 The only hints towards the first motion are at Morelon, ‘La version arabe’, pp. 57:4 and 
69:8.
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Ptolemy devotes the second book of the Planetary Hypotheses to the ques-
tion of how to physically represent the mathematical model of the heavens. The 
first nine chapters discuss the physical and metaphysical foundations of Aristo-
telian cosmology, such as the existence of aether and Aristotle’s counter-acting 
spheres.35 In II.10, Ptolemy lays the ground for the following presentation of 
his own physical models by clarifying his terminology.36 Among other things, 
he explains how the term ‘mover’ appears:37

وكان النهار  معدّل  فلك  أقطاب  على  المغرب  إلى  المشرق  من  متحرّكًا  الأجسام  من  كان  ما   ويسمّى 
هذه وأوّل  المحرّك  وهو  له  عامّ  باسم  بالضرورة  الكلّ  حركة  ناحية  إلى  به  يحيط  ما  بجميع   يذهب 
الذي والثالث  الخارجة  زحل  كرة  يحرّك  الذي  والثاني  الثابتة  الكواكب  كرة  يحرّك  الذي  هو  الأجسام 

الوِلاء38 على  هذا  يتلوا  ما  وكذلك  الخارجة  المشتري  كرة  يحرّك   
The bodies that move from east to west on the poles of the equator and that nec-
essarily carry along with them everything that they encompass in the direction of 
the motion of the cosmos, are called by a general name, namely ‘mover’. The first 
of these bodies is that which moves the sphere of the fixed stars, the second that, 
which moves the outer sphere of Saturn, the third that which moves the outer sphere 
of Jupiter, and so likewise [for the rest of the spheres] according to [their] sequence.

At first glance, one might take the Arabic Ptolemy here as arguing for a sphere 
above that of the fixed stars, which one could consider as the (in)famous ninth 
sphere. However, this passage unambiguously contradicts such a reading. As 
Ptolemy points out, every sphere belonging to a planet (or to the fixed stars, 
respectively) has a body that moves it from east to west, i.e. which transmits 
the diurnal rotation to it. Each of these movers is called jism, ‘body’, whereas 
kura is the term used to signify the outer spheres of the planets. As he describes 
later and makes clear with every particular model for each planet, all the orbs39 
below this outer sphere, are referred to by their specific terms, such as falak 
al-tadwīr for epicycle (a fixed technical term).40 Following this, in the next 
chapter he explains his model for the first motion of the cosmos. This model 
includes three spheres (ukar, the plural of kura) that are concentric with the 

35 Valuable summaries can be found in Murschel, ‘The Structure and Function’, pp. 37–41; 
Taub, Ptolemy’s Universe, pp. 112–23, and Feke, Ptolemy’s Philosophy, pp. 187–200.

36 The fact that he again turns to an explanation of terminology indicates the start of 
a new topic within the Planetary Hypotheses, namely the transmission from the geometrical 
models in Book I to their physical representation in Book II.

37 For the unedited passages of Book II, I refer to the facsimile of the London manuscript 
(London, British Library, Add. 7473, fols 81v–102v) in Goldstein, The Arabic Version. The 
second book can be found on pp. 36–55, and descriptions of the Arabic manuscripts on p. 5. 
Translations of these passages are my own.

38 Goldstein, The Arabic Version, p. 42:9–13.
39 Instead of ‘circle’, which I used with regard to the geometrical representation, I now shift 

my translation of falak to ‘orb’. Thereby, I intend to capture the three-dimensional figure of 
these aflāk when it comes to the physical functioning of Ptolemy’s models.

40 See for example Goldstein, The Arabic Version, p. 42:20.
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centre of the cosmos: 1) the body moving the sphere of the fixed stars, 2) the 
sphere of the fixed stars itself, and 3) the body moving the outer sphere of 
Saturn.41 Thus, Ptolemy uses here the term kura for the movers as well as for 
the sphere of the fixed stars and the outer sphere of Saturn itself. All of them 
share the same centre, which is the centre of the cosmos, and are thus con-
centric.42 This is important to highlight, because it is the first indication that  
Ptolemy did not introduce a system of only nine spheres that are designated by the  
term kura.

The following chapters, II.12 to II.16, describe these physical models for 
each of the planets. By doing so, he occasionally reminds the reader of the hier-
archy and number of the moving spheres. In the chapter about the model of 
Saturn, for example, he writes that the moving sphere for the model of Saturn 
is the second of the moving spheres (after the one that moves the fixed stars) 
and that the third of these moving spheres belongs to Jupiter.43 These mov-
ing spheres are similar to the first one, which means that they are responsible 
for the diurnal rotation of every set of spheres belonging to a planet. Ptolemy 
keeps counting until he arrives at the physical model of Mercury, below which 
is the eighth moving sphere belonging to the Moon.44

This means not only that there is a sphere above that of the fixed stars, 
which is responsible for its diurnal rotation, but also that there is an outer 
moving sphere at the level of every planet. This is again emphasized towards 
the end of the Planetary Hypotheses, where Ptolemy provides us with a sum-
mary of the motions and spheres:

للكواكب وكرة  محرّكة  أكر  ثماني  ذلك  من  كرة  وأربعون  إحدى  الأوّل  الوجه  على  الأكر   فجميع 
أكر خمس  والزهرة  والمرّيخ  والمشتري  زحل  من  واحد  ولكلّ  للقمر  وأربع  الشمس  وكرة   الثابتة 
ولعطارد خلافها  على  تتحرّك  وكرة45  مقارنة  كرة  الكواكب  من  واحد  كلّ  في  الأكر  هذه  وفي 

كرة47 وأربعون  إحدى  ذلك  فجميع  خلافها  على  تتحرّك  وواحدة46  مقارنة  واحدة  فيها  أكر  سبع   
Thus, on account of the first way48 all the spheres are 41: Of these, eight are mov-
ing spheres, one is for the fixed stars, one for the Sun, four for the Moon, and five 
spheres each for Saturn, for Jupiter, for Mars, and for Venus. Among these spheres, 
for every one of the planets there is one accompanying sphere and one that moves 

41 See Goldstein, The Arabic Version, pp. 42:26–43:2.
42 In his analysis of this chapter, Neugebauer, A History, p. 923, does not mention that this 

moving sphere was interpreted as ninth sphere. This strengthens my point that a literal analysis 
of the extant material does not indicate that Ptolemy argued for nine main spheres.

43 cf. Goldstein, The Arabic Version, p. 45:16–18.
44 cf. Goldstein, The Arabic Version, p. 50:1–4.
45 The London manuscript printed in Goldstein’s article has wa-kayfa. The manuscript 

from Leiden (Leiden, UB, Or. 180, fol. 42r:5) has wa-kura, the reading here adopted.
46 The London manuscript omits muqārina wa-wāḥida, which is included in Leiden, UB, 

Or. 180, fol. 42r:6.
47 Goldstein, The Arabic Version, p. 53:14–18.
48 By this, Ptolemy refers to the configuration of the cosmos by means of complete spheres.
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contrary to it. Mercury has seven spheres, among them one accompanying and one 
that moves contrary to it. Therefore, all of these are 41 spheres.

From all the passages collected here, it becomes clear that the moving spheres 
cannot be counted as ‘individual spheres’, which must be added to the num-
ber of the eight main spheres. Otherwise, we would not end up with nine, 
but sixteen spheres or sets of spheres, respectively. For counting the outermost 
moving sphere as independent from the sphere of the fixed stars would lead 
to the need of counting every moving sphere for every planet independently 
as well. However, there is one additional problem that we should address here. 
In the second book of the Planetary Hypotheses, Ptolemy expounds his theory 
of the so-called sawn-off pieces (manšūrāt). He contrasts the Aristotelian cos-
mological model with his assumption of a combination of two different kinds 
of spheres. The first kind are the complete spheres, which we know from the 
classical pre-Ptolemaic system, which are assigned to the outer spheres of the 
cosmos, since the fixed stars are dispersed throughout the heaven. The second 
kind are only rings or sawn-out pieces of the inner spheres for the five wander-
ing planets and the Sun and the Moon, since they only move against a part of 
the heavens.49 Since the space between the inner surface of the outer complete 
spheres and the inner rings are filled with aether, which transmits the diurnal 
rotation to every one of the rings, Ptolemy needs fewer spheres in this second 
model than before:

مجوّفة أكر  ثلاث  ذلك  من  جسمًا  وعشرين  تسعة  تكون  الأجسام  جميع  فإنّ  الثاني  الوضع  على   وأمّا 
وعشرون وستة  الأثير  من  يبقي  ما  وكرة  الثابتة50  الكواكب  وكرة  الثابتة  للكواكب  المحرّكة  الكرة   وهي 
ولكلّ منشورات  أربع  وللقمر  واحد  منشور  للشمس  يكون  أيضًا  وكذلك  الأكر  منشورات  من  منشورًا 

تسعة وعشرون جسمًا51 ذلك  فجميع  ولعطارد خمسة  أربعة  والزهرة  والمرّيخ  والمشتري  من زحل  واحد   
On account of the second model, all bodies are [only] 29. Of these, three spheres 
are hollow, namely the sphere moving the fixed stars, the sphere of the fixed stars 
[itself], and the sphere of what remains of the aether. 26 are sawn-off pieces of the 
spheres. Likewise, the Sun also has one sawn-off piece, the Moon four, and every one 
of Saturn, Jupiter, Mars, and Venus have four, and Mercury has five. Therefore, the 
total of these are 29 bodies.

But also in this picture, if we decided to think of the first moving sphere as the 
ninth sphere, we would need to consider the ‘rest of aether’ as well, and would 
arrive at 10 sets of spheres. In short, the discussion revolves around the problem 
of the status of the outermost sphere, for which Ptolemy undoubtedly argued. 
However, it is not the case (contrary to what the Arabic tradition supposes) 

49 For the best analysis up to this day, see Murschel, ‘The Structure and Function’, esp. 
pp. 41–52.

50 The London manuscript omits wa-kurat al-kawākib al-ṯābita, which is included in 
MS Leiden, UB, Or. 180, fol. 42r:9.

51 Goldstein, The Arabic Version, p. 53:18–22.
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that he conceived the outermost starless sphere as being independent from the 
others below it. Rather, it simply induces the diurnal westwards rotation for 
the sphere of the fixed stars, which by itself moves eastwards to account for 
precession. As the model for the complete spheres reveals, there is an analogous 
moving sphere for every planet, which no one (neither in Neoplatonic, Arabic, 
or modern scholarship) added to the number of main spheres or sets of spheres.

The investigation of the Greek and Arabic terminology underlying the Plan-
etary Hypotheses reveals, most importantly, that kura or sphaira do not indicate 
these eight superordinate spheres specifically. On the one hand, in the mathe-
matical part of Book I of the Planetary Hypotheses a set of spheres belonging 
to a planet is called kura, which translates the Greek sphaira.52 On the other 
hand, the translator chose to use falak to translate circles, which are the tools 
for computing the motion of the planets. In the second book, Ptolemy turns 
to the physical representation of these spheres. The Arabic translator continued 
to use daʾira (probably kyklos) for describing the geometrical figure. When it 
comes to describing the physical explanation of the motion of the planets, the 
eccentrics and epicycles are referred to as falak al-tadwīr and al-falak al-ḫāriǧ 
al-markaz. On the other hand, the term kura receives a wider meaning than in 
the mathematical part before. It indicates concentric spheres, whether they are 
just ‘movers’ for the spheres of the planets or not. Thus, kura also has, at least 
in the Planetary Hypotheses, a twofold meaning. First, it can describe a ‘set of 
spheres’, of which there are only eight, and second, concentric spheres within 
this set of spheres. This means that it is not wrong to think of sets of spheres 
or main spheres, carrying a certain number of concentric, eccentric, and epicy-
clic spheres within them, as already Alexander of Aphrodisias had done. Since 
Ptolemy only enumerates the moving spheres together with the overall number 
of spheres needed for the motions of the planets, he never calls the outermost 
sphere the ninth. This argumentum ex silentio taken together with the textual 
evidence gathered from the Planetary Hypotheses shows that Ptolemy did not 
intend to establish a nine-sphere-cosmos.

The outcome of this investigation is that we can definitely state that Ptol-
emy was only concerned with enumerating the various orbs in order to show 
that his model of sawn-off pieces is more economic than the model of com-

52 This meaning can be found in Ṯābit ibn Qurra as well. This is remarkable, since Ṯābit is 
said to have revised the translation of the Planetary Hypotheses (though Murschel, ‘The Struc-
ture and Function’, p. 34 doubts that on the basis of the poor quality of the translation). The 
work in question is the short treatise Presentation of the Orbs of the Heavenly Bodies, in Mo-
relon, Thābit ibn Qurra, pp. 18–25. There, on p. 19, Ṯābit writes: ‘These spheres (ukar) that 
belong to the planets contain ( fīhā) various circles (aflāk muḫtalifa), which move in various 
ways, …’ Since this treatise is usually referred to as being a reprise to the first part of the first 
book of the Planetary Hypotheses, this should be read in the same way as being a description 
of the geometrical figures.
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plete spheres. However, he does not enumerate what we have called ‘bundles 
of spheres’ above, because it is not important for the physical functioning of 
his model whether the outermost orb belongs to the sphere of the fixed stars 
as a mover or whether it is regarded as an individual ninth one. Since it is 
now safe to say that Ptolemy himself did not argue for a ninth sphere, the 
question can be raised where this report, which seems to have been widespread 
in the Middle Ages, ultimately comes from. From what we have seen before, 
at the basis there seems to have been a misunderstanding. To my knowledge, 
it is not before John Philoponus and Simplicius in the sixth century ad that 
Ptolemy is reported to have argued for a ninth sphere. For example, Proclus 
argued against Ptolemy regarding precession, but did not mention the theory 
of a ninth sphere.53 Thus, John Philoponus is the first author who wrote about 
the existence of a ninth sphere with reference to Ptolemy.54 In his De opificio 
mundi, he defends the Biblical report about a heaven above the fixed stars by 
alluding to Hipparchus and Ptolemy.

If someone does not believe the prophet [i.e. Moses], who supposes another heaven 
outside the so-called sphere of the fixed stars, because there would be no proof of its 
existence, he shall have in mind that no one of the mathematicians before Ptolemy 
and Hipparchus knew the ninth and starless sphere, the utmost of all. Plato, together 
with the others, believed that only eight exist, but on the basis of some observations, 
about which we do not need to speak now, Hipparchus and Ptolemy introduced 
the ninth and starless [sphere]. It is not necessary that things that are completely 
unknown to some do not exist. So far, I only pointed out here that Ptolemy and 
before him Hipparchus were in agreement with Moses in supposing the utmost of 
all spheres as starless. Even more so, they took the beginning of [their] findings from 
him [i.e. Moses].55

Philoponus connects the hypothesis of a ninth sphere with some newly under-
taken observations by Hipparchus and Ptolemy, by which he alludes to the 
discovery of precession. However, he does not directly refer to a specific Ptole-
maic work. Although Philoponus argues that there cannot be any proof for the 

53 Proclus, Hypotypōsis, p. 234:7–23. See Siorvanes, Proclus, pp. 290–93. Proclus knew the 
Planetary Hypotheses, as is evident from his commentaries, see Proclus, In rep., II, p. 230:14–15 
and Proclus, In tim., III, p. 60:31–63:30, and see further Hartner, ‘Medieval Views’, pp. 260–
61.

54 The evidence for a similar thought in Asclepius, as pointed out by Maróth, ‘The 
Ten Intellects Cosmology’, pp. 110–11, is rather vague. Commenting on Aristotle Metaph. 
V.11, 1018b9–29, he adds to the example of prior in the sense of prior in space (topos) the ex-
ample that the sphere of the fixed stars is prior since it is close to the starless (anastrō) sphere. 
See Asclepius, In metaph., p. 323:26–27. In addition, Asclepius does not say from where he 
takes the teaching of a starless sphere.

55 Philoponus, De opificio mundi, I.7, pp. 15:17–16:8, the translation is my own from the 
Greek. Compare to the German translation by Scholten, Über die Entstehung der Welt, p. 103.
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astronomers’ models,56 he nevertheless seems to favour the nine-sphere-model, 
since it is in agreement with the Biblical report of the first heaven. Thus, 
Philoponus’ motivation to accept the existence of a sphere above the fixed stars 
and to give it the status of an independent main sphere derives most impor-
tantly from theological, not astronomical reasons. He does not add an astro-
nomical proof for this theory, but only singles out that one could find support 
for the Biblical text in astronomical sources. He even writes that Moses might 
have been a motive for Ptolemy’s discovery, as he calls it. Simplicius, as well, 
favoured the theory of a sphere above that of the fixed stars, which he thinks 
to be Ptolemaic. He writes:

So perhaps it would be truer to say that the starless sphere which contains all [the 
spheres], of which it seems there was no knowledge at the time of Aristotle, carries 
around all the other [spheres] with its single simple motion from the east; that the 
sphere which we call fixed has two motions, one which is from the east and is that 
of the universe, the other which is from the west and is its own.57

Like Philoponus, Simplicius also regards the discovery of precession to be the 
reason for the postulation of a sphere above the fixed stars. He recognizes this 
to be a departure from the Aristotelian model and tries to excuse Aristotle for 
not considering its existence, by saying that the starless sphere was a mathe-
matical discovery after the time of Aristotle. However, Simplicus’ remark refers 
only to a starless sphere above the fixed stars. This is a correct rendition of 
Ptolemy’s account, since Ptolemy’s first moving sphere was indeed no part of 
the Aristotelian cosmos. It is important to note that Simplicius does not call it 
‘the ninth sphere’, as Philoponus did, because it might indicate that also Sim-
plicius did not consider this outermost sphere to be a ninth ‘main sphere’. Fur-
thermore, one should bear in mind that also the Neoplatonic sources did not 
allude to the Planetary Hypotheses while ascribing the ninth sphere or, gener-
ally speaking, the starless sphere to Ptolemy. Therefore, the vague way in which 
the Arabic tradition commented upon the question on the number of spheres 
in Ptolemy is also reminiscent of the Neoplatonic commentators, with the dif-
ference that it was more common to speak of a ninth sphere. This opens up 
the possibility that the Arabic tradition was acquainted with post-Ptolemaic 

56 See the more detailed passage in Philoponus, De opificio mundi, III.3, pp. 113:15–116:17. 
Already Duhem pointed at this passage, see Duhem, Le système du monde, vol. II, pp. 496–97. 
See also Philoponus, De aeternitate mundi, XIII.18, p. 537:7–10. Since the De opificio mundi 
was not translated into Arabic, the latter work is more important in terms of Philoponus’ im-
pact on the Arabic tradition. See further Philoponus, In meteor., p. 110:14–15, where he writes 
about the whole substance moving in a circle as including ‘eight or perhaps nine spheres, as 
Ptolemy thinks’.

57 Simplicius, In de caelo, p. 462:12–31, tr. Mueller, On the Heavens 2.1–9, p. 119. Another 
reference can be found in Simplicius, In phys., p. 643:31–36, where he ascribes this theory to 
the astronomers in general.
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sources ascribing this theory to Ptolemy, but were themselves unable to detect 
the exact Ptolemaic passage.

I want to conclude by presenting one more passage from the Arabic tra-
dition which also questions Ptolemy’s connection to the argument for the 
existence of a ninth sphere. In his astronomical opus magnum, al-Qānūn 
al-masʿūdī (Masudic Canon), Abū al-Rayḥān al-Bīrūnī engages with Ptolemaic 
astronomy and its reception in his time. He also makes use of the Planetary 
Hypotheses, criticizing Ptolemy’s conception of the above mentioned sawn-off 
pieces (manšūrāt).58 However, in his compendium on Indian beliefs and their 
relationship to ancient Greek sources, one can find an argument against the 
belief in a ninth sphere which he connects with the Hinduistic belief of the 
braḥmānda, the world-egg that encompasses the entire world. After a compli-
cated refutation of the existence of the ninth sphere, for the sake of which 
al-Bīrūnī borrows arguments from Aristotelian physics and metaphysics, 
al-Bīrūnī gives the following report:

Thus, the theory of the ninth sphere leads to an impossibility. To the same effect 
are the words of Ptolemy in the preface of his Almagest: ‘The first cause of the first 
motion of the universe, if we consider the motion to be simply, is according to our 
opinion an invisible and motionless god, and we call the study of this subject a divine 
one. We perceive his action in the highest heights of the world, but as an altogether 
different one from the action of those substances, which can be perceived by the 
senses’.59 These are the words of Ptolemy on the first mover, without any reference 
to the [ninth] sphere, on which John the Grammarian60 reports in his refutation of 
Proclus. He says: ‘Plato did not know the ninth sphere, which has no stars and the 
conception of which Ptolemy claimed’.61

In this passage, al-Bīrūnī gives us the following picture of how he got acquainted 
with this topic. He read Philoponus’ De aeternitate mundi contra Proclum, 
where he found the remark that Ptolemy argued for the existence of the ninth 
sphere. Obviously surprised by this, he went through the Almagest but was not 

58 See al-Bīrūnī, Kitāb al-Qānūn, vol. II, pp. 633–35.
59 cf. Ptolemy, Syntaxis, I.1, p. 5:13–19, tr. Toomer, Ptolemy’s Almagest, pp. 35–36. Al-

Bīrūnī cites the Arabic translation by Isḥāq ibn Ḥunayn and Ṯābit ibn Qurra literally.
60 Of course, this refers to John Philoponus.
61 Al-Bīrūnī, Kitāb fī Taḥqīq, pp. 183:16–184:15, tr. Sachau, Alberuni’s India, vol. I, 

pp. 225–26, modified. Sachau translates the last sentence as follows: ‘“Plato did not know 
a ninth, starless sphere”. And, according to John, it was this, i.e. the negation of the ninth 
sphere, which Ptolemy meant to say’. This is obviously wrong, both from the Arabic text as 
well as from the source from which al-Bīrūnī cites, namely Philoponus, De aeternitate mundi, 
XIII.18, p. 537:7–10.

It may be noted that in what precedes the cited passage, al-Bīrūnī argues against the cor-
poreality of the mover of the sphere of the fixed stars. This is an approach similar to that 
described above by Muḥammad ibn Mūsā, as cited by al-Šīrāzī, see again Saliba, ‘Early Arabic 
Critique’, p. 131.
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able to find any clue in support of Philoponus’ claim. It is important to high- 
light that al-Bīrūnī knew the Planetary Hypotheses quite well and referred to 
it in his Qānūn.62 To emphasize once more, the Planetary Hypotheses are often 
cited as being the ultimate source for the ascription of the theory of the ninth 
sphere to Ptolemy. The above cited passage taken together with the evidence 
that al-Bīrūnī was familiar with the Planetary Hypotheses clearly shows that he 
was unable to find any argument for the existence of this ninth sphere either in 
Ptolemy’s Almagest, as he explicitly informs us, or in the Planetary Hypotheses. 
Thus, in the special case of al-Bīrūnī, Philoponus is the origin of the ascription 
of a ninth sphere to the Ptolemaic universe. Therefore, it may be either the 
case that Philoponus was the source for other Arabic authors as well, or that 
there is some other unknown line of transmission. It might be that Ptolemy’s 
ninth sphere was already such a common topos in Late Antiquity that it easily 
entered the Arabic debates through many different sources. Be that as it may, 
the concept of a ninth sphere, to which a tenth or even an eleventh sphere 
was added in the Latin and Jewish tradition, is not of genuine Ptolemaic ori-
gin. Rather, I have clearly identified one concrete source for this ninth sphere, 
namely, John Philoponus, who compares this sphere to the first heaven from 
the Old Testament and who, therefore, had no astronomical reason to make 
the outermost moving sphere a ninth independent one. This is in line with 
the impact Philoponus had on the medieval Arabic tradition regarding other 
issues such as the eternity of the world as well.63 Thus, al-Bīrūnī’s above cited 
account adds another indication not only of how Ptolemy’s works were read in 
the Middle Ages, but also of how Philoponus altered the way in which medie-
val astronomers and philosophers thought about the Ptolemaic cosmos.
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‘Fort. recte’: Witnesses to the Text of Ptolemy’s Tetrabiblos 
in Its Near Eastern Transmission

Bojidar dimitrov

Claudius Ptolemy’s Tetrabiblos is among the fortunate cases of Graeco-Arabic 
textual transmission where extant versions of the text in Greek, Syriac, Arabic, 
Latin and Hebrew present scholars with the opportunity to examine in detail 
the history of an extremely influential astrological treatise’s dissemination in 
the Near East and Europe.

The manuscript Paris, BnF, syr. 346 contains a fragmentarily preserved, pos-
sibly pre-Islamic,1 Syriac translation of the Tetrabiblos. In the context of the 
project Ptolemaeus Arabus et Latinus, my research aims at editing the Syriac 
translation and establishing its significance for the Tetrabiblos’ chain of trans-
mission. This objective is to be achieved by comparing the content of the Syr-
iac text with that of the Arabic translations and the Greek source text.

There are two major Arabic versions of the Tetrabiblos.2 According to the 
introductory paragraph in the Uppsala manuscript, the older version was pre-
pared by the Persian astrologer ʿUmar b. al-Farruḫān in 812 ad.3 ʿUmar was 
involved in the translation of astrological material available in Pahlavi into 
Arabic during the early ʿAbbāsid period.4 However, according to the tenth-cen-
tury bibliographer Ibn an-Nadīm, the Tetrabiblos was not translated by ʿUmar, 
but on his behalf, by al-Biṭrīq.5 Al-Biṭrīq was a contemporary primarily known 
for translations of medical texts from Greek into Arabic.6 David Pingree dis-
agrees with Ibn an-Nadīm on the strength of the indication provided by the 
Uppsala manuscript, and argues that the older Arabic Tetrabiblos is a para-
phrase which was probably derived from a Pahlavi source.7 As we shall see, the 
content of ʿUmar’s version appears to support Pingree’s hypothesis to a certain 

1 Villey, Les textes astronomiques, p. 350.
2 The late Prof Keiji Yamamoto generously shared his draft editions of the two texts with 

me.
3 cf. Uppsala, Universitätsbiblioteket, MS 203, fol. 2r.
4 Dodge, The Fihrist, vol. II, p. 589; Gutas, Greek Thought, pp. 108–10.
5 Dodge, The Fihrist, vol. II, pp. 649–50.
6 Müller, ʿUyūn ul-anbā ,ʾ vol. I, p. 205; Dunlop, ‘The Translations’, pp. 140–50; Pormann, 

‘The Development’, pp. 143–62.
7 Pingree, ‘ʿUmar Ibn al-Farrukhān’.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 97–113
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extent, because it often differs significantly from the Greek text and the other 
translations.

The second Arabic translation of the Tetrabiblos is said to have been made 
by Ibrāhīm b. aṣ-Ṣalt and subsequently improved by Ḥunayn b. Isḥāq8 (808–
873 ad). It is important to note that Ibrāhīm translated from Greek into both 
Syriac and Arabic, belonged to Ḥunayn’s circle and worked under his direct 
supervision.9 This fact implies that Ibrāhīm and Ḥunayn are likely to have 
used the same source text(s), but leaves open the question as to what the lan-
guage of the source text(s) may have been, and respectively, whether the Tetra-
biblos was translated in two stages (Greek-Syriac, Syriac-Arabic), as was often 
the case,10 or in one (Greek-Arabic, possibly Syriac-Arabic).

The evidence contained in the Syriac and the Arabic translations of the 
Tetrabiblos can also provide vital clues for our understanding of the Greek 
source text.11 Moreover, the recent publication of William of Moerbeke’s 
Tetrabiblos translation from Greek into Latin by Gudrun Vuillemin-Diem 
and Carlos Steel,12 and their comparison of Moerbeke’s Tetrabiblos with Wolf-
gang Hübner’s authoritative edition of the Greek source text, have posed many 
questions.13 William of Moerbeke had access to a Greek manuscript that was 
older than the ones which Hübner used for his edition.14 Just like William of 
Moerbeke’s translation, the Syriac and the Arabic texts are much older than 
Hübner’s witnesses, and might therefore contain valuable variant readings that 
support some of Vuillemin-Diem and Steel’s conclusions.

This essay aims to compare a number of significant readings, which have 
been identified by Vuillemin-Diem and Steel, with corresponding material from 
the above-mentioned Near Eastern translations of the Tetrabiblos. Furthermore, 
this essay demonstrates the relevance of the Semitic translations for the over-
all transmission history of the treatise, and for the re-assessment of Hübner’s 
Greek text in particular. For the reader’s convenience, passages or phrases con-

8 Dodge, The Fihrist, vol. II, p. 640; Müller and Lippert, Taʾrīkh al-ḥukamā ,ʾ p. 98.
9 Bergsträsser, Ḥunain ibn Isḥāq, pp. 25 and 28–29.
10 ibid., p. 27 – Ḥunayn relates, for instance, how he revised with the help of a Greek 

manuscript and afterwards translated into Arabic a Galenic treatise, which had initially been 
translated from Greek into Syriac by one of his associates.

11 Hübner, Ἀποτελεσματικά.
12 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos.
13 Vuillemin-Diem and Steel’s thorough analysis groups the variant readings offered by 

Hübner’s and Moerbeke’s sources in several categories. The majority of the readings discussed 
in this essay belong to a category the scholars have designated with the symbol (-*) ‘ = the 
reading confirmed by G (i.e. Moerbeke’s main witness – BD) seems better to us: we propose to 
modify Hübner’s edition’. – cf. Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 95.

14 ibid., pp. 49–58.
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taining the variants in question will be presented in synoptic tables (where G 
designates Hübner’s edition, with book and line number; L, William of Moer-
beke’s Latin translation with the book and line number of Vuillemin-Diem 
and Steel’s edition; S, the Syriac version in my edition-in-preparation, with the 
folio and line number of the Paris manuscript; F, the earlier Arabic version 
attributed to ʿUmar b. al-Farruḫān; and H, the version attributed to Ḥunayn 
b. Isḥāq, both with the page and line number. The comparison and the eval-
uation of the readings will follow below the tables. The tables also contain 
transcriptions (for the Semitic languages) and literal renditions provided for 
analytical purposes, with Robbins’ standard English translation15 of the rele-
vant passages added in the footnotes where this is deemed necessary.

Reading  1
G L S F H

III.9 III.10 7v, ll. 6–7 p. 266, l. 17 p. 266, l. 13 
περὶ ἀρρενικῶν
καὶ θηλυκῶν 
γενέσεων

(‘of the nativities 
of males and 
females’)

De masculinis et 
femininis

(‘of males and 
females’)

ܥܠ ܕܟܪ̈ܐ ܘܢܩ̈ܒܬܐ
ʿal deḵrē
w-neqbāṯā

(‘of males and 
females’)

في الذكور
fī-ḏ-ḏukūri

(‘of males’)

في الذكور والإناث
fī-ḏ-ḏukūri wa-l- 
ʾināṯi

(‘of males and 
females’)

The seventh chapter in the Greek text’s contents of Book III reads περὶ 
ἀρρενικῶν καὶ θηλυκῶν γενέσεων (‘of the nativities of males and females’). 
According to Hübner’s apparatus criticus, ‘γενέσεων om. YM fort. recte’.16 In 
other words, Hübner supposes that the omission of γενέσεων (‘nativities’) in 
the contents may be correct, because some witnesses provide the same vari-
ant for the title of the actual chapter, and he accordingly adopted it.17 Vuil-
lemin-Diem and Steel’s text also supports this omission.18 Moreover, the two 
authors point out that ‘the text of chapter eight speaks of ἀρρενογονία and 
θηλυγονία (procreatio)’, that is to say ‘male and female procreation’, and ‘not of 
γένεσις’ (i.e. ‘nativity’).19

As we can see on the above table, the Syriac translation confirms the evi-
dence obtained from William of Moerbeke’s Latin rendering, and so does 
Ḥunayn’s ninth century Arabic text. Oddly enough, the earlier Arabic trans-
lation associated with ʿUmar b. al-Farruḫān omits ʾināṯ (‘females’) — this 

15 Robbins, Ptolemy. Tetrabiblos.
16 Hübner, Ἀποτελεσματικά, III.9.
17 ibid., III.392: ‘περὶ … θηλυκῶν αC Heph.’
18 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 115.
19 ibid.
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omission requires further examination because it does not occur in any of the 
witnesses, on which the transmission of the other versions of the Tetrabiblos is 
based. It might well be due to a scribal error, illegible handwriting or, perhaps, 
a damaged manuscript, and not an actual variant reading.

Reading 2
G L S F H

III.23 III.24 7v, ll. 18–19 – p. 270, ll. 5–7
ὧν τὸ προγ-
νωστικὸν μέρος 
γενεθλιαλογίαν 
καλοῦμεν

(‘the prognostic 
part of which
we call 
genethlialogy’)

quorum 
pronosticam 
partem uocamus 
geneaticum 
sermonem

(‘the prognostic 
part of which
we call 
genethlialogy’)

ܢܐ̣ܡܪ ܕܡܢܬܐ

 ܓܝܪ ܕܡܩܕܡܘܬ 

 ܝܕܥܬܐ ܕܕܐܝܟ ܗܕܐ

ܡܡܠܠܘܬ ܡܘܠܕܐ

nemar da-mnāṯā
ger da-mqaḏmūt 
idaʿṯā ḏ-d-aḵ 
hāḏē
mmalālūṯ 
mawlāḏā

(‘we say that a 
prognostication 
part such as this 
is the study of 
nativity’)

 وهذا الجزء من هذه
 الصناعة تسمّى تقدمة

المعرفة بالأمور المواليد
wa hāḏā l-ǧuzʾu min 
hāḏihi ṣ- ṣināʿati 
tusammā taqdimatu 
l-maʿrifati bi- 
ʾumūri l-mawālīdi

(‘this part from 
this art is called 
prognostication of 
the matters
of nativities’ [i.e. 
studies dealing
with nativities’
genethlialogy])20

With the next entry we have an instance where William of Moerbeke’s editors 
agree with Hübner’s choice. The Greek relative clause ὧν τὸ προγνωστικὸν 
μέρος γενεθλιαλογίαν καλοῦμεν (‘the prognostic part of which we call geneth-
lialogy’) includes the neuter noun τὸ μέρος (‘part’) that appears to have led 
some scribes to adopt a congruent neuter adjective instead of γενεθλιαλογίαν 
(‘genethlialogy’) – γενεθλιαλογιὸν (i.e. ‘the prognostic part of which we call 
genethlialogical ’).21 Hübner opted for γενεθλιαλογίαν, yet he did, however,  

20 cf. المواليد -and γενεθλιαλόγοι in Ull (’ṣināʿatu l-mawālīdi, ‘the art of nativities) صناعة 
mann, Wörterbuch, p. 970.

21 Hübner, Ἀποτελεσματικά, III.23.
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honour the alternative variant with another ‘fort. recte’,22 which Vuillemin- 
Diem and Steel have taken into consideration as well.23

The evidence presented by the transmission of the Tetrabiblos in the Near 
East speaks against the adjective γενεθλιαλογιόν and Hübner’s ‘fort. recte’. The 
Syriac translation follows the word order of the Greek sentence quite closely. 
It renders γενεθλιαλογία with the genitive construction mmalālūṯ mawlāḏā 
(‘study of nativity’), where the term mmalālūṯā is the exact semantic pendant 
of λογία, designating a scientific discipline (cf. mmalālūṯ kawkbē – ‘study of 
the stars’, i.e. astrology).24 The translator resorted to the same approach in 
order to tackle the other terminus technicus in the sentence — the adjective 
προγνωστικόν (‘prognostic’). Instead of an adjective, the Syriac employs mqa-
ḏmūt idaʿṯā — a genitive construction with the meaning ‘preceding knowl-
edge’, functioning as an adjective, which the genitive particle d- links to  
mnāṯā (‘part’).

This passage is translated quite freely in the earlier Arabic version, and 
provides no conclusive evidence concerning the variant reading in ques-
tion. Ḥunayn’s translation, on the contrary, is very close to the Syriac and 
also has a genitive construction for γενεθλιαλογία, as opposed to an adjec-
tive. What it adds to the passage is the phrase min hāḏihi ṣ- ṣināʿati (‘from 
this art’), apparently for the purpose of greater clarity — this detail can be 
interpreted as a case of explicitation, i.e. the ‘spelling out’ of implicit source 
text content in the target text, a feature that has been ascribed to the trans-
lation style of Ḥunayn and his school.25 The other genitive construction, 
taqdimatu l-maʿrifati, is the usual Arabic astrological term for ‘prognostica-
tion’, and as far as its semantic value is concerned, the construction is ety-
mologically identical with the Syriac mqaḏmūt idaʿṯā (‘preceding knowl-
edge’). Unlike the Syriac, however, Ḥunayn’s pendant for προγνωστικόν is 
not intended to define ǧuzʾ (‘part’) as an adjective. Instead, it is linked with 
the other genitive construction (ʾumūru l-mawālīdi, i.e. γενεθλιαλογία) by 
way of the preposition bi. Thus we end up with the phrase tusammā taqdi-
matu l-maʿrifati bi-ʾumūri l-mawālīdi (‘… it is called prognostication of the 
matters of nativities’), which represents a slight deviation from the Greek and  
the Syriac.

22 ibid.
23 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, III.24.
24 Sokoloff, A Syriac Lexicon, p. 777.
25 cf. Pormann, ‘The Development’, p. 154.
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Reading 3 

G L S F H
III.53–54 III.46 8r, l. 15 p. 274, ll. 2–3 p. 274, ll. 3–6

Ἀρχῆς δὲ 
χρονικῆς 
ὑπαρχούσης 
τῶν ἀνθρωπίνων 
τέξεων φύσει μὲν 
τῆς κατ’ αὐτὴν 
τὴν
σποράν

(‘since the 
chronological 
beginning 
of human 
procreations is by 
nature according 
to conception 
itself ’)26

Temporali 
autem principio 
generationum 
hominum 
existente per 
naturam
quidem eo 
quod secundum 
seminationem

(’the temporal 
beginning of the 
procreations of 
men being by 
nature that which 
is according to 
the conception)

 ܟܕ ܕܝܢ ܪܝܫܝܬܐ

ܟܠܢܝܬܐ ܕܙܒܢܐ

 ܥܠ ܙܪܥܐ ܟܝܬ 

 ܘܙܒܐ* ܕܡ̇ܘܠܕܐ
ܐܝܬܗ̇ ܕܡܘܠܕܐ

ܕܒܟ̈ܝܢܫܐ ܒܟܝܢܐ

 ܡ̇ܢ ܡܢ ܙܒܢܐ 

ܕܬܪܡܝܬܗ ܕܙܪܥܐ

kaḏ den rīšīṯā
kullānāyṯā ḏ-zaḇ-
nā ʿal zrāʿā kēṯ
w-zabā* [sic = 
zabnā] ḏ-maw-
lāḏā iṯ-eh
ḏ-mawlāḏā
ḏa-bnay-nēšē
ḇ-ḵyānā man men 
zabnā ḏ-ṯarmīṯā
ḏ-zarā

(‘since the total
chronological 
beginning is 
upon conception 
[lit. sowing, 
cf. σπορά], that 
is to say the time 
of nativity, the 
nativity of men 
is, indeed, by 
nature from the 
time of the seed’s 
sowing’)

 طبائع المولود وقوّة
 كيانه يعرف من ساعة

مسقط النطفة
ṭabāʾiʿu
l-mawlūdi wa-
quwwatu kiyāni-
hi yuʿrafu min
sāʿati masqaṭi
n-nuṭfati

(‘the natures of 
the newborn and 
the strength of 
his [pl.!] being 
are known from 
the hour of
conception [lit. 
fall of sperm]’)

   لمّا كان لكون للناس
 ابتداء زماني وكان

 هذا الابتداء إمّا بالطبع
 فالذي يكون عند

سقوط النطفة
lammā kāna li-
kawni li-n-nāsi
ʾibtidāʾun 
zamāniyyun 
wa-kāna hāḏā 
l-ʾibtidāʾu ʾimmā 
bi-ṭ-ṭabiʿi
fa-l-laḏī yakūn
ʿinda suqūṭi
n-nuṭfatin

(‘since being born 
into mankind has 
a chronological 
beginning, this 
beginning is, 
by nature, that 
which is
according to the 
conception [lit. 
fall of sperm]’)

26 I would like to express my gratitude to Prof Charles Burnett and Prof Martin Heide for 
their valuable suggestions concerning this and other passages; cf. Robbins, Ptolemy. Tetrabiblos, 
p. 223: ‘Since the chronological starting-point of human nativities is naturally the very time 
of conception’.



 WITNESSES TO THE TEXT OF PTOLEMY’S TETRABIBLOS 103

Vuillemin-Diem and Steel propose to replace Hübner’s semantically more con-
crete τέξεων (lit. ‘child-bearings / procreations’) with the proper astrological 
terminus technicus γενέσεων (‘nativities’), which is somewhat closer to the Latin 
text’s generationum.27 The Syriac version employs the standard term mawlāḏā 
(‘nativity’) that we already encountered above.

A problem in the Syriac rendition arises from the substitution of the 
Greek adjective χρονικῆς (‘chronological’) for the noun zaḇnā (‘time’). The 
resulting genitive construction rīšīṯā … ḏ-zaḇnā can thus mean both ‘the 
beginning of time’ and ‘chronological beginning’, the former being the more 
natural interpretation in Syriac. It is very similar to the adjectival genitive 
construction S has in the previous entry: cf. mnāṯā … da-mqaḏmūt idaʿṯā 
(lit. ‘part of the prognostication’, intended to mean ‘prognostication part’, 
i.e. ‘prognostic part’ = μέρος γενεθλιαλογιὸν). The addition of the adjec-
tive kullānāyṯā (‘universal, total, absolute’) appears to be an attempt to ren-
der the Greek ὑπαρχούσης. In this particular case Ptolemy uses the verb 
ὑπάρχω in its secondary meaning, as a more sophisticated way to designate 
existence, i.e. ‘the chronological beginning is’, cf. ‘existente’ in the Latin text. 
Since the primary meaning of ὑπάρχω is ‘to begin, to make a beginning’, 
the Syriac translator may have understood ὑπαρχούσης to designate a total,  
absolute beginning.

If there are variant readings in this passage that the Latin, the Syriac and 
the Ḥunayn translation unanimously agree against, we ought to point at 
the Greek’s use of an adjective deriving from ἄνθρωπος (‘human’) and not 
ἄνθρωπος itself.28 All the other texts (except the early Arabic version) have 
genitive constructions with a noun: cf. generationum hominum (‘of humans’ 
nativities’), ḏ-mawlāḏā ḏa-bnay-nēšē (‘of humans’ nativity’), li-kawni li-n-nāsi 
(‘to the nativity into mankind’).

All translations except the early Arabic one exhibit an awareness of, and an 
effort to preserve the syntactical structure of the inverted Greek μέν … δέ 
clause (‘on the one hand…on the other hand’ or ‘indeed…but’): cf. autem …
quidem (L), kaḏ den … men (S), lammā … ʾimmā (H).

27 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 115.
28 cf. Hübner, Ἀποτελεσματικά, III.53: ‘53 ἀνθρωπίνων VΣDγ ἀνθρωπείων ΥMS’.
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Reading 4
G L S F H

III.308–310 III.242 9v, ll. 13–14 p. 298, ll. [9]1–3 p. 298, ll. [9]1–3
θανάτους τοὺς 
μητρικοὺς 
αἰφνιδίους καὶ 
τὰ σίνη περὶ τὰς 
ὄψεις ποιεῖ

(‘makes sudden 
motherly deaths 
and injuries 
around the eyes’)

mortes matrum 
efficit repentine 
et lesuram circa 
oculos

(‘suddenly 
effectu-ates 
mothers’ deaths 
and injury 
around the eyes’)

 ܡܘܡܐ ܥ̇ܒܕ ܒܥܝ̈ܢܐ
ܕܐܡ̈ܗܬܐ܇ ܘܒܥܓܠ

ܥܛܐ ܠܗܝܢ
mūmā ʿāḇeḏ 
b-ʿaynē dʾemhāṯā
wə-ḇ-ʿaġalʿāṭe
l-hen

(‘makes infirmity 
to
the eyes of the 
mothers and 
swiftly destroys 
them’)

 دلّ على داء في
 عيون الأمّهات ويهلك

بصرها سريعاً
dalla ʿalā dāʾin 
fīʿuyūni
l-ʾummahāti
wa-yuhlik baṣara-
hā sarīʿan

(‘leads to illness
in the eyes of the 
mothers and
swiftly destroys
their sight’)

 حدث عن ذلك موت
 الأمّهات فجأة أو

 آفة تعرض لهنّ في
الأعين

ḥadaṯaʿan ḏalika 
mawtu
l-ʾummahāti
faǧʾatan ʾaw
ʾāfatun tuʿriḍa 
lahunna fī
l-ʾaʿyuni

(‘from this 
suddenly occurs
the death of 
the mothers, or 
illness befalls 
them in the 
 eyes’)

An adverbial reading of the adjective αἰφνιδίους (‘sudden’) would present a 
lectio difficilior in this passage,29 i.e. ‘suddenly (αἰφνιδίως) makes / causes the 
deaths of mothers’, as opposed to ‘sudden deaths’. This adverbial reading is con-
firmed by all Semitic versions: S has ḇ-ʿaġal (‘swiftly’), F – sarīʿan (‘promptly’), 
H – faǧ aʾtan (‘suddenly’), the latter being particularly close to αἰφνιδίως.

The adjective μητρικοὺς (lit. ‘motherly / maternal’ deaths) in G technically 
presents another lectio difficilior, which no other text supports — L and H 
offer the closest renditions and both employ genitive constructions, cf. ‘mortes 
matrum’ (‘mothers’ deaths’) and mawtu l-ʾummahāti (‘mothers’ death’).

The relationship of the ‘mothers’ and the ‘eyes’ is of critical importance for 
the passage. S and F do not mention death in connection with the mothers. 
And while the Syriac phrase ʿāṭe l-hen (‘he destroys them’, the accusative object 
being feminine) is somewhat ambiguous and can refer to both the mothers and 
the eyes, ʿUmar’s translation clearly mentions the mothers’ sight (baṣara-hā). 
Ḥunayn, on the other hand, retains the two elements separately, just as the 
Greek and the Latin texts do, but uses the conjunction aʾw (‘or’) between them 

29 cf. Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 117: ‘…αἰφνιδίους … α βγ] … 
αἰφνιδίως … V + G (mortes … efficit repentine …) Procl.’
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instead of ‘and’ (cf. καὶ, et). This creates the impression that Mars can bring 
about either sudden death or eye illness, but not both — a possibility we do 
not find in G and L. S, F, and H specify that it is the mothers’ eyes that are 
concerned, something left unspecified in GL.

Reading 5
G L S F H

III.419 III.323–4 10v, l. 22 p. 308, l. [1]3 p. 308, l. [8.1]4
παρακολουθεῖν 
δὲ εἴωθε τοῦτο 
τὸ σύμπτωμα 
παρὰ τὰς 
συγκράσεις

(‘it is usual 
for this event 
to follow 
along with the 
minglings30 
together’)

consequi enim 
consueuit
tale simptoma 
circa commix-
tiones

(‘such an event 
is accustomed to 
follow around 
minglings’)

 ܢ݀ܩܦ ܕܝܢ ܓܕܫܐ ܕܐܝܟ
ܗܢܐ ܠܘܬ ܡܘܙܓܐ

nāqeph den geḏšā 
ḏ-aḵ hānā lwāṯ 
mūzāġā

(‘an event like 
this follows along 
with the mixture’)

لأنّ أكثر ذلك يكون    
في المزاج

li-ʾanna ʾakṯara 
ḏālika yakūna fī
l-mizāǧi

(‘because that 
occurs frequently
in the mixture’)

 هذا الأمر إن يعرض
عند التركيبات

hāḏā l-ʾamrʾinna 
yaʿriḍu ʿinda t- 
tarkībāti

(‘indeed, this 
matter occurs 
along with the 
compoundings’)

The Latin and the Syriac confirm that in the earlier stages of the transmission 
the Greek σύμπτομα (‘event’) was probably defined by the adjective τοιοῦτον 
(‘such as this’, cf. tale, ḏ-aḵ hānā), as opposed to the demonstrative pronoun 
τοῦτο (‘this’).31 It is important to note that the Latin also uses ‘simptoma’ as a 
loan word and an astrological terminus technicus. William of Moerbeke’s ren-
dering also retains the plural form of συγκράσεις – commixtiones (‘minglings 
together’). The Near Eastern transmission seems to have introduced the singu-
lar form early on, because it is attested by the Syriac as well as the earlier Ara-
bic version: cf. S – mūzāġā (‘mixture’) and F – mizāǧi (‘mixture’) as opposed 
to H – tarkībāti (‘compoundings’). While Ḥunayn’s peculiar use of a noun 
based on the verbal root rkb V deviates from the semantic pendants presented 
by S and F, his text has also preserved the plural form tarkībāti, which corre-
sponds to the Latin and the Greek and was thus chosen by Yamamoto as the 
better reading.

Of course, the singular form in Syriac could have resulted from a common 
phenomenon: the plural form mūzāġē is virtually homographous with the sin-
gular mūzāġā, the only difference being the addition of the diacritical seyāmē 

30 Robbins, Ptolemy. Tetrabiblos prefers to translate the Greek plural form τὰς συγκράσεις 
as ‘intermixture’, cf. p. 257; he renders the whole phrase as follows: ‘For such an event is apt 
to attend the intermixture’.

31 cf. Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 117: ‘τοῦτο τὸ σύμπτωμα V] τὸ 
τοιοῦτον σύμπτωμα α βγ + G (tale simptoma), cf. Heph.’
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points, designating the plural form (cf. ܡܘܙܓܐ and ܓܐ  The occasional .(ܡܘܙ̤
omission of the seyāmē points is one of the most common features occurring 
in Syriac manuscripts. It would be interesting to speculate whether the reading 
variants with the singular form in the Arabic versions of the text have resulted 
from this Syriac translation.

The Syriac text is the only Semitic source to retain the verb ‘to follow’ 
(cf. nāqeph). Moreover, the Syriac also provides a very precise pendant for 
σύμπτομα / simptoma, i.e geḏšā (‘event’) – something F (ḏālika, i.e. ‘that’) and 
H (hāḏā l- aʾmr, i.e. ‘this matter’) do not.

Reading 6
G L S F H

III.464–465 III.464–465 11v, ll. 3–4 p. 312,
ll. [2]13–14

p. 312,
ll. [9.2]8–9

μηδενὸς μὲν 
μαρτυροῦντος 
τοῖς φωσὶν 
ἀγαθοποιοῦ, 
ἀλλὰ τῶν 
κακοποιῶν

(‘if no beneficent 
one [i.e. planet] 
bears witness to 
the luminaries, 
but the 
maleficent ones 
do’)

sed nullo 
quidem benefico 
luminaribus 
testimonium
reddente

(‘but if no 
beneficent one 
bears witness to 
the luminaries’)

ܟܕ ܛܒܐ  ܟܕ   ܐܠܐ 
ܠܢܗܝܪ̈ܐ ܢܣܗܕ 

ʾelā kaḏ ṭāḇā kaḏ 
nsaheḏ l-nahīrē

(‘for unless a 
good one is to 
bear witness to 
the luminaries’)

 فإن لم يكن شيء من
النحوس يلي النيرّين

fa-ʾin lam yakun 
šayʾun min 
n-nuḥūsi yalī 
n-nayyirayni

(‘but if none of 
the misfortunate 
ones follows the 
two luminaries’)

فإن لم يشهد شيء من
  المسعدة النيرّين

وشهدت لهما المنحسة
fa-ʾin lam yašhad 
šayʾun min l- 
musʿadatin li n.-
nayyirayni wa-
šahidat lahumā 
l-munḥisatu

(‘but if none of 
the fortunate 
ones bears 
witness to the 
two luminaries, 
and the 
misfortunate one 
bears witness to 
them’)

According to Vuillemin-Diem and Steel, ‘The reading of the archetype (ω) 
in 464°-5° could have been simply: ἀλλὰ μηδενὸς μαρτυροῦντος τοῖς φωσὶν 
ἀγαθοποιοῦ’,32 i.e. ‘but if no beneficent one bears witness to the luminaries’. 
The Syriac translation confirms this conclusion with the conditional clause eʾlā 
(‘unless, if not’) which, in combination with the positive adjective ṭāḇā (‘good’), 
more or less corresponds to the Latin ‘sed nullo … benefico’.

The earlier Arabic text introduces a negative conditional clause, fa-ʾin lam 
yakun (lit. ‘if it is not’), whose meaning is similar to the one in the Syriac. The 
verbal root wly, from which the finite form yalī derives, can mean anything 

32 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 118.
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from ‘to be close’ or ‘to follow’ to ‘to govern / manage’ or ‘to protect’.33 At 
face value, none of wly’s meanings is similar to the Greek μαρτυροῦντος (lit. 
‘bearing witness’), the key verb in the sentence, but this may have been F’s 
intended usage, particularly if we consider the sense ‘to follow’. Ḥunayn’s text, 
on the other hand, not only employs šhd (cf. lam yašhad, ‘it does not bear wit-
ness’) — the verbal pendant of the Syriac shd (cf. nsaheḏ, ‘it bears witness’) — 
but also preserves, as does the Syriac, the positive definition characterising the 
planet (cf. šayʾun min musʿadatin, lit. ‘something fortunate’). Ḥunayn’s version 
also contains the clarification wa-šahidat lahumā l-munḥisatu (‘the misfortu-
nate one bears witness to them’), which corresponds to the Greek phrase ἀλλὰ 
τῶν κακοποιῶν (‘but the maleficent ones do’) that Vuillemin-Diem and Steel 
consider to be a redundant later addition.34

Reading 7
G L S F H

III.476–477 III.366 11v, 11–12 p. 314, [3]7–8 p. 314, [9.3]8–9
μηδὲ εἷς τῶν
ἀγαθοποιῶν 
ἀστέρων 
προσμαρτυρῇ

(‘not one of 
the beneficent 
planets bears 
witness’)

nullus
beneficorum 
contestificetur

(‘no one of the 
beneficent ones
calls to witness’)

 ܡܢ ܥ݁ܒܕ̈ܝ ܛܒ̈ܬܐ ܠܐ
ܬܗܘ̣ܐ ܡ̇ܢ ܣܗܕܘܬܐ

men ʿāḇday 
ṭāḇāṯā lā tehwē 
men sahdūṯā

(‘from the
beneficent 
ones will be no 
testimony’)

 ولم ينظر… شيء من
السعود

wa-lam yunẓar … 
šayʾun min
as-suʿūdi

(‘if none of the 
fortune [planets] 
is observed’) 

 فإن لم يشهد… شيء
من المسعدة

fa-ʾin lam yašhad 
… šayʾun min al-
musʿadatin

(‘if none of the 
fortune [planets] 
bear witness’)

The first problem in the above passage is the combination of the indeclinable 
particle μηδὲ (‘and not’ <μή + δέ) and the masc. numeral εἷς (‘one’). The Latin 
variant ‘nullus’ (‘nobody, not one, not even one’) prompts Vuillemin-Diem and 
Steel to favour its Greek pendant μηδεὶς (‘no one’ or ‘nobody’) as the more 
sensible option.35 The Arabic versions address this reading by combining par-
titive constructions (cf. šayʾun min, lit. ‘something of …’, i.e. ‘something disas-
trous’, ‘something fortunate’ etc.) with negated finite verbs.36 The two texts 
confirm Vuillemin-Diem and Steel’s conclusion that the ‘addition of ἀστέρων 

33 cf. Kazimirski, Dictionnaire arabe-français, vol. 2, p. 1606.
34 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 118.
35 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, III.366: ‘nullus: μηδεὶς Σ β γ Heph.] 

μηδὲ εἷς V (Hüb.)’.
36 cf. Ullmann, Wörterbuch, p. 854.
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is not needed’,37 and so does the Syriac. Of course, ἀστέρων could have been a 
gloss — a possibility that should not be excluded.

The Syriac rendition ʿāḇday ṭāḇāṯā (lit. ‘doers of good things’) provides a 
semantic equivalent of both ἀγαθοποιῶν and ‘beneficorum’. Ḥunayn’s use of 
the verbal root šhd (‘to witness’) brings his text closer to the Syriac, the Latin 
and the Greek, as opposed to the passive form of nẓr38 (‘to observe, perceive, 
look at’) employed by F.

Reading 8
G L S F H

III.482–486 III.370–372 11v, 16–17 p. 314, [9.4]6–8 p. 314, [8.4]6–7
εἰ δὲ καὶ ὁ 
τοῦ Ἑρμοῦ 
μαρτυρήσειε 
… μόνος δὲ ὁ 
τοῦ Ἑρμοῦ … 
ἀπεργάζεται

(‘if Mercury 
should bear 
witness …but 
when alone, 
Mercury makes 
[them] …’)

si autem 
Mercurius 
testificetur …
solus autem …
efficit

(‘if Mercury 
should bear 
witness … but 
when alone, he 
makes [them] …’)

 ܐܢܕܝܢ ܐܪܡܝܤ ܢܣܗܕ
... ܢܗܘܘܢ

ʾen-denʾermīs 
neshaḏ … nehwon

(‘but if Mercury 
bears witness 
… they will 
become’)

  فإن نظر عطارد
...جعله     

fa-ʾin nuẓira 
ʿuṭārid ǧaʿala-
hu …

(‘but if Mercury 
is observed, he 
makes him …’) 

 فإن شهد عطارد
... كان

fa-ʾin šahida 
ʿuṭārid … kāna…

(‘but if Mercury 
bears witness … 
he is’)

This entry examines another variant reading where Hübner thought it neces-
sary to add a ‘fort. recte’ comment.39 William of Moerbeke’s version confirms 
the omission of Mercury’s name in the last phrase of the sentence.40 Adding 
the name, perhaps for the sake of clarity, could have been a measure dictated 
by the Greek language’s propensity for verbal indulgence.

The Syriac and the two Arabic texts support the omission of the name. In 
all of them Mercury is mentioned only once, at the beginning of the sentence. 
A key difference is exhibited in the way the texts present Mercury’s influ-
ence on human fates — the earlier Arabic version follows the Greek and the 
Latin by using an active verb, i.e. the planet ‘makes’ people dumb, deaf, etc. 
(cf. ἀπεργάζεται, efficit and ǧaʿala-hu, the latter’s literal meaning being ‘he 
makes him’). The Syriac translation and Ḥunayn choose a different approach 

37 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 118: ‘ἀγαθοποιῶν ἀστέρων V D γ 
Procl.] ἀγαθοποιῶν α M S + G (beneficorum) Heph.’

38 However, this verb can mean ‘being in aspect’ in the astrological sense — cf. Dozy, Sup-
plément, vol. 2, p. 685.

39 Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 118: ‘ὁ τοῦ Ἑρμοῦ γ] ὁ Ἑρμοῦ V D: 
om. α M S + G (‘ fort. recte’)’; cf. Hübner, Ἀποτελεσματικά, III.484.

40 ibid.
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— people ‘become’ (cf. nehwon, kāna) various things as a result of Mercury 
bearing witness. Moreover, the two Arabic versions refer to the subject of the 
planet’s influence in the singular (cf. ǧaʿala-hu, ‘he [i.e. Mercury] makes him / it’  
and kāna, ‘he / it becomes’).

The earlier Arabic text’s choice of the verbal root nẓr (cf. n. 38 supra) as a 
pendant of the Greek μαρτυρέω (‘to bear witness’) and its derivatives appears 
to be persistent. In fact, this version stands out as the only one which does not, 
at least in the cases that have been examined so far, employ a closer semantic 
equivalent of μαρτυρέω.

Reading 9
G L S F H

III.512–513 III.393–394 12v, ll. 12–13 p. 318,
ll. [10.3]5–8

p. 318,
ll. [9.3]7–8

ἢ ὁ μὲν ἕτερος 
διαμετρῶν, ὁ δὲ 
ἕτερος ἐπανα-
φερόμενος

(‘or the one is 
opposing, the 
other one is 
ascending’)

uel alter quidem 
diametralis sit, 
alter autem 
superallatus

(‘or one would 
be opposite, 
the other one 
is exalted [lit. 
brought up]’)

 ܐܘ̇ ܟܕ ܗܘ̇ ܚܕ ܡܢ
 ܕܝܐܡܛܪܘܢ. ܐܚܪܢܐ ܕܝܢ

ܒܐܢܐܦܘܪܐ
ʾaw kaḏ haw ḥad 
men diāmeṭron
[<διάμετρος] 
ḥrinā ḏen 
b-ʾanaphorē
[<ἀναφορά, cf. 
ἐπαναφερόμενος]

(‘or when this one 
is [diametrically] 
opposed, the 
other one is on 
the ascent’)

a very vague 
paraphrase

 أوكان أحدهما مقابلا
 على القطر والآخر
 صاعدا إلى موضع

النيرّ
ʾaw kāna 
ʾaḥadhumā 
muqābilan ʿalā 
l-quṭri wa-l-
ʾāḫar ṣāʿidan ʾilā 
mawḍiʿi n-nayyiri

(‘or one of them 
is opposite to 
the diameter and 
the other one 
ascending to the 
location of the 
luminary’)

Hübner’s edition prefers the participle διαμετρῶν (‘opposing’) to the adjec-
tive ‘διάμετρος’ which Vuillemin-Diem and Steel propose on the strength 
of the evidence provided by the Latin translation.41 The Syriac text presents 
a rendition almost identical with that of Moerbeke and confirms the use of 
an adjective, as opposed to a participle. What can be somewhat misleading is 
that the loan word used in Syriac is derived from the accusative form of the 
Greek term, i.e. diāmeṭron corresponds to the adjective διάμετρος, not to the 
homophonous διαμετρῶν.42

41 cf. Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 118: ‘διαμετρῶν α βγ] διάμετρος 
ᾖ V + G (diametralis sit), cf. Heph.’

42 cf. Villey, Les textes astronomiques, p. 405.
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Ḥunayn makes an effort to improve and clarify the passage which results 
in a more scientific language. The phrase muqābilan ʿalā l-quṭri (‘opposite 
according to the diameter’) is another case of explicitation,43 building upon 
the Greek διάμετρος. Unlike the Syriac translator, who simply transcribed the 
term, Ḥunayn not only employs a literal Arabic pendant but also augments it 
with the explanation ʿalā l-quṭri (lit. ‘according to the diameter’) in order to 
arrive at the meaning ‘diametrically opposed’, which διάμετρος already con-
tains, in a mathematical sense. The same approach is applied in the case of 
ἐπαναφερόμενος (‘ascending’), too. We encounter another augmented phrase 
where the participle ṣāʿidan (‘ascending’) is accompanied by ʾilā mawḍiʿi 
n-nayyiri (‘to the location of the luminary’), which specifies the implicit direc-
tion of the ascent.
Reading 10

G L S F H
III.824 III.617 17r, 8 – not applicable

τῶν προκει-
μένων

(‘above 
mentioned’)

presuppositarum ܐܬܬܣܝܡ̣ܘ ܕܩܕ̈ܡܝ 
d-qaḏmay ʾetsim

(‘which were 
established 
beforehand’)

The last variant reading the present survey examines concerns Ptolemy’s use of 
the peculiar double prefix προϋπo-.44 Hübner’s decision to choose προκειμένων 
instead of προϋποκειμένων was informed by the scholar’s philological acumen 
and experience. The participle προκειμένων is derived from the medio-pas-
sive verb πρόκειμαι and can mean ‘set before’ or ‘set forth’ in the sense of 
‘proposed’ or ‘established’ (hence Robbins’ translation ‘above mentioned’). The 
fact that William of Moerbeke made an effort to translate Ptolemy’s double 
prefix into Latin speaks for meticulous attention to detail. The Latin reading 
‘presuppositarum’ appears to emphasise the temporal aspect of the participle, 
and maybe this was the reason why Ptolemy resorted to the unusual double 
prefix in the first place. The Syriac translator appears to have made an effort 
to capture the sense of προϋποκειμένων as well, thus confirming the reading 
found in Moerbeke’s text. He combined a finite medio-passive verb ( eʾtsim, i.e. 
‘they were established’) and a participle (qaḏmay, i.e. ‘they precede’) in order to  
do so.

43 cf. Pormann, ‘The Development’ , p. 154; n. 17 supra.
44 cf. Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, p. 119: ‘προκειμένων α βγ, cf. Pro-

cl. (προστιθέντος)] προϋποκειμένων V + G (presuppositarum). The double prefix προϋπo- is 
used several times III.106 135 IV.712 790: see also προϋφέστηκα IV.691 and προϋποτυπόομαι 
IV.788’.
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Conclusion

Comparing the variant readings suggested by Vuillemin-Diem and Steel with 
the Syriac and the Arabic texts has shown that in almost all cases at least one 
of the Near Eastern translations confirms the evidence provided by Moerbeke’s 
Latin version. The Syriac translation backs the Latin readings in eight out of 
ten instances, Ḥunayn does so in five. Of particular interest are the occasions 
where Ḥunayn’s readings confirm Hübner against the Syriac version and Moer-
beke (cf. the omission of τῶν κακοποιῶν, i.e. ‘the maleficent ones’ in Reading 
6). The earlier Arabic text, despite its tendency to paraphrase, nevertheless fol-
lows the Syriac and the Latin on three occasions, two of them being important 
omissions.45

Keeping in mind the fact that Moerbeke’s version practically serves as the 
earliest extant recension of the Greek text, its proximity to the Syriac, both 
in terms of context as well as particular variant readings, speaks for a general 
affiliation with the older stages of the Tetrabiblos’ transmission. The Syriac 
remains closer to the Latin and the Greek than the Arabic translations in the 
majority of the cases, generally confirms the improvements proposed by Vuil-
lemin-Diem and Steel, tends to use Greek astrological terminology or lexical 
pendants, displays awareness of Greek syntax and in some instances attempts 
to emulate it. The Semitic nature of the language, along with minor omis-
sions and deviations, may account for the impression that the Syriac transla-
tion somehow compresses the Greek text, but cases such as Readings 4, 9 and 
especially 10 clearly appear to refute the possibility of the Syriac text being a 
mere paraphrase, ‘and a poor one at that’.46 The overall quality of this version 
of the Tetrabiblos, its author’s adequate solutions and attention to detail evade 
the somewhat polarised concepts of ‘free’ (i.e. paraphrastic) and ‘literal’ transla-
tion methods.47 The Syriac passage in Reading 3 resorts to additional explana-
tions in order to clarify the Greek content, and does that in a fashion which is 
not all that different, albeit less refined, from Ḥunayn’s explicitation approach 
(cf. Readings 9 and 2).

The readings from the older Arabic text appear to confirm Pingree’s hypoth-
esis of ʿUmar b. al-Farruḫān as translator.48 The omissions and the tendency to 
simplify the technical nature of Ptolemy’s treatise and its astrological termi-
nology are, in fact, more deserving of a definition such as ‘paraphrase’. More-
over, the content of the older translation renders Ibn an-Nadīm’s attribution 

45 cf. Reading 6, mentioned above, and Reading 8, where the addition of Mercury’s name is 
concerned; Reading 8 is also significant because F is the only Near Eastern translation which 
translates ἀπεργάζεται / efficit (‘to make’), cf. ǧaʿala-hu (‘he makes him’).

46 cf. Saliba, Islamic Science, p. 12.
47 cf. Gutas, Greek Thought, pp. 142–44; Pormann, ‘The Development’, p. 145.
48 cf. n. 7 supra.
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to al-Biṭrīq49 rather problematic, because Pormann’s analysis of another transla-
tion attributed to al-Biṭrīq50 points out the latter’s frequent use of transliterated 
Greek terms — a feature we have encountered frequently in the Syriac text, but 
not in F. Of course, a scholar’s translation skills can evolve, and the quality of 
his work may vary substantially, depending on the circumstances surrounding 
each particular translation.

Since ʿUmar b. al-Farruḫān’s text, by virtue of being a probable paraphrase, 
differs from Ḥunayn’s translation to a significant degree, it would be tempt-
ing to deduce that the two are not directly related. H’s readings contain many 
reference points which can be associated with the Greek, Latin and Syriac ver-
sions, and may indicate the availability of good source texts. Reading 9, in par-
ticular, attests that the translator had at his disposal a more precise technical 
vocabulary in Arabic, a fact which speaks for a more sophisticated translation 
technique.

The comparisons and analyses presented in this essay demonstrate that the 
three Near Eastern translations of the Tetrabiblos have the potential to make 
significant contributions to the research on the treatise’s complex transmission, 
which the evidence from William of Moerbeke’s Latin translation has clearly 
advanced to a new level.
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The Oldest Translation of the Almagest Made for  
al-Maʾmūn by al-Ḥasan ibn Quraysh: A Text Fragment in 

Ibn al-Ṣalāḥ’s Critique on al-Fārābī’s Commentary

Johannes tHomann

1. Life and times of Ibn al-Ṣalāḥ (d. 1154 ce)

The first half of the twelfth century was a pivotal time in Western Europe. 
In that period translation activities from Arabic into Latin became a common 
enterprise on a large scale in recently conquered territories, of which the cen-
tres were Toledo, Palermo and Antioch. This is a well known part of what was 
called the Renaissance of the Twelfth Century.1 Less known is the situation 
in the Islamic World during the same period. Traditionally it was denounced 
as post-classical, implying some kind of decadence. Politically it was the time 
when the Seljuqs had surpassed their apogee of power, but still dominated the 
Islamic East from Syria to Central Asia. The Christian kingdom of Jerusalem 
in the recently conquered territories was a zone of permanent conflicts, but 
formed only part of the periphery. The territory of the Fatimids was reduced 
to Egypt. In the West the Almoravids were about to extend their empire in the 
Maghreb towards al-Andalus.2

Concerning the mathematical disciplines, the first half of the twelfth cen-
tury has been called the age of Omar Khayyam.3 His works on geometrical 
solutions of algebraic problems are famous, and a number of other treatises 
document a broad field of scientific activities.4 He was active in Central Asia 
in the Eastern part of the Seljuk Empire.5 In this area a great number of less-
er-known mathematicians were active, and it must be seen as one of the two 
main centers of mathematical science at the time.6 The other center was al-An-
dalus, where an even greater number of mathematicians were active.7 Among 

1 Haskins, The Renaissance, pp. 278–302.
2 Kennedy, An Historical Atlas, p. 10.
3 Sarton, Introduction, vol. I, pp. 738–83.
4 MAOSIC, pp. 168–70 (No. 420).
5 Aminrazavi, The Wine of Wisdom, pp. 18–31.
6 MAOSIC, pp. 168–86 (Nos 420, 423–26, 435, 437–39, 443, 450, 453, 458–59, 461, 467, 

469, 471, 473–76, 484, 489).
7 MAOSIC, pp. 168–86 (Nos 422, 428, 431, 433–34, 436, 440–42, 448–49, 452, 455, 

462, 464, 468, 477, 479–80, 483, 486).

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 117–138
© F  H  G  10.1484/M.PALS-EB.5.120176
t H i S i S  a n o p e n ac c e S S c H a p t e r d i S t r i B u t e d u n d e r a c c B y- n c - n d 4 . 0 i n t e r n at i o n a l l i c e n S e
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these only Jābir ibn Aflaḥ became famous, since his commentary on the 
Almagest was translated into Latin.8

Baghdad had lost its position as the primary place of learning in the Islamic 
world. However, it attracted still some students of the sciences. Even though 
it was not the home of eminent scholars, there must have been exceptionally 
rich and valuable treasures of books available. One of those who took profit 
of these treasures was Abū l-Futūḥ Aḥmad ibn Muḥammad ibn al-Sarī, 
called Ibn al-Ṣalāḥ.9 According to his biographers he was a Persian, born in 
Hamadān in Western Iran, who came to Baghdad and had gained a reputa-
tion as a physician.10 In this quality he went to the court of Temür Tāsh ibn 
Īl Ghāzī, the Artuqid ruler at Mārdīn (r. 1122–1154 ce). Towards the end of 
his life he moved to Damascus, which was ruled by the Börid Atabeg Abaq 
(r. 1140–1154 ce).11 There are different statements concerning the date of Ibn 
al-Ṣalāḥ’s death in the sources. According to al-Qifṭī he died at the end of the 
year 548 (March 1154 ce), and according to Ibn Abī Uṣaybīʿa in the year ‘540 
odd’.12 A manuscript of the Conics of Menelaos at the British Library contains 
a colophon with the date ‘Monday 4 Rabīʿ II 548’ (29 June 1153 ce), in which 
Ibn al-Ṣalāḥ is mentioned.13 The formula aṭāla llāhu baqāhu (‘may God make 
his life long’) after his name indicates that he was still alive at that date. This 
corroborates al-Qifṭī’s date March 1154 ce for his death. In the same colophon 
Ibn al-Ṣalāḥ is called al-zāhid (‘the ascetic’), which might explain his surname, 
since ibn al-ṣalāḥ (‘son of salvation’) points to a pious lifestyle.

Ibn al-Ṣalāḥ was a somewhat unusual scholar. Among his preserved works 
there are only very few which are of his own creation. Almost all of them are 
critiques directed against the works of others. The targets of his critical attacks 
were the most famous scholars of the past: Aristotle, Euclid, Ptolemy, Galen, 
Ibn al-Haytham, Abū Sahl al-Kūhī, Jābir ibn Ibrāhīm al-Ṣābiʾ and al-Fārābī.14

The work by Ibn al-Ṣalāḥ which is best known among scholars working on 
the history of astronomy is his critique of the transmission of coordinates in 
the star catalogue of the Almagest. This is a meticulous analysis of the values of 
coordinates in a Syriac and four Arabic translations of the Almagest and other 

8 MAOSIC, p. 176 (No. 448).
9 MAOSIC, pp. 177–78 (No. 458).
10 Lippert, Taʾrīḫ al-ḥukamā, p. 428; Müller, ʿUyūn al-anbā ,ʾ vol. II, pp. 164–67.
11 For the life of Ibn al-Ṣalāḥ see Lorch, ‘Ibn al-Ṣalāḥ’s Treatise’, p. 401.
12 Lippert, Taʾrīḫ al-ḥukamā, p. 428; Müller, ʿUyūn al-anbā ,ʾ vol. II, p. 164.
13 MS London, British Library, Or. 13127, fol. 51r, lines 6–14; see the online catalogue at 

http://searcharchives.bl.uk (search for ‘Or 13127’; retrieved 21 April 2016); digital images are 
available at http://www.qdl.qa/en/archive/81055/vdc_100000038406.0x000001 (retrieved 21 
April 2016).

14 For a list of Ibn al-Ṣalāḥ’s works see Thomann, ‘Al-Fārābī’s Kommentar’, pp. 101–02; the 
marginal glosses by Ibn al-Ṣalāḥ to the text of Menelaos in the MS London, British Library, 
Or. 13127 are to be added to this list.
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works containing a star catalogue. It was edited, translated and commented 
upon by Paul Kunitzsch in 1975.15

2. Ibn al-Ṣalāḥ’s critique on al-Fārābī’s commentary on the Almagest
In the focus of the present paper is another work by Ibn al-Ṣalāḥ on the Almag-
est, namely a critique of al-Fārābī’s commentary on the Almagest. This work is 
preserved in a single manuscript in the library of the Holy Shrine in Mash-
had (MS 5593).16 The manuscript was written in 1462 and the work by Ibn 
al-Ṣalaḥ, contained on pages 81 to 92, is entitled ‘Reasoning on Proof of the 
Error Made by Abū Naṣr al-Fārābī in his Commentary on the Seventeenth Sec- 
tion of the Fifth Book of the Almagest and the Explanation of this Section’.17

The passage of the Almagest on which Ibn al-Ṣalaḥ writes is not in Chapter 
V.17 but in Chapter V.19 as we know it from the Greek text and the extant 
Arabic translations. The topic of the work is a small passage in the section on 
parallax. At the beginning of Chapter V.19 Ptolemy explains how to find the 
lunar parallax in altitude.18 This is the change in the lunar position in vertical 
direction for an observer at a distance from the centre of the earth. After that 
Ptolemy explains how to split up this parallax in altitude into two components, 
the parallax in ecliptical longitude and the parallax in ecliptical latitude.19 This 
second part of Chapter V.19 is the topic of Ibn al-Ṣalāḥ’s critique.

Ptolemy’s approach is rather crude. First he makes an approximation by 
transforming the spherical problem into a plain one and assuming that the two 
circles of measuring the ecliptical latitude are straight parallel lines. In doing 
so, the problem is reduced to a trivial geometrical case. Later in the chapter he 
criticizes this method, invented by Hipparchos, and proposes another solution, 
allegedly operating ‘in a [mathematically] sound way’ (κατὰ τὸν ὑγιῆ τρόπον), 
but this is an approximation too.20 It seems that he could not find an exact 
solution by his mathematical means. Otto Neugebauer’s verdict was that ‘The 
chapter on parallax is undoubtedly one of the most unsatisfactory sections in 
the whole Almagest’.21

15 Kunitzsch, Ibn aṣ-Ṣalāḥ.
16 Maʿānī, Fihrist-i kutub-i ḫaṭṭī, pp. 344–48; Sezgin, Geschichte des Arabischen Schrifttums,  

p. 195; Thomann, ‘Al-Fārābī’s Kommentar’, pp. 102–04.
17 MAOSIC, p. 178 (No. 458).
18 Heiberg, Syntaxis mathematica, vol. I, pp. 444–45; Toomer, Ptolemy’s Almagest, 

pp. 265–66.
19 Heiberg, Syntaxis mathematica, vol. I, pp. 446–50; Toomer, Ptolemy’s Almagest, 

pp. 266–67.
20 Heiberg, Syntaxis mathematica, vol. I, pp. 450–55; Toomer, Ptolemy’s Almagest, pp. 269–

71; Pedersen, A Survey, pp. 218–19, 471; Neugebauer, A History, vol. I, pp. 116–17.
21 Neugebauer, A History, vol. I, p. 116; but see Toomer, Ptolemy’s Almagest, p. 273, note 

87 for a different view.
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The first astronomer who was able to provide an exact and valid solution of 
the same problem was Ḥabash al-Ḥāsib in the mid ninth century.22 He based 
his calculations not on Greek trigonometry with chords but on Indian trigo-
nometry with sine and cosine and used for his solution both the cosine rule 
and the sine rule for spherical triangles. In this case at least Indian style trigo-
nometry was superior to Greek style trigonometry.

Ibn al-Ṣalāḥ writes at the beginning of his treatise:23

I had a look at a book by the outstanding Abū Naṣr al-Fārābī called Commentary 
on the Book by Ptolemy Known as the Almagest. I studied it thoroughly in full clarity 
and understanding of its concepts up to the information in Chapter 17 of Book V.
I found that he wanted to establish the proof based on the relation which was there 
in connection with a complete commentary on the chapter. But the premises which 
he used in the composition of his proof were impossible and fallacious.

Thus the critique of Ibn al-Ṣalāḥ is not directed towards Ptolemy himself but 
towards al-Fārābī’s Commentary on the Almagest. This work has only recently 
been discovered, and some information is appropriate here.

3. Al-Fārābī’s commentary on the Almagest
The great philosopher al-Fārābī (d. 950 ce), who had the honorary title of 
‘the Second Teacher’ (sc. after Aristotle), is most famous for his works on 
logic, metaphysics and political philosophy. But he wrote also on mathemat-
ical disciplines. Since the times of Moritz Steinschneider it has been known 
that al-Fārābī wrote a commentary on the Almagest.24 It is mentioned in the 
biographies in al-Qifṭī, Ibn Abī Uṣaybiʿa and al-Ṣafadī, and it appears in a list 
of commentaries on the Almagest by al-Nasawī (eleventh century ce).25 A sup-
posed copy in the British Library turned out to be the Talkhīṣ by Ibn Sīnā,26 
and the work was considered to be lost.27 In 2011 the discovery of a part of a 
comprehensive commentary on the Almagest, probably al-Fārābī’s commentary, 
was announced.28 The MS Tehran, Majlis Library, 6531 has a modern title-
page with the name of al-Fārābī. The beginning of the original manuscript 
is missing, and at the end it has no colophon. Thus the text is transmitted 

22 Kennedy, ‘Parallax Theory’, pp. 42–43.
23 MS Mashhad, Holy Shrine Library, 5593, p. 81; for the Arabic text see Appendix II.
24 Steinschneider, Al-Farabi, p. 78.
25 Lippert, Taʾrīḫ al-ḥukamā, p. 279; Müller, ʿUyūn ul-anbā ,ʾ vol. II, p. 138; Ritter, Kitāb 

al-Wāfī, vol. I, p. 108; for al-Nasawī see Lorch, Thābit ibn Qurra, p. 348.
26 Goldstein, book review of Sezgin, p. 342.
27 Janos, ‘Al-Fārābī’, p. 239; Janos, Method, pp. 22–26.
28 Paper presented at the conference ‘Contexts of Learning in Baghdad from 8th–10th cen-

turies’, University of Göttingen, September 12–14, 2011, published later as: Thomann, ‘From 
Lyrics’, pp. 500–02; first publication: Thomann, ‘Ein al-Fārābī zugeschriebener Kommentar’, 
pp. 48–53.
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anonymously. It contains a commentary on the Almagest based on the Isḥāq 
translation, and covers parts of Book IX and all of Books X to XIII. In 2012 
another manuscript with the same text was found (MS Tehran, Majlis, 6430), 
but again with no indications of the author.29 At the beginning several pages 
are missing, but it covers slightly more text than the first manuscript. Further 
investigations made an attribution of this commentary to al-Fārābī more and 
more likely. It is evident that it was written by a philosopher rather than by a 
professional astronomer.30 This limits the number of candidates for being the 
author of the Tehran commentary considerably. Further, there are some charac-
teristics in the vocabulary which coincide with Fārābīan usage.31

The identification of the Tehran manuscripts as al-Fārābī’s commentary on 
the Almagest finally became beyond doubt when the treatise of Ibn al-Ṣalāḥ on 
the critique of al-Fārābī’s commentary was studied for the first time.32 The text 
of Ibn al-Ṣalāḥ consists for a large part of literal quotations from al-Fārābī’s 
commentary. For the first time documented original parts of al-Fārābī’s work 
were at hand. Since the quoted texts belong to Book V of the Almagest a direct 
comparison with the two Tehran manuscripts, which cover Books IX to XIII, 
was not possible. But the relative quantity of text of al-Fārābī’s commentary 
in comparison to related text of Ptolemy could be estimated and conspicu-
ous terminology could be compared. There is one noteworthy abnormality in 
the parts quoted by Ibn al-Ṣalāḥ. In the text of al-Fārābī the term for par-
allax is always inḥirāf al-manẓar, while the standard term, also found in the 
translations of the Almagest, is ikhtilāf al-manẓar.33 The reason why al-Fārābī 
chose this non-standard term may be his propensity to be philologically pre-
cise, and indeed, inḥirāf ‘deviation’ is semantically closer to Greek parallaxis 
than ikhtilāf, which means simply ‘difference’.34 In any case, the occurrence of 
this abnormality in the text of the two Tehran manuscripts would provide a 
perfect terminological test. There is only one passage in Books IX to XIII of 
the Almagest where parallax is mentioned.35 The corresponding commentary is 
only preserved in the second Tehran manuscript, where parallax is indeed called 
inḥirāf al-manẓar.36 Therefore there can hardly be any doubt that the passages 
quoted by Ibn al-Ṣalāḥ and the text in the two Tehran manuscripts are parts of 

29 Paper presented at the 26th Congress of the Union Européenne des Arabisants et Isla-
misants (UEAI 26), Basel, September 12–16, 2012; see now Thomann, ‘Terminological Fin-
gerprints’, pp. 304–05.

30 Thomann, ‘Ein al-Fārābī zugeschriebener Kommentar’, pp. 58–59.
31 Thomann, ‘Terminological Fingerprints’, pp. 305–10.
32 Thomann, ‘Al-Fārābī’s Kommentar’.
33 Thomann, ‘Al-Fārābī’s Kommentar’, pp. 110–11; see the text in Appendix II.
34 Eckhard Neubauer, personal communication (July 26, 2015).
35 Heiberg, Syntaxis mathematica, vol. II, p. 207; Toomer, Ptolemy’s Almagest, p. 419.
36 MS Tehran, Majlis Library, 6430, fol. 22r; see the text in Appendix II.
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the same work, and that in the twelfth century this work was regarded by the 
attentive and well-informed Ibn al-Ṣalāḥ as the work of al-Fārābī.

4. An anonymous translation of the Almagest and its terminology

At the very beginning of his critique on al-Fārābī’s commentary, after the intro-
ductory phrase, Ibn al-Ṣalāḥ quotes literally the passage of the Almagest upon 
which al-Fārābī comments.37 Ibn al-Ṣalāḥ does not say anything about the 
authorship of the quoted translation, therefore in the following it will be called 
provisorily ‘Anonymous’. In a first step, the text will be compared with the two 
well-known Arabic translations of the Almagest by al-Ḥajjāj and Isḥāq/Thābit.38 
The three Arabic translations, the Greek text and the Latin translation of 
Gerard of Cremona are given in Appendix I. Words and expressions which dif-
fer in the three Arabic translations are listed in the four following tables. The 
first table contains words and expressions which differ in all three translations:
Greek Anonymous Al-Ḥajjāj Isḥāq/Thābit
ἵνα فإذا أردنا أن ولكي ولكيما / وكيما
διακρίνωμεν نعدل ونفصل … نقوّم
ἐπισκεψόμεθα ونأخذ ونطلب ننظر
σελιδίῳ السطر الجدول الصفّ
τοσούτων وذلك فإناّ إذا فعلنا ذلك فإن هذا
ἐπειδήπερ فلمّا لأنّ من قبل أن
γραφομένου التّي تمرّ المخطوط على ترسم مادّة

The second table contains words and expressions which are identical or similar 
in al-Ḥajjāj and Isḥāq/Thābit but different in the Anonymous:
Greek Anonymous Al-Ḥajjāj Isḥāq
ἀπέχει بين … وبين بعد … من بعد … من
μεσημβρινοῦ وسط السماء فلك نصف النهار دائرة نصف النهار
μεσημβρινοῦ توسّط القمر السماء بعد نصف النهار  بعد دائرة نصف النهار
ἀπογραψόμεθα وكتبناه أثبتناها أثبتناها
ἐκκειμένην اللتين تليان اللتين في هذا التّي على هذه
ἐν κύκλῳ εὐθειῶν 
κανόνιον

جداول القسي والأ[و]تار في جدول أوتار القسي  في جدول الأوتار التّي في
الدائرة

εὑρισκομένην حصلناه الموجود يوجد
μερίζοντες قسمناه نقسم ونقسم
συναγόμενα بما يخرج ما اجتمع ما اجتمع
ἕξομεν علمنا فهو فهو

37 MS Mashhad, Holy Shrine Library, 5593, pp. 81–82.
38 Other translations of the Almagest will be discussed in Section 5.
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The third table contains words and expressions which are identical or similar 
in al-Ḥajjāj and the Anonymous but different in Isḥāq/Thābit:
Greek Anonymous Al-Ḥajjāj Isḥāq
ἰσημερινὰς المعتدلة المعتدل الاستوائيّة

κανόνος جداول جداول/ جدول جدول
εἰς τὸ αὐτὸ μέρος إلى الموضع الذّي

كناّ أدخلناه به فيما تقدّم
في ذلك القسم بعينه ذلك الموضع

λειπούσας ما نقص التّي تنقص ما يبقى بعدها
τομὴν قطعة القطعة التقاطع
καὶ ὃν ἂν ἔχῃ فيكون فيكون لنا فأيّ
πολυπλασιάζοντες فضربناه فيضرب فيضاعف
κατὰ κορυφὴν بسمت الر[ؤ]وس سمت الرؤوس سمت الرأس

The fourth table contains words and expressions which are identical or similar 
in Isḥāq/Thābit and the Anonymous but different in al-Ḥajjāj:
Greek Anonymous Al-Ḥajjāj Isḥāq
παρακειμένας بحياله التّي تقابل حياله / بحياله
οὖν ثمّ ف ثمّ
ἀδιαφοροῦσιν كان لا فرق 〈لا〉 تكون ... مختفلة فليس بينه وبين … فرقان

The fact that the second table is the largest indicates that the Anonymous 
differs more from the two other translations than al-Ḥajjāj and Isḥāq/Thābit 
differ from each other. This leads to the question if the Anonymous version is 
a genuine translation from the Greek, or a paraphrase of one of the two other 
Arabic translations.39 There are three cases in the Anonymous where knowl-
edge of the Greek original is evident. In the Anonymous, Greek διακρίνωμεν 
(‘we distinguish, we set apart’) is at first translated by nufaṣṣilu (‘we divide’). 
Later in the sentence it is specified by the expression wa-nafṣila kulla wāḥidin 
minhumā ʿani l-ākhari (‘and we separate each of them from the other’). This 
is a precise paraphrase of the litteral meaning of διακρίνω and could not have 
been derived from one of the two other translations. Al-Ḥajjāj writes naʿdilu  
or nuʿaddilu ‘we normalize the parallax …’, and Isḥāq nuqawwimu ‘we arrange 
the parallax’. This suggests that the anonymous translation is based on the 
Greek text, and that it is not just a paraphrase of one of the two other trans-
lations. A second case is the translation wa-katabnāhu (‘we have written it’) 
of Greek ἀπογραψόμεθα (‘we have written off ’). Al-Ḥajjāj and Isḥāq/Thābit 
translate it with athbatnāhā (‘we have made it fixed’), which does not preserve 

39 There is no need to consider a translation from the Syriac since according to Ibn al-
Ṣalāḥ all Arabic translations were made from the Greek; cf. Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 155, 
lines 12–19 (Arabic text) and p. 40 (German translation).
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the meaning of ‘writing’.40 A third case is the Greek word ἐκκειμένην (‘lying 
outside’), which is translated by the Anonymous as allatayni taliyāni (‘which 
are adjacent’). The other translations are less precise: Al-Ḥajjāj translates as 
allatī ʿalā (‘which are on’) and Isḥāq/Thābit allatayni fī (‘which are in’). These 
three examples show clearly that the Anonymous is based on the Greek text 
independently from the translations of al-Ḥajjāj and Isḥāq/Thābit.

In a next step, some conspicuous expressions used by the Anonymous will 
be compared to other astronomical texts in order to derive arguments for a 
chronological classification.

The Greek adjective μεσημβρινός means literally ‘belonging to noon’, com-
posed of the adjective μέσος (‘middle’), the substantive ἡμέρα (‘day’) and the 
suffix -ινος (for building adjectives). In an astronomical context ὁ μεσημβρινός 
κύκλος (‘the circle belonging to noon’) is the technical term for ‘meridian’, and 
μεσημβρινός can be used alone as a noun to denote ‘meridian’, as is the case 
in the text here. Al-Ḥajjāj uses falak niṣf al-nahār (‘sphere of half day’) and 
Isḥāq/Thābit dāʾirat niṣf al-nahār (‘circle of midday’). In the translation of 
the Anaphorikos by Hypsikles, made either by Qusṭā ibn Lūqā or Isḥāq ibn 
Ḥunayn, μεσημβρινός is translated also as niṣf al-nahār. The expressions falak 
niṣf al-nahār, dāʾirat niṣf al-nahār and khaṭṭ niṣf al-nahār (‘line of midday’) 
became standard and were used interchangeably in astronomical texts of dif-
ferent epochs. Ḥabash al-Ḥāsib (d. c. 864 ce) uses falak niṣf al-nahār and 
khaṭṭ niṣf al-nahār as technical terms for ‘meridian’.41 Al-Bīrūnī (973–1048) 
uses falak niṣf al-nahār for ‘meridian’ in his introductory work on astronomy 
and astrology.42 The term dāʾirat niṣf al-nahār is found in the terminological 
dictionary by al-Tahānawī (eighteenth century).43 Different from these com-
mon translations, the Anonymous translates μεσημβρινός as wasaṭ al-samāʾ 
(‘middle of the heaven’). It is conspicuous that in one of the oldest extant 
Arabic astronomical texts, On the Use of the Astrolabe by al-Khwārizmī, khaṭṭ 
wasaṭ al-samāʾ (‘line of the middle of heaven’) is used as the technical term 
for ‘meridian’.44 Besides that the expression wasaṭ al-samāʾ is used for a dif-
ferent notion. In contrast to khaṭṭ wasaṭ al-samā ,ʾ which denotes a line, wasaṭ 

40 No example for athbata in Lane’s Lexicon refers to ‘writing’, see Lane, An Arabic-English 
Lexicon, p. 329.

41 MS Istanbul, Süleymaniye Library, Yeni Cami 784, fols 130v, 149r, 150r, 156r–v, 161v, 
162v, 164v, 190r–v ( falak niṣf al-nahār), fols 130v, 151v, 167v, 168v–170v, 172r–v, 176r, 190r, 
191r, 194v, 195v, 196v, 197v, 198v, 208r, 219v, 220r (khaṭṭ niṣf al-nahār).

42 Wright, The Book of Instruction, p. 49 (§ 129).
43 Daḥrūj, Kashshāf, p. 241.
44 Charette and Schmidl, ‘Al-Khwārizmī’, p. 115 (§ 2c), p. 116 (§ 2d), p. 116 (§ 3) et pas-

sim.
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al-samāʾ denotes a point defined by the intersection of the meridian with the 
ecliptic. This becomes evident when al-Khwārizmī writes:45

[Then look at which degree] is cut by the line of midheaven (khaṭṭ wasaṭ al-samāʾ), 
and this will be the degree of midheaven (darajat wasaṭ al-samāʾ).

The expression darajat wasaṭ al-samāʾ in the sense of ‘(ecliptical) degree of the 
meridian’ is used by Ḥabash too.46 Later the meaning of wasaṭ al-samāʾ became 
restricted to ‘the point of intersection of the ecliptic with the meridian’. But 
obviously the Anonymous imitates the Greek expression ὁ μεσημβρινός as an 
abbreviated form of ὁ μεσημβρινός κύκλος by writing wasaṭ al-samāʾ as an 
abbreviated form of khaṭṭ wasaṭ al-samā .ʾ

Another abnormality concerns the translation of the Greek conjunction ἵνα 
(‘that, in order that’). Al-Ḥajjāj translates it as wa-lākin (‘however, yet, but’), 
and Isḥāq/Thābit more literally as wa-likaymā (‘that, in order that’). The 
Anonymous departs considerably from the Greek text and starts the sentence 
by wa-idhā aradnā an naʿrifa (‘when we want to know’). A similar expres-
sion is found only once in the Greek Almagest: Chapter III.8 begins with the 
expression Ὁσάκις οὖν ἂν ἐθέλωμεν … ἐπιγιγνώσκειν (‘So whenever we want 
to know’).47 There must thus have been another source of inspiration for the 
Anonymous to use this expression. Indeed, in al-Khwārizmī’s treatise ‘On the 
Use of the Astrolabe’ 42 paragraphs out of 53 (79%) start either with idhā 
aradta an taʿrifa (‘when you want to know’), idhā aradta an taʿlama (ditto), in 
aradta an taʿrifa (ditto), or idhā aradta (‘when you wish’) followed by a noun 
in the accusative. The second person singular was based on the style of San-
skrit astronomical works, while the first person plural was the style of Greek 
works.48 The Anonymous keeps the first person plural from the Greek text, but 
uses the conditional phrase that was the standard start of a paragraph in astro-
nomical treatises of his time. The phrase idhā aradta an taʿrifa (‘when you want 
to know’) and its synonyms are found in later astronomical texts too, but never 
again as rigorously as in the astronomical writings of al-Khwārizmī. In the Zīj 
of Ḥabash al-Ḥāsib it occurs only twelve times.49 In the Zīj of al-Battānī still 
40 chapters and subchapters out of 65 (62%) start with such a phrase,50 and in 

45 Charette and Schmidl, ‘Al-Khwārizmī’, p. 116 (§ 3).
46 MS Istanbul, Süleymaniye Library, Yeni Cami 784, fols 160r, 161r, 169r–185v, 

205r–222v.
47 Heiberg, Syntaxis mathematica, vol. I, p. 259, lines 12–14; Toomer, Ptolemy’s Almagest, 

p. 169.
48 Thomann, ‘From Lyrics’, pp. 510–14.
49 MS Istanbul, Süleymaniye Library, Yeni Cami 784, fols 74v, 78r, 101v (2x), 102v, 124r, 

224v, 225r (3x), 228v.
50 Nallino, Al-Battānī, vol. III, p. 20 line 6, p. 29 line 7, p. 30 line 11, p. 31 line 23, p. 31 

line 23, p. 33 line 33 et passim.
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contrast, Thābit ibn Qurra uses the phrase rarely.51 Al-Bīrūnī uses the phrase 
only occasionally. For example, in Book V of his Qānūn the phrase occurs at 
the beginning of three chapters out of 21 (14%).52

A third noteworthy case is the terminology for ‘table’, ‘row’ and ‘column’. 
In the Almagest the Greek expressions are κανῶν (literally ‘straight rod, bar’), 
στίχος (‘row of soldiers’, also ‘line of poetry’), and σελίδιον, diminutive of σελίς 
(‘cross-beam’, also ‘column in a papyrus or a mathematical table’). Al-Ḥajjāj 
translates these terms as jadāwil,53 plural of jadwal (litteraly ‘creek, brook’), 
saṭr (‘line’)54 and jadwal. In Isḥāq/Thābit they are translated as jadwal, saṭr55 
and ṣaff (‘row, line’). In the terms for ‘table’ a shift from the plural jadāwil 
to the singular jadwal is seen. If the plural is used for ‘table’, it is logical to 
use the singular for ‘column’. However, the Anonymous calls the table jadāwil, 
but uses saṭr for ‘column’ instead, the same term which Isḥaq/Thābit use in 
the sense of ‘row’. The same use of saṭr in the sense of ‘column’ is found in 
al-Khwārizmī’s On the Construction of the Astrolabe.56 It is also found in Yaḥyā 
ibn Abī Manṣūr’s al-Zīj al-Mumtaḥan.57 Al-Battānī uses saṭr still in the same 
sense.58 But otherwise saṭr was used predominantly for ‘row’. This holds for 
Thābit ibn Qurra,59 for the Mafātīḥ al-ʿulūm (tenth c. ce),60 and also for Ibn 
al-Ṣalāḥ.61

These examples suggest that the translation of the Anonymous was made 
at an early time, probably at the beginning of the ninth century ce. At least, 
nothing in the terminology speaks against such an early date.

5. Translations of the Almagest known to Ibn al-Ṣalāḥ

Ibn al-Ṣalāḥ mentions in his work on the star catalogue of the Almagest explic-
itly which translations he had at hand:62

51 Lorch, Thābit ibn Qurra, pp. 42–111: no occurrences; Morelon, Thābit ibn Qurra, 
pp. 65, 135, 137; shorter expressions as wa-in aradta and the like: pp. 96, 101, 105, 135, 138, 
139, 141, 145, 146, 148, 149, 150, 160.

52 al-Bīrūnī, al-Qānunu’l-Mas‘ūdī, vol. II, pp. 516 line 3, 522 line 7, 526 line 3.
53 This is the reading in MS Leiden, Universiteitsbibliotheek, Or. 680, fol. 85v. In MS Lon-

don, British Library, Add. 7474, fol. 150r the singular jadwal is found.
54 Almagest I.10, final paragraph; see MS London, British Library, Add. 7474, fol. 14r, line 3.
55 Almagest I.10, final paragraph; see MS Tunis, National Library, 7116, fol. 9v, line 4.
56 Charette and Schmidl, ‘Al-Khwārizmī’, p. 110, line 6.
57 Sezgin, Al-Zīj al-Maʾmūnī, p. 125, line 4.
58 See the glossary in Nallino, Al-Battānī, vol. III, p. 337.
59 Morelon, Thābit ibn Qurra, p. 55, line 7 and p. 106, line 18.
60 van Vloten, Liber Mafâtîh al-olûm, p. 55, line 8.
61 Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 131, line 21.
62 Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 155, lines 12–20 (Arabic text) and p. 40 (German transla-

tion).
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Five copies (nusakh) of the Book al-Majisṭī, different in language and translation had 
come about (kāna qad ḥasala), a Syriac copy, translated from the Greek, a second copy 
in the translation of al-Ḥasan ibn Quraysh for al-Maʾmūn, from Greek into Arabic, a 
third copy in the translation of al-Ḥajjāj ibn Yūsuf ibn Maṭar and Hilīyā ibn Sarjūn, 
also for al-Maʾmūn from Greek into Arabic, a fourth copy in the translation of Isḥāq 
ibn Ḥunayn for Abū al-Ṣaqr ibn Bulbul, from Greek into Arabic, and this [copy] 
is the original archetype (dustūr) of Isḥāq and in his handwriting, and a fifth copy 
with the correction of Thābit ibn Qurra of this translation of Isḥāq ibn Ḥunayn 
for Abū al-Ṣaqr ibn Bulbul. It agrees (muwāfiq) with Isḥāq’s translation except for 
the pieces of information which were in the margin of the version of Isḥāq, such as 
doubts (tashakkuk) [concerning variant readings]. These pieces of information were 
not in the copy of Thābit. All these copies were differing and faulty.

According to this statement, Ibn al-Ṣalāḥ had four Arabic translations at his 
disposal, which he lists in chronological order: A translation by al-Ḥasan ibn 
Quraysh, the translation by al-Ḥajjāj, the original translation of Isḥāq in an 
autograph with marginal notes, and the Isḥāq/Thābit translation. The last 
three translations are well known, and the translations of al-Ḥajjāj and of 
Isḥāq/Thābit exist in a number of manuscripts.63 Later on in the text, Ibn 
al-Ṣalāḥ calls the translation by al-Ḥasan ibn al-Quraysh ‘the Maʾmūnic trans-
lation by al-Ḥasan’ (al-maʾmūnī bi-naql al-Ḥasan),64 or simply ‘al-Ḥasan’s 
translation’ (naql al-Ḥasan),65 or occasionally also ‘the Maʾmūnic [translation]’ 
(al-maʾmūnī).66 There is a passage in Ibn al-Nadīm’s Fihrist on a translation 
of the Almagest made before al-Ḥajjāj, but al-Ḥasan ibn Quraysh is not men-
tioned there,67 nor is he mentioned in Ibn al-Nadīm’s list of translators from 
Greek into Arabic.68 The only biographical source which makes a reference 
to him is Ibn Abī ʿUṣaybīʿa in his biography of the physician Sahl al-Kawsaj, 
where al-Ḥasan ibn Quraysh is listed among the colleagues of Sahl.69

Sahl al-Kawsaj died shortly before the Caliph al-Maʾmūn (d. 833 ce). 
Despite the lack of further evidence of a translation of al-Ḥasan ibn Quraysh, 
the account of Ibn al-Ṣalāḥ has to be taken seriously. He must have had a man-
uscript of this translation at hand, from which he quoted as often as from the 
other translations. Most of the quotations concerned numerical values of star 
coordinates. Ibn al-Ṣalāḥ did not explicitly evaluate the different translations 
in general. There are approximately equally many cases in which he judges the 
numerical values in the Maʾmūnic translation to be correct against some of 

63 Kunitzsch, Claudius Ptolemäus, vol. I, pp. 3–4; Kunitzsch, ‘A Hitherto Unknown’, pp. 31–32.
64 Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 149, line 12 (Arabic text) and p. 49 (German translation).
65 Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 139, lines 9–10 (Arabic text) and p. 63 (German translation).
66 Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 149, line 15 (Arabic text) and p. 49 (German translation).
67 Dodge, The Fihrist, vol. II, p. 639.
68 Dodge, The Fihrist, vol. II, pp. 586–88.
69 Müller, ʿUyūn ul-anbā ,ʾ vol. I, p. 160, line 23; cf. Kunitzsch, Der Almagest, p. 23, note 33.
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the other translations, as cases in which he judges them to be wrong. Often 
the Maʾmūnic translation agrees with the Syriac translation against those of 
al-Ḥajjāj and Isḥāq (or Isḥāq/Thābit).

Besides the critique of numerical values, there are also a few remarks on dif-
ferent translations of star names. In one case Ibn al-Ṣalāḥ criticized al-Ḥasan, 
since he translated Greek βέλος (‘arrow’) with nawl (‘loom’).70 In another 
case concerning the translation of Greek ὁ θύρσος (‘the wand of Thyrsos’) he 
wrote:71

This star (= b Cen), and the eighth, ninth and tenth [star] (= ψac1 Cen) stand 
according to the translation of Isḥāq on the ‘branches of vine’ (ʿalā quḍbān al-karm), 
but according to the Syriac on the ‘shield’ (ʿalā l-turs), which is called in Syriac sakrā, 
and according to the version of al-Ḥasan ibn Quraysh on the ‘lance’ (ʿalā l-ḥarba). 
Similarily I saw them in the form of a lance (ṣūrat ḥarba) on a celestial globe made 
by the Ḥarranians. The lance appears to me as the most likely [translation], since 
Centaur is holding a wild beast of prey at its forefoot, and it is mentioned in the 
commentary to Aratos that Centaur wanted to sacrifice the animal to the God, and 
to fumigate it with the nearby incense burner.

In the manuscript of Isḥāq’s translation the star is called ‘branch of vine’ in the 
singular (qaḍīb al-karm), and never in the plural.72 The Syriac translater read 
ὁ θυρεός (‘oblong shield’) instead of ὁ θύρσος.73 The translation of al-Ḥajjāj is 
not quoted, but it agrees with the Syriac translation by rendering the star name 
as al-turs (‘the shield’). Thus we see that in this case Ibn al-Ṣalāḥ prefers the 
Maʾmūnic translation against all others. Considering this judgment, it would 
seem perfectly reasonable if he would quote the Almagest in the Maʾmūnic 
translation at other occasions as well.

6. Authorship of the translation quoted by Ibn al-Ṣalāḥ in his critique on 
al-Fārābī

It seems reasonable to assume that the anonymous translation of the Almagest 
quoted by Ibn al-Ṣalāḥ in his critique on al-Fārābī’s commentary was one of 
the four Arabic translations which he used in his work on the star catalogue. 
It has been shown that the Anonymous differs considerably from al-Ḥajjāj and 
Isḥāq/Thābit. In view of the fact that the Anonymous has even less in com-
mon with Isḥāq/Thābit than with al-Ḥajjāj, the Anonymous could hardly be 
identical with the original translation of Isḥāq. There are only few cases where 

70 Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 145, lines 1–2 (Arabic text) and p. 54 (German translation); 
cf. Kunitzsch, Der Almagest, pp. 184–85.

71 Kunitzsch, Ibn aṣ-Ṣalāḥ, p. 134, line 20 – p. 133, line 1 (Arabic text) and pp. 70–71 
(German translation).

72 Kunitzsch, Der Almagest, p. 339.
73 Kunitzsch, Der Almagest, p. 339, note 191.
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Ibn al-Ṣalāḥ reported differences between Isḥāq/Thābit and the original Isḥāq 
translation in numerical values, and none in verbal expressions. Therefore, the 
Maʾmūnic translation remains as the only candidate among the translations 
used by Ibn al-Ṣalāḥ in his work on the star coordinates.

Two more possibilities have to be taken into consideration. Ibn al-Ṣalāḥ had 
some knowledge of Greek, and he might have translated the passage of V.19 
himself. But it has already been demonstrated that the terminology used by 
Ibn al-Ṣalāḥ in his own works does not correspond to the Anonymous.74

Besides the translations mentioned by Ibn al-Ṣalāḥ, there was another trans-
lation made by Thābit ibn Qurra after having finished his corrections for the 
Isḥāq translation.75 Even though unlikely, it cannot be excluded that Thābit’s 
own translation became available to Ibn al-Ṣalāḥ only after he had finished his 
work on the star coordinates, and then he used it in his critique on al-Fārābī. 
However, there are examples which show that the terminology in the Anony-
mous does not correspond to Thābit’s terminology in his own works.76

At this point, the only option remains to identify the Anonymous with the 
old Maʾmūnic translation. This is compatible with the observations concerning 
its terminology, which point rather to an early epoch, when technical terms in 
astronomy were not yet as standardized as they became later. Moreover, there 
is nothing in the text which precludes from assuming an early date in the first 
third of the ninth century ce.

In the former section on the terminology of the Anonymous it was observed 
that some of its peculiarities are found also in the Zīj of al-Battānī. This can 
be explained now, since Paul Kunitzsch found that al-Battānī’s star catalogue 
was mainly based on the Maʾmūnic translation.77 Therefore it is likely that 
al-Battānī adopted some of the terminology of the Maʾmūnic translation too.

A final problem remains to be discussed. The statement of the authorship 
of the Maʾmūnic translation does not correspond to the passage on the early 
translation of the Almagest in Ibn al-Nadīm’s Fihrist:78

The first person to become interested in translating it and issuing it in Arabic was 
Yaḥyā ibn Khālid ibn Barmak. A group of people explained it for him but, as they 
did not understand it perfectly, he was not satisfied with it, so he called upon Abū 
Ḥassān and Salm, the director of the Bayt al-Ḥikmah, for its explanation. They 
made sure [of its meaning] and persevered in making it accurate, after having sum-

74 See Section 4.
75 See Lorch, Thābit ibn Qurra, pp. 355–57; Grupe, ‘The Thābit-Version’, and Grupe’s ar-

ticle in this volume.
76 See Section 4.
77 Kunitzsch, Ibn aṣ-Ṣalāḥ, pp. 97–108.
78 Dodge, The Fihrist, vol. II, p. 639.
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moned the best translators, testing their translation, and making sure of its good 
literary style and accuracy.

The name of al-Ḥasan ibn Quraysh, to whom Ibn al-Ṣalāḥ attributed the 
Maʾmūnic translation, is not mentioned here. However, this is no contradiction, 
since the text, taken at face value, does not mention the names of the transla-
tors, but only those of the supervisors, who did not translate themselves. The 
date of the translation indicated by Ibn al-Nadīm differs from the one indi-
cated by Ibn al-Ṣalāḥ, who wrote that the translation was made for al-Maʾmūn 
(d. 833 ce). According to Ibn al-Nadīm the initiator was Hārūn al-Rashīd’s 
famous Vizier Yaḥyā ibn Khālid ibn Barmak (733 or 737–805 ce). He was 
responsible for translations of literary and scientific texts into Arabic, but his 
main focus was on works in Sanskrit.79 This orientation towards Indian works 
was a consequence of his Buddhist family background from Balkh. Greek 
works were translated too, but not from Greek, but from Middle Persian or 
Syriac, and this would also hold for a translation of the Almagest.80

There is a sharp contrast between the reports of Ibn al-Nadīm and of Ibn 
al-Ṣalāḥ on the earliest Arabic translation of the Almagest. Paul Kunitzsch 
characterized this in the following way:81

This witness [of Ibn al-Ṣalāḥ] is of the utmost importance because of its authentic-
ity, and it merits to be placed on the same level as the direct transmission. With its 
brief objectivity and unambiguity it distinguishes itself impressively from the vague 
or verbose bibliographical notes of the other authors, which in general do nothing 
else then to quote second-hand information without verifying it, and to carry it on 
from book to book.

Even if this may be somewhat exaggerated, Ibn al-Ṣalāḥ has been proven to be 
a meticulous and scrutinizing scholar who based his judgment on first-hand 
investigation. Therefore it is the preferable option to accept his attribution of 
the Maʾmūnic translation to al-Ḥasan ibn Quraysh, and to consider Ibn al-Na-
dīm’s narrative with great caution. The attribution of authorship to al-Ḥasan 
ibn Quraysh can claim to be based on the most trustworthy source, and to be 
at present without alternatives.

79 van Bladel, ‘Barmakids’, p. 35.
80 van Bladel, ‘The Bactrian Background’, p. 85.
81 Kunitzsch, Der Almagest, p. 23: ‘Dieses Zeugnis ist wegen seiner Authentizität von aller-

größter Bedeutung und verdient es, mit der direkten Überlieferung auf eine Stufe gestellt zu 
werden. Es hebt sich in seiner knappen Sachlichkeit und Eindeutigkeit eindrucksvoll von den 
vagen oder weitschweifigen bibliographischen Notizen der übrigen Autoren ab, die im allge-
meinen nichts anderes tun, als Angaben zweiter Hand ohne eigene Nachprüfung zu zitieren 
und von Buch zu Buch weiterzuschleppen’.
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7. Conclusions

The translation of the Almagest quoted by Ibn al-Ṣalāḥ in his critique of 
al-Fārābī’s commentary contains knowledge of the Greek text which could not 
have been derived from the translations of al-Ḥajjāj and Isḥāq/Thābit. It shows 
more differences from both the translation of al-Ḥajjāj and the translation of 
Isḥāq/Thābit than the latter two among themselves. Besides that, it has more 
in common with al-Ḥajjāj than with Isḥāq/Thābit. Its terminology agrees best 
with some of the earliest preserved Arabic astronomical texts by al-Khwārizmī, 
and therefore an early chronological classification, possibly at the beginning 
of the ninth century ce, is probable. From the four Arabic translations of the 
Almagest which Ibn al-Ṣalāḥ used in his work on the star coordinates only 
the Maʾmūnic translation by al-Ḥasan ibn Quraysh could be the one which 
he quoted in his critique of al-Fārābī’s commentary, an attribution which is 
supported by our terminological analysis. Only scattered splinters of this trans-
lation have hitherto been available. Now a small, but intact window into its 
text has been opened.

Appendix I: Text and Translations of Almagest V.19.2

Greek text:82

ἵνα οὖν καὶ τὴν πρὸς τὸν διὰ μέσων τῶν ζῳδίων τότε γινομένην παράλλα-
ξιν διακρίνωμεν κατά τε μῆκος καὶ κατὰ πλάτος, τὰς αὐτὰς πάλιν ἰσημερι-
νὰς ὥρας, ἃς ἀπέχει τοῦ μεσημβρινοῦ ἡ σελήνη, εἰσενεγκόντες εἰς τὸ αὐτὸ 
μέρος τοῦ τῶν γωνιῶν κανόνος ἐπισκεψόμεθα τὰς παρακειμένας τῷ ἀριθμῷ 
τῶν ὡρῶν μοίρας, ἐὰν μὲν πρὸ τοῦ μεσημβρινοῦ ᾖ ἡ σελήνη, τὰς ἐν τῷ γʹ 
σελιδίῳ, ἐὰν δὲ μετὰ τὸν μεσημβρινόν, τὰς ἐν τῷ δ ,ʹ κἂν μὲν ἐντὸς τῶν ϟ 
μοιρῶν ὦσιν, αὐτὰς ἀπογραψόμεθα, ἐὰν δ’ ὑπὲρ τὰς ϟ, τὰς λειπούσας εἰς τὰς 
ρπ· τοσούτων γὰρ ἔσται ἡ ἐλάσσων τῶν περὶ τὴν ἐκκειμένην τομὴν γωνιῶν, 
οἵων ἡ μία ὀρθὴ ϟ. τὰς ἀπογεγραμμένας οὖν μοίρας διπλώσαντες εἰσοίσομεν 
εἰς τὸ τῶν ἐν κύκλῳ εὐθειῶν κανόνιον αὐτάς τε καὶ τὰς λειπούσας εἰς τὰς 
ρπ, καὶ ὃν ἂν ἔχῃ λόγον ἡ τὴν τῶν δεδιπλωμένων μοιρῶν περιφέρειαν ὑπο-
τείνουσα εὐθεῖα πρὸς τὴν ὑποτείνουσαν τὴν λείπουσαν εἰς τὸ ἡμικύκλιον, 
τοῦτον ἕξει τὸν λόγον ἡ κατὰ πλάτος παράλλαξις πρὸς τὴν κατὰ μῆκος, 
ἐπειδήπερ αἱ τηλικαῦται τῶν κύκλων περιφέρειαι ἀδιαφοροῦσιν εὐθειῶν. 
πολυπλασιάζοντες οὖν τὸν ἀριθμὸν τῶν παρακειμένων εὐθειῶν ἐπὶ τὴν εὑρι-
σκομένην ὡς ἐπὶ τοῦ διὰ τοῦ κατὰ κορυφὴν σημείου γραφομένου κύκλου 
παράλλαξιν καὶ τὰ γινόμενα μερίζοντες εἰς τὸν ρκ χωρὶς τὰ ἐκ τοῦ μερι-
σμοῦ συναγόμενα μόρια ἕξομεν τῆς οἰκείας παραλλάξεως.

82 Heiberg, Syntaxis mathematica, vol. I, pp. 446–47.
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English translation:83

Now, in order to determine the parallax with respect to the ecliptic, in both 
longitude and latitude, at the given time, we again enter, with the same dis-
tance of the moon from the meridian in equinoctial hours [as before], into 
the same part of the Table of Angles [II.13], and take the number of degrees 
corresponding to that hour, in the third column if the moon is to the east of 
the meridian, or in the fourth column if it is to the west of the meridian. We 
examine the result, and if it is less than 90° we write down the number itself; 
but if it is greater than 90°, we write down its supplement, since that will be 
the size in degrees of the lesser of the two angles at the intersection [of eclip-
tic and altitude circle] in question. We double the number written down, and 
enter with this [doubled] number, and also with its supplement, into the Table 
of Chords [I.11]. The ratio of the chord of the doubled number to the chord of 
the supplement will give the ratio of the latitudinal parallax to the longitudinal 
parallax (for circular arcs of such small size are not noticeably different from 
straight lines). So we multiply the amounts of the chords in question by the 
parallax determined with respect to the altitude circle, and divide the products, 
each separately, by 120. The results of the division give us the separate compo-
nents of the parallax.

Old Maʾmūnic translation:84

من فيها  هو  التّي  النقطة  عن  القمر  يعني  به  ينحرف  نعرف اختلاف المنظر ⟨الذّي  أن  أردنا   فإذا 
الساعات أيضا  نأخذ  فإناّ  الآخر  عن  منهما  واحد  كلّ  ونفصل  والعرض  الطول  في  البروج⟨  فلك 
أدخلناه كناّ  الذّي  الموضع  إلى  الزوايا  إلى جداول  فندخلها  السماء  وبين وسط  القمر  بين  التّي   المعتدلة 
وإن السماء  القمر  توسّط  قبل  في  الساعات  كانت  إن  الثالث  السطر  في  بحياله  ما  ونأخذ  تقدّم  فيما   به 
السطرين أخذناه وكتبناه الرابع فما وجدنا أي  السطر  السماء مما في  القمر  الساعات بعد توسط   كانت 
أقلّ من تسعين جزءا كتبنا ما نقص عن مائة وثمنين أقلّ من تسعين جزءا وإن لم يكن   إن كان ما فيه 
القوس قطعة  تليان  اللتين  الزاويتين  من  الصغرى  الزاوية  أخذنا  قد  كناّ  ذلك  فعلنا  إذا  فإناّ  جزءا 
ثمّ جزءا  تسعين  القائمة  الزاوية  به  تكون  الذّي  بالمقدار  القمر  وموضع  الر[ؤ]وس  سمت  بين   التّي 
نقصت ما  ووتر  والأ[و]تار  القسي  جداول  من  يجتمع  ما  وتر  نأخذ  و  كتبنا  التّي  الأجزاء  [ــع]ــف   نض
نقصته ما  وتر  إلى  أضعفت  التّي  الأجزاء  وتر  نسبة  لنا  فيكون  جزءا  وثمانين  مائة  عن  الأجزاء   هذه 
 تلك الأجزاء المضعفة على مائة وثمانين جزءا كنسبة اختلاف المنظر الذّي في العرض إلى اختلاف
الحال هذه  عند  أوتارها  استعمال  وبين  القسي  استعمال  بين  فرق  لا  كان  فلمّا  الطول  في  الذّي   المنظر 
منظر اختلاف  في  فضربناه  الوترين  هذين  من  واحد  كلّ  أخذنا  متىّ  كناّ  جدّا  صغار  ههنا  القسي   لأنّ 
قسمناه منهما  كلّ واحد  اجتمع من  فما  الر[ؤ]وس  بسمت  تمرّ  التّي  الدائرة  قد حصلناه من  الذّي  القمر 

والعرض الطول  في  المنظر  اختلاف  كم  القسمة  من  يخرج  بما  علمنا  جزءا  وعشرين  مائة  على   

83 Toomer, Ptolemy’s Almagest, p. 266.
84 MS Mashhad, Holy Shrine Library, 4493, pp. 81–82.
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English translation:
If we want to know the parallax〈, with which it deviates, that is to say the 
moon from the point on which it is on the ecliptic,〉 in longitude and latitude, 
and to split apart each of the two from the other, we take again [as before] the 
equinoctial hours which are between the moon and midheaven. We enter with 
them the tables of angles at the [same] place at which we had entered with 
them in what was already mentioned before. If the hours are before [the time 
when] the moon is in midheaven, we take in the third column [the value] that 
is opposite. If the hours are after [the time when] the moon is in midheaven, 
we take in the fourth column [the value] that is opposite. We take what we 
find in either of the two columns and write it down, if it is less then ninety 
degrees. If it is not less than ninety degrees, we write down [the amount by] 
which it is less than hundred eighty degrees. When we have done this, we have 
taken the smaller of the two angles which are adjacent to the division by the 
arc between the zenith and the position of the moon, using a measure in which 
a right angle has ninety degrees. Next we double the degrees which we have 
written down, and we take the chord which is collected in the tables of arcs 
and chords, and [we take] the chord of [the amount by] which it is less than 
hundred eighty degrees. Thus we will have the ratio of the chord of the degrees 
which were doubled to the chord of the complement of these doubled numbers 
from hundred and eighty degrees. [This ratio] is like the ratio of the parallax 
in latitude to the parallax in longitude, since there is no difference in the use 
of angles and the use of their chords in this situation, because the arcs here are 
very small. When we take each of these two chords, multiply them with the 
parallax of the moon, which we have already obtained on the circle through 
the zenith, and divide each of the two results by hundred and twenty parts, 
then we know from the results of the division how much the parallax is in 
longitude and in latitude.

Translation of al-Ḥajjāj:85

الساعات تلك  نأخذ  والعرض  الطول  في  الوقت  ذلك  في  يكون  الذّي  المنظر  اختلاف  نعدل   ولكي 
جداول87 من  الموضع  ذلك  في  فندخلها  النهار  نصف  فلك  من  القمر  بعد  هي  التّي  أيضا86   المعتدل 
النهار نصف  قبل  القمر  موضع  كان  فإن89  الساعات88  عدد  تقابل  التّي  الأجزاء  ونطلب   الزوايا 
التّي الأجزاء  أخذنا  النهار  نصف  بعد  موضعه  كان  وإن  الثالث  الجدول  في  التّي  الأجزاء  أخذنا 

85 Text of MS Leiden, Universiteitsbibliotheek, Or. 680, fol. 85v; variant readings of 
MS London, British Library, Add. 7474, fol. 150r–v in the footnotes.

الساعات 86 أيضا  .فنأخذ 
.جدول 87
النهار 88 نصف  فلك  من  القمر  بعد  هي  التّي  .الساعات 
قبل 89 القمر  .خوضع 
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التسعين91 من  أكثر  كانت  وإن  أثبتناها  التسعين90  من  أقلّ  الأجزاء  كانت  فإن  الرابع  الجدول    في 
من الصغرى  الزاوية  قدر  هو  وذلك  جزءا  وثمانين92  مائة  تمام  عن  تنقص  التّي  الأجزاء     أثبتنا 
فنأخذ جزءا  تسعين94  القائمة  الزاوية  تكون  به  الذّي  بالمقدار  القطعة  هذه  على  التّي   الزوايا93 
بعينها الأجزاء  تلك  ندخل  القسي  أوتار  جدول  في  اجتمع  ما  وندخل  فنضعّفها  أثبتنا  التّي   الأجزاء 
الأجزاء هذه  ضعف  هي  التّي  القوس  وتر  نسبة  فيكون  جزءا97  وثمانين  مائة  تمام  من96  نقص   وما95 
في القمر  منظر  اختلاف  كنسبة  الدائرة  نصف  تمام  عن  الناقصة  القوس  توتر98ّ  الذّي  الوتر   إلى 
أوتارها تكون  >لا<  الأفلاك  من  القسي  هذه  مثل  أقدار  لأنّ  الطول  في  اختلافه  إلى   العرض 
المنظر اختلاف  قسي  أوتار  عدد  في  الأوتار  هذه  عدد  في  الأوتار  هذه  عدد  فيضرب99   مختلفة 
نقسم ثمّ  الرؤوس  سمت  نقطة  على  المخطوط  الفلك  في  يكون  الذّي  المنظر  اختلاف  كمثل   الموجود 

المنظر ذلك  اختلاف  فهو  الأجزاء  من  القسمة  من  خرج  فما  وعشرين  مائة  على  اجتمع   ما 

Translation of Isḥāq/Thābit:100

في البروج  فلك  إلى  بالقياس  ذلك  عند  يكون104  الذّي  النظر  اختلاف103  أيضا  نقوّم102   وكيما101 
من القمر  بعد  هي  التّي  بأعيانها  الاستوائيةّ  الساعات  تلك  أيضا  ندخل  فإناّ  العرض  وفي   الطول 
من العدد  ذلك  حيال105  ما  ننظر  ثمّ  الزوايا  جدول  من  بعينه  القسم  ذلك  في  النهار  نصف   دائرة 
حياله107 الاجزاء  من  كان  فما  النهار  نصف  دائرة  قبل  القمر  كان  إن  أمّا  أجزاء106  من   الساعات 
الصفّ في  حياله108  الأجزاء  من  كان  فما  النهار  نصف  دائرة  بعد  كان  إن  وأمّا  الثالث  الصفّ   في 
ما أثبتنا  للتسعين  مجاوزة  كانت  وإن  أثبتناها110  ذلك  دون  وما109  تسعين  الأجزاء  كانت  فإن   الرابع 
التّي بالأجزاء  التقاطع  هذا  في  اللتين  الزاويتين  أصغر  مبلغ  هذا  فإن  وثمانين  مائة  إلى  بعدها   يبقى 
مما111 أثبتناه  وما  بعينه  الأجزاء  من  أثبتناه  ما  نضعّف  ثمّ  جزءا  تسعون  قائمة  واحدة  زاوية   بها 
نسبة فأيّ  الدائرة  في  التّي  الأوتار  جدول  في  وندخله  وثمانين  مائة  إلى  التسعين  بعد  يبقى  ما   هو 
إلى الباقية  القوس  يوترّ  الذّي  الخطّ  إلى  المضعّفة  الأجزاء  قوس  يوترّ  الذّي  المستقيم  للخطّ   كانت 
قبل من  الطول  في  المنظر  اختلاف  إلى  العرض  في  المنظر  اختلاف  نسبة  فبقي  الدائرة   نصف 
فيضاعف فرقان113  المستقيمة  الخطوط  وبين  بينه  فليس  الدولية112  قسي  من  مقداره  هذا  كان  ما   أن 
ترسم التّي  العظمى  الدائرة  في  يوجد  الذّي  المنظر  باختلاف  بإزائها  التّي  المستقيمة  الخطوط   عدد 
العددين من  واحد  كلّ  وعشرين  مائة  على  اجتمع  ما  ويقسم  الرأس114  سمت  على  التّي  بالنقطة   مادّة 
المقسوم العدد  حسب  على  المنظر  اختلاف  فهو  القسمة  عند  الأجزاء  من115  حصل  فما  حياله   على 

Appendix II: Arabic texts translated in the main text

Ibn al-Ṣalāḥ’s critique:116

المعروف بطلميوس  كتاب  بشرح  موسوما  الفارابي  نصر  أبي  للفاضل  كتابا  نظرت   كنت 
الفصل انباء  إلى  انتهيت  بحيث  بمعانيه  والتفهّم  الٕاصفاء  حقّ  مستوفيا  فتصفّحته   بالمجسطي 
شرح مع  هناك  التي  النسب  على  البرهان  ٕاقامة  يروم  وجدته  الخامسة  المقالة  في  عشر  السابع 

مغالطيةّ ممتنعة  برهانه  تركيب  في  يستعملها  التّي  المقدّمات  تلك  أنّ  الّا  مستوفى  للفصل   

عن 96   وندخل ما 95   ص 94   الزاوية 93   المائة والثمانين 92  تسعين 91   تسعين 90
 97 ø   98 فنضرب 99   فتكون

100 Text of MS Tunis, National Library, 7116, fol. 88r; variant readings of MS Philadel-
phia, Penn Libraries, LJS 268, fol. 65r in the footnotes.

تكون 104   اختلافات 103   يُقَوِمُ 102   ولكيما 101 الأجزاء 106   بحيال 105   التّي 
بحياله 107 بعين 110   بما 109   بحياله 108    ?الدورية Read 112   فما 111   أثبتناها 
القمر 114   .فرق 113 من 115   وبمركز  حصل  فما 
116 MS Mashhad, Holy Shrine Library, 5593, p. 81.
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Al-Fārābī’s commentary on Almagest V.19:117

وانحراف العرض  في  المنظر  انحراف  المعلوم  الانحراف  هذا  في  نستخرج  أن  الٓان  بقي   وقد 
اتفّق وما  الساعات  او  بعينها  المعتدلة  الساعات  تلك  أخذ  أن  ذلك  إلى  والسبيل  الطول  في   المنظر 
فيه الساعات  تلك  أدخلنا  كنا  الذّي  بعينهٔ  الجدول  ذلك  في  النهار  دائرة نصف  من  القمر  بعد  فيها وهي 

English translation:
Now it remains to extract for that known parallax (inḥirāf al-manẓar) the 
latitudinal parallax (inḥirāf al-manẓar fī l-ʿarḍ) and the longitudinal parallax 
(inḥirāf al-manẓar fī l-ṭūl). The means for that are that we take those equi-
noctial hours themselves, or the [seasonal] hours and what [difference] occurs 
in them. These are the distance of the moon from the circle of the meridian in 
that same table in which we had entered those hours [already before].

Al-Fārābī’s commentary on Almagest V.19:118

منظره وبانحراف  الساعة  تلك  في  جهاته  كلّ  القمر  موضع  صحّحنا  وقد 

English translation:
We confirmed the position of the moon in all directions in that hour and with 
its parallax (wa-bi-nḥirāfi manẓarihi).
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Thābit ibn Qurra’s Version of the Almagest and  
Its Reception in Arabic Astronomical Commentaries

(based on the presentation held at the Warburg Institute,  
London, 5th November 2015)

Dirk Grupe*

1. Introduction

Since Paul Kunitzsch’s ground-breaking study of the Arabic and Latin trans-
mission of Claudius Ptolemy’s Syntaxis mathematica, better known by its Ara-
bic title, Almagest, it has been the common belief of historians of Islamic sci-
ence that a total of four different Arabic versions of the Almagest with notable 
influence were produced during the ninth century as part of the Arabic acqui-
sition of Hellenistic astronomy.1 The key witness for this assumption has been 
a report from the twelfth century by the physician Ibn al-Ṣalāḥ (d. 1154 ce, 
Damascus). Although other, partly deviating accounts on Arabic versions of 
the Almagest were known, Kunitzsch gave the most credibility to Ibn al-Ṣalāḥ. 
One reason was Ibn al-Ṣalāḥ’s diligent expertise and the relative proximity of 

* The essentials of this article were presented in 2015, in my conference paper with the 
same title, at Ptolemy’s Science of the Stars in the Middle Ages, The Warburg Institute (Lon-
don), 5–7 November 2015, and on various occasions thereafter. I wish to express my thanks to 
Dr Mª José Parra. Her well-organised collection of Arabic manuscript reproductions that she 
assembled during a postdoc period at the project Ptolemaeus Arabus et Latinus and her exper-
tise with Arabic and Persian astronomical works were important prerequisites for the findings 
presented in that paper and in the present article. Since 2013, Dr Parra has been keeping her 
eyes open for a Thābitian influence in the manuscripts that passed through her hands, and 
several of the texts included here would be missing without her help. The database of Ptole- 
maic manuscripts and their classification, which is hosted by the Bavarian Academy of Scienc-
es and Humanities (Munich), provides a useful tool for studies on the dissemination and the 
reception of texts related to Ptolemy’s work.

A first version of this article was submitted in spring 2016, with the provisional title ‘Fur-
ther witnesses of Thābit ibn Qurra’s version of the Almagest’. A late editing stage of this vol-
ume (December 2018) allows me to briefly add that some of my conjectures from 2015 require 
adjustment, since MS Jaipur, Maharaja Sawai Man Singh II Museum Library, 20, discussed 
under 2.4, has become accessible to me. I am grateful to the owners and the custodians of the 
Jaipur manuscript for enabling Dr Parra and me to undertake a thorough study of the text and 
its transcription during a stay in India between September and November 2018. An article on 
some of our observations about the Jaipur manuscript is presently forthcoming in a different 
volume.

1 Kunitzsch, Der Almagest.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 139–157
© F  H  G  10.1484/M.PALS-EB.5.120177
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his lifetime to the events in question. Another reason was that the extant man-
uscripts related to the Almagest in the Arabic language seemed to agree with 
Ibn al-Ṣalāḥ’s account.2

According to Ibn al-Ṣalāḥ, the first translation of Ptolemy’s Almagest into 
Arabic was made for the caliph al-Ma͗mūn in the early ninth century. Except 
for fragments, apparently from this version, in al-Battānī (ninth c.), the work 
is lost.3 It was followed by a second translation made in 827/8 by al-Ḥajjāj 
ibn Yūsuf ibn Maṭar. Al-Ḥajjāj’s version is extant in one complete copy, in 
MS Leiden, UB, cod. or. 680, and in a large fragment, in MS London, BL, 
add. 7474.4 A third Arabic translation of the Almagest was produced, and com-
pleted between 879 and 890, by Abū Yaʿqūb Isḥāq ibn Ḥunayn. Corrections 
to that third translation were made by Thābit ibn Qurra (d. 901), who thereby 
produced the fourth and latest of the Arabic versions listed in Ibn al-Ṣalāḥ’s 
report. No surviving copy of Isḥāq ibn Ḥunayn’s translation of the Almagest 
without Thābit ibn Qurra’s corrections has been identified, whereas ten man-
uscripts of Isḥāq’s text after correction by Thābit are known, the oldest com-
plete one being MS Tunis, National Library, 07116, from 1085.5 The rich evi-
dence of the Isḥāq/Thābit version of the Almagest corresponds to a general 
estimate according to which this version became the preferred translation of 
Ptolemy’s work in large parts of the Arabic-speaking world.6 It was also from 
a combined use of the two surviving Arabic versions, Ḥajjāj and Isḥāq/Thābit, 
that the most influential Latin translation of Ptolemy’s Almagest was produced, 
by Gerard of Cremona in Toledo (Spain) some time before 1175 and with con-
tinued modifications possibly until Gerard’s death in 1187.7

2 Kunitzsch, Der Almagest, ch. I.A, pp. 15–82, see esp. pp. 22–24, including a translit-
eration and a German translation of the passage from Ibn al-Ṣalāḥ, and pp. 59–71, with an 
analysis of preserved witnesses. An English translation of Ibn al-Ṣalāḥ’s report can be found in 
the article by Johannes Thomann in this volume.

3 Kunitzsch, Der Almagest, pp. 60–64. For further citations of the Ma͗mūnic translation of 
the Almagest in the work of Ibn al-Ṣalāḥ, see the article by Johannes Thomann in this volume.

4 On preserved manuscripts of the Almagest in Arabic see Kunitzsch, Der Almagest, 
pp. 34–46, successively updated and partly revised in Kunitzsch, Der Sternkatalog, vol. I, 
pp. 3 ff., and Kunitzsch, ‘A Hitherto Unknown’, pp. 31–37. New information on most of these 
manuscripts was contained in the article by Dr Mª José Parra, ‘Making a Catalogue of Arabic 
Ptolemaic Manuscripts’, which was prepared for publication together with the present paper,  
as an essential complement. Although Dr Parra’s work is currently uncitable, it is referred to 
herein on various occasions (as Parra, ‘Making a Catalogue’), due to its outstanding impor-
tance to the present paper.

5 See Kunitzsch, Der Almagest, pp. 38–41, where the discovery of the Tunis manuscript is 
attributed to Fuat Sezgin; cf. Sezgin, GAS VI, pp. 88–89.

6 See e.g. Kunitzsch, Der Almagest, pp. 35 and 71.
7 Kunitzsch, Der Almagest, pp. 83–112. An introductory survey of the Greek-Arabic-Latin 

transmission of mathematical works and their translators, along with a helpful bibliography, is 
given in Lorch, ‘Greek-Arabic-Latin’.
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Different from the above commonly held belief, I was recently able to prove 
the existence of another, previously unknown Arabic version of Ptolemy’s 
Almagest and its translation into Latin.8 My argument was founded mainly 
on three sources; (a) a Latin translation from the twelfth century (extant in 
MS Dresden, SLUB, Db. 87, fols 1r–71r) of the first four books of that Arabic 
version, (b) the appearance of distinctive passages from the same Arabic text, in 
the form of quotations from the Almagest, in al-Nasawī’s Commentary on the 
Sector Figure (eleventh c.), and (c) detailed remarks about this version of the 
Almagest in Naṣīr al-Dīn al-Ṭūsī’s famous Taḥrīr of the Almagest (thirteenth 
c.).9 Al-Ṭūsī refers to the text as ‘Thābit’s version’, scil. of the Almagest. This is 
in agreement with remarks by other historic witnesses, from the tenth to the 
fifteenth centuries, who accredit the ninth-century translator and mathemati-
cian Thābit ibn Qurra with the production of a revised version of the Almag-
est, aside from his corrections to Isḥāq ibn Ḥunayn’s translation.10 Although 
the references reveal a reception of Thābit’s Almagest across several centuries, 
the work seems to have remained less known than other Arabic versions of 
Ptolemy’s work or not to have reached the same authoritative status.11 In par-
ticular, evidence of a circulation of Thābit’s text was found only in the eastern 
parts of the Islamic world.12

Since my first publications on the subject I have been able to identify further 
texts related to Thābit’s Almagest. They reveal a greater popularity of Thābit’s 

8 Grupe, ‘The Thābit-Version’. The newly found version of the Almagest, made by Thābit 
ibn Qurra, is also the subject of Grupe, The Latin Reception, pp. 90–134 and Appendix B. 
Concerning the previous scepticism about an Arabic version of the Almagest by Thābit ibn 
Qurra alone see the analysis in Kunitzsch, Der Almagest, pp. 25–34. See also Carmody, Astro-
nomical Works, p. 19; Morelon, Thābit ibn Qurra, and, as a recent example, Pedersen, A Sur-
vey, pp. 14–16, who does not consider a text of this kind among Thābit’s astronomical works.

9 Correspondences between the Latin Dresden Almagest and al-Nasawī’s Commentary on 
the Sector Figure were known before from Lorch, Thābit ibn Qurra, pp. 355–75. Transcriptions 
of al-Ṭūsī’s remarks are given in Grupe, ‘The Thābit-Version’, p. 151.

10 For a collection of these remarks see Kunitzsch: Der Almagest, pp. 17–34, supplemented 
in Kunitzsch, Ibn aṣ-Ṣalāḥ, pp. 115–23 passim. References to a version of the Almagest by 
Thābit ibn Qurra were known, especially, from the writings of Abū ʿAlī al-Muḥassin al-Ṣābiʾ 
(tenth c.), Ibn al-Nadīm (2nd half tenth c.; relating a version by Thābit based on the ‘old’ trans-
lation) and Qāḍīzāde al-Rūmī (late fourteenth to early fifteenth c.).

11 Thābit’s text seems to have been unknown to Ibn al-Ṣalāḥ or not considered by him to 
be a ‘translation’ of Ptolemy’s work. I am grateful to Paul Kunitzsch for fruitful discussions 
about this aspect. Similarly, an explanatory note in several manuscripts of al-Ṭūsī’s Taḥrīr indi-
cates that later recipients of the Taḥrīr felt the need to explain al-Ṭūsī’s repeated references to 
a ‘Thābit’s version’ of the Almagest; a transcription of the note is given in Kunitzsch, Der Al-
magest, p. 26. The tradition of Thābit’s Almagest also appears less homogeneous than others, 
as some of Thābit’s insertions to the original content of the Almagest became intentionally 
removed again in some transmission branches; cf. Grupe, ‘The Thābit-Version’, pp. 150 f.

12 cf. Grupe, ‘The Thābit-Version’, p. 152.
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text than I had previously thought. At the same time, they confirm a reception 
mostly in the Persian area. In the present paper a brief account of these texts 
and their significance as witnesses of Thābit ibn Qurra’s Almagest is given.13

2. Further texts and manuscripts related to Thābit ibn Qurra’s version of the 
Almagest
2.1. MS (formerly) Tehran, private collection Naṣīrī, 789 (epitome of the Almagest)
This manuscript contains on 127 folios a text that once was described as an 
autograph by the thirteenth and early-fourteenth-century Persian astronomer 
Quṭb al-Dīn Maḥmūd b. Masʿ ūd al-Shīrāzī (1236–1311).14 For some time the 
text was wrongly believed to be a copy of the Isḥāq/Thābit version of the 
Almagest.15 Paul Kunitzsch later observed that the manuscript does not as a 
whole provide the ‘authentic’ text of the Almagest; only Alm. I,  1 and some of 
the chapter titles appear in the wording of Isḥāq/Thābit. As for the remain-
ing text, Kunitzsch believed this to be an epitome of the Almagest which 
al-Shīrāzī had produced based on Isḥāq/Thābit’s translation.16 Kunitzsch also 
noticed that Alm. I,  1 has been turned into a preface which precedes a general 
table of contents and which has been excluded from the chapter count. The 
rearrangement caused the numbering of Ptolemy’s subsequent chapters to be 
reduced by one. Parts of the private collection where the manuscript was kept 
have been sold in the meantime, leaving the manuscript’s present whereabouts 
unknown.17 However, from existing paper copies of some of its pages it is evi-
dent that al-Shīrāzī did not compose the text as freely as has been commonly 
believed.18 Correspondences with the Latin translation of Thābit’s Almagest 
in MS Dresden, SLUB, Db. 87 show that for the first chapters of his trea-
tise al-Shīrāzī took substantial parts from Thābit’s Almagest. At least from  
Alm. I,  10 onwards, however, al-Shīrāzī seems to have continued his epitome 
mainly based on Isḥāq/Thābit’s alternative version of the Almagest.19

13 Recently a reference by the Persian scholar al-Harawī in his edition of Menelaus’ Spherics 
has also been plausibly related to Thābit’s Almagest by Sidoli and Kusuba, ‘Al-Harawī’s Ver-
sion’, p. 164. Traces of Thābit’s translation in the Islamic West, in marginal notes in MS Tu-
nis, National Library, 7116, containing the Isḥāq/Thābit version of the Almagest, have been 
found by Mª José Parra, ‘Making a Catalogue’ (see above, note 4).

14 Sezgin, GAS VI, p. 89. For a brief account on al-Shīrāzī’s life and work see Ragep, 
‘Shīrāzī’.

15 cf. Sezgin, GAS VI, p. 89.
16 Kunitzsch, Der Sternkatalog, vol. III, p. 200, referring back to vol. II, p. 171. See also 

Kunitzsch, ‘A Hitherto Unknown’, p. 31.
17 I owe this information to Mohammad Bagheri.
18 I am grateful to Paul Kunitzsch for providing me with these copies in 2014, which also 

enabled me to prove that the Jaipur Almagest stems from Thābit’s translation; see below 2.4.
19 In the talk on which this article is based, I argued that al-Shīrāzī gave up on Thābit’s 

Almagest before Alm. I,  10 and for the remainder of his text used only the Isḥāq/Thābit ver-
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The following transcriptions of the chapter titles and the opening sentences 
of Alm. I,  3 and I,  5 according to MS (formerly) Tehran, Naṣīrī, 789 and 
MS Dresden, SLUB, Db. 87 show the dependency of both texts on the same 
Arabic tradition. The correspondences become clearer from a simultaneous 
comparison with the different wording in Isḥāq/Thābit’s version of the Almag-
est (transcribed from MS Tunis, National Library, 07116).20

Alm. I,  3.
MS (formerly) Tehran, Naṣīrī, 789, fol. 4v:5 f.:

الدور كرية  وحركتها  الشكل  كرية  السماء  ان  في  الثاني  الباب 

والارصاد القياسات  من  لهم  ظهر  ما  هو  كريين  وحركتها  السماء  بان  قالوا  ان  الى  القدماء  دعا  ما  اول  ان 
راوها التي   

English translation:
Chapter 2: On that the heaven is spherical in shape and its motion is spherical 
in rotation.
The first [thing] that called the ancients to say that the heaven and its motion are 
spherical is what was perceptible for them from the analogies and the observations 
that they saw.

MS Dresden, SLUB, Db. 87, fols 1r:3 and 2r:24 f. (trl. of Thābit’s Alma-
gest):21

Quia celum est sperale et suus motus speralis motus.
Primum igitur qui vocavit antiquos ut dicerent quia motus celi est speralis est hoc quid 
fuit ipsum visum ab illis in consideracione sua.

sion. This estimate needs to be revised, since a microfilm of al-Shīrāzī’s epitome reappeared 
in Munich in October 2016 in Menso Folkerts’ collection (noticed by Mª José Parra). I am 
thankful to Menso Folkerts, who in 2011 offered me the use of his microfilm collection and 
in 2016 took it upon himself to bring his microfilms back to Munich. A brief inspection of the 
microfilm of the Naṣīrī manuscript has revealed an influence of Thābit’s Almagest also in later 
passages of al-Shīrāzī’s epitome, especially in the discussion of the sector figure. Al-Shīrāzī’s 
creative treatment of the sector figure in his epitome, which includes two sets of numbered 
dia grams for twelve modes and their respective ‘reverses’ for each of the planar and the spher-
ical versions of the theorem, has in the meantime been the subject of my paper ‘Geometric 
Reasoning in Arabic Works on the Almagest’, presented at From Pseudo-Bede to Duarte De 
Sande: Arts and Sciences in East and West, Würzburg, 22 November 2016.

20 Transliterations of the opening sentences of Alm. I,  3 and I,  5, also according to the ear- 
lier Arabic version of the Almagest by al-Ḥajjāj as well as Gerard of Cremona’s Latin transla-
tion, are given in Kunitzsch, Der Almagest, pp. 134 f.

21 In the Dresden Almagest, a copy from c. 1300, the use of Latin pronouns is often incor-
rect and tense-agreement is lacking. This may reveal a corresponding insecurity on the part of 
the (presumably oriental) translator of the text, ʿAbd al-Masīḥ Wittoniensis. I have abstained 
from emending these characteristics of the text.
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MS Tunis, NL, 7116, fol. 2v:17–19 (Isḥāq/Thābit’s translation):
كرية ايضا  وحركتها  كرية  السماء  ان  في 

من ابدا  متحركات  النجوم  وسائر  والقمر  الشمس  راوا  لانهم  كان  انما  ذكرنا  لما  القدماء  توهم  اول  ان 
المغارب الى  المشارق   

(Trl.: On that the heaven is spherical and its motion is also spherical.
The first imagination of the ancients of what we have mentioned was because 
they saw the sun and the moon and the passing of the stars always moving from 
the east to the west.)

Alm. I,  5.
MS (formerly) Tehran, Nasīrī, 789, fol. 6v:1–3:

السماء وسط  في  الارض  ان  في  الرابع  الباب 

السماء امر  من  ونراها  نشاهدها  التي  الاشياء  تعرض  ان  يمكن  لا  انه  نعلم  ان  فينبغي  قلنا  ما  بينا  قد  كنا  فاذ 
المركز بمنزلة  السماء  وسط  في  والارض  الا  [و]الارض   

English translation:
Chapter 4: On that the earth is in the middle of the heaven.
Since we have demonstrated what we said, we need to know that there cannot 
occur the things that we witness and see concerning the heaven and the earth, if 
the earth is not in the middle of the heaven, in the status of the centre.

MS Dresden, SLUB, Db. 87, fols 1r:5 and 3v:32–34, (trl. of Thābit’s Alma-
gest):

Quia terra est in medio celi.
Ostensis igitur quem prediximus sciendum quia non possunt esse accidentalitates quas 
videmus in celo et in terra si non sit terra in medio celi quasi centrum.

MS Tunis, NL, 07116, fol. 3v:27–4r:1 (Isḥāq/Thābit’s translation):
السماء وسط  في  الارض  ان  في 

اذا نرى  كما  فيها  لنا  ظهر  ما  يكون  انما  انه  وجدنا  الارض  موضع  نعلم  ان  طلبنا  ان  بهذا  علمنا  بعد  ومن 
فقط الكرة  في  كالمركز  السماء  وسط  موضعها  اثبتنا  نحن   

(Trl.: On that the earth is in the middle of the heaven.
After we have become aware of this, if we seek to know the position of the earth, 
we find that what is perceivable for us about it, as what we see, occurs only if we 
assert its position to be the middle of the heaven, like the centre in the sphere.)

The Dresden translation has not preserved a chapter count and therefore does 
not allow for a comparison in this regard. However, the Dresden text con-
tains Alm. I,  1 (fols 1r:14–2r:8) in a form different from the Arabic traditions 
Isḥāq/Thābit and al-Ḥajjāj, which suggests that this variant of Ptolemy’s intro- 
duction was an original part of Thābit’s Almagest. A reworking of the Alma-
gest, discussed below under 2.3, confirms the shifted numbering of the chapters 
in Thābit’s tradition, while Ptolemy’s introductory chapter Alm. I,  1 is again 
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missing. An explanation could be that Thābit rearranged Ptolemy’s chapters to 
present Alm. I,  1 as an uncounted preface that was followed by a general table 
of contents. An inspiration for this can be found in the Almagest itself, where 
Ptolemy’s philosophical introduction does not connect closely to the technical 
content of the work, whereas the following chapter, Alm. I,  2, already provides 
a catalogue of the different subjects of the Almagest. Thus separated from the 
rest, the introduction was much more at risk of becoming lost or omitted. It 
may thus have survived only in the Dresden translation, whereas al-Shīrāzī 
compensated for its loss by putting in its place Alm. I,  1 from Isḥāq/Thābit’s 
alternative version.

2.2. Ibn Sīnā, Kitāb al-shifāʾ
Similarities between Ibn Sīnā’s (Latinised: Avicenna; c. 980–1037) discussion 
of the sector figure, following Alm. I,  13, and the treatment of the same the-
orem in al-Nasawī’s (fl. mid-eleventh c.) Commentary on the Sector Figure as 
well as in the Dresden Almagest were found by Richard Lorch.22 The passage 
in al-Nasawī’s Commentary has meanwhile been identified as being copied 
from Thābit’s Almagest.23 The correspondences between Ibn Sīnā and al-Na-
sawī can therefore be explained if one accepts that Ibn Sīnā, too, took parts of 
his information from Thābit ibn Qurra’s version of the Almagest.

Agreement between al-Nasawī’s quotations from the Almagest and Ibn 
Sīnā’s Kitāb al-shifāʾ can also be found in other passages. Of particular inter-
est is an extension to another theorem, again from Alm. I,  13,24 which both 
authors present in a similar way, as follows (the transcription and the diagrams 
largely follow the Cairo edition of Ibn Sīnā;25 elements that are not found in 
al-Nasawī, based on a collation of the MSS Istanbul, Topkapı, Ahmet III 3464, 
fol. 215v:4–16, id., Hazine 455, fols 50v:17–49r:6, and Leiden, UB, Or. 556/4, 
fol. 56v:3–12, are indicated by angle brackets <  >, whereas additional elements 
in al-Nasawī have been inserted in square brackets [  ]; among further dif-
ferences, in the manuscripts of al-Nasawī the points on the circle arc in the 
right one of the following two diagrams are labelled in reverse order, and the 
second arc in the first argument reads جـ ح instead of بـ   minor variants are ;بـ 
not considered):

[Preceded by a discussion of Ptolemy’s first case, corresponding to an intersection of the 
extended diameter and the secant on the side of the points ا and بـ, where it is shown 
that, if the arc جـ ـ  جـ)and the relation sin ب بـ)sin/(ا  بـ are known, the arc (ا   can be ا 
determined.]

22 Lorch, Thābit ibn Qurra, pp. 355 f.
23 Grupe, ‘The Thābit-Version’, p. 151.
24 The theorem is a rider to what Toomer counts as Ptolemy’s Theorem 13.4.
25 Riḍā Madwar et al., Ibn Sīnā.
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الاول الشكل  في  علمنا  <ما>  بمثل  ح  بـ  ح،  جـ  قوسي  نعلم  فانا  الاخرى  الجهة  من  الالتقاء  كان  ان   واما 
دائرة نصف  جميع  لكن  معلومة  جـ  بـ  قوس>  جميع  لكن  معلومة  ح  <بـ  قوس  جميع  فتصير  بـ  ا  قوس 

معلوما ا  بـ  يبقى  معلومة  جـ ا  ح   

[بـ] ا  قطر  على  عمود  محالة  لا  وهو  بـ  [قوس] ا  جيب  ه  بـ  فليكن  يلتقي  لا  موازيا  كان  ان  واما   
بين جـ   ، بـ  زاويتا  تبقى  ح  [بـ]  ا  [قطر]  على  عمود  ايضا  وهو  جـ  [قوس] ا  جيب  ز  جـ  و:  ح   
[كما متساويين  ز  جـ   ، ه  بـ  فيكون  الاضلاع  متوازي  ه  جـ  سطح  ويكون  قائمتين   المتوازيين 
ا بـ   ، ح  جـ  فـ[خرج]  ح  جـ  [قوس]  جيب  ايضا  ز  جـ  لكن  س]  من  ا  مقالة  من  لد  شكل  في   تبين 

اردنا] ما  [وذلك  ا  بـ  وهو  معلوم  الدائرة  نصف  تمام  الى  يبقى  ما  فنصف  معلوم  بـ  جـ  و:  متساويان 

This partly corrupted passage may be interpreted as follows:
If the intersection occurs on the other side, we know [the relation of the sines of] 
the two arcs بـ ح ,جـ ح [from what is given, using the identity sin(بـ  [.etc ,(بـ ح) sin = (ا 
and, analogously to what we found in the first case, the arc [ح  by corresponding ,جـ 
application of the ‘first’ case]. Then the whole arc ح  بـ becomes known, as the arc بـ 
ا is known [from what is given]. But the whole semicircle جـ جـ   is known, hence ح 
there remains ا ـ  .known ب
And if they are parallel and do not intersect, ه بـ is the sine of the arc بـ   and ا 
that, of course, is a column on the diameter ح ز and ,ا    is the sine of the arc جـ 
جـ ح and it is also a column on the diameter ا   equally join the جـ [ز] ,بـ [ه] and ,ا 
two parallels perpendicularly, and the area ه ه is a parallelogram, then جـ   جـ ,بـ 
  are equal, as is shown in Proposition 3[3] of Book 1 of Euclid’s Elements. But ز
ز ح is also the sine of the arc جـ  ح hence the result is that ,جـ  ا ,جـ   جـ are equal, and بـ 
 is known [from what is given], hence half of what remains as the complement to بـ
the semicircle is known, and it is ا .and that is what we wanted ,بـ 

The passage supplements one of Ptolemy’s theorems in a manner very similar  
to Thābit’s inserted comments on the sector figure at the end of Alm. I,  13.26 
Analogous to Thābit’s treatment of the sector figure, explicit proofs of the 
validity of Ptolemy’s theorem are given for constellations which Ptolemy 
had ignored. Moreover, the constellations correspond again to an opposite 
and a parallel case relative to the first case discussed by Ptolemy, and prov-
ing these cases involves again a completion of the semicircle and the identity  

26 Thābit’s insertion, according to the quotation by al-Nasawī, is edited in Lorch, Thābit 
ibn Qurra, pp. 362–70.
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sin a = sin(180°−a).27 The occurrence of the sine in this passage differs from 
Ptolemy’s general use of the chord of the doubled arc; however, it is in line 
with other Arabic witnesses of Thābit’s Almagest which indicate the possibility 
that Thābit systematically replaced Ptolemy’s chords of doubled arcs with the 
sine.28 Though not preserved by Ibn Sīnā, a reference to Euclid’s Elements also 
appears in al-Nasawī’s quotation of the passage. Such references were found to 
be another characteristic of Thābit’s Almagest.29

The present theorem is of interest with regard to the transmission of 
Thābit’s text. The known witnesses of Thābit’s Almagest differ systematically 
in how much of the above extension they include or confirm. The most com-
prehensive account is the one cited above, as found in Ibn Sīnā and al-Nasawī. 
By contrast, al-Ṭūsī speaks in the same context of only one additional diagram 
in Thābit’s Almagest, viz. the one related to the opposite case. This agrees with 
Qāḍīzāde al-Rūmī, who says that in total Alm. I, according to Thābit’s version, 
contained four, not five, diagrams more than the other Arabic versions, while 
typically three of the additional diagrams pertain to the sector figure.30

An omission of the diagram for the parallel case may have been decided on 
in some parts of the tradition, because the validity of the theorem is trivial in 
this case and can be easily demonstrated without a dedicated illustration. How-
ever, also the diagram for the opposite case might be considered dispensable, 
especially if al-Nasawī’s labels are used, which render the diagram hardly more 
than a mirror image of Ptolemy’s own diagram of the first case. This may have 
led to a third group of texts, represented by the Latin Dresden Almagest and a 
reworking of the Almagest kept in Tehran, which will be discussed next. They 
contain neither of the two additional diagrams, while also the discussion of the 
corresponding cases has been identically shortened in both texts (cf. below 2.3).

It is the two oldest witnesses, Ibn Sīnā and al-Nasawī, both from the first 
half of the eleventh century, that give the most comprehensive version of the 
supplement. It is therefore plausible that the above reading resembles Thābit’s 
insertion most closely, whereas later recipients of Thābit’s text occasionally 
shortened the argument. Such abbreviations could have been motivated by the 
fact that this theorem is not used later on in the Almagest.

27 For the correspondences in Thābit’s discussion of the sector figure cf. the summaries in 
Lorch, Thābit ibn Qurra, pp. 155 f. and 374 f.

28 The use of the sine in al-Nasawī’s quotations in contrast to the chords in the Latin Dres-
den translation was noticed by Lorch, Thābit ibn Qurra, p. 357. Until now, the Dresden trans-
lation has remained the only witness of Thābit’s Almagest that does not have the sine but uses 
the chord of the doubled arc. Ptolemy’s chords therefore may have been restored in some parts 
of the tradition of Thābit’s Almagest.

29 See Grupe, ‘The Thābit-Version’, pp. 149 ff.
30 Transliterations of al-Ṭūsī’s and Qāḍīzāde al-Rūmī’s statements are given in Kunitzsch, 

Der Almagest, pp. 31 f. (Qāḍīzāde al-Rūmī) and Grupe, ‘The Thābit-Version’, p. 151 (al-Ṭūsī).
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2.3. MS Tehran, Majlis-Senate, 1231 (abridged reworking of Thābit’s Almagest)
The manuscript no. 1231 of the Parliament (Majlis-Senate) Library in Teh-
ran preserves on 157 folios the most extensive surviving derivative of Thābit’s 
text.31 The text is a systematically reshaped and shortened version of Thābit’s 
Almagest. All tables, including all chapters that consist of tables, such as Pto-
lemy’s star catalogue in Alm. VII and VIII, as well as any references to tables 
in Thābit’s text, as they are known from the Dresden translation, have been 
removed. Furthermore, the division of the Almagest into books, which is also 
documented for Thābit’s version, has been abolished in favour of a continuous 
sequence of ninety-two numbered chapters. The numbering of the chapters has 
been adapted to the omission of the table chapters, whereas it still reflects the 
shifting of the chapter numbers due to Thābit’s separation of Ptolemy’s intro-
duction as well as further changes in the chapter division.32 As in the texts dis-
cussed before, under 2.1 and 2.2, Ptolemy’s introduction is again not contained 
in the Majlis manuscript, which instead begins immediately with an adapted 
variant of Alm. I,  2.

Further shortenings in the Majlis text consist in the removal of references to 
Euclid’s Elements and of cross-references to numbered books and theorems of 
the Almagest, which Thābit had originally inserted.33 Whereas such cross-refer-
ences would in any case have required an adaptation to the abandoned division 
into books, Thābit’s relative or less distinct cross-references, to a respective ‘pre-
ceding theorem’ etc., partly survived the revision.34 Apart from this systematic 
removal of specific elements, also Thābit’s prose, especially in longer narrative 
or descriptive parts of the Almagest, has occasionally been brought into a more 
concise form.35

31 I am grateful to Mª José Parra, who located this manuscript in 2015 and drew my at-
tention to it as a possible representative of the Thābit tradition; Parra, ‘Making a Catalogue’ 
(see above, note 4).

32 Thābit himself had already applied a different chapter division in his version; cf. Grupe, 
‘The Thābit-Version’, p. 150.

33 cf. Grupe, ‘The Thābit-Version’, p. 149.
34 Cf., e.g., MS Tehran, Majlis-Senate Library, 1231, fol. 20r:13: يقدم فيما  تبين   corresp. to ,وقد 

MS Dresden, SLUB, Db. 87, fol. 22r:1: ‘demonstracione figure huic preposite’, or MS Tehran,  
Majlis-Senate Library, 1231, fol. 22r:24: الاولى المقدمة  تبين من   ,corresp. to MS Dresden, SLUB ,فانه 
Db. 87, fol. 26r:10 f.: ‘manifestum est ex prima proposicione’.

35 On fol. 26r:25 of MS Tehran, Majlis-Senate Library, 1231, relating to Alm. III,  1, the 
Greek names ‘Meton and Euctemon’ are transliterated as وافطيمونا  Apart from a probable .فاطونا 
corruption of the letters mīm and qāf to fā at the beginning of the two names, the transliter-
ations differ from what is found in the manuscripts of other Arabic versions of the Almagest, 
by the added terminal alifs and by rendering the Greek letter omega by wāw. As a terminal 
alif is a common ending of nouns in Syriac, Dr Mohammad Mozaffari conjectured in a pri-
vate conversation that the transliterations possibly indicate a Syriac influence. This could be 
of relevance to the production process of Thābit’s Almagest version. Regarding that conjecture, 
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Except for the aforementioned modifications in the Majlis reworking, a 
comparison with Books I to IV of the Dresden translation reveals close cor-
respondence in the wording. This makes the Majlis text a valuable source of 
information, especially on Books VI to XIII of Thābit’s Almagest, which are 
not preserved in any other known manuscript.36

The following examples from the Majlis reworking of Thābit’s Almagest 
demonstrate its relation to the previous witnesses. Corresponding to the epit-
ome in the (former) Naṣīrī manuscript no. 789 and the Latin Dresden transla-
tion, the same chapters in the Majlis text start as follows (cf. above 2.1).
Alm. I,  3.

MS Tehran, Majlis-Senate, 1231, fol. 1r:15–17 (the folio numbers have been 
determined based on the order of the pages in the digital scan as publi-
shed online by the Parliament Library in Tehran):

والحركة الشكل  كرية  السماء  ان  في  الثاني  الباب 

والارصاد ا]لقياسات  من  لهـ[م  ظهر  ما  هو  كرية  السماء  حركة  ان  قالوا  ان  الى  القدماء  دعا  ما  اول  ان 
راوها التي   

Alm. I,  5.
MS Tehran, Majlis-Senate, 1231, fol. 2r:15–17:

السماء وسط  في  الارض  ان  في  الرابع  الباب 

وسط في  والارض  الا  والارض  السماء  امر  من  ونراها  نشاهدها  التي  الاشياء  تعرض  ان  يمكن  ليس 
المركز بمنزلة  السماء   

Similarly, a passage from Thābit’s Almagest that I have discussed elsewhere on 
the basis of the Dresden translation37 has a direct correspondence in the Majlis 
reworking. Except for Thābit’s second cross-reference, which has been removed 
in the Majlis text as part of the revision, both texts also show the same inser-
tions by Thābit (underlined in the Latin):

Alm. I,  10.
MS Tehran, Majlis-Senate, 1231, fol. 7r:8–21:

معلوما لنا  يكون  القوسين  بين  ما  فضل  وتر  فان  دائرة  من  قوسين  وتري  علمنا  اذا 

معلومين اجـ  ابـ  وترا  وليكن  اد  القطر  وليكن  ابجد  عليه  دائرة  نصف  فلتكن 

بجـ خط  فنصل 

Prof. Kunitzsch noted that it was rather untypical of Greek-Syriac translations that an alif be-
came added to a Greek personal name.

36 Apparently only several coordinates from the star catalogue in Books VII and VIII of 
Thābit’s version are preserved in the work of Qāḍīzāde al-Rūmī; cf. Kunitzsch, Ibn aṣ-Ṣalāḥ, 
pp. 115–23 passim.

37 cf. Grupe, ‘The Thābit-Version’, pp. 152 f., Appendix.
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معلوم بجـ  ان  فاقول 

اذا كان وتر قوس انه  قلنا  يكونان معلومين لانا  الخطين  ان هذين  بين  بد جد وهو  انا نصل خطي  ذلك   برهان 
ذي بشكل  دائرة  احاطت  وقد  معلوما  يكون  الدائرة  نصف  عن  القوس  تلك  تنقص  ما  وتر  فان  معلوما   ما 
بجـ مساو في  اد  يكون من ضرب  الذي  مع  في جد  ابـ  يكون من ضرب  فالذي  ابجد   اربعة اضلاع وهو شكل 
ضرب من  يكون  والذي  معلوم  جد  في  ابـ  ضرب  من  يكون  الذي  وليكن  بد  في  اجـ  ضرب  من  يكون  للذي 

معلوما بجـ  فيصير  معلوم  اد  وقطر  معلوما  بجـ  في  اد  ضرب  من  المجتمع  فيبقي  معلوم  ايضا  بد  في  اجـ   

معلوم القوسين  بين  ما  فضل  وتر  فان  معلومين  دائرة  من  قوسين  وترا  كانا  فاذا 

نبين ان  اردنا  ما  وذلك 

MS Dresden, SLUB, Db. 87, fol. 7v:8–24 (trl. of Thābit’s Almagest):
Ut scierimus duorum arcuum duas cordas circuli alicuius, corda superhabundantis 
quod est inter duos arcus nobis scietur.
Sit medietas circuli abCd, sitque diametrum ipsum ad, sintque prescite due corde ab aC.
Excopulemus lineam bC.
Dico quia bC scietur.
Racio. Copulabimus enim duas lineas bd Cd, sed est manifestum quia ipse due linee 
sunt prescite. Diximus namque quia quando fuerit alicuius arcus corda prescita, corda 
minoritatis illius arcus a medietate circuli erit scita. Et ipse circulus est circuicio fig-
ure quatuor laterum et est figura abCd unde quod est ex multiplicacione ab in Cd et 
quod est ex multiplicacione ad in bC est equale ei quod ex multiplicacione aC in bd hoc 
quod est ostensum in figura huic precedenti. Et quod est ex multiplicacione ab in Cd est 
prescitum et quod est ex multiplicacione aC in bd est prescitum. Igitur remanet quod est 
ex multiplicacione ad in bC scitum et diametrum ad est prescitum, igitur bC est scita.
Igitur cum fuerint due corde duorum arcuum alicuius circuli prescite, corda super-
habundantis quod est inter ipsos duos arcus erit scita.
Et hoc est <quod> demonstrare voluimus.

Furthermore, as mentioned above in connection with Ibn Sīnā’s Kitāb al-shifā ,ʾ 
Thābit’s supplement to Ptolemy’s Theorem 13.4 (Toomer’s count) appears 
shorter and without diagrams in the Majlis text. This again corresponds to 
the Dresden translation (cf. the shortened ‘proofs’ of Thābit’s additional cases 
underlined in the Latin):

Alm. I,  13; extension to theorem 13.4.
MS Tehran, Majlis-Senate, 1231, fol. 11r:23–11v:14:

استقامة على  ونخرجهما  اد  وخط  [جـ]ـبـ  خط  ونصل  د  نقطة  الدائرة  مركز  نجعل  انا  ذلك  برهان 

يلتقيا ان  واما  متوازيين  يكونا  ان  فاما 

دائرة تنصف  عن  معلومة  هي  التي  بجـ  قوس  ينقص  ما  نصف  سيكون  ابـ  قوس  فان  متوازيين  كانا  فان 
معلومة تكون  ولذلك   

ه… نقطة  على  فيلتقيا  متوازيين  بجـ  اد  خطا  يكن  لم  وان 
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[continues with a discussion of the ‘first’ case in accordance with Ptolemy]
الاخرى الجهة  في  دا  بجـ  خطا  التقي  اذا  ابـ  قوس  نعلم  المسلك  هذا  وبمثل 

نبين ان  اردنا  ما  وذلك 

MS Dresden, SLUB, Db. 87, fols 12v:23–13r:13 (trl. of Thābit’s Almagest):
Racio. Sit centrum circuli d et copulemus Cb da et faciamus exire rectas utrasque.
Aut enim erunt paralellice nusquam convenientes aut erunt sibi obviantes.
Si vero sunt paralellice erit arcus ab medietas diminucionis arcus bC presciti de medi-
etate circuli, ideoque est scitus.
Sed si non sunt due linee da bC paralellice, sint sibi obviantes super punctum E …
[continues with a discussion of the ‘first’ case in accordance with Ptolemy]
Eademque via sciemus arcum ab cum fuerint iuncte due linee bC ad alia in parte.
Et hoc est quod demonstrare voluimus.

2.4. MS Jaipur, Maharaja Sawai Man Singh II Museum Library, 20 (incomplete 
copy of Thābit’s Almagest?)
The Jaipur Almagest was made known to a wider public in 1980, by David 
King, in his ‘Handlist’ of astronomical manuscripts that he had seen on the 
occasion of a visit to the Maharaja Sawai Man Singh II Museum Library in 
Jaipur in 1978.38 Copied around 1600, the manuscript no. 20 of this library 
contains on c. 150 folios Books I till the beginning of Book VI of what King 
described as ‘the Arabic version by Thābit ibn Qurra of Ptolemy’s Almagest’. 
King indicated that the text was a copy of the well-known Isḥāq/Thābit ver-
sion of the Almagest, which Thābit ibn Qurra created by making corrections 
to Isḥāq ibn Ḥunayn’s Arabic translation. Accordingly, King concluded in his 
report that the astronomical works in Jaipur were well known from copies in 
other collections and added little to the corpus of material available for the 
further study of the history of Islamic astronomy in general.39

A different view was taken after 1991, when George Saliba and Richard  
Lorch had the opportunity to examine the manuscript for a second time 
and also to transcribe some of its chapter beginnings at the request of Paul 
Kunitzsch. The transcriptions corresponded in the comparable parts to what 
was found in the epitome of the Almagest in the former Naṣīrī manuscript 

38 King, ‘A Handlist’.
39 King, ‘A Handlist’, pp. 81 f., describes all the texts in the list to be already known and 

also preserved in other libraries. The discussion of manuscript no. 20, on p. 82, is followed by 
a reference to other manuscripts of the Isḥāq/Thābit version of the Almagest. This identifi-
cation of manuscript Jaipur 20 became accepted. However, the mention of Thābit ibn Qurra 
alone in King’s report left some uncertainty about the Jaipur Almagest on the part of Paul 
Kunitzsch; see Kunitzsch, Der Sternkatalog, vol. I, p. 4, where King’s estimate is followed, 
though with some reservation.
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no. 789 (cf. above 2.1).40 It thus became clear that the previous assumption 
about the Jaipur text had been incorrect. However, the Arabic origin of the 
Latin Dresden Almagest, and also the reworking in MS Tehran, Majlis-Senate, 
1231 (cf. above 2.3), both having similar chapter beginnings as the Naṣīrī text, 
were still unknown at the time.41 Kunitzsch thus inferred that the Jaipur text 
was not an Almagest at all but a copy of the same epitome as preserved in the 
Naṣīrī manuscript.42

This second assumption contradicted the reference to Thābit ibn Qurra and 
the direct impression of David King, who had not noticed any omissions or 
changes relative to the ‘normal’ Almagest when he inspected the manuscript 
in Jaipur. Also, the number of folios occupied by the five books in the Jai-
pur manuscript speaks against substantial abbreviations. Despite such inconsis-
tencies, the conclusion that the Jaipur text was a copy of al-Shīrāzī’s epitome 
remained unquestioned during the following years, and the Jaipur manuscript 
was no longer considered among the extant Arabic copies of the Almagest.43

In my doctoral dissertation, I proposed a new hypothesis which conforms to 
the details in King’s report and which also resolves the above contradictions. 
Since I have shown above that al-Shīrāzī took the chapter beginnings in the 
opening part of his epitome from Thābit’s Almagest, the conclusion that the 
Jaipur text is a copy of al-Shīrāzī is no longer cogent. At the same time, the 
recent certitude about the existence of a version of the Almagest by Thābit ibn 
Qurra alone gives new importance also to King’s description. The reports from 
Jaipur in combination with the new evidence prove that the Jaipur Almagest 
derives from what has meanwhile been identified as Thābit’s own version of 
the Almagest. They further indicate that the Jaipur manuscript contains an 
unshortened copy of the first five books of that version.44 A clearer assess-
ment, including a placement of the Jaipur fragment in the complex tradition 
of Thābit’s Almagest, will hopefully be possible in the future as soon as sub-

40 See Kunitzsch, ‘A Hitherto Unknown’, p. 32, note 6. cf. also the Nachtrag in Kunitzsch, 
Der Sternkatalog, vol. III, p. 200, last paragraph.

41 An Arabic rather than Greek origin for the Dresden Almagest was suggested in 2001, 
by Lorch, Thābit ibn Qurra, pp. 356 f. The Tehran manuscript Majlis-Senate 1231 was intro-
duced in 2015, at the Ptolemy conference in London, in connection with the present paper.

42 See Kunitzsch, ‘A Hitherto Unknown’, p. 32.
43 See, for example, Kunitzsch, ‘A Hitherto Unknown’, pp. 31 f.
44 I proposed this in 2013, in Grupe, The Latin Reception, p. 128, note 152, at that time 

based only on the available publications and my recent discovery of a Thābit version of the Al-
magest. Meanwhile, my comparison of the epitome discussed under 2.1 with the Latin Dresden 
translation proved that the Jaipur Almagest is indeed a representative of the Thābit tradition. 
From a copy of the transcriptions in Paul Kunitzsch’s private archive I could also see that the 
wording of the Jaipur Almagest corresponds to the Latin even where the reworked texts under 
2.1 and 2.3 differ in some details. This confirms that the Jaipur text is an independent, closer 
copy of Thābit’s Almagest than the other known witnesses.
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stantial portions of the Jaipur text are accessible for comparison with the other 
witnesses. The manuscript was acquired for astronomical activities by Maharaja 
Jai Singh in the early eighteenth century. It is thus also the latest known evi-
dence of an active reception of Thābit’s text.

2.5. Quṭb al-Dīn Maḥmūd b. Masʿ ūd al-Shīrāzī, Talkhīṣ al-Majisṭī
From al-Shīrāzī, the assumed author of the epitome discussed under 2.1, stems 
also this other Summary of the Almagest, in Persian, which has been preserved 
in at least two manuscripts (MS Istanbul, Süleymaniye, Lala Ismail Efendi 
288 and MS Tehran, Majlis, 600; in what follows reference will be made to 
the Tehran copy).45 As in the epitome, also in the present Talkhīṣ al-Majisṭī 
al-Shīrāzī substantially shortened Ptolemy’s arguments while including once 
again distinctive elements from Thābit’s version.

The Talkhīṣ al-Majisṭī shows Thābit’s insertion of Theon of Alexandria’s 
proof of the first form of Menelaus’ Theorem from its second form, and also 
Thābit’s use of Theon’s proof of the addition theorem of chords in place of 
Ptolemy’s (cf. fols 5v–6r).46 Al-Shīrāzī further determines the chord of one 
degree using a diagram with three, instead of only two, chords (cf. fol. 5v). This 
deviation from Ptolemy can again be found in several witnesses of Thābit’s ver-
sion, for example in the Latin Dresden translation (cf. MS Dresden, SLUB, 
Db. 87, fol. 9v), in a quotation from the Almagest in al-Nasawī’s Commentary 
(cf. MS Istanbul, Topkapı, Ahmet III 3464, fol. 209r), in Ibn Sīnā’s Kitāb 
al-shifāʾ (cf. MS Paris, BnF, ar. 2484, fol. 8r) and in the Tehran reworking of 
Thābit’s Almagest (cf. MS Tehran, Majlis-Senate, 1231, fol. 9r).

It is clear from the epitome discussed under 2.1 that al-Shīrāzī had detailed 
knowledge about Thābit’s Almagest. The Talkhīṣ al-Majisṭī further proves that 
al-Shīrāzī was acquainted also with some of Thābit’s mathematical arguments 
that do not appear in the epitome. Since al-Ṭūsī could already be identified 
as one of the key witnesses of Thābit’s Almagest, it is not surprising to find 
related indications also in the works of al-Shīrāzī. Having been a student and 
co-worker of al-Ṭūsī in Marāgha, al-Shīrāzī can be easily imagined to have had 
access to the same sources.

2.6. Athīr al-Dīn al-Abharī, Kitāb fī ṣināʿa al-Majisṭī
Al-Abharī’s (d. c. 1264) Commentary on the Almagest is preserved in at least 
three manuscripts (MS Tehran, Majlis, 6195; MS Istanbul, Süleymaniye, Aya-
sofia 2583 bis, and MS Tehran, National Library, 20371; in what follows refer-

45 Mª José Parra, ‘Making a Catalogue’ (see above, note 4).
46 Both elements were described by al-Ṭūsī as features of Thābit’s Almagest; cf. Grupe, ‘The 

Thābit-Version’, p. 151.
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ence will be made to MS Tehran, National Library, 20371).47 Aside from using 
Thābit’s diagram with three chords instead of two when determining the sine 
of one degree (fol. 14v; cf. above, 2.5), al-Abharī also presents an extended dis-
cussion of the sector figure (fols 21r–22r) that is very similar to what is found 
in Thābit’s Almagest. In this context, al-Abharī further includes an alterna-
tive proof of the Menelaus’ Theorem (fols 22v–23r), which does not appear 
in Thābit’s Almagest but which Thābit presented elsewhere, together with the 
additional arguments from his Almagest, in his comprehensive Commentary on 
the Sector Figure.48

Al-Abharī seems acquainted with Thābit’s Commentary on the Sector Figure, 
as he expressly attributes the alternative proof to Thābit (fol. 22v:8, starting: 
-Surprisingly, though, al-Abharī attrib .(طريق اخر لثابت بن قره في برهان الشكل القطاع
utes to Ptolemy the extensions to the sector figure which Thābit had inserted 
in his version of the Almagest (see fol. 22r:1, concluding the previous discus-
sion of Thābit’s arguments: القطاع الشكل  في  بطلميوس  ذكر  ما  تقرير   although ,(هذا 
al-Abharī would have found the same arguments also in Thābit’s Commentary 
on the Sector Figure, whereas none of these arguments appears in the classical 
tradition of the Almagest.

An explanation could be that al-Abharī studied the Almagest based on 
Thābit’s version. Unaware of Thābit’s insertions to Ptolemy, or unable to iden-
tify their origin, al-Abharī accredited Ptolemy with the entire content of that 
particular Almagest.49

2.7. Further Influences
Borrowings from Thābit’s Almagest can be found at various other places in the 
Arabic astronomical literature. In many cases, however, a direct reception of 
Thābit’s text is difficult to determine. This is true especially due to the strong 
influence of astronomers who had been using Thābit’s work. Elements and 
adaptations from Thābit in a particular treatise may have been taken directly 
from Thābit’s Almagest or, alternatively, from an intermediary tradition. Some 
of Thābit’s concepts may also have become commonly known in the field.

An early example is the work of the Persian astronomer Kūshyār ibn Lab-
bān (fl. c. 1000 ce).50 In Book 4 of his Jāmiʿ Zīj Kūshyār ibn Labbān pres-

47 Mª José Parra, ‘Making a Catalogue’ (see above, note 4). A brief account of what is 
known about the life and work of al-Abharī is given in Sarıoğlu, ‘Abharī’.

48 An edition of Thābit’s Commentary on the Sector Figure has been made by Lorch, Thābit 
ibn Qurra, pp. 42 ff. Thābit’s alternative proof is found on pp. 62–72 of Lorch’s edition.

49 This has a parallel in the work of al-Nasawī, who also attributes to Ptolemy the extend-
ed discussion of the sector figure in Thābit’s Almagest, cf. Lorch, Thābit ibn Qurra, p. 357.

50 For a brief account of what is known about the life and work of Kūshyār ibn Labbān see 
Bagheri, ‘Ibn Labbān, Kūshyār’.
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ents a summary of the theorems from Chapter I, 10 of the Almagest.51 Aside 
from presenting the theorems in a Euclidised form in the manner of Thābit’s 
Almagest,52 Kūshyār ibn Labbān also uses a very similar wording as Thābit, 
and he makes the same replacement of Ptolemy’s proof of the addition theorem 
of chords with Theon’s (cf. above 2.5).53 When determining the chord of one 
degree, however, Kūshyār follows Ptolemy instead of using Thābit’s modified 
diagram with three chords (cf. above 2.5).54 While an influence of Thābit’s 
Almagest is thus clearly recognisable, Kūshyār ibn Labbān neither mentions 
Thābit as his source nor does he follow Thābit’s version literally or consistently.

Different is the situation concerning another summary of the theorems 
from Alm. I, which is extant on fols 55r–60v of MS Tehran, Majlis, 6417. The 
text includes an explicit reference to ‘Thābit’s version’ (fol. 57v:1 ff.). However, 
in this regard, the author seems to depend fully on an identical reference in 
al-Ṭūsī’s Taḥrīr.55

Direct knowledge of Thābit’s Almagest is more probable again in the case 
of the Persian astronomer Niẓām al-Dīn Ḥasan al-Nīsābūrī (d. 1328/9).56 In 
the early fourteenth century, al-Nīsābūrī composed a commentary on al-Ṭūsī’s 
Taḥrīr of the Almagest, entitled Tafsīr Taḥrīr al-Majisṭī, which has survived 
in several copies (in what follows reference will be made to MS London, BL, 
Add 7476).57 When writing the Tafsīr, al-Nīsābūrī necessarily came across 
al-Ṭūsī’s repeated references to Thābit’s Almagest. However, al-Ṭūsī’s discussion 
of deviant contents in Thābit’s version do not seem to have attracted much 
of al-Nīsābūrī’s attention as a commentator. On the other hand, al-Nīsābūrī 
includes in his Tafsīr further elements from Thābit’s Almagest which are not 
found in al-Ṭūsī’s Taḥrīr, such as the diagram with three chords instead of two 
when determining the chord of one degree (fol. 30r), and throughout the Tafsīr 
al-Nīsābūrī applies a system similar to that of Thābit for referring to numbered 
propositions (cf., e.g., fols 3r:3f. and 3r:10 for references to Euclid’s Elements 
and fol. 30r:5 f. for two cross-references to propositions in the Almagest). All 
this suggests a natural acquaintance with Thābit’s Almagest on al-Nīsābūrī’s 
part. However, it must be expected that many of Thābit’s concepts as adopted 
by al-Nīsābūrī were also known by the time independently from their original 
context.

51 The book has been edited by Bagheri, Az-Zīj al-Jāmi .ʿ Kūshyār’s summary of Ptolemy’s 
theorems is found on pp. 79–88 of the Arabic part of Bagheri’s edition.

52 This has been identified as a characteristic of Thābit’s Almagest in Grupe, ‘The 
Thābit-Version’, p. 149.

53 cf. Bagheri, Az-Zīj al-Jāmiʿ, p. 85 of the Arabic part.
54 cf. Bagheri, Az-Zīj al-Jāmiʿ, pp. 87 f. of the Arabic part.
55 cf. Grupe, ‘The Thābit-Version’, p. 151.
56 A brief account of Nīsābūrī’s life and work is given in Morrison, ‘Nīsābūrī’.
57 Mª José Parra, 'Making a Catalogue' (see above, note 4).
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Similar observations can be made in a later commentary, written by a cer-
tain Kāfī Qāʾinī, on an astronomical treatise by Khāzimī.58 Kāfī Qāʾinī’s com-
mentary is preserved in a manuscript in Mashhad, Holy Shrine, 7345, where it 
is dated to the early seventeenth century.59 In connection with the determina-
tion of the chord of one degree, Kāfī Qāʾinī uses Thābit’s diagram in addition 
to Ptolemy’s (fol. 24v); he also includes several of Thābit’s arguments on the 
sector figure (fols 34r–36v). Since these elements are not found in Khāzimī’s 
treatise (extant, e.g., in MS Mashhad, Holy Shrine, 12297), Kāfī Qāʾinī must 
have used further sources. However, also in view of the late production of the 
text, the reworked appearance of Thābit’s concepts in Kāfī Qāʾinī’s commen-
tary leaves one in doubt as to whether the latter really had a copy of Thābit’s 
Almagest in his hands.

3. Conclusions

The identified sources reveal that Thābit ibn Qurra’s version of the Almagest  
was used by several of the most prominent Islamic astronomers. The work 
also continued to influence astronomical studies in the Islamic world at least 
until the eighteenth century. Not all the texts presented here prove a direct 
use of Thābit’s text. Nevertheless, in most cases a good knowledge of the work 
is highly probable. Conversely, isolated and modified borrowings from Thābit, 
based on second-hand information, suggest that at least some of Thābit’s ideas 
had become part of a common reservoir from which later Islamic authors were 
able to draw when composing their own treatises. With further investigation it 
is likely that we shall be able to link further texts to the tradition of Thābit’s 
Almagest. In addition, many of Thābit’s interventions to the original content of 
the Almagest consist in commenting insertions. It is therefore possible that some 
of today’s speculations about unknown commentaries by Thābit ibn Qurra will 
find their answer in the existence of ‘Thābit’s version’ of the Almagest.
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Revamping Ptolemy’s Proof for the Sphericity of the  
Heavens: Three Arabic Commentaries on Almagest I.3

Y. Tzvi lanGermann

1. Introduction

In this project I finally return to one of my first projects in the history of 
science, one that I now know to have been constructed on false premises. The 
project was to search commentaries on the Almagest in order to see if and how 
thinkers may have challenged head on the cosmological principles that Ptolemy 
enunciates at the beginning of his work — the six principles, including the 
spherical shape of the cosmos and the rotation of the heavens about a fixed 
earth — that form the core of the so-called Ptolemaic system. But I should 
have known better; I had already learned from Thomas Kuhn that the Ptole-
maic system was undermined not by a frontal assault on its basic principles, but 
rather by the painstaking efforts of astronomers to solve various specific, tech-
nical issues which resisted solution; and when this simply could not be done, 
the path to alternative models was opened. I know that Kuhn and his philos-
ophy are now a very elaborate field of study, whose intricacies and complexities 
are beyond my comprehension. Nonetheless, as a simple historian I retain the 
insights I gained from Kuhn, and in the course of decades of research I see 
them hold well for cultural contexts (Islamic and Jewish) that he did not study.

The second false premise concerns the nature of the commentary in medi-
eval Islamicate civilization.1 It was expressly not a vehicle for criticism, but 
rather for elucidating issues that the author had not explained well enough (in 
the view of the commentator). This conception of the genre is elaborated by 
Maimonides in the introduction to his commentary on Hippocrates’ Apho-
risms. Maimonides observes:

‘If most of what the book contains is in error, then the later composition 
which exposes those confusions is called radd [“rejection”, “retort”], rather than 
sharḥ [commentary]’.2 Hence, a commentary would not be the place to present 
a rejection of Ptolemy’s cosmological principles.

1 Wisnovsky, ‘The Nature and Scope’, pp. 149–91. Jamil Ragep made excellent use of sev-
eral commentaries to al-Ṭūsī’s Tadhkira in his Naṣīr al-Dīn al-Ṭūsī’s Memoir.

2 I translate from the Judaeo-Arabic text in Kafih, Iggerot, p. 143.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 159–180
© F  H  G  10.1484/M.PALS-EB.5.120178
t H i S i S  a n o p e n ac c e S S c H a p t e r d i S t r i B u t e d u n d e r a c c B y- n c - n d 4 . 0 i n t e r n at i o n a l l i c e n S e
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With some adjustments, though, my project may still yield some informa-
tion of interest. To begin with, it seems that writers of commentaries did not 
view the literary categories to be as rigid as Maimonides describes them. Fakhr 
al-Dīn al-Rāzī sharply criticized Ibn Sīnā in his commentaries to al-Ishārāt 
and al-Qānūn fī al-Ṭibb.3 In his commentary on the Almagest, Ibn al-Hay-
tham says clearly that he will be both a commentator (mufassir) and a writer 
of a précis (mulakhkhiṣ).4 In the lists of his writings that same work is called 
Tahdhīb al-Majisṭī, ‘The Improvement of the Almagest’, and Sharḥ al-Majisṭī 
wa-talkhīṣuhu, ‘Commentary and Summary of the Almagest’.5 Ibn al-Haytham 
refers more than once to the multifarious nature of his exposition. Even if 
commentaries (in the limited sense of the term) do not take issue with Pto-
lemy, they will critically engage other commentaries; Ibn al-Haytham will do 
this with al-Nayrīzī.

More importantly, as a member of the so-called ‘academy’ I need not be 
beholden to the medieval Arabic literary conception of the commentary. 
Instead, I will operate on the basis of a wider understanding of the genre, and 
I will include in my presentation works that in one way or another present 
the Almagest or parts of it, restating Ptolemy’s remarks, reorganizing them, and 
also criticizing them.

In this paper I will confine myself to just one of the cosmological princi-
ples, the sphericity of the heavens, which Ptolemy presents in Almagest I.3 and 
offers arguments on its behalf. The chapter in the Almagest bears the title (in 
Toomer’s translation, bracketed), ‘That the heavens move like a sphere’. Toomer 
remarks that the chapter titles in Greek are all interpolations; Ptolemy did not 
use any chapter divisions at all.6 Even so, the chapter title in Arabic does not 
reflect the Greek interpolation. In the Isḥāq-Thābit version of the Arabic, 
Ptolemy announces here two topics (I consulted MS Paris, BnF, arabe 2482): 
Inna al-samāʾ kuriyyat un wa-ḥarakatuhā ayḍan kuriyyat un ‘That the heavens 
are spherical and that their motion is also spherical’.7 On the other hand, the 

3 Langermann, ‘Criticism of Authority’.
4 The passage will be cited in full below. Concerning this commentary see Sezgin, GAS VI, 

p. 91, no. 19, and the extensive description in Sabra, ‘One Ibn al-Haytham’, pp. 33–39.
5 Sabra, ‘One Ibn al-Haytham’, p. 33. For some reason, Sabra translates tahdhīb as ‘com-

mentary’.
6 Toomer, Ptolemy’s Almagest, p. 5. Kunitzsch, Der Almagest, pp. 130–35, discusses the 

naming of the sections of the book in Arabic (maqāla, qawl, naw‘) and exhibits the incipits 
of some sections of Book I; however, he does not address the chapter titles that are found in 
Arabic. I know of only one study of the Hebrew versions, which were translated from the Ar-
abic: Zonta, ‘La tradizione Ebraica’, pp. 325–50. Zonta finds that the translator Jacob Anatoli 
would consult the Latin version of Gerard of Cremona when tackling difficult passages.

7 The Arabic text has not been edited; the Paris text that I utilized is Kunitzsch’s manu-
script q, a Maghrebi copy of the Isḥāq-Thābit version dated 618/1221 which he describes on 
pp. 42–43.
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title in the Ḥajjāj version states a problem to be solved: Kayfa yuʿlamu anna 
ḥarakatu al-samāʾi kuriyyat un? 8 ‘How is it known that the motion of the 
heaven is spherical?’ These differences in the headings already suggest different 
understandings as to what the chapter sets out to accomplish.

The present foray will be limited to three commentaries, in the wider sense 
of the term: that of Ibn al-Haytham, already mentioned; the work of Jābir 
ibn Aflaḥ, which should probably be considered to be both an epitome and 
a critique or ‘correction’ (iṣlāḥ); and the section on Ptolemy’s ‘cosmological 
principles’ at the beginning of Abū Rayḥān al-Bīrūnī’s al-Qānūn al-Masʿūdī. 
Inspection of additional commentaries, and especially the untouched Hebrew 
commentarial tradition, must be left for another occasion.

2. Ibn Al-Haytham (965–1040)

Ibn al-Haytham’s commentary is preserved uniquely in MS Istanbul, Topkapi 
Library, Ahmet III 3329; the codex contains other commentaries as well. Ibn 
al-Haytham introduces his commentary with a relatively long essay in which he 
has some interesting things to say about the Almagest, the genre and tradition 
of the commentary, the way astronomy was studied in his own day, and the 
envisioned contribution of his work, which, as noted, is both a commentary 
and an epitome. Note in particular Ibn al-Haytham’s criticism of the commen-
tary (at present considered lost) of al-Nayrīzī;9 to some degree his commentary 
was meant to be a better alternative to that of his predecessor. I present here a 
liberal citation from his preface:10

[38v] I have found that the main intent of all who have commented upon this book 
has been to explicate the ways of computation and their ramifications, as well as not-
ing other aspects that Ptolemy did not take notice of, without, however, shedding 
light on those concepts that are obscure to the beginner. Al-Nayrīzī did something 
like this, burdening his book by greatly increasing the examples of the computational 
methods, and placing in this his hope for glorification and honor for what he writes.
Therefore, I have seen it fit in commenting on this book to give an account in which 
my main approach is to facilitate for students the understanding of those concepts 
(maʿānī) that are subtle. I add to it some commentary that appertains to the compu-
tation of the astronomical tables (zīj/azyāj), things that were neglected by Ptolemy. 
In omitting to mention them he was being concise, relying upon commendable minds 
to derive (istikhrāj) them. The principles which Ptolemy did record in his book are 

8 MS London, BL, Add. 7474, fol. 3a, online at <http://www.qdl.qa/en/archive/81055/vdc_ 
100023514339.0x000011>, visited 25 May 2016.

9 On the commentary of al-Nayrīzī see Sezgin, GAS VI, p. 192, no. 4.
10 After having prepared my own translation of this passage, I found that Sabra had trans-

lated most of it in ‘One Ibn al-Haytham’, p. 35. My translation is much more literal and far 
less elegant than his, but I have decided to nonetheless present here my own version. My single 
disagreement with Sabra is discussed in the following note.
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more than enough [literally: ‘sufficient and enough’] for someone who possesses the 
barest talent to be able to derive them. In doing so I shall be explicating (mufassir) 
and giving a précis of (mulakhkhiṣ) the concept about which I intend to speak, bas-
ing [myself] on his words, that is, that which he recorded in the book [called] the 
Almagest. In this way, should the person seeking to know the Almagest hit upon the 
word for that concept, he may refer for commentary (sharḥ) and a précis to what I 
have recorded in this book of mine. Combining the two books [the Almagest and 
my commentary/précis], he will understand it; both the words and the concepts will 
become clear. Indeed, had I done this book the way the commentators to books do, 
which is to cite the word and follow it with an explication of the concept, there 
would have been no benefit in it.11 For then I would have been transcribing a book 
which is famous and available. I will endeavor to be brief, confidently abandoning 
prolixity and lengthiness. Eloquence (balāgha) does not consist in expressing a few 
concepts with many words. Instead, eloquence is the clarification of many concepts 
with measured (yasīr) words, because excessive verbiage leads comprehensions astray, 
and terseness falls short of encompassing the concepts. Moreover, that which this 
commentary and précis records will be by way of proof, as well as solving (ikhrāj) 
for that which requires a solution by computation, concise rather than drawn out, 
shortening and not lengthening.
Had I instead done as al-Nayrīzī did, the commentary would have been long, indeed 
it would have become twice [the size] of Ptolemy’s book. It would have made it more 
difficult than obtaining knowledge from [Ptolemy’s] book directly. My sole purpose 
in what I am doing is make knowledge more accessible and practice easier. None-
theless, I aim for [the same goal] as do most of those who set their minds upon 
knowledge of the Almagest, namely the knowledge by means of which one grasps the 
reasons underlying the operations (aʿmāl), which is the [true] subject for the person 
in quest of this art. Many people do it; they have introduced approximations12 that 
facilitate the operations for the practitioners.

Recall that Ibn al-Haytham, even if his ultimate goal is to clarify Ptolemy’s 
text, explicitly rejects the format of citation followed by commentary. In this 
respect, his book has the form of an epitome. In keeping with this plan, the 
chapter of interest (‘On clarifying that the heavens are spherical’, beginning on 
fol. 39v) is, indeed, a newly written chapter that takes as its starting and refer-

11 Sabra here adds in brackets the word ‘without’, which significantly alters the meaning: 
‘If I had followed the practice of the commentators of books by quoting the words (without) 
following them with an explanation…’ This seems to me to be too severe an intervention; 
moreover, do commentators simply cite from the book they are glossing without explaining? 
I believe that Ibn al-Haytham announces here his rejection of the usual form of the commen-
tary, which consists in citing the text (matan, often copied in red ink and/or larger letters; Ibn 
al-Haytham eschews that term, using instead alfāẓ, ‘words’) followed by a commentary (tafsīr). 
Indeed, that form is not employed in his commentary.

12 Taqrībāt; ‘shortcuts’ is a possible alternative translation.
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ence points the corresponding section of the Almagest. Ibn al-Haytham offers a 
logical, well-organized exposition, drawing alternatively on astronomical, math-
ematical, optical and philosophical arguments, as the issue may require.

Ibn al-Haytham begins with a demonstration that the heavens must be a 
body and that this body must maintain a daily rotation about a pole with-
out, however, producing any apparent variation in the sizes of the stars to the 
observer on earth. These considerations (and others, such as the accuracy of 
sundials that are constructed on the basis of a spherical model) lead already to 
the selection of the sphere. Next, a series of subtle philosophical arguments are 
mustered in order to show that the cosmos is the largest body in existence but 
also finite. As such, it will be bounded by a body that ‘encompasses but is not 
encompassed’. Now it remains to show which geometrical shape will give the 
greatest volume for a given surface area. In fact, it has already been shown that 
the cosmos must be a sphere; we are retracing, or, to use an anachronism, we 
are checking this finding by showing that the sphere, in addition to meeting 
the observational requirements that it has already been shown to meet, will 
also answer this new demand, i.e., of providing the greatest volume for a given 
surface area. To do this Ibn al-Haytham returns to the cone and the cylinder, 
which had already been rejected on other grounds. He easily shows, on the 
basis of formulae for volumes that were available to him, that for the cone, 
sphere, and cylinder constructed on the same circle, the sphere will have the 
greatest volume.

On the other hand, Ibn al-Haytham totally ignores Ptolemy’s arguments 
against the theory that the stars move in a straight line toward infinity, or that 
they are kindled and extinguished every day. Those ancient theories, which 
Ptolemy had to refute, had no currency in Islamic civilization, and Ibn al-Hay-
tham felt that he could safely ignore them. More generally, Ptolemy’s chapter, 
which has at times the appearance of a series of unconnected arguments, takes 
on a greater deal of coherence, organization, and relevance for the science of 
the period in Ibn al-Haytham’s commentary.

Let us look a bit more closely at some highlights from Ibn al-Haytham’s epit-
ome of the chapter. He first proves that the heavens are a body. His argument 
is that the planets carry out different motions in the east-west and north-south 
directions simultaneously. This can be true only if they are joined to bodies 
that are joined to other bodies. His discussion begins as follows [fol. 39v]:

Now, as for [the statement that] the heavens are spherical, it must have been pre-
ceded by the knowledge that the heavens exist as a body. This is known by means of 
what I shall describe.
That is to say, sensation perceives the corporeal sensibilia through the intermedi-
ary of a certain thing. For example, sensation perceives the body possessing color 
through the intermediary of the color, and sensation perceives the body of the air, 
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which does not possess color, through the intermediary of the propulsion of the sen-
sible body from its place. Now it is apparent to sensation that the swift stars move 
with two motions, one to the west, the other to north and south, [both happening] 
at the same time; but it is not possible for a single body to perform two different 
motions simultaneously. Hence these two motions that belong to the stars must be 
due to that to which they [the stars] are joined. But bodies join one to another only 
by contact, only by body touching body. Hence it is clear to sensation, through the 
intermediary of transpositional motion, that the heavens exist as a body.

Ibn al-Haytham then notes that in their daily rotation, the stars all appear to 
move about a single point, tracing parallel circles that get larger the more one 
moves away from that point. This indicates that there is a pole about which 
the stars rotate; only three models can account for this. To be more specific, 
only three ‘surfaces’ (basā’iṭ) should be considered: the cylinder, the double 
cone, and the sphere. Autolycus has already shown how the ‘moving sphere’ 
can account for the motions.13 The other two options will not work; since 
the radii, or distances from the center of the solid to stars moving on differ-
ent circles (which are parallel to the circle around the pole) are different, the 
distances of the heavenly bodies from the center, i.e. the earth, will vary and 
so also their apparent sizes; but no such variation is observed. Another proof 
comes from sundials, which would not work if the cosmos had a non-spheri-
cal shape. In these arguments, which I will pass over, Apollonius’ Conics and 
Euclid’s Phaenomena are cited.

Ibn al-Haytham (41v ff.) then presents extended, subtle philosophical argu-
ments that ‘reality’ (wujūd) must be finite, and at its outer exterior there must 
be a body that encompasses but is not itself encompassed; this must be the 
greatest body. Starting then with the knowledge that the cosmos is the greatest 
body (in volume), we prove that it must be a sphere.

Four shapes are to be considered: the cylinder, the cone, the sphere, and 
the polyhedron (with planar faces). First the polyhedron is eliminated from the 
competition by means of some geometrical proofs. Ibn al-Haytham shows that 
the area of a circle whose perimeter is equal to that of a given polygon will 
be greater than that of the polygon. Consider circle K and polygon A whose 
perimeters are equal. Now inscribe circle W in the polygon. The radius of 
the inscribed circle will be less than that of circle K, because its perimeter is 
smaller. Now the area of the circle K is (radius K) × (half the perimeter), and 
that of the polygon is (radius W) × (half the perimeter). But the perimeters 
have been assumed to be equal; since (radius K)> (radius W), the area of circle 
K is greater than the area of the polygon.

13 On the Arabic translations of Autolycus see Sezgin, GAS VI, pp. 73–74.
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Here is the diagram in the manuscript and the proof displayed in simple 
modern notation:
Circle K      Polygon A with circle W inscribed

Area (circle K) = rK × (perimeterK)/2
Area (polygon A) = rW × (perimeterA)/2
perimeterK = perimeterA

rK> rW

∴ Area (circle K)> Area (polygon A)
Moving now to three dimensions, Ibn al-Haytham writes:

This can also be proven by means of a geometrical demonstration. We take a sphere 
such as sphere K, and a polyhedron such as polyhedron ABCDE; the two have equal 
surfaces. We inscribe in this [polyhedral] body a sphere whose center is W [as in the 
example of the sphere and the pentagon]. The diameter of sphere K is greater than 
the diameter of sphere W. Since this is so, the same holds true for the surface areas 
of the solids as held true for the areas of the planar figures.

Ptolemy did not give a proof for his statement that the sphere has the greatest 
volume of any solid possessing the same surface area. However, Zenodorus did, 
and his proof is cited by Theon, who inserts the entire monograph on isope-
rimetry into his commentary to Book I of the Almagest; it is also found in 
the medieval tract known as De isoperimetris, which was published by Busard 
and studied further by Knorr, along with the text cited by Theon.14 Knorr ele-
gantly summarizes the proof as follows: Inscribe the sphere within the solid 

14 Busard, ‘Der Traktat’; Knorr, Textual Studies, pp. 689–752.
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(Euclid shows that this can be done). The sphere and solid will have the same 
radius, but the surface of the solid will be greater. Hence one must extend the 
radius of the sphere in order to have the sphere have the same surface as the 
solid. The volume of both objects is obtained by multiplying one-third of the 
radius by the surface; since the radius of the sphere is larger, its volume will 
also be larger than that of the solid.15

Theorem 6 in De isoperimetris proves the proposition for planar figures in 
the same way that Ibn al-Haytham does. Comparing the texts, however, I do 
not find that Ibn al-Haytham is citing a direct translation of the same text. 
Following Yushkevich, Busard, the editor of De isoperimetris, remarks that the 
Latin text was not based on an Arabic version.16 The inclusion of this proof in 
the commentaries of Ibn al-Haytham and (as we shall see later) Jābir ibn Aflaḥ 
raises the possibility that the text, or portions of it, was available in Arabic.

Ibn al-Haytham continues [fol. 42v]:
It has thus been shown that, since the heavens are the largest body, prima facie it must 
be the case that the heavens are a cylinder, a cone, or a sphere. But it is impossible 
that heavens be cylindrical or conical, because the first mover of the heavens, which, 
as Aristotle showed in the Metaphysics, has no magnitude (‘uẓm) at all, moves them 
by means of an infinite power.17 That which acts by means of an infinite power per-
forms the utmost action within the realm of possibility (mā huwa fī al-ghāya min 
unṣur al-imkān min al-af ‘āl)…

Since the motion of the heavens is the swiftest of all motions, the body that 
carries out this motion must allow for the smoothest, most fluid and compliant 
motion. Superlatives such as these are included in the notion of the ‘ultimate 
action in the realm of possibility’. This phase of the argument again rules out 
the cylinder and the cone — they have already been eliminated at least twice 
on other grounds — by the criterion of ‘smoothness’ (salāsa). Only a body that 
is round on all sides can meet this criterion.

‘Smoothness’ is mentioned by Ptolemy — that the motion of the stars must 
be ‘the most unhampered and free of all motions’ — before he states that the 
sphere will offer the greatest surface, as one of the additional considerations 
that lead to the sphericity of the heavens, the strongest being the ‘revolution 
of the ever-visible stars’ and their unvarying sizes and mutual distances in the 
course of their revolutions.18 It seems that Ibn al-Haytham sees in Ptolemy’s 
‘smoothness’ of motion an allusion to Aristotle’s description of the prime 
mover, and its imparting to the heavens the swiftest motion possible; this can 
only be the case if the heavens have the shape of a sphere, round on all sides.

15 Knorr, Textual Studies, p. 716.
16 Busard, ‘Der Traktat’, p. 62, with the reference to Juschkewitsch in note 2.
17 Aristotle, Metaphysics XII, 1073a 6, states that the first mover has no magnitude 

(megethos).
18 Toomer, Ptolemy’s Almagest, p. 39.



 REVAMPING PTOLEMY’S PROOF FOR THE SPHERICITY OF THE HEAVENS 167

Ibn al-Haytham is ready to sum up. He mentions again what seems to have 
been regarded as the strongest argument in favor of the sphere: any other shape 
would cause variation in the apparent sizes of the stars, something that is not 
observed. Finally, to those who claim that the heavens have the form of a poly-
hedron with elastic faces — this is how I must interpret the phrase ‘shakl … 
dhū aḍlāʿ liṭāf ’ — such that the sizes of the stars will not vary, Ibn al-Hay-
tham responds: this theory demands that there be a vacuum beyond the heav-
ens, to provide room for the ‘angles’ of the polyhedron to move. However, that 
has already been shown to be impossible [fol. 42v]. A few more pages contain 
some arguments from the science of optics, but I will stop here.

3. Jābir Ibn Aflaḥ (fl. c. 1100)

Jābir ibn Aflaḥ’s book, which I will take up next, is one or more steps removed 
from a gloss on Ptolemy’s book. The textual issues, and the manuscript tra-
ditions in three languages (Arabic — including Arabic in Hebrew characters, 
Hebrew, and Latin) have been studied, though perhaps not exhaustively. I have 
profited in particular from the publications of Richard Lorch and Josep Bell-
ver.19 In the present state of our knowledge, it emerges that the book (or books) 
is known under two titles, Kitāb al-Hayaʾ, which would be appropriate for a 
basic textbook on astronomy, and Iṣlāḥ al-Majisṭī, ‘Correction of the Almagest’.  
As the second title implies, Ibn Aflaḥ has some serious criticisms of Ptolemy. 
However, unlike Ibn al-Haytham’s Shukūk, which is limited to a series of criti-
cisms on specific points (and not limited to the Almagest, but addressing other 
writings of Ptolemy too), Jābir’s book is a rather thorough reworking of the 
Almagest, both in terms of content and organization, which contains some crit-
icisms as well.

Jābir’s book has undergone some revision: perhaps on the part of the author, 
certainly on the part of Moses Maimonides, perhaps both. There are some 
substantive differences between the manuscripts, but just if and how these 
differences reflect the revisions remains unclear. Specifically, Richard Lorch 
has found the Arabic text that is labelled Iṣlāḥ al-Majisṭī on the front leaf 
of MS Berlin, SBPK, Landberg 132 (Ahlwardt 5652) differs from the version 
found in two Escorial manuscripts, árabe 910 and 930.20 In any event, all ver-
sions of Jābir’s book meet the wider definition of commentary that I set down 
at the beginning of this paper.

How does Jābir handle the question of the sphericity of the heavens? In 
Book I, which is dedicated to the geometry needed for the study of the Almag-

19 Lorch, ‘The Astronomy’; Bellver, ‘The Role’. See also Bellver’s article in this volume. I have 
inspected some of the manuscripts myself, without, however, carrying out a systematic study.

20 Lorch, ‘The Astronomy’, p. 88; the historian Ibn al-Qifṭī mentions Maimonides’ work 
on this text, see Lorch, ‘The Astronomy’, p. 89.
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est, Jābir offers a proof for Ptolemy’s unsubstantiated statement concerning the 
greatest equal-surface property of the sphere. Jābir limits himself to comparing 
the sphere with the five Platonic solids, declaring that ‘there can be no regu-
lar solid other than them’. His proof is the same as that of De isoperimetris, 
which we have already met in the commentary of Ibn al-Haytham; however, 
that text, or rather, the different traditions within which that text was trans-
mitted, extends the investigation to other solids as well, as does Pappus. Jābir 
apparently thought all of these extra proofs to be superfluous. Note further 
that the Hellenistic treatise on isoperimetry goes through the proof for each of 
the five solids; Jābir considers this too to be unnecessary.

Here is Jābir’s proof, from Book I of his treatise, which I translate from 
one of the Hebrew versions (MS Paris, BnF, hébr. 1025, Jābir/Shmu eʾl of Mar-
seilles), fol. 16a:

After this has been shown, it will now be easily shown that the measure (scil. vol-
ume) of any sphere is greater than the measure of any regular solid whose surface 
area is equal to the surface area of that sphere.
Let us take sphere AB whose surface area is equal to the surface area of regular solid 
C. I say that sphere AB is greater than solid C.
Proof: Regular solid C must be one of the five solids mentioned by Euclid, because 
there can be no regular solid other than them. Imagine a figure similar to solid C 
so that sphere AB is [inscribed] in it. The surface area of this figure will be greater 
than the surface area of sphere AB, and so it will be greater than the surface area of 
solid C. Hence its height, which is the radius of sphere AB, is greater than the height 
of figure C. But multiplying the radius of sphere AB by one-third the surface area 
of sphere AB gives its volume; and multiplying the height of figure C by one-third 
of its surface area gives its volume. The surface area of the sphere has been assumed 
to be equal to the surface area of solid C. Therefore, sphere AB is greater than solid 
C. Q. E. D.

Jābir takes up his paraphrase of the Almagest in Book II of his work [MS Ber-
lin, fol. 17r, bottom]. Following Ptolemy, he first discusses ‘the order of the 
theorems’ (Almagest 1.2), before proceeding to the six cosmological principles 
(Almagest I.3–8). According to Jābir the proper order is as follows:

The first thing that we ought to examine in this book is the general issue of the 
earth as a whole relative to the heavens as a whole. After that we should try to learn 
the situation of the inclined orb and the inhabited places on earth, and the gradual 
difference of their horizons, which is due to the latitude. If we first learn the things 
that we have mentioned, the investigation into other issues will be easier.
The second thing that we ought to seek to know is the motions of the sun and the 
moon, and all that they entail; until this knowledge has been attained, it is impossi-
ble to attain full knowledge of the stars. The final thing to be achieved according to 
what seems to be the [proper] order is the chapter on the stars, However, the chapter 
on the sphere of the fixed stars must come first… [ibid., fols 17r-v]
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As we shall see, there seems to have developed a consensus of sorts among the 
Islamic astronomers that the discussion ought to begin with the most demon-
strable of the principles, which is the earth and its shape. This provides a solid 
base for the other theorems, which are more speculative — even if their verac-
ity is not called into question. However, as Jābir explains, Ptolemy takes up the 
topics in a different order:

But the proposition that we ought to begin with would show that the heavens are 
spherical, and that their motion is spherical; that the shape of the earth in all of its 
parts is sensibly spherical; that its place is in the middle of the whole heaven, as its 
center; that it is, as far as distance and size are concerned, point-like relative to the 
fixed stars; and that it has no translational motion. Now let us first present a bit of 
the teaching concerning the proof of each one of the [items] that we have mentioned. 
[ibid.]

When he comes to discuss the spherical shape of the heavens, Jābir launches 
a virulent attack on Ptolemy’s chain of reasoning leading to the inference, or 
conclusion, that the heavens are the greatest body in volume. Jābir has sensed 
something awkward in Ptolemy’s text. He senses that the problem is not due 
to faulty expression alone; poor reasoning also must share in the blame. As we 
shall see presently, the problematics concerning which Jābir complains remain 
in the Arabic translation. He writes:

Said the author: His [Ptolemy’s] saying that, regarding different figures that have the 
same surface area,21 that which has the most angles has the greatest volume, and, 
therefore, the circle must be the greatest among plane figures and the sphere among 
solids, is a statement that is as brief and general as can be, and as contrary [to fact] as 
can be. This is the first place where his insufficiency in the science of geometry can 
be seen. Let us now set out to interpret his statement, to explain what he intended, 
and then explain why it is contrary [to fact]. We say: what is to be understood from 
his statement — though the words do not convey this, the idea (maʿnā) that he is 
aiming at explaining does get it across — is [the following] … [ibid.]

One can get a good idea of the problematic nature of Ptolemy’s text from 
Toomer’s translation, where we find not a few words added in brackets, most 
notably the word ‘likewise’, which indicates an inference:

[S]imilarly, since of different shapes having an equal boundary those with more 
angles are greater [in area or volume], the circle is greater than [all other] surfaces, 
and the sphere greater than [all other] solids; [likewise] the heavens are greater than 
all other bodies.22

21 The critical phrase ‘that have the same surface area’ is missing in the Berlin manuscript, 
fol. 18b, top line; it is found in the Hebrew translations, e.g. MS Paris, BnF, hébr. 1025, 
fol. 25v. It is hard to imagine that the omission in the Berlin manuscript — the one carrying 
the title, Iṣlāḥ al-Majisṭī — is anything but a scribal error.

22 Toomer, Ptolemy’s Almagest, p. 40.
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Jābir launches into a lengthy diatribe, which I display below in Arabic, Hebrew, 
and English. The gist of his remarks seems to be that Ptolemy ought to have 
shown (as Jābir did in the first section of his book) that the sphere is greater in 
volume than any (regular) polyhedron having the same surface area. Instead, he 
talks about figures having ‘more angles’ and jumps from this to his conclusion 
about the heavens. Such reasoning is a shinaʿā — a word which, in mathemat-
ics, means ‘absurdity’; but it also conveys an aesthetic or even moral judgement, 
namely ‘abomination’, ‘something repulsive’, and the like.23

Here are the texts: first Heiberg’s Greek text, and the Arabic Almagest, 
then Jābir’s text in Hebrew and Arabic. Once again, I have not scoured all of 
the manuscripts; the versions that I copy are good and may serve the purpose 
of this paper. The primary sources are followed by my translation of Jabir’s  
critique.

From the edition in Heiberg, Syntaxis mathematica, vol. I, p. 13

… τῶν ἴσην περίμετρον ἐχόντων σχημάτον ἐπειδὴ μείζονά ἐστιν τὰ πολυγωνι-
ώτερα, τῶν μὲν ἐπιπέδων ὁ κύκλος γίνεται μείζων, τῶν δὲ καὶ ὁ οὐρανὸσ τῶν 
ἄλλων σωμάτον.

From MS Paris, BnF, arabe 2482, fol. 3v

وجب ولذلك  قدرا  أعظم  فهو  زوايا  أكثر  منها  هو  ما  متساوية  احاطتها  التي  المختلفة  الأشكال  …وان 
الأجسام من  سواها  مما  أعظم  والسماء  المجسمات  أعظم  والكرة  السطوح  أعظم  الدائرة  تكون  أن   

From Jābir’s critique (Hebrew: Paris, BnF, hébr. 1025, fol. 25v-r)

רבת יותר  מהם  שהיא  מה  שוים  הקיפם  אשר  המתחלפות  אמרו שהתמונות  אולם  המחבר  אמר 
גדול והכדור  השטחים  גדול  יותר  שהעגול  התחיב  ולכן  שיעור  גדולת  יותר  היא  הנה   זויות 
שבמקומות הראשון  וזה  החלוף  ובתכלית  והקצור  הכללות  בתכלית  דבור  הוא  שבמוגשמים 
ואחר שרצה  מה  ונבאר  דבורו  פירוש  אל  עתה  ונכוין  ההנדסה  בחכמת  קצורו  בו  שיראה 

בה. חלופו  נבאר  זה   

יתנהו אבל  המליצה  תתנהו  שלא  ואע″פ  זה  מדבורו[  ]נ″ב  ממאמרו  יובן  שאשר   [25v]ונאמר 
ושיחזיק שיכלול  הגלגל  מן  המכוון  התכלית  שהיה  מפני  שהוא  לבארו  חתר  אשר   הענין 
 מהגרמים השמימיים יותר מה שאפשר התחייב שיהיה תמונתו תמונה תתן לו זה והיא התמונה
להקפת שוים  הקפיהם  אשר  הזויות  הרבות  מהתמונות  אחת  מכל  גדול  שהכדור  לפי   הכדורית 

מהגשמים שזולתם  ממה  גדולים  והשמים  המוגשמים  גדול  יותר  והכדור  אמר  ולכן  הכדור 

אותו להקף  שוים  הקפיהם  אשר  הזויות  הרבות  התמונות  גדול  שהכדור  ר″ל  הענין  זה   וביאור 
כפי ביאורו  אל  הוא  ודרך  הספר  מזה  הראשון  במאמר  שזכרנו  מה  כפי  הלקיחה  קרוב   הגדור 
שהוא מה  כי  ההקפה  השוות  הזויות  הרבות  בתמונות  תחלה  כשיבאר  מליצתו  שתתנהו  מה 

השיעור גדולת  היא  הנה  זויות  רבת  יותר  מהם   

23 On the meanings of this word see Langermann, ‘The Translation’.
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יתחייב ולכן  אומרו  יצא  איך  לא  ואם  הכדור  ואל  העגול  אל  המשפט  העתיק  זה   וכשהתבאר 
בתמונות זה  שבאור  ידע  ואלו  המוגשמים  מכל  גדול  והכדור  השטחים  מכל  גדול   שהעגול 
אל יכוין  לא  והכדור  הזויות  רבות  בתמונות  בביאורו  הרבה  קשה  יותר  קצת  עם   קצתם 
תמונה עם  הכדור  ענין  היא  אמנם  המכוונת  הכוונה  מאשר  קצת  עם  קצתם  התמונות  זכרון 

תמונה עם  תמונה  ענין  לא  הזויות  רבות   

מלא שהעגול  והכדור  העגול  אל  מהתמונות  המשפט  בהעתיק  דבורו  מכח  יצא  שהוא  עוד 
יעלם שלא  מה  מהגנות  וזה  המוגשמות  זויות  מלא  והכדור  שטחיות  זויות   

From Jābir’s critique (Arabic: Berlin, SBPK, Landberg 132, fol. 18v):
أن وجب  ولذلك  قدراً  أعظم  فهو  زوايا  أكثر  منها  هو  ما  المختلفة  الأشكال  أن  قوله  أما  جابر   قال 
ذلك مع  وهو  والإيجاز  الإجمال  غاية  في  فكلام  المجسمات  أعظم  والكرة  السطوح  أعظم   الدائرة 
كلامه شرح  الى  الآن  ولنقصد  الهندسة  علم  في  مختلفة  فيه  ظهر  موضع  أول  ولهذا  القول  في  خلف 

فيه مختلفه  نبين  ذلك  وبعد  أراد  ما  ونبين   

لما أنه  تبيينه  رام  الذي  المعنى  يعطيه  لكن  اللفظ  يعطيه  لا  كان  إن  هو  كلامه  من  يفهم  الذي  إن   فنقول 
يكون أن  وجب  يمكن  ما  أكثر  الأجرام  من  يسع  وأن  الإحتواء  الفلك  في  المقصودة  الغاية   كانت 
الزوايا الكثيرة  الأشكال  من  واحد  كل  من  أعظم  الكرة  لأن  الكري  الشكل  وهو  ذلك  يعطيه  شكلًا   شكله 
الى هو  وتطرق  الأولى  المقالة  في  ذكرناه  ما  على  المآخذ  قريب  الكرة  لإحاطة  مساوية  أحاطتها   التي 
كان ما  ان  الإحاطة  المساوية  الزوايا  الكثيرة  الأشكال  في  أولا  نبين  بأن  لفظه  يعطيه  ما  على  تبيينه 

قدراً أعظم  زوايا  اكثر  منها   

أعظم الدائرة  أن  وجب  ولذلك  قوله  يخرج  فكيف  وإلا  والكرة  الدائرة  الى  الحكم  نقل  ذلك  استبان   فإذا 
بكثير أصعب  بعض  مع  الاشكال  من  بعضها  تبيين  أن  علم  ولو  المجسمات  أعظم  والكرة   السطوح 
الغرض إذ  بعض  مع  بعضها  الأشكال  أحوال  ذكر  الى  يتعرض  لم  والكرة  الشكل  في  تبينه  من 

شكل مع  شكل  يتبين  لا  الزوايا  كثير  شكل  مع  الكرة  أحوال  تبين  هو  إنما  المقصود   

زوايا مملوءة  الدائرة  أن  والكرة  الدائره  إلى  الأشكال  من  الحكم  نقل  في  كلامه  قوة  من  يخرج  أنه  ثم 
يخفى لا  ما  شناعة  هذا  وفي  مجسمة  زوايا  مملوءة  والكرة  مسطحة   

English translation:
Said the author: His [Ptolemy’s] saying that, regarding different figures that have 
the same surface area, that which has the most angles has the greatest volume, and, 
therefore, the circle must be the greatest among plane figures and the sphere among 
solids, is a statement that is as brief and general as can be, and as contrary [to fact] as 
can be. This is the first place where his insufficiency in the science of geometry can 
be seen. Let us now set out to interpret his statement, to explain what he intended, 
and then explain why it is contrary [to fact].

We say: what is to be understood from his statement — though the manner of 
expression does not convey this, but the issue that he is aiming at explaining does 
convey it — is [the following]. Since the intended purpose of the orb is to encom-
pass and hold within as many bodies as possible, it was necessary that its figure be a 
figure that will allow this, and that is the spherical figure. Indeed, the sphere is the 
greatest of all multiangular24 figures that have the same surface area as the sphere. 

24 I do not use ‘polygonal’ since in English usage, ‘polygon’ is generally used to describe a 
two-dimensional figure.
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For this reason he said, ‘and the sphere is the greatest of the solids, and the heavens 
are greater than other solids’.

The explanation of this issue, i.e., that the sphere is the greatest of all multiangular 
figures that have the same surface area as the sphere is readily comprehensible, as we 
mentioned in the first book of this treatise. He approached its proof, as his manner 
of expression delivers it, by showing first that for multiangular figures having the 
same surface area, that with the most angles has the greatest volume. When this was 
shown, he transferred the theorem to the circle and the sphere. Otherwise, how can 
his statement, ‘and therefore, the circle is the greatest of the planar [figures], and the 
sphere is the greatest of the solids’, result?

Had he known that showing [that] this [holds true] for figures [in relation] one to 
another is much more difficult than it is to show it for the sphere and the figure,25 
he would not have intended the issue of the [relation of multi-angular] figures one to 
another, but would rather [have limited himself] to the issue of the sphere and the 
multi-angular figures, but not [the issue of] figure to figure.

Moreover, it emerges from the implications of his remarks about transferring the the-
orem from the figures to the circle and the sphere, that the circle is full of planar 
angles, and that the sphere is full of solid angles. The absurdity of this cannot be 
missed.

Richard Lorch explains Jābir’s objection as follows: ‘What Ptolemy said was, 
that of different figures of equal perimeter, those with more angles have greater 
capacity, and so the circle is the greatest of the plane figures — and similarly 
the sphere is the greatest of the solid figures. Jabir reasonably complains that 
this implies that circles and spheres are full of angles, and that it would be far 
easier to compare the sphere with a polyhedron of equal surface directly (as he 
does himself in book I)’. Lorch then remarks, ‘But in its context in the Almagest  
the point is a small one: Ptolemy’s slight clumsiness does not merit such a vio-
lent reaction’.26

Jābir, in sum, both proves Ptolemy right and rebuffs him. He provides (at 
least a partial) geometrical demonstration for the claim that the sphere has 
the greatest volume. In the next section he castigates Ptolemy’s own schematic 
presentation of the argument that the shape of the heavens must be that of 
a sphere; Ptolemy’s theorem that the heavens are spherical is correct, but he 
ought to have made a better case for this.

4. Al-Bīrūnī (973–1048)

Abū Rayḥān al-Bīrūnī did not write a commentary to the Almagest. Moreover, 
as George Saliba has pointed out, ‘Bīrūnī does not appear to have been inter-

25 Sic. Jābir means here any polyhedron other than the sphere.
26 Lorch, ‘The Astronomy’, p. 96. The comparison that Lorch refers to in Book I is found, 

e.g., in MS Paris, BnF, hébr. 1025, fol. 19r-v.
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ested in the genre of astronomical writing in which Ptolemaic planetary mod-
els were considered as describing both the apparent motion of the planets and 
the physical spheres responsible for the kinematic forces acting upon them’.27 
I agree that al-Bīrūnī evinced no interest in parametrized three-dimensional 
models for the heavens, of the type Ptolemy takes up in the Planetary Hypo-
theses and to which the so-called Maragha astronomers made their landmark 
contributions. However, this is not to say that he had no interest at all in the 
cosmological principles enunciated by Ptolemy at the beginning of the Almagest;  
far from it. In the second chapter of the first book of his comprehensive text-
book, al-Qānūn al-Masʿūdī, he critically reviews, in order, each one of the six 
cosmological principles that are established in Book I of the Almagest. He calls 
these subchapters mabāḥith, ‘inquiries’ or ‘research projects’. His remarks on 
the possibility of the earth’s rotation were signaled a generation ago in a paper 
by Shlomo Pines.28

As we shall soon see, the question whether the cosmos has the shape of the 
sphere troubled him for decades. He claimed all along that he believed the 
heavens to be spherical, and that this could be proven. Nonetheless, I sense that 
he never freed himself from the doubt that closely related alternatives, such as 
the ovoid or lenticular shapes, would also meet the basic observational require-
ments. Aristotle briefly mentions these shapes, along with the cone, polyhe-
dron, and cylinder in De Caelo II.4 (287a:16–22), but dismisses them on the 
grounds that in their revolution, those shapes would require more space than 
their volume; in other words, one would need empty space beyond the body of 
the cosmos. (Note that Ptolemy, to the best of my knowledge, pays no atten-
tion to De Caelo in Almagest I.) Aristotle’s argument, however, is flawed; this 
was pointed out already by Alexander of Aphrodisias.29 It seems that al-Bīrūnī 
would have rejected out of hand the cone and cylinder — models that were 
considered by Ptolemy, if only heuristically, and refuted several times by Ibn 
al-Haytham — because their boundaries include flat surfaces; on the other 
hand, an ovoid or lenticular rotating on its major axis ought to answer all the 
observational (but not the aesthetic or philosophical) requirements.

Al-Bīrūnī thought the ellipsoid to be a serious enough alternative that he 
included it among the queries he sent to his contemporary, the great philoso-
pher — and himself author of a revision of sorts of the Almagest — Abū ʿAlī 
Ibn Sīnā (Avicenna). Dimitri Gutas dates their exchange to circa 1000 with 
considerable certainty.30 Al-Bīrūnī inquires:

The Sixth Question: He [Aristotle] said in Book II [of De Caelo] the ovoid and 
lenticular shapes would require a vacuum and empty space, whereas the sphere does 

27 Saliba, ‘Bīrūnī’, p. 274.
28 Pines, ‘La théorie’, pp. 301–06.
29 Pellegrin, ‘The Argument’, pp. 174–76.
30 Gutas, Avicenna, pp. 99, 449–50.
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not; but the matter is not as he stated. In fact, the ovoid is generated by the rotation 
of an ellipse about its major axis, and the lenticular is generated by rotation about 
its minor axis. As there is no difference with regard to the rotation around the axes 
by which they are generated,31 nothing of what Aristotle mentions would occur. The 
essential attributes of the sphere alone would follow necessarily [for all three]. If the 
axis of rotation of the ovoid is its major axis and if the axis of rotation of the lentic-
ular is its minor axis, they would rotate like the sphere; neither would require empty 
space [exterior to the figure]. This would be the case, however, if the axis of [rotation 
of] the ovoid were its minor axis and the axis of [rotation of] the lenticular were its 
major axis. Then what he [Aristotle] states would necessarily follow. Even so, the 
ovoid may rotate around its minor axis and the lenticular around its major axis, both 
moving consecutively (taʿāqquban)32 without need of a vacuum. It would be like the 
motion of individual entities (ashkhāṣ) in the interior of the orb, which contains no 
vacuum according to the opinion of many people. And I am not saying this in the 
conviction that the sphere of the orb33 is not spherical, but rather ovoid or lenticular. 
I have tried hard to refute that theory. However, I am bewildered by the reasons 
offered by the master of logic (ṣāḥib al-manṭiq).34

Observe how al-Bīrūnī is careful to state that he remains committed to the 
spherical model; nonetheless, he is stupefied by the poor reasoning in its 
defense on the part of the great logician, Aristotle.35

Ibn Sīnā in his reply notes that al-Bīrūnī’s objection is sound and ‘all com-
mentators’ are somewhat embarrassed by this passage. He reminds al-Bīrūnī 
of the remark of Themistius, that ‘the teaching of the Philosopher should be 
interpreted in the best of ways’.36 Apparently in keeping with this approach, 
Ibn Sīnā says that the rotation of an ellipsoid could require a vacuum (if the 
figure rotated on its minor axis), whereas this is never the case with the sphere. 
That meek remark is the only direct response to al-Bīrūnī’s query. Nonetheless, 

31 All three figures — lenticular, ovoid, and of course the sphere as well — are generated 
by rotation about an axis in a manner that requires no space beyond the generated figure, 
contrary to Aristotle’s claim.

32 That is, moving one instant after the other, consecutively, without gaps.
33 Kūrat al-falak; here kūra obviously means the all-encompassing body, whose sphericity 

may not be precisely 1.
34 My translation from the text published by al-Yāfī, Ḥiwār al-Bīrūnī, p. 51.
35 Note as well that al-Bīrūnī states that the absence of a vacuum within the all-encompass-

ing sphere is the view of ‘many people’; he doesn’t recognize it as a hard-and-fast cosmological 
doctrine. Paul Hullmeine calls my attention to al-Bīrūnī’s questions regarding the vacuum in 
the letters to Avicenna (the sixth question regarding physical problems, and also the ninth and 
tenth question on De Caelo), where he criticizes the Aristotelian (and Avicennean) arguments 
against the vacuum, but without really indicating his personal opinion.

36 Themistius’ commentary to De Caelo is listed in the curriculum of Abū Sahl al-Masīḥī, 
Ibn Sīnā’s contemporary and teacher in medicine; see Gutas, Avicenna, p. 172. See also the 
following notes.
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the latter does not follow up on this query in his second round of correspon-
dence.

As is well-known, Themistius’ commentary to De Caelo survives only in a 
Hebrew translation from the Arabic.37 Ibn Sīnā’s brief snippet (’ innahu yan-
baghī an yuḥtamila qawlu al-faylasūfi ʿalā aḥsan al-wujūhi) may be the only 
witness to the Arabic version. It is not entirely clear that Ibn Sīnā is referring 
to a gloss on De Caelo 278a 21, where Aristotle employs the faulty reasoning 
mentioned above; given the ponderous character of Zeraḥya’s Hebrew transla-
tion one cannot be sure. Nonetheless, I do believe that Ibn Sīnā is referring 
to Themistius’ gloss on the passage in question. I will attempt to produce a 
coherent translation of the Hebrew:

Said Themistius: it is proper that we take the statement as a universal notion. That 
is, he did not state it as an open-ended statement, but rather in the case that the 
positioning is in one way. For it is possible for those figures to move in rotation, 
depending on the positioning, without there being a vacuum beyond the heavens. 
However, with regard to the sphere, there will never be need for something beyond 
it at all.38

In free translation, Themistius tells us that Aristotle did not mean that the 
ellipsoid will necessarily require a void beyond the cosmos; that would happen 
only in a certain positioning, namely, for example, the lenticular rotating about 
its major axis. However, for the sphere, it is always true: the rotating sphere 
never requires space beyond the volume of the sphere. This is, in fact, the res-
olution that Ibn Sīnā suggests in his response.

Now let us turn to al-Bīrūnī’s very comprehensive textbook on astronomy, 
al-Qānūn al-Masʿūdī, which he completed in 1030, some thirty years after his 
correspondence with Ibn Sīnā.39 His critical review of Ptolemy’s arguments for 
a spherical cosmos in the first of these ‘inquiries’ leads him to the following 
conclusion:

Since the circuits of the stars cannot be on a flat planar surface, they must take place 
on the surface of a solid that is not flat [i.e. not made up of straight flat faces]. And 
since its motion is rotational, it doubtlessly takes place about an axis. Its actual real-
ity [the fact that this body exists in actual reality] requires that it be finite [since no 
infinite body can exist]; and that the end-points of the axis be the poles of the axis. 
The heavens, therefore, have two poles, one of them lying below in the south by the 
same magnitude that the other is above in the north.
This body may be spherical, just as it may be ovoidal or lenticular, or cylindrical or 
conical or polyhedral. Ptolemy’s proof from the unvarying magnitudes of the stars in 

37 The text was edited by Landauer, Themistii; on this text and edition see further Zonta, 
‘Hebraica veritas’.

38 Landauer, Themistii, p. 67 (Hebrew), lines 32–35.
39 Bosworth, ‘Bīrūnī’.
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all directions and regions of the heavens does not rule out the shape’s being polyhe-
dral…40

Thus, even the polyhedron, all of whose faces are flat, must be considered. The 
explanation is obscure; our argument thus far ‘only rules out the very motion 
and tracings that the bodies would trace by their means’. I take this to mean, 
that we need to know the shape of the body on which the observer stands 
when he makes his observations, in order to be sure that the heavens them-
selves are not a polyhedron. Presumably, then, an observer located on or in 
a polyhedron within an enclosing, rotating polyhedron, may detect the same 
motions as the observer on the earth does now. For this reason, as he states 
in the passage that follows, al-Bīrūnī defers his proof for the sphericity of the 
heavens until after the sphericity of the earth is first established: ‘We can deci-
sively rule out alternative shapes for the heavens, other than the spherical one, 
only between the second and third of these investigations [that is, at the end of 
the second and before the third]; so we will put it off to its proper place’. The 
second investigation concerns the shape of the earth.

Al-Bīrūnī thus follows Ptolemy’s order of the theorems but defers reaching 
his conclusion until after the sphericity of the earth has been demonstrated. 
In his discussion of the second principle, which is the sphericity of the earth, 
al-Bīrūnī again follows Ptolemy but offers a much fuller explanation. He dis-
cusses, for example, what happens during a lunar eclipse, so that the reader can 
understand how the evidence drawn from its simultaneity at different locations 
on the earth bolsters the claim that the earth is spherical, or at least curved in 
the direction of longitude. Curvature in the direction of latitude can be shown 
from the variation in the number of ever-visible stars as we move north or 
south. Moving beyond the trivial cases (as one may call them) of points on the 
same parallel of longitude or latitude, he provides a comparison between Aden 
and Bulghar, which differ with respect to both coordinates. Since curvature 
has been shown to hold in both latitude and longitude, al-Bīrūnī concludes, 
the earth’s surface must be spherical.41

Al-Bīrūnī then takes up a possible objection which he ascribes to a certain 
mutakallim.42 Perhaps all that has been shown regarding the spherical shape 
of the earth is true only for the inhabited portions? After all, we have no data 
from the uninhabited areas. In reply, he argues that the sphericity of the entire 
earth can be established by observing the shapes of the shadows which the 
earth casts on the moon during an eclipse. He concludes that all of the above 

40 My translation, with explanatory glosses in brackets, from al-Bīrūnī, al-Qānunuʾl-
Masʿūdī, vol. I, 29–30.

41 al-Bīrūnī, al-Qānunuʾl-Masʿūdī, vol. I, top of p. 36.
42 The fourteenth century Jewish savant Hayyim Israeli held much the same view; see my 

study, in Hebrew: ‘The Making of the Firmament’.



 REVAMPING PTOLEMY’S PROOF FOR THE SPHERICITY OF THE HEAVENS 177

‘removes the doubt in the matter of the earth, establishing its roundness in all 
directions; she is therefore sensibly ( fī al-ḥiss) a sphere’.43 Then, by observing 
the culmination of stars (for longitude) and the elevation of the pole (for lati-
tude), we conclude that the shape of the heaven conforms to that of the earth 
and is thus spherical.

The heavens have thus been proven to have the shape of a sphere. I sub-
mit, nonetheless, that al-Bīrūnī may have retained some lingering doubts as to 
whether the heavens had the shape of a perfect sphere. Indeed, he knew (as did 
all cosmologists) that the earth had bumps and grooves, in the form of moun-
tains and valleys; but these were negligible relative to the size of the earth. And 
what about the heavens? Could they have a sphericity that is less than 1? From 
the point of view of astronomical observations, it would not matter much, if 
at all; but from the philosophical, or aesthetical (and perhaps theological) per-
spectives, it seems that a perfect sphere was required.

In my contribution to the Festschrift for A. I. Sabra I described the optical 
proof for the sphericity of the cosmos put forward by Aḥmad ibn ʿĪsā, which 
is based on the sphericity of the earth.44 I suggested that the Arabic-writing 
thinkers reversed the order of Ptolemy’s arguments, since they took the sphe-
ricity of the earth to be the more evident of the two principles. Pierre Pel-
legrin sees the sphericity of the earth to be the best of Aristotle’s arguments 
for the spherical shape of the cosmos. However, he adds, Aristotle argued in 
the reverse direction — from the sphericity of the outermost sphere down to 
the earth because the higher regions are ‘naturally prior’.45 A consequence of 
this approach is that one can explain the minor divergences from the perfect 
sphericity in the shape of the earth as a degradation of the perfect sphericity of 
the heavens as one moves below the sphere of the moon.

I now would like to press forward with this same analysis. Reversing the 
order — arguing from the sphericity of the earth for the sphericity of the heav-
ens — would mean not only an argument that moves from the naturally poste-
rior, but also one that seeks to prove the perfect sphericity of the heavens from 
the acknowledged imperfect sphericity of the earth. The difficulties are clear 
enough, but nonetheless, this seems to be the direction chosen by astronomers 
working in Islamic cultures. The reason for this, as it looks to me now (but 
maybe not tomorrow), is that the sphericity of the earth is the more secure 
and certain datum that our observations can provide. In other words, empirical 
evidence is prior to metascientific (or metaphysical) considerations.

43 al-Bīrūnī, al-Qānunuʾl-Masʿūdī, vol. I, pp. 36–37. Paul Hullmeine suggests that al-Bīrūnī 
may be making the same argument in Chapter 26 of his book on India (Sachau, Alberuni’s In-
dia, vol. I, p. 268). Though the chapter carries the title ‘On the Sphericity of the Heaven and 
the Earth […]’, it offers arguments only for the sphericity of the earth.

44 Langermann, ‘Transcriptions’, pp. 247–60.
45 Pellegrin, ‘The Argument’, p. 178.



178 Y. TZVI LANGERMANN

Nonetheless, the perfect sphericity of the heavens remains a philosophical 
or aesthetic imperative. From the point of view of observational astronomy, a 
nearly spherical ellipsoid rotating on its major axis, as the shape of the out-
ermost envelope of the world, cannot be ruled out. I somehow suspect that 
al-Bīrūnī never freed himself from doubt on this matter.

5. Conclusions
The commentary provided astronomers the opportunity to engage head-on 
with the Almagest, to go through it passage by passage in the effort to pene-
trate Ptolemy’s reasoning. Although formally speaking the purpose of the genre 
was to explicate and clarify rather than to criticize, alter, or reject, in practice 
a good deal of criticism and reform is to be found in the commentary tradi-
tion — especially when one accepts the wider definition of the genre that I 
have applied in this paper. In particular, this paper fleshes out a form of silent 
criticism and reform. By that I mean that Ptolemy’s proofs for the sphericity of 
the heavens are not challenged directly. Instead, proofs that seem no longer to 
be relevant are simply passed over, and the arguments are effectively rearranged 
so that the sphericity of the heavens is shown to conform to the sphericity of 
the earth, because the earth’s sphericity was held to be the more secure datum.

All the commentators studied here accepted Ptolemy’s statement that the 
heavens have the shape of the sphere; there was general agreement as well that 
the strongest argument on behalf of the sphere was the unvarying sizes of the 
stars in their rotations as well as the rotations of the circumpolar stars. This 
is observational evidence which is intrinsically linked to the position of the 
observer. Hence, some were of the opinion that this proof depends on the 
earth’s being spherical, which Ptolemy had shown only in the sections fol-
lowing that on the sphericity of the heavens. Therefore, in principle, Ptole-
my’s ordering of the theorems is mistaken; nonetheless, the Arabic expositions 
remain loyal to Ptolemy’s order of presentation.

The Arabic commentators also felt the need to tidy up Ptolemy’s presen-
tation. Arcane alternatives that Ptolemy had refuted at some length could be 
safely ignored. Unsubstantiated statements, such as the isoperimetric property 
of the sphere, should be demonstrated. The only serious alternatives were other 
geometrical solids, especially those with at least some curved surfaces. How-
ever, no one actually argued on behalf of one of those alternatives, though, 
in my own opinion, al-Bīrūnī may not have been entirely convinced that the 
ellipsoids had to be rejected.

This paper has studied only a small sampling of commentaries written in 
Arabic to the Arabic Almagest. Many more remain to be studied; at least one 
compares the Almagest in the original Greek with both Hebrew and Arabic 
translations.46 Further study of the commentary tradition is sure to enrich our 
understanding of the way this great astronomical textbook was read, sympa-

46 Langermann, ‘Science in the Jewish Communities’, pp. 446–49.



 REVAMPING PTOLEMY’S PROOF FOR THE SPHERICITY OF THE HEAVENS 179

thetically and critically, in a wide spectrum of cultures and varying historical 
contexts.
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The Arabic Versions of Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ

José Bellver

Abū Muḥammad Jābir b. Aflaḥ, the Latin Geber, was an Andalusi mathe-
matician and theoretical astronomer who probably flourished in early sixth/
twelfth century Seville. He is the author of the al-Kitāb fī l-Hayaʾ, or the Book 
on Astronomy, a reedition of Ptolemy’s Almagest, which is now better known 
as Iṣlāḥ al-Majisṭī, or Correction of the Almagest. Jābir b. Aflaḥ’s al-Kitāb fī 
l-Hayaʾ was translated into Latin and Hebrew. To date, there are four known 
Arabic manuscripts in Arabic script1 which transmit four different versions. 
It is not clear whether these versions were authored by Jābir b. Aflaḥ him-
self or by a later author. The aim of the present contribution is to discuss the 
authorship and chronological order of the different versions of Jābir b. Aflaḥ’s 
al-Kitāb fī l-Hayaʾ based on the earlier witnesses.2 In order to fulfil this aim, 
I will survey the data we know about Jābir b. Aflaḥ, his main work, and its 
influence on the astronomy of the Islamicate world. I will also elaborate on the 
title under which this work was known to its contemporaries.

1. Jābir b. Aflaḥ

Little is known about Jābir b. Aflaḥ’s life. Biobibliographical dictionaries, even 
with a specific interest in scientists, such as Ibn Abī Uṣaybiʿa’s (d. 668/1270) 
ʿUyūn al-anbā ,ʾ remain silent. The facts and circumstances of his life provided 
by Lorch in his seminal work on Jābir b. Aflaḥ3 are still valid today. Lorch 
placed Jābir b. Aflaḥ in the first half of the sixth/twelfth century based on 
references given by Ibn Rushd (the Latin Averroes, d. 595/1198) and Mūsā 
b. Maymūn (the Latin Maimonides, d. 601/1204). In his Compendium of the 
Almagest, Ibn Rushd stated that Ibn Aflaḥ lived in his own century, that is 
the sixth/twelfth century. More detailed is the reference on Jābir b. Aflaḥ by 

1 There are at least three extant Arabic manuscripts in Hebrew script of which two seem 
to be incomplete. See Lorch, ‘The Manuscripts’.

2 I am preparing the critical edition of Jābir b. Aflaḥ’s al-Kitāb fī l-Hay aʾ based on the 
extant Arabic manuscripts in Arabic script. This contribution is the result of this ongoing edi-
tion.

3 Lorch, ‘The Astronomy’.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 181–199
© F  H  G  10.1484/M.PALS-EB.5.120179
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Mūsā b. Maymūn in his Guide of the Perplexed II.9, which I translate from the 
Arabic:4

Then, there appeared groups of people from the later generations (muta aʾkhkhirūn) 
in al-Andalus who were very proficient in mathematics (taʿālīm) and clarified, accord-
ing to the principles laid down by Ptolemy, that Venus and Mercury were above the 
Sun. On this topic, Ibn Aflaḥ al-Ishbīlī, whose son I met, wrote a famous book. 
Thereupon the excellent philosopher Abū Bakr b. al-Ṣāʾigh [i.e. Ibn Bājja], under the 
guidance of one of whose students I myself have studied his books, examined this 
question and exposed some ways of argumentation, which we copied, by which it is 
shown to be implausible that Venus and Mercury are above the sun. Nevertheless, 
what Abū Bakr mentioned is an argument showing its implausibility, not an argu-
ment proving its impossibility.

Therefore, since Ibn Bājja’s argumentation seems an answer to Jābir b. Aflaḥ 
and bearing in mind that Ibn Bājja passed away in Ramaḍān 533/May 1139 
when he was still middle-aged, Jābir b. Aflaḥ should have been active at least 
during the first third of the sixth/twelfth century. Along these lines, since the 
first steps in the education on the secular sciences included astrology, mathe-
matics and astronomy,5 Mūsā b. Maymūn probably met Jābir’s son at a young 
age when he was still in al-Andalus before he left, early in his twenties, for Fez 
with his family around the year 554/1160. His remark that he met Jābir’s son 
and not Jābir b. Aflaḥ himself may indicate that Jābir b. Aflaḥ had passed 
away, or at least was no longer teaching, by the beginning of the second half 
of the sixth/twelfth century. In addition, the reference in Ibn Rushd’s Com-
pendium of the Almagest also suggests that Jābir b. Aflaḥ was no longer alive 
by the time Ibn Rushd completed the Compendium in the period between 
554/1159 and 557/1162.6

Jābir b. Aflaḥ’s interest in the Almagest links him to the Sevillian intellec-
tual circles around the prominent Abū ʿAbd Allāh Mālik b. Yaḥyā b. Wuhayb 
(d. 525/1130–1), known in his lifetime as the Philosopher of the West. Mālik 
b. Wuhayb lived most of his life in Seville, although later in life he was called 
to Marrakesh where he was a distinguished jurist in the service of the Almora-
vids. He was proficient both in the transmitted (naqlī) and in the intellectual 
(ʿaqlī) sciences with interests ranging from philosophy and logic to astron-
omy and astrology. The historian ʿAbd al-Wāḥid al-Marrākushī (d. 647/1250) 
reports that he saw copies of the Almagest and the Centiloquium in the hand 

4 cf. Ātāy, Dalālat al-ḥāʾirīn, p. 293. For a different translation, see Pines, The Guide of 
the Perplexed, vol. I, pp. 268–69. The translation in Lorch, ‘The Astronomy’, p. 85, from 
Friedländer contains some inaccuracies.

5 Kraemer, ‘Moses Maimonides’, p. 13.
6 For the period of the composition of Ibn Rushd’s Compendium, see Lay, ‘L’Abrégé de 

l’Almageste’, p. 25.
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of Mālik b. Wuhayb.7 Al-Marrākushī also points out that in that copy of the 
Almagest there were marginal notes in Ibn Wuhayb’s hand indicating the sec-
tions that he had studied under the direction of a certain Ḥamd or Ḥamad 
al-Dhahabī of Cordoba.8 Mālik b. Wuhayb and Jābir b. Aflaḥ were probably of 
the same generation and lived in Seville at roughly the same period.

2. The al-Kitāb fī l-Hayʾʾa
Jābir b. Aflaḥ is mostly known for his main work in nine books, his al-Kitāb 
fī l-Hayaʾ, currently better known under the title Iṣlāḥ al-Majisṭī, in which he 
rewrote Ptolemy’s Almagest to make it accessible to his contemporaries. Jābir 
b. Aflaḥ removed any practical contents, computations or tables from his revi-
sion of the Almagest, simplified its trigonometric proofs by resorting to the rule 
of four quantities, and introduced some corrections of a mathematical tenor, 
the most important being his criticism of the Ptolemaic order of the spheres. 
Contrary to Ptolemy, Jābir b. Aflaḥ suggested that the spheres of Mercury and 
Venus should be above that of the Sun, and not below. Jābir b. Aflaḥ’s al-Kitāb 
fī l-Hayaʾ was also remarkably famous because of its first book consisting of an 
introduction to plane and spherical trigonometry, which was extremely influen-
tial in Medieval Europe. Another distinctive feature in al-Kitāb fī l-Hayaʾ was 
the inclusion of a new instrument in Book V, similar to the torquetum, that 
Jābir claimed to substitute all four measuring instruments included by Ptolemy 
in the Almagest.9

The title Iṣlāḥ al-Majisṭī was not used during his own lifetime and was not 
widely used before recent times. It is taken from the first recto folio of Ms. Ber-
lin, SBPK, Lbg. 132 (Ahlwardt 5653), copied in Damascus in 626/1229, one 
of the hitherto known Arabic manuscripts in Arabic script of Jābir b. Aflaḥ’s 
al-Kitāb fī l-Hayaʾ, although this title is written in a different hand from that 
of the scribe. Jābir b. Aflaḥ’s work was referred to either as al-Kitāb fī l-Hayaʾ,10 
Kitāb al-Hayaʾ,11 or simply Hayaʾ Ibn Aflaḥ,12 that is the Book on Astronomy 

7 al-Hawārī, Al-Muʿ jib fī talkhīṣ, p. 140.
8 It is unlikely that this Ḥamd or Ḥamad al-Dhahabī can be identified with the son, also 

named Ḥamd or Ḥamad, of Abū ʿAbd Allāh Muḥammad b. Najjāḥ al-Dhahabī al-Qurṭubī 
(d. 532/1138), who led the burial prayers for his father, since his father Muḥammad b. Najjāḥ, 
born in 455/1063, had roughly the same age as Mālik b. Wuhayb, born in 453/1061, his 
would-be student. Nevertheless, since frequently the same names run in families, it is likely 
that this Ḥamd or Ḥamad al-Dhahabī from Cordoba would be an older relative of Muḥam-
mad b. Najjāḥ al-Dhahabī. On Muḥammd b. Najjāḥ al-Dhahabī and his son, see al-Ḍabbī, 
Bughyat al-multamis, p. 133.

9 On this instrument, see Lorch, ‘The Astronomical Instruments’, pp. 11–34.
10 Ms. Escorial, RBMSL, ár. 930, 1r.
11 Ms. Escorial, RBMSL, ár. 910, 1r.
12 See Ṣāliḥānī al-Yasūʿī, Taʾrīkh mukhtaṣar al-duwal, p. 423; and Yāltaqāyā and Bīlga, 

Kashf al-ẓunūn, col. 2047. Ḥājjī Khalīfa knew only the title. He also had access to an anon-
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by Jābir b. Aflaḥ. In this sense, entitling a comprehensive book on astronomy 
as the author’s hayaʾ was a general practice in sixth/twelfth century al-Anda-
lus, such as for instance Ibn Bājja’s Kalām fī l-hay aʾ or al-Biṭrūjī’s al-Kitāb fī 
l-Hayaʾ.13

The title Iṣlāḥ al-Majisṭī, that only appears in the Berlin manuscript, is 
probably derived from the single use of the root ṣlḥ in Jābir b. Aflaḥ’s introduc-
tion to his al-Kitāb fī l-Hayaʾ where he lists some technical mistakes (awhām) 
that he believes are present in the Almagest and states that he will correct 
them in their corresponding places.14 The reference reads wa-qad aṣlaḥnā jamīʿ 
mā dhakarnā-hu mim-mā wahama fī-hi fī l-mawāḍiʿ allatī dhakarnā-hā min 
kitābi-nā hādhā, that is ‘we have corrected (aṣlaḥnā) all the mistakes that we 
have mentioned [previously in this introduction] in the corresponding places 
of this book of ours that we have [also] mentioned [previously]’.15 In the cen-
tral and eastern Islamicate world, where there were different abridgements of 
the Almagest available, Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ mostly caught the 
attention because of the mistakes that Jābir b. Aflaḥ claimed were present in 
the Almagest and the corrections he provided, in much the same way that this 
work may be appealing to a modern historian of science. But for Jābir b. Aflaḥ 
himself and his readers in the western Islamicate world, his al-Kitāb fī l-Hayaʾ 
was first and foremost a corrected abridgement (talkhīṣ)16 of the Almagest pro-
viding a comprehensive self-contained mathematical description of the celestial 
spheres — in short, a hayaʾ. That the title Iṣlāḥ al-Majisṭī only appears in a 
single manuscript and there is no other later reference to it allows us to believe 

ymous and untitled copy of Jābir b. Aflaḥ’s al-Kitāb fī l-Hay aʾ, since he provides elsewhere 
its incipit under a category of works entitled Sharḥ al-Majisṭī, that is Commentary of the Al-
magest, and attributes it to a scholar of a recent generation. See Yāltaqāyā and Bīlga, Kashf 
al-ẓunūn, col. 1595.

13 The distinctive feature of books including the term hay aʾ in their titles is that they cov-
er the different celestial spheres either separately or as a system, regardless of whether their 
approach is fully mathematical, as in the case of Jābir b. Aflaḥ’s al-Kitāb fī l-Hay aʾ or Ṭūsī’s 
Tadhkira fī l-hay aʾ, or non-mathematical, which includes works proposing a new physically 
consistent astronomy such as al-Biṭrūjī’s al-Kitāb fī l-Hay aʾ, and merely introductory works, 
such as Jaghmīnī’s al-Mulakhkhaṣ fī al-hay aʾ al-basīṭa. Jābir b. Aflaḥ’s al-Kitāb fī l-Hay aʾ is a 
work of hay aʾ, not because his criticism of the Ptolemaic order of spheres has cosmological im-
plications, but because it is a comprehensive astronomy covering the different celestial spheres. 
In this sense, the foundational work of hay aʾ is the Almagest itself. Accordingly, the Almagest is 
sometimes called in Arabic al-Majisṭī fī l-hay aʾ: see, for instance, Cheikho, Kitāb Ṭabaqāt al-
umam, p. 31. For the translation, see Salem and Kumar, Science in the Medieval World, p. 28.

14 For a short description of Jābir b. Aflaḥ’s criticisms, see Bellver, ‘On Jābir b. Aflaḥ’s Crit-
icisms’.

15 See Bellver, ‘El lugar’, p. 135.
16 In Ms. Escorial, RBMSL, ár. 910, 1r, Jābir b. Aflaḥ’s al-Kitāb fī l-Hay aʾ is deemed to be 

an abridgement of the Almagest, a talkhīṣ al-Majisṭī. Jābir b. Aflaḥ also used the root lkhṣ in 
his introduction to his al-Kitāb fī l-Hay aʾ. See Bellver, ‘El lugar’, p. 129.
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that it was not widely used other than in the manuscript in which it appears. 
The only other reference conveying a similar idea, i.e. correcting the Almag-
est, as in the title Iṣlāḥ al-Majisṭī occurs in Ibn al-Qifṭī’s Taʾrīkh al-ḥukamā ,ʾ 
where the author calls it al-Istikmāl li-Jābir b. Aflaḥ fī l-hayaʾ. This title appears 
next to a reference to al-Muʾtaman b. Hūd’s (d. 478/1085–6)17 al-Istikmāl (‘the 
Completion’). Thus, the title al-Istikmāl li-Jābir b. Aflaḥ fī l-hayaʾ seems to 
copy the title of the work by Ibn Hūd and to apply it to Ibn Aflaḥ’s al-Kitāb 
fī l-Hayaʾ.18 The title Iṣlāḥ al-Majisṭī is more distinctive than the commonly 
used hayaʾ, but gives only a partial idea of the aim and intent of the author. 
Thus, I suggest referring to Jābir b. Aflaḥ’s main work as al-Kitāb fī l-Hayaʾ, 
the shortened form of the title Kitāb al-Shaykh Abī Muḥammad Jābir b. Aflaḥ 
al-Ishbīlī fī l-hay aʾ occurring in the closest witness to the author, Ms. Escorial, 
RBMSL, ár. 930, as we shall see below.

Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ had a moderate success in the Islamicate 
world. During the sixth/twelfth century, the authors of the so-called Andalusi 
revolt against Ptolemaic astronomy19 extensively used it as an introduction to 
the Almagest. They read it instead of the Almagest or in parallel to it.20 Jābir 
b. Aflaḥ’s al-Kitāb fī l-Hayaʾ was also read in the central and eastern Islami-
cate world at least during the seventh/thirteenth century. Ibn al-Qifṭī reports 
one transmission to the central Islamicate world.21 According to him, Joseph 
ben Jehuda (d. 623/1226) brought a copy with him from Ceuta to Fusṭāṭ. In 
Fusṭāṭ, under the direction of Mūsā b. Maymūn, he studied mathematics and 
astronomy, and there the two aimed at correcting (hadhdhaba) Jābir b. Aflaḥ’s 
al-Kitāb fī l-Hayaʾ since the original (aṣl) was in a disordered state (takhlīṭ).22 
In another place, Ibn al-Qifṭī reports that both scholars committed themselves 
to correcting (iṣlāḥ) and reediting (taḥrīr) it.23 Joseph ben Jehuda remained for 
a short time in Fusṭāṭ and left for Aleppo in 583/1187 where he finally settled 
and devoted himself to medicine. It is very likely that he took his original copy 
of Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ with him to Syria along with the revised 
version.24

17 For him, and particularly for the date of his death, see Shiḥāda and Zikār, Taʾrīkh, 
vol. IV, p. 209.

18 Lippert, Taʾrīkh al-ḥukamā ,ʾ p. 319.
19 Sabra, ‘The Andalusian Revolt’.
20 Lay, ‘L’Abrégé de l’Almageste’, p. 40; Bellver, ‘El lugar’, p. 112.
21 Lippert, Taʾrīkh al-ḥukamā ,ʾ pp. 392–93.
22 Lippert, Taʾrīkh al-ḥukamā ,ʾ p. 319.
23 Lippert, Taʾrīkh al-ḥukamā ,ʾ p. 393. In this reference, the word iṣlāḥ in wa-sa aʾla-hu 

iṣlāḥ Hay aʾt Ibn Aflaḥ al-Andalusī, i.e. ‘and he asked him to correct the Astronomy of Ibn 
Aflaḥ al-Andalusī’, should not be understood as part of a title Iṣlāḥ al-Hay aʾ.

24 The Berlin manuscript copied in Damascus in 626/1229 may stem from Joseph ben Je-
huda’s original manuscript.
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During the seventh/thirteenth century, Jābir b. Aflaḥ’s al-Kitāb fī 
l-Hayaʾ had some impact on the central and eastern Islamicate world. Quṭb 
al-Dīn al-Shīrāzī (d. 710/1311), who was a student of Naṣīr al-Dīn al-Ṭūsī 
(d. 672/1274) at Marāgha, wrote a short summary of Jābir b. Aflaḥ’s al-Kitāb 
fī l-Hayaʾ under the title Fawāʾid min al-Kitāb al-mawsūm bi-l-Majisṭī li-Ibn 
Aflaḥ al-Maghribī (Useful notes from the Book referred to as the Almagest by Ibn 
Aflaḥ al-Maghribī) – a work that seems to have been commissioned by al-Ṭūsī 
himself.25 Al-Shīrāzī finished this abridgement during the second ten days of 
Rabīʿ al-awwal of the year 663 (30 December 1264 to 9 January 1265), prob-
ably during his stay at Marāgha under the direction of al-Ṭūsī or shortly there-
after during his trip with al-Ṭūsī to Khurāsān.26 The impact of Jābir b. Aflaḥ’s 
al-Kitāb fī l-Hayaʾ on al-Shīrāzī can also be traced in al-Shīrāzī’s short opus-
cule entitled Faṣl fī Kayfiyyat taḥṣīl al-zamān al-dawrī li-l-qamar ʿalā mā dha-
kara Baṭlamiyūs fī awāʾil al-maqāla al-rābiʿa min al-Majisṭī (Section on how to 
obtain the lunar period according to what Ptolemy mentioned in Book IV of the 
Almagest)27 where he closely follows Jābir b. Aflaḥ’s original method for find-
ing the lunar period in anomaly, although he does not acknowledge his debt.28 
Another important witness to Jābir b. Aflaḥ’s influence that still needs to be 
studied is the Kitāb Mukhtaṣar fī ʿilm al-hay aʾ min Hayaʾt Kūshyār wa-min 
Hayaʾt Ibn Aflaḥ al-Ishbīlī (Abridgement on astronomy from the Astronomy of 
Kūshyār and the Astronomy of Ibn Aflaḥ al-Ishbīlī) by Athīr al-Dīn al-Mu-
faḍḍal b. ʿUmar al-Abharī (d. 663/1264).29

But despite the initial esteem with which Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ 
was regarded, external factors prevented it from being extensively copied in 
the Islamicate world after the eighth/fourteenth century. The most important 
one is that in 644/1247, shortly after the reception of Jābir b. Aflaḥ’s al-Kitāb 
fī l-Hayaʾ in the central Islamicate world, Naṣīr al-Dīn al-Ṭūsī completed his 
Taḥrīr al-Majisṭī, which was to replace the Almagest itself and any other of its 
abridgments in the central and eastern Islamicate world. While Jābir b. Aflaḥ’s 
al-Kitāb fī l-Hayaʾ was the work of a mathematician mostly interested in the 
geometrical consistency of the Almagest and, more importantly, any practical 
element present in the Almagest was left aside, the Taḥrīr al-Majisṭī was the 
work of a mathematical astronomer that met the requirements of potential 
astronomers needing an introduction to both the theoretical and practical sides 
of the Almagest. Once the Taḥrīr al-Majisṭī entered the postclassical canon, 

25 Ms. Oxford, Bodleian, Thurston 3, 75v–92v.
26 See the authorial colophon in Ms. Oxford, Bodleian, Thurston 3, 92v.
27 Ms. Dublin, Chester Beatty Library, Ar. 3637, 168v and 171r.
28 See Bellver, ‘Jābir b. Aflaḥ on the Four-Eclipse Method’.
29 This work is extant in Ms. Istanbul, Süleymaniye Library, Carullah 1499, 11v–81r, cop-

ied in Cairo in 677/1279 shortly after Abharī’s death. The title is given according to that in 
fol. Ir.
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the Almagest itself and any other abridgment were hardly copied afterwards. 
In the western Islamicate world, however, the factor that prevented the success 
of Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ was simply the lack of interest in highly 
technical theoretical astronomy, so that the audience for the work rapidly 
decreased, and accordingly it was seldom copied afterwards.30 However, beyond 
the fact that the al-Kitāb fī l-Hayaʾ was not extensively copied, the impact of 
Jābir b. Aflaḥ’s criticisms on later Arabic works, probably through works pro-
duced in Marāgha, has still to be studied in depth.

Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ was translated into Latin by Gerard of 
Cremona (d. 583/1187). The most common titles in Latin manuscripts are 
Astronomia Gebri and Liber Geber super Almagesti.31 This translation was later 
printed by Petrus Apianus (d. 1552) with the title Gebri libri IX de astrono-
mia.32 As Lorch suggested,33 it is likely that Gerard of Cremona translated Jābir 
b. Aflaḥ’s al-Kitāb fī l-Hayaʾ before his translation of the Almagest, since those 
sections in Jābir’s al-Kitāb fī l-Hayaʾ directly quoting the Almagest are differ-
ent from his rendition of the Almagest. It is also reasonable to translate Jābir 
b. Aflaḥ’s abridgement before the Almagest itself in order to get acquainted 
with its complexities. Thus, Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ may have been 
translated between c. 544/1150, when Gerard of Cremona arrived in Toledo, 
and 571/1175, the date when a certain master Thadeus the Hungarian copied 
Gerard of Cremona’s translation of the Almagest.34 The translation by Gerard 
of Cremona therefore provides an additional early witness to Jābir b. Aflaḥ’s 
work.

As already summarized by Lorch, Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ was 
also translated twice into Hebrew. The first translation was carried out in 
672/1274 by Moshe ibn Tibbon (fl. between 637/1240 and 682/1283). Some 
time later, it was also translated by Jacob ben Maḥir ibn Tibbon (d. 703/1304). 
In 735/1335, the latter translation was revised by Samuel ben Jehuda of Mar-
seille (fl. 735/1335). Samuel ben Jehuda, along with his brother David, had 
tried to translate Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ from an Arabic manu-
script found in Arles, but they had to return the manuscript after they had 
only copied an eighth of it. Samuel ben Jehuda later located an autograph of 
Jacob ben Maḥir’s translation, but found it faulty by collating it with the Ara-
bic manuscript they had previously used. Thus, he took pains to correct Jacob 

30 This is clearly shown by the almost complete absence of manuscripts on mathematical 
hay aʾ in Maghrebi libraries compared to the more abundant presence in these libraries of works 
on mīqāt, instruments and tables.

31 Lorch, ‘The Astronomy’, p. 91.
32 De Astronomia Gebri.
33 Lorch, ‘The Astronomy’, p. 91.
34 See the colophon in Ms. Florence, BML, Plut. 89 sup. 45.
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ben Maḥir’s translation despite the troubles that a correction represented in 
comparison to a fresh translation.35

Both accounts, i.e. Joseph ben Jehuda and Mūsā b. Maymūn’s revision in 
Fusṭāṭ, and Samuel ben Jehuda’s revision of Jacob ben Maḥir’s translation after 
comparing it with an Arabic manuscript, suggest that the Arabic edition of 
Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ was somehow problematic. This is corrobo-
rated by differences found in the extant Arabic manuscripts and the Latin and 
Hebrew versions.

3. Witnesses

To date, there are four known Arabic manuscripts in Arabic script of Jābir 
b. Aflaḥ’s al-Kitāb fī l-Hayaʾ, three of which are complete. Two manuscripts are 
located in the Escorial library. The first one is Ms. Escorial, RBMSL, ár. 910  
(henceforth referred to as Ea),36 with the title (fol. 1r) Kitāb al-Hayaʾ li-Abī 
Muḥammad Jābir b. Aflaḥ al-Ishbīlī, wa-huwa talkhīṣ Kitāb al-Majisṭī, wa-hiya 
al-nuskhat al-muḥadhdhafa (The Book of Astronomy by Jābir b. Aflaḥ, which 
is an abridgement of the Almagest. This is the shortened version). The second 
one is Ms. Escorial, RBMSL, ár. 930 (henceforth referred to as Eb),37 with the 
title (fol. 1r) al-Nuskhat al-kubrā min Kitāb al-Shaykh Abī Muḥammad Jābir 
b. Aflaḥ al-Ishbīlī fī l-Hayaʾ (The Long Version of the Book on Astronomy by the 
Shaykh Abū Muḥammad Jābir b. Aflaḥ al-Ishbīlī). Both manuscripts are from 
the western Islamicate world and probably of Andalusi origin. They do not 
provide any date, but Derenbourg tentatively dates them to the eighth/four-
teenth century; the dating of Ms. Escorial, RBMSL, ár. 930 will be discussed 
below. A third manuscript is the one already mentioned, located in Berlin 
and copied in Damascus in 626/1229 in a naskh hand, i.e. Ms. Berlin, SBPK, 
Lbg. 132 (henceforth referred to as B),38 with the title (fol. 1r) Iṣlāḥ al-Majisṭī 
li-Jābir b. Aflaḥ. Since this is an eastern manuscript, the absence of a nisba in 
the author’s name linking him to al-Andalus or the Maghrib is rather unusual. 
The last manuscript, located at the Parliament Library of Iran in Tehran, was 
identified in September 2015 by Mohammad Mozaffari, who, in a private com-
munication, informed a number of scholars that Ms. Tehran, Ketāb-ḵāna-ye 
Majles-e šurā-ye Eslāmi (Parliament), 1440S (henceforth referred to as T) con-
tained Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ.39 This manuscript, acephalous and 
incomplete, only covers the first six books. It lacks any scribal or authorial 
colophon. Thus, it can be inferred that this is the first volume of a two-vol-

35 Lorch, ‘The Astronomy’, p. 93.
36 For this manuscript, see Derenbourg and Renaud, Les manuscrits arabes, pp. 10–11.
37 For this manuscript, see Derenbourg and Renaud, Les manuscrits arabes, p. 39.
38 For this manuscript, see Ahlwardt, Verzeichniss, vol. V, p. 141 no. 5653.
39 For this manuscript, see Dāneš-Pažowh and ʿElmi Anvāri, Fehrest-e kotob-e ḵaṭṭi, p. 255.
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ume set. Lacking the scribal colophon, it is undated and does not provide any 
location, but Dānesh-Pažowh and Anvāri date it to the seventh/thirteenth cen-
tury, what considering the type of paper and size of the script seems very likely. 
The manuscript contains two different titles: Kitāb fī ʿIlm al-hay aʾ (Book on the 
Science of Astronomy) and Šarḥ-e Majesṭi (Commentary on the Almagest). This 
manuscript, in a single clear naskh hand, is of eastern origin, maybe Persian, 
although that cannot be firmly concluded.

All four manuscripts are different to a varying degree. They provide four 
different versions, so that a stemma cannot be clearly delineated. Most of Jābir 
b. Aflaḥ’s work is the same in all four Arabic manuscripts with no remarkable 
variations, but Book I and some sections throughout the rest of the work are 
rewritten in three different versions –those transmitted by Ea, B and T. Even 
though B and T transmit different versions, the differences between B and T 
are less significant when both are compared to Ea. Thus Ea, on the one hand, 
and B and T, on the other, present the major differences.40

Eb is a mixed version that follows Ea in Book I, and B in the remaining 
books.41 However there are some differences between Ea and Eb in Book I. 
Even though the contents of Book I in Ea and Eb are the same, they are 
arranged differently. In addition, in Ea the propositions defining poles and 
great circles are omitted, whereas they are present in Eb. Thus, Ea omits basic 
well-known contents that do not add much to the introductory Middle Books. 
And last, in Book I, even though Eb follows Ea despite minor differences, Eb 
gives in marginal glosses some proofs found in B.

T follows B closely, although it also presents some differences from B, 
namely: There are some demonstrations in B given in a summarized form in 
T.42 Some marginal glosses in B, for instance containing proofs of converse 
propositions,43 made their way into the body text of T. And finally, there are 
some newly rewritten sections in T that differ from Ea, Eb and B. Thus, even 
though T is very close to B, it should be considered a distinctive version on its 
own.

There is no evidence that the version in Ea (including Book I from Eb) was 
transmitted to the central and eastern Islamicate world, while the remaining 
versions, i.e. B (including Books II–IX from Eb) and T, clearly circulated in 
the east, since both were copied in the east, and the wording of al-Shīrāzī’s 

40 For differences between Ea and B regarding Book I, see Lorch, ‘The Astronomy’, p. 88.
41 See, for instance, the section edited in Bellver, ‘Jābir b. Aflaḥ on the Four-Eclipse Meth-

od’, where Eb follows B instead of Ea.
42 See, for instance, T, 48v–49r compared to B, 23v–24r.
43 cf. B, 6v and T, 11v.
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Fawāʾid shows that it was based on B, or maybe T.44 On the other hand, at 
least versions Ea, Eb and B circulated in al-Andalus and the Maghrib.

Additionally, the fact that the translation by Gerard of Cremona was done 
at most some twenty-five to fifty years after the completion of Jābir b. Aflaḥ’s 
al-Kitāb fī l-Hayaʾ,45 provides a very early witness to Jābir b. Aflaḥ’s work and 
its circulation in al-Andalus. Nevertheless, it inaugurates an independent Latin 
transmission which introduced variations particular to its tradition.

The Latin translation by Gerard is mostly based on the version transmitted 
in B. However, the Latin translation is not a straight rendition of B, since in 
Books II–IX the Latin translation transmits small sections found in Eb, but 
not present in B. These sections, few in number, are mostly borrowings from 
the Almagest.46 Thus, for Books II–IX, it is more appropriate to say that the 
Latin translation follows Eb. Additionally, when T differs from B the Latin 
translation follows B (or Eb for Books II–IX).

Moreover, the Latin translation has some distinctive features. The sections 
on the Milky Way and the solid globe in Almagest VIII.2–4 are included in 
Gerard’s translation as part of the main body text of Book VI,47 whereas these 
sections are not part of the equivalent sections in the main body text of any 
of the Arabic versions transmitted in the Arabic manuscripts. However, these 
sections, as Parra has shown,48 are placed in an appendix at the end of manu-
script Eb and thus have an Arabic origin.49 In any case, these sections in the 
appendix are literal borrowings from the Isḥāq-Thābit version of the Almagest 
and add nothing specific to Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ.50

44 The source of al-Abharī’s Kitāb Mukhtaṣar fī ʿilm al-hay aʾ min Hay aʾt Kūshyār wa-
min Hay aʾt Ibn Aflaḥ al-Ishbīlī is not so clear, since al-Abharī summarizes his sources, omits 
sections, and rearranges the order, mixing contents from both works. The first section of al-
Abharī’s work, devoted to principles and introductory contents, partly follows Book I of Jābir 
b. Aflaḥ’s al-Kitāb fī l-Hay aʾ. The wording of this section is closer to B. Therefore, it is likely 
that al-Abharī used a version similar to B or T.

45 It is worth pointing out that, at the time of the translation, Jābir b. Aflaḥ’s son was prob-
ably still alive, since the translation was done at roughly the same time when Mūsā b. Maymūn 
met him. That means that at the time of the translation it was still possible to commission the 
obtention of a manuscript of the final version of the al-Kitāb fī l-Hay aʾ through contacts with 
the circles of Jābir b. Aflaḥ’s son.

46 For instance, the quotation in Book II (Eb, 19r-v; De Astronomia Gebri, 22) from Al-
magest I.3 (Toomer, Ptolemy’s Almagest, p. 40) on the physical considerations on the sphericity 
of the earth taken from the Isḥāq-Thābit translation (Ms. Tunis, BN, 7116, 3r-v) is not present 
in B or T.

47 De Astronomia Gebri, 95–102.
48 Parra, ‘A Previously Unnoticed Appendix’, pp. 113–28.
49 Eb, 142r–150v.
50 In this point too, Gerard’s translation of the Almagest is different from his translation of 

this section in Jābir b. Aflaḥ’s al-Kitāb fī l-Hay aʾ borrowed from the Almagest. See Almagesti, 
89r–91v compared to De Astronomia Gebri, pp. 95–102.
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The second distinctive feature of the Latin translation concerns the instru-
ment which Jābir b. Aflaḥ claimed to supersede all four measuring instruments 
included by Ptolemy in the Almagest. Like the extant manuscripts of the Ara-
bic versions, the Latin translation contains only one instrument, but the Latin 
translation transmits a completely different instrument than the one transmit-
ted in the extant Arabic versions. Since manuscript T was identified after the 
study by Lorch, it is worth pointing out that the instrument in T is the same 
as the one in the other Arabic manuscripts.51 However, the instrument in the 
Latin translation must be of Arabic origin, as Lorch has shown, since it is also 
described in the Hebrew translation of Jacob ben Maḥir ibn Tibbon revised 
by Samuel ben Jehuda of Marseille.52 Thus, the single instrument contained in 
the Latin translation is the only witness to an instrument of Arabic origin of 
which there is no other witness in the extant Arabic manuscripts.

As to the Hebrew translations, according to Lorch,53 the translation by 
Moshe ibn Tibbon follows B, while the translation by Jacob ben Maḥir ibn 
Tibbon revised by Samuel ben Jehuda of Marseille follows the version in Ea, at 
least for Book I.

In short, we have four Arabic manuscripts in Arabic script transmitting 
three different versions (Ea, B and T) and an additional mixed version (Eb), 
plus a Latin rendition translated shortly after the original composition of the 
work. Thus, two questions follow. Which of these versions is the earliest? And 
are all of them by Jābir b. Aflaḥ?

4. Editions

Lorch, in his seminal work of 1975, suggested that the version in B was the 
first and unrevised version and Ea the revised one. He also suggested the pos-
sibility that the revised version, i.e. the one in Ea, was the one done by Mūsā 
b. Maymūn and Joseph ben Jehuda in Fusṭāṭ.54 He based his suggestion on the 
fact that the version in Ea was more complete and less prolix, and thus more 
elegant than the version in B.55 Whatever the case, B cannot be the revised 
version by Mūsā b. Maymūn and Joseph ben Jehuda done in Fusṭāṭ, since B is 
the one transmitted in the Latin translation by Gerard of Cremona who died 
in 583/1187, whereas the revision by Mūsā b. Maymūn together with Joseph 
ben Jehuda was done only shortly before Joseph ben Jehuda left for Aleppo 
during the same year. Since Derenbourg dated both Escorial manuscripts to 
the eighth/fourteenth century, Lorch considered possible that the version in Ea 

51 cf. T, 107v–111r.
52 Lorch, ‘The Astronomical Instruments’, p. 31.
53 Lorch, ‘The Astronomy’, p. 93.
54 Lorch, ‘The Astronomy’, p. 89.
55 Lorch, ‘The Astronomy’, p. 89.
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would be the revision by Mūsā b. Maymūn and Joseph ben Jehuda. In a later 
work, Lorch hypothesized that both versions were authored by Jābir b. Aflaḥ, 
without ruling out the possibility that a second author worked out the second 
version.56 In 2009, I pointed out that the version in B contains corrections of 
astronomical contents in Ea.57 This would mean that, in fact, the revised ver-
sion is B instead of Ea.

It is unlikely that the versions Ea and B were done by different authors. 
A revision of the contents of the al-Kitāb fī l-Hayaʾ would presuppose a very 
advanced and self-confident reader, and it is unlikely that his name would not 
have been mentioned. It is rather implausible that an advanced reader with a 
thorough knowledge of the Almagest would have corrected in B such a minute 
mistake in Ea as the one present in the computation of the longitude of the 
apparent conjunction of the sun from the true conjunction in solar eclipses58 
and would have overlooked in B that Jābir b. Aflaḥ’s bitter criticism regarding 
lunar eclipses had no textual basis in the Almagest and arose from a misunder-
standing because of his faulty manuscript of the Almagest.59 This can only be 
explained by both versions being worked out by the same author on the basis 
of the same faulty manuscript of the Almagest. Generally speaking, the man-
uscript tradition of Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ shows a great respect 
for the literality of its text. For instance, B, a manuscript copied in Damascus, 
contains a table of the western abjad numerals on fol. 1r, so whenever there 
are western abjad numerals in the text, they are left as they are. Quṭb al-Dīn 
al-Shīrāzī is cautiously respectful and introduces his observations by a tentative 
‘I believe’ (aẓunnu) when he agrees with or cast his doubts on Jābir b. Aflaḥ’s 
al-Kitāb fī l-Hayaʾ. All these peripheral reasons point to the fact that unac-
knowledged revisions by others than Jābir b. Aflaḥ are rather unlikely.

But the decisive witness to the authorship and the order of the different 
versions of Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ can be found in Ms. Escorial, 
RBMSL, ár. 930. This manuscript contains the name of the scribe of the man-
uscript, which has previously been unnoticed. Contrary to the usual practice, 
the name of the scribe is not part of the colophon, but is present on the first 
recto folio below the title of this single-work manuscript. As already noted, the 
title on fol. 1r reads al-Nuskhat al-kubrā min Kitāb al-Shaykh Abī Muḥam-
mad Jābir b. Aflaḥ al-Ishbīlī fī l-hay aʾ. Then follows a statement containing the 
name of the scribe, which reads khaṭṭa-hu li-nafsi-hi Aʿlī b. Aḥmad b. Mufarrij, 
raḥima-hu Allāh, that is ‘ʿAlī b. Aḥmad b. Mufarrij, God have mercy on him, 
copied it for his personal use’. The scribe can be identified as the Andalusi 

56 Lorch, ‘Jābir b. Aflaḥ and the Establishment’, p. 34.
57 Bellver, ‘El lugar’, p. 89 and n. 24.
58 See B, 67v and Ea, 65v.
59 See Ea, 63v–64r and B, 65v–66r. For a discussion of this criticism, see Bellver, ‘Jābir 

b. Aflaḥ on Lunar Eclipses’, pp. 47–91.
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faqīh ʿAlī b. Aḥmad b. Mufarrij b. Ziyād al-Sayyārī who was active in 530/1136, 
when he also copied (khaṭṭa) Ibn Rushd al-Jadd’s (d. 520/1126) al-Bayān 
wa-l-taḥṣīl.60 Thus, Ibn Mufarrij was active during Jābir b. Aflaḥ’s lifetime or 
shortly afterwards. However, it is very likely that this manuscript was copied 
when Jābir b. Aflaḥ was still alive, since the scribe refers to him in the title 
of the work as shaykh, which suggests that Jābir b. Aflaḥ was still an elderly 
person when he copied the manuscript. The formula raḥima-hu Allāh refer-
ring to Ibn Mufarrij is written on top of an erased one. Thus, it was changed 
upon Ibn Mufarrij’s death, which suggests that the manuscript was owned by 
him until his death or that the new owner knew him. Therefore, Eb should be 
dated to the first half of the sixth/twelfth century, which makes it the closest 
witness to Jābir b. Aflaḥ’s lifetime. Since Eb was copied when Jābir b. Aflaḥ 
was still alive, or less likely shortly after he passed away, the shortened title on 
the first recto folio of this manuscript, that is al-Kitāb fī l-Hayaʾ, should be 
the one by which Jābir b. Aflaḥ’s work was known in his own lifetime, and 
thus this is the title by which I have suggested above that this work should be 
known, instead of the rather spurious title Iṣlāḥ al-Majisṭī, with only one late 
occurrence.

However, this extraordinary manuscript is not only unique because it is the 
witness closest to the author, but also because it combines both versions of 
the al-Kitāb fī l-Hayaʾ. As already noted, Eb contains the same version as in 
Ea for Book I (although rearranged), and the version in B for Books II–IX, 
with only minor differences. Thus, it is safe to assume that both versions were 
worked out by Jābir b. Aflaḥ himself. The only other possibility is that one of 
these versions was made by an independent Andalusi author alive during Jābir 
b. Aflaḥ’s lifetime, but this can be ruled out, since such a close witness as Eb 
clearly attributes this work in both versions (the one similar to Ea transmitted 
in Book I of Eb, and the one similar to B transmitted in Books II–IX of Eb) 
to Jābir b. Aflaḥ himself. At most, one of these versions may have been done 
by a disciple under Jābir b. Aflaḥ’s supervision. So, in all, it is safe to attribute 
both versions to Jābir b. Aflaḥ himself.

Thus, we should ask whether Eb is a mixed manuscript created from two 
different versions, or an in-between version. The possibility that this is an 
in-between version, i.e. that this manuscript was copied amid the rewriting 
of the first into the second version, can be excluded. The element that makes 
clear that this is a manuscript created from two already existing versions lays 
in the instrument. The description of the instrument in Ea is appended at the 
end of the manuscript. This means that in the first redaction of the version 
now transmitted in Ea there was no instrument. However, in the Introduction 

60 On ʿAlī b. Aḥmad b. Mufarrij, see Sharīfa and ʿAbbās, al-Dhayl wa-l-takmila, vol. V, 
p. 181, no. 355.
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to the al-Kitāb fī l-Hayaʾ in Ea, Jābir b. Aflaḥ actually announces that he is 
going to provide an instrument to supersede Ptolemy’s measuring instruments, 
although the section devoted to that instrument is found only in an appendix 
in Ea.61 But in the Introduction present in Eb, there is no such reference to an 
instrument.62 Thus, the source of both the Introduction and Book I as trans-
mitted by Eb is earlier than the source of Ea. Since it does not make sense to 
first devise and provide the description of an instrument, later remove it and 
then reintroduce it, it should be concluded that Eb was created from two dif-
ferent source manuscripts of the two versions transmitted by B and an earlier 
version than Ea, and was not an in-between version. That also answers which 
of the two versions is the earliest and confirms that the version in Ea is earlier 
than the version in B.

Lorch suggested that Ea was the revised version since he adduced that the 
version in B was more prolix and less elegant than the version in Ea. But this 
is only so for Book I, since in the rest of the al-Kitāb fī l-Hayaʾ there are 
rewritten sections in B more succinct than in Ea.63 A more prolix Book I, as 
in B, strongly suggests that Jābir b. Aflaḥ used it for teaching purposes. As a 
teaching text, his revision was aimed at making his exposition clearer for his 
students, although it would be less elegant than his first redaction. This would 
help to explain the apparent contradiction regarding why a more prolix and 
less elegant version in Book I has also undergone some corrections from an 
astronomical point of view in the remaining books.

Eb, or the source from which it was copied, was put together from two dif-
ferent versions. The more likely possibility is that the scribe first obtained a 
copy of an older version and continued from Book II onwards with a newer 
version obtained shortly thereafter. Accordingly, there are glosses in Book I 
in the hand of the scribe and introduced by wa-fī nuskha ukhrā, i.e. ‘and in 
another copy’, which are taken from the same version transmitted by B.64 This 
probably makes Ibn Mufarrij the one who mixed both versions in this manu-
script. However, the sections on the Milky Way and the solid globe in Eb are 
probably a later addition, although the scribe is the same as that of the main 
text. As singled out by Parra,65 a marginal gloss on the last folios of Book VI66 

61 Ea, 3r.
62 This reference to the instrument in the introduction is omitted from the equivalent sec-

tion in Eb, 2v. See Bellver, ‘El lugar’, p. 128. In Eb, this omission affects the sentences where 
Jābir b. Aflaḥ introduces this instrument. Thus, in this case an omission by scribal error is not 
very likely.

63 See, for instance, Ea, 29r-v and B, 29r.
64 See, for instance, the marginal glosses in Eb, 8v.
65 Parra, ‘A Previously Unnoticed Appendix’.
66 Eb, 94v. The hand of this marginal gloss pointing to the appended sections and the 

hand of the glosses in Book I seem the same. Even though the script of these marginal glosses 
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in Eb indicates the point in the main body text where various available copies 
included the appended sections. It is worth noting that the scribe pointed out 
that the appended sections were written on a quire of different colour, which 
suggests that they were appended at a significantly later stage.

In all, from the information in the manuscripts and the Latin version, we 
can attempt to draw a list of editions and revisions along with their witnesses. 
That is:

– First Edition – Eb Book I;
– Revised First Edition – Ea;
– Second Edition – Eb Books II–IX;
– Augmented Second Edition – Latin translation;
– Revised Second Edition – B;
– Third Edition – T.

The first edition of Jābir b. Aflaḥ’s al-Kitāb fī l-Hayaʾ is transmitted by Eb 
Book I and Ea. However, initially the first edition of Jābir b. Aflaḥ’s al-Kitāb 
fī l-Hayaʾ did not contain an instrument. Our only witness to the first edition 
in its initial version is Eb Book I. Thus, it is very likely that the arrangement 
of the trigonometrical propositions in Eb Book I was the earlier one.

The first revision of the first edition introduced the instrument and rear-
ranged the contents of Book I. The witness to this first revision, and the major 
witness to the first edition in general, is the version transmitted in Ea.

The second edition is a partial rewriting of the first edition. Almost all of 
Book I, and at least sections of Books II, IV and VII are rewritten. There may 
also be small differences in wording that are difficult to be distinguished from 
scribal errors. The witness to this second edition in its initial version is Eb, 
Books II–IX, while B is a slightly revised version of the initial second edition. 
Since the Latin translation closely follows the second edition, as witnessed by 
Eb Books II–IX, a comparison of Book I in B and Book I in the Latin trans-
lation will indicate the degree by which Book I in B departs from the initial 
second edition of Book I, which up to now has no witness in Arabic.

B is a slightly revised version of the initial second edition witnessed by Eb 
Books II–IX. The revisions are very minor, and they mostly amount to omis-
sions of short quotations of the Almagest that are found in Eb Books II–IX. 
However, the presence of these quotations is significant since they are also 

is different from that of the main text, we can guess that they were written by the same scribe 
since the hand of this marginal gloss is expected to be the same as that of the appendix, which 
is the same of the main text. These differences in the script between glosses and body text 
most probably owe to the use of a different qalam for marginal glosses and main body text, 
and not to a different scribe.
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found in Ea, and thus Eb Books II–IX should precede B. Additionally, since 
the Latin translation also transmits these short quotations from the Almagest, 
the Latin translation mostly follows the second edition witnessed by Eb Books 
II–IX rather than the slightly revised second edition transmitted by B. The 
main departure of the Latin translation from the second edition is the new 
instrument superseding the one in the Arabic manuscripts, already described 
by Lorch.

The Latin translation was done from an extended second edition, since 
in Book VI the Latin translation includes in the main text quotations from 
Almagest VIII.2–4 that are in an appendix in Eb, as Parra has already shown. 
But, as pointed out by the scribe of Eb, there were Arabic copies of the al-Kitāb 
fī l-Hayaʾ which included these sections taken from Almagest VIII.2–4 in the 
main text. Thus, the second extended edition had an Arabic origin.

The third edition is witnessed by T. It rewrites some small sections from the 
revised second edition witnessed by B. Thus, T also omits the same quotations 
of the Almagest as B does. The rewritings in T compared to B are less substan-
tial than the rewritings of the second edition compared to the first edition. 
Nevertheless, although quantitively not very important, since these are con-
scious rewritings affecting some proofs throughout Jābir b. Aflaḥ’s al-Kitāb fī 
l-Hayaʾ, I have listed T as a new edition. Since T is an acephalous and incom-
plete manuscript with no colophon and with no cover containing statements of 
ownership, purchase or reading, no information about the authorship of this 
reedition and the history of the manuscript can be inferred. Jābir b. Aflaḥ may 
have been the author of this third edition represented by T. But it also may 
be the revision authored by Joseph ben Jehuda and Mūsā b. Maymūn, or by 
any other later author. However, I favour the possibility that the author of the 
rewritings in this third edition is Jābir b. Aflaḥ himself, or a very close disci-
ple under his supervision, since, except for Book I which serves as an indepen-
dent work on its own,67 I have found no important rewritings in T of sections 
already rewritten in B from Ea. This is particularly striking in Book II where 
rewritings from Ea into B and from B into T follow one another without ever 
affecting a section already rewritten. This suggests, although not conclusively, 
that the author behind the rewritings in B and in T is the same person, that 
is Jābir b. Aflaḥ. However, the fact that the Latin translation was not based 
on the, to our knowledge, last version of the al-Kitāb fī l-Hayaʾ, i.e. T, may 
be a counterargument for Jābir b. Aflaḥ’s authorship, since it casts a doubt on 
whether it was available in al-Andalus. In any case, it should be underlined 
that the differences between B and T are not very important.

67 A few sentences of the discussion of the sine rule for spherical triangles are rewritten in 
T from B in a far less prolix way. See T, 19v–20r and B, 10r.
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The Latin translation stems from a particularly complete version. It mostly 
follows an extended version of the second edition before a few minor quota-
tions from the Almagest were skimmed from it. Thus, apparently the source 
for the Latin translation was either carefully selected or, as an extended ver-
sion, was a popular one in al-Andalus in a time when Jābir b. Aflaḥ’s son was 
probably still alive. It is doubtful that the instrument in the Latin translation, 
which is of Arabic origin, would have been designed by Jābir b. Aflaḥ. The 
short description of the instrument in the Latin translation of the Introduc-
tion is the same as in the Introduction of the Arabic manuscripts, although the 
actual description of the instrument in the Latin translation is different from 
the one in the Arabic manuscripts. And the punctilious character that Jābir 
b. Aflaḥ shows throughout his work does not fit with the lack of detail in the 
description of the instrument in the Latin translation. Since this instrument 
had an Arabic origin and since the translation was executed shortly after Jābir 
b. Aflaḥ’s lifetime, the most consistent possibility is that the instrument wit-
nessed by the Latin translation was designed by disciples of Jābir b. Aflaḥ in 
an attempt to overcome the unfeasibility68 of Jābir b. Aflaḥ’s instrument wit-
nessed by the extant Arabic manuscripts. That also casts doubts on whether 
the third edition transmitted by T was authored by Jābir b. Aflaḥ, since the 
instrument witnessed by the Latin translation was part of the second edition 
and not the third.

The final consideration is that the version in Ea is referred to as al-nuskhat 
al-muḥadhdhafa, the shortened version, whereas the version in Eb is referred to 
as al-nuskhat al-kubrā, the long version. However, despite the fact that Ea and 
Eb Books II–IX transmit two different editions, there are no major differences 
in length between them. The main difference between the two editions are 
rewritings, not additional contents, except for the appended borrowings from 
the Almagest in Eb regarding the Milky Way and the solid globe. The only 
significant departure in the contents covered is in Book I where, as indicated 
above, Ea omits propositions aimed at defining the concepts of the pole and 
great circle. It is possible that by ‘shortened version’ (al-nuskhat al-muḥadh-
dhafa), the scribe referred to the omission of such basic well-known contents 
defining the concepts of the pole and great circle that did not add much to 
the introductory Middle Books. These omissions seem deliberate and do not 
preclude Eb Book I from being earlier than Ea.

In all, except for the version in the Tehran manuscript, whose authorship 
cannot be fully ascertained, Jābir b. Aflaḥ was the most likely author of the 
different editions of his al-Kitāb fī l-Hayaʾ, currently better known as Iṣlāḥ 
al-Majisṭī. He kept rewriting his al-Kitāb fī l-Hayaʾ over a rather long period. 
He first added an instrument, and then rewrote substantial parts of his work 

68 Lorch, ‘The Astronomical Instruments’, p. 31.



198 JOSÉ BELLVER

in order to polish it and to accommodate it to the needs of his students. A crit-
ical edition will further expand our understanding of how the composition of 
this work developed over time. Additionally, should a new manuscript of the 
al-Kitāb fī l-Hayaʾ be identified, it is likely that it will modify the tentative list 
of editions and revisions presented here.
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The Astrological Computations Attributed to Ptolemy and 
Hermes in Medieval Arabic Sources

Josep caSulleraS

1. Introduction

Many medieval Arabic sources  attribute some of the most popular mathemat-
ical procedures and geometrical definitions applied to the practice of astrology 
either to Ptolemy (c. ad 150) or to the legendary Hermes. However, these attri-
butions have little basis either in Ptolemy’s astrological work1 or in the writ-
ings related to the Hermetic tradition.2 Focusing on this apparent disagreement 
between authors and attributions, in Section 1 we review the basic concepts 
of natal astrology and draw up a list of the computations that have been asso-
ciated with either Ptolemy or Hermes. In Section 2, we will try to explain 
the meaning of these attributions with reference to some medieval authors who 
were concerned with this same question. Finally, we present some conclusions 
in Section 3.

2. Houses, rays and progressions. Methods and attributions

The main practices associated with natal astrology correspond to the three 
concepts of houses, rays and progressions, all of them taken from the ancient 
Greek tradition.

The astrological houses are the twelve divisions of the ecliptic around the 
local horizon, as represented in Figure 1. During one apparent daily revolution 
of the celestial sphere, any celestial body will pass through all twelve houses. 
Unlike zodiac signs, the houses vary depending upon the time and latitude for 
which they are calculated. Therefore, the operation of equalizing the astrolog-
ical houses (in Arabic taswiyat al-buyūt) relates the positions of the celestial 
objects to our place and moment.3

1 The Tetrabiblos or Quadripartitum, in Arabic Kitāb al-arba .ʿ
2 On Hermes and his astrological works see Sezgin, GAS VII, pp. 50–58. See also van 

Bladel, ‘Hermes’.
3 See, for instance, Bouché-Leclercq, L’astrologie grecque, pp. 256–86; Casulleras and Ho-

gendijk, ‘Progressions’, pp. 38–39, and the references given there.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 201–221
© F  H  G  10.1484/M.PALS-EB.5.120180
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Figure 1. The cusps of the astrological houses

The doctrine of the planetary aspects or projection of rays (in Arabic maṭraḥ
al-shuʿāʿāt) considers the astrological significance of certain angular distances 
(60°, 90°, 120° and 180°) defined between the objects on the celestial sphere. 
Figure 2 is a schematic representation of the different rays of a planet P on the 
ecliptic circle: the ‘rays’ PP1, PP2, PP3 (PP7, PP6, PP5) are called the left (right) 
sextile, quartile and trine rays respectively, and PP4 is called the opposition.4

Figure 2. The planetary aspects or rays

The astrological theory of progressions (in Arabic called tasyīr) establishes a 
relationship between angular distances and periods of time as a basis for astro-
logical predictions. A typical example of this practice is the attempt to find 
the moment of death, by giving a value of one year of life per degree of the 
angle between two significant objects selected in the celestial configuration at 
the moment of the individual’s birth. One of these objects is thought of as 
emitting the life-force, and the other is seen as destroying life. In Figure 3, 

4 cf. Bouché-Leclercq, L’astrologie grecque, pp. 165–79; Casulleras and Hogendijk, ‘Progres-
sions’, pp. 40–41.
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the point F represents the destructive point that will reach the initial position 
of the emitting point P after rotation over n degrees around the celestial axis. 
According to this theory, the angle n corresponds to the arc of tasyīr and the 
individual will live n solar years.5

Figure 3. The system of progressions

A variety of geometrical approaches are used to calculate the houses, rays and 
progressions. For each one, the sources describe various methods of computation, 
which all produce different results. Fortunately, this feature of astrological tech-
nique has played an important role in the development of applied mathematics, 
and one major consequence of the research into the history of these methods  
is that we have well-established designations for all of them. John North 
first classified the medieval systems for the houses in 1986,6 and Edward S. 
Kennedy extended North’s classification in 1996.7 Casulleras and Hogendijk 
published a classification of the methods for the rays and the progressions in 
2012.8 For the purpose of our discussion, we will focus only on the methods 
that have been attributed to either Ptolemy or Hermes in the Arabic sources.

2.1. Houses
2.1.1. Ptolemy: the Standard Method and the Hour Lines Method
The most popular method for the division of houses in the Middle Ages is the 
one that North called the Standard Method.9 In this method, the houses are 
defined on the ecliptic by meridians crossing equal divisions of the equatorial 

5 cf. Bouché-Leclercq, L’astrologie grecque, pp. 411–22; Casulleras and Hogendijk, ‘Progres-
sions’, pp. 41–43.

6 North, Horoscopes and History.
7 Kennedy, ‘The Astrological Houses’.
8 Casulleras and Hogendijk, ‘Progressions’.
9 cf. North, Horoscopes and History, p. 4.
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arcs lying between the local meridian and the meridians that pass through the 
ascendent and the descendent points of the ecliptic. Figure 4 shows the cusps 
(i.e. beginning points) of the houses of the eastern hemisphere using this pro-
cedure.

Figure 4. The Standard Method for the division of the houses

This system is pre-Islamic in origin, and it was called ‘the well-known method’ 
by the eleventh-century Iranian astronomer al-Bīrūnī.10 In many Andalusī 
sources it is attributed to Ptolemy,11 and it is usually implemented with an 
astrolabe, moving either the rule or the spider with the help of the inscribed 
hour lines, in order to find the beginnings of the houses according to the defi-
nition of the method.12

The other method for the houses which is sometimes attributed to Ptolemy 
is the Hour Lines Method.13 In this method, the cusps of the houses are the 
intersections of the ecliptic with the lines of the even seasonal hours.

Modern astrologers attribute this system to Placidus, a seventeenth-century 
Perugian monk, but the Andalusī astronomer Ibn al-Samḥ (d. 1035)14 said in 
his Treatise on the Use of the Astrolabe that, according to Ḥabash [al-Ḥāsib] 
(ninth century), this is Ptolemy’s method.15 This attribution was repeated by 
some other Andalusī authors. The procedure can be performed with any stan-
dard astrolabe plate which has lines for the seasonal hours.

10 cf. North, Horoscopes and History, p. 6; al-Bīrūnī, Al-Qānūn, vol. III, pp. 1357–1359. On 
this author see, for example, Yano, ‘Bīrūnī’.

11 cf. Calvo, ‘La résolution graphique’, pp. 35–36; Casulleras, ‘Mathematical Astrology’, 
pp. 265–67.

12 The two options are described in North, Horoscopes and History, p. 59.
13 cf. North, Horoscopes and History, pp. 20–27; Kennedy, ‘The Astrological Houses’, 

p. 538; Casulleras, ‘Mathematical Astrology’, p. 265; Calvo, ‘La résolution graphique’, p. 36; 
Casulleras and Hogendijk, ‘Progressions’, pp. 83–85.

14 On this author see Rius, ‘Ibn al-Samḥ’.
15 Viladrich, El Kitāb al-Aʿmal, pp. 66, 124.
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Figure 5. The Hour Lines Method for the houses

2.1.2. Hermes: the Prime Vertical Method and the Equatorial Method

The two methods for the houses that have been associated with Hermes 
are called the Prime Vertical Method16 and the Equatorial Method17 in the 
North-Kennedy classification. They define the houses as the intersections of 
the ecliptic with certain great circles on the celestial sphere passing through the 
North and South points of the local horizon, which are called position circles.

Figure 6. The Prime Vertical Method for the houses

For the first method (Figure 6), these position circles cross equal divisions of 
the prime vertical, which is the great circle passing through the local zenith 
and the East and West points on the local horizon. For the Equatorial Method, 
they cross the celestial equator (Figure 7).

16 North, Horoscopes and History, pp. 32–33, 47; Kennedy, ‘The Astrological Houses’, 
pp. 541–43; Casulleras and Hogendijk, ‘Progressions’, pp. 82–83.

17 North, Horoscopes and History, pp. 27–30, 47; Kennedy, ‘The Astrological Houses’, 
pp. 543; Casulleras and Hogendijk, ‘Progressions’, pp. 80–82.
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Figure 7. The Equatorial Method for the houses

The Prime Vertical Method is attributed to the thirteenth-century Italian 
author Campanus of Novara in the Latin West, to al-Bīrūnī in the medieval 
Islamicate East, and to the mythical Hermes in al-Andalus.

The Equatorial Method for the houses is not found in Eastern Arabic 
sources. In the Western Arabic area, it is attributed to Hermes and to the 
Andalusī mathematician and astronomer Ibn Muʿādh al-Jayyānī (d. 1093), 
who described the method for the first time in a treatise on the computations 
applied to the division of the houses and the projection of rays.18 Modern 
astrologers call it the system of Regiomontanus, a fifteenth-century author who 
was seemingly the owner of a manuscript of the Latin translation by Gerard of 
Cremona of the canons to the astronomical tables of Ibn Muʿādh, in which the 
method is also described.19

2.2. Rays
In the case of rays, the name of Ptolemy is related to what we call the Sin-
gle Hour Line Method in many Eastern and Western Arabic sources.20 This 
method can be considered the standard procedure for computing the projec-
tions of the rays in the medieval Islamicate area. In it, the arcs defining the 
different rays are measured on the equator using the hour line that passes 
through the planet that casts its rays. In Figure 8, point L stands for the left 
sextile ray of a Planet P. If L is rotated around the celestial axis over an angle

18 Study, edition and Spanish translation in Casulleras, La astrología.
19 cf. North, Horoscopes and History, p. 35; North, ‘The Alfonsine Books’, p. 49; Herme-

link, ‘Tabulae Jahen’, p. 109. The canons were printed in Nuremberg in 1549, after Regiomon-
tanus’ death (in 1476) and probably using his Latin manuscript (I thank Benno van Dalen for 
drawing my attention to this).

20 cf. Kennedy and Krikorian-Preisler, ‘The Astrological Doctrine’, p. 5; Hogendijk, ‘The 
Mathematical Structure’, pp. 178–80; Casulleras and Hogendijk, ‘Progressions’, pp. 68–71.
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Figure 8. The Single Hour Line Method for the rays

of 60 degrees in the direction of the daily motion of the celestial sphere, its 
image after rotation is on the hour line through P.

Two methods for the projection of rays were associated with Hermes: the 
Single Position Semicircle Method (Figure 9) and The Four Position Circles 
Method (Figure 10).

Figure 9. The Single Position Semicircle Method for the rays

In the first method, the arcs defining the different rays are measured on the 
equator using only one position semicircle. In Figure 9, the image of point L 
after rotation of 60 degrees in the direction of the daily motion of the celestial 
sphere is on the position semicircle through P. We call this method the Sin-
gle Position Semicircle Method, because it involves only the position semicircle 
through P. The attribution of this procedure to Hermes is found in treatises 
on astronomical instruments from al-Andalus.21

21 cf. Casulleras and Hogendijk, ‘Progressions’, pp. 67–68.
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Figure 10. The Four Position Circles Method for the rays

The Four Position Circles Method is based on the same geometrical approach as the 
Equatorial Method for the houses and it is also attributed to Ibn Muʿādh al-Jayyānī, 
who provides the only known algorithm for this method. Figure 10 shows the 
construction of L, the left sextile ray of P. This method involves a total number 
of four position circles, and the different rays would correspond to the beginnings 
of the third, fourth, fifth, seventh, ninth, tenth and eleventh houses of a hypo-
thetical horizon passing through P and the North and South points of the local 
horizon. All the sources mentioning this method come from the Western area.22

2.3. Progressions
Book III, Chapter 10, of Ptolemy’s Tetrabiblos23 contains references to most of 
the systems for progressions (tasyīrs) in connection to the problem of finding 
the length of an individual’s life.

Figure 11. The Right Ascension Method for progressions

22 cf. Casulleras and Hogendijk, ‘Progressions’, pp. 71–73; Casulleras, ‘Mathematical As-
trology’, pp. 248–51.

23 cf. Robbins, Tetrabiblos, pp. 286–305; Casulleras and Hogendijk, ‘Progressions’, p. 89; 
Hogendijk, ‘Al-Bīrūnī’, pp. 286–90.
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In what we call the Right Ascension Method (Figure 11) the arc of tasyīr 
is measured on the equator, between the meridians through the two objects 
involved in the progression. According to Ptolemy, this procedure is correct 
only for objects in the meridian plane. Later sources repeat this reasoning24 but 
do not attribute the method to either Ptolemy or Hermes.

Figure 12. The Oblique Ascension Method for progressions

In the Oblique Ascension Method (Figure 12) the arc of tasyīr is determined 
by the difference in oblique ascension between the two objects. Ptolemy says 
that this is the usual system but that it is correct only if the emitting point is 
on the horizon. As in the case of the Right Ascension Method, later authors 
repeat the same principle,25 without attributions to either Ptolemy or Hermes.

Figure 13. The Position Semicircle Method for progressions

In the Position Semicircle Method (Figure 13), the arc between the two signif-
icant objects is measured on the equator by means of the position semicircle 

24 cf. Casulleras and Hogendijk, ‘Progressions’, pp. 45–46.
25 cf. Casulleras and Hogendijk, ‘Progressions’, p. 47.
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through the emitting point. Ptolemy states the principle of this method in the 
Tetrabiblos, and he probably thought that this was the true system. However, 
the sources attribute this method to Hermes, not to Ptolemy.26

Finally, the method actually described by Ptolemy is the Hour Line Method, 
presented with numerical examples in the Tetrabiblos as an approximation to 
be used in the computations.27 In this method (Figure 14), the arc between the 
two significant objects is measured on the equator by means of the hour line 
passing through the emitting point.

Figure 14. The Hour Line Method for progressions

2.4. Summary table
This table summarizes the attributions in Arabic sources of astrological meth-
ods to Ptolemy and Hermes:

Ptolemy Hermes

Houses
Standard Equatorial
Hour Lines Prime Vertical

Rays Single Hour Line
Single Position Semicircle
Four Position Circles

Progressions Hour Line Position Semicircle

3. Interpretations and opinions

The problem that emerges from this overview of the methods attributed either 
to Ptolemy or to Hermes is that these attributions do not seem to correspond 
to the preserved works that constitute the Hermetic and Ptolemaic traditions. 

26 Robbins, Tetrabiblos, pp. 290–91. See Casulleras and Hogendijk, ‘Progressions’, pp. 48–53.
27 The numerical examples have been analysed in Hogendijk, ‘Al-Bīrūnī’, pp. 286–90; see 

also Casulleras and Hogendijk, ‘Progressions’, pp. 53–59.
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We have just seen that, in his Tetrabiblos, Ptolemy states the principle of the 
Position Semicircle Method for the tasyīr and, instead of giving the correspond-
ing calculation for this procedure, presents the Hour Line Method as a compu-
tational approximation. Therefore, this latter method was correctly attributed 
to Ptolemy, but no single procedure for the computation of the projection of 
rays or the division of houses is to be found in the Tetrabiblos.28 The case of 
Hermes is even less clear, since the preserved works ascribed to him do not 
seem to justify any of the attributions mentioned here.

Following a suggestion made by al-Bīrūnī (see the next sub-section), 
Hogendijk comes to an interesting conclusion:29 these ascriptions of methods 
do not refer to the actual authorship of a procedure but to the type of elements 
it uses. Thus, the procedures related to Ptolemy correspond to the ones that 
use hour lines, whereas the methods attributed to Hermes correspond to the 
ones using position circles or semicircles.30 Another point worth making is that 
the attributions to Hermes are normally found in Western Arabic sources, and 
not before the time of Ibn al-Samḥ.31

In this section, we will look at the details of al-Bīrūnī’s reasoning, assess 
how the issue of the attributions of methods is addressed in the thirteenth-cen-
tury Alfonsine Libro Segundo de las Armellas, and examine the opinions of 
Ibn Muʿādh al-Jayyānī on the methods for the houses and the rays associated 
with Hermes and Ptolemy. Finally, we will compare these medieval points of 
view with a passage in the Tetrabiblos that may shed some light on the matter.

28 This in spite of the fact Ibn al-Samḥ says that the Single Hour Line Method for the rays 
‘is mentioned by Ptolemy in the Tetrabiblos’. See Viladrich, El Kitāb al-Aʿmal, p. 149.

29 In a first draft of Casulleras and Hogendijk, ‘Progressions’, cf. pp. 87–88.
30 There are a few exceptions in the Islamicate area: for example, the Samarkand ruler 

Ulugh Beg (d. 1449) attributes the Single Position Semicircle Method for the rays to Ptole-
my (Sédillot, Prolégomènes, p. 209; cf. Casulleras and Hogendijk, ‘Progressions’, pp. 68, 75); 
the eleventh-century Andalusī astronomer al-Istijjī relates the Oblique Ascension Method for 
the rays also to Ptolemy (Samsó and Berrani, ‘World Astrology’, pp. 303–04 and Samsó and 
Berrani, ‘The Epistle’, pp. 199, 200, 234; Casulleras and Hogendijk, ‘Progressions’, pp. 66); 
the Jewish mathematician Abraham Ibn ʿEzra (d. 1167) attributes the Hour Line Method for 
progressions to Hermes (but also to Ptolemy, among other authors, cf. Viladrich and Martí, 
‘Sobre el Libro’, p. 91; Casulleras and Hogendijk, ‘Progressions’, p. 56: n. 48); the Maghribī 
astronomer Ibn ʿAzzūz (d. 1354) attributes to ‘Ptolemy and Hermes’ the Single Hour Line 
Method for the rays (Casulleras, ‘Ibn ʿAzzūz’, pp. 63–64, 81, 89; Casulleras and Hogendijk, 
‘Progressions’, p. 70).

31 One exception may be the case of the Christian astrologer Ibn Hibintā (fl. Baghdad, 
early tenth-century), who states that ‘Hermes said in his book related to “The Latitude” that 
the trine, and sextile, and quartile (rays) are made in equal degrees’, but this book of Hermes 
seems to be lost and the quotation is too imprecise to pinpoint the attribution to Hermes to a 
particular method. See Sezgin et al., Ibn Hibintā, vol. I, p. 293 and vol. II, p. 66; Kennedy and 
Krikorian-Preisler, ‘The Astrological Doctrine’, p. 13; Casulleras and Hogendijk, ‘Progressions’, 
p. 88.
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3.1. Al-Bīrūnī
In Book XI, Chapter 4 (On the Projection of the Rays), Section 1 of his 
al-Qānūn al-Masʿūdī,32 al-Bīrūnī describes the Single Hour Line Method for 
the rays, but he says that the computation is incorrectly attributed to Ptolemy, 
and that this attribution was made because the procedure is based on Ptolemy’s 
method of progressions.33 Elsewhere, in the chapter on progressions,34 al-Bīrūnī 
says that this procedure for the rays is adapted from the procedure for progres-
sions, that is to say, the Hour Line Method.35 However, in another passage in 
the same chapter, al-Bīrūnī is more critical: he regards the Hour Line Method 
for the progressions as ‘unsatisfactory from a theoretical point of view’,36 and 
he presents the Position Semicircle Method as ‘the method which I preferred’ 
and a way to ‘get rid of the carelessness and approximation which are involved 
in it [i.e. in the Hour Line Method]’.37

3.2. The Alfonsine Libro Segundo de las Armellas
As for the Western sources, an interesting examination of the attributions of 
astrological methods to Ptolemy and Hermes is found in Chapter 52 of the 
Alfonsine Libro Segundo de las Armellas.38 This text was written in the thir-
teenth century, probably by Rabiçag (Rabbī Isḥāq ibn Sīd), the chief scientific 
advisor of the Castilian king Alfonso the Wise, and it is preserved in medie-
val Spanish. The previous chapters deal with the application of an armillary 
sphere to the resolution of astrological problems but, in Chapter 52, the author 
explains that his source for the methods (‘opinions’) attributed to Hermes is a 
book by Ibn Muʿādh, that he did not find in the books of Ptolemy what is said 
to be Ptolemy’s method about the projection of the rays and the tasyīr, and 

32 Spanish translation of this section in Casulleras, La astrología, pp. 303–11.
33 Fī l-ʿamal al-mansūb ilā Baṭlamiyūs […] faʾinna al-marjaʿ fī-hi ilā al-ʿamal al-musnad 

ilā Baṭlamiyūs wa-ʾin lam yakun la-hu bal mustanbaṭan min raʾyi-hi fī l-tasyīr, al-Bīrūnī, Al-
Qānūn, vol. III, p. 1377, line 14 […] p. 1378, lines 4–5; cf. Casulleras, La astrología, p. 303.

34 Book XI, Chapter 5. English translation and study of the whole chapter in Hogendijk, 
‘Al-Bīrūnī’.

35 Li aʾnna dhālika al-ʿamal muqtabas min ʿamal al-tasyīr, al-Bīrūnī, Al-Qānūn, vol. III, 
p. 1394, line 3; Hogendijk, ‘Al-Bīrūnī’, p. 293. See Casulleras and Hogendijk, ‘Progressions’, 
p. 71.

36 Ghayr murḍī fī ṭarīq al-naẓar, al-Bīrūnī, Al-Qānūn, vol. III, p. 1397, line 1; Hogendijk, 
‘Al-Bīrūnī’, p. 297.

37 Al-ṭarīq alladhī āthartu-hu […] wa-tajarrada ʿam-mā fī-hi min al-tasāhul wa-l-taqrīb, 
al-Bīrūnī, Al-Qānūn, vol. III, p. 1397, lines 14 […] lines 16–17; Hogendijk, ‘Al-Bīrūnī’, p. 298. 
See also Casulleras and Hogendijk, ‘Progressions’, p. 59.

38 Edited in Rico y Sinobas, Libros, vol. II, p. 68. See Casulleras and Hogendijk, ‘Progres-
sions’, n. 95 on pp. 88–89; Casulleras, La astrología, pp. 112–15; On the Libros de las Armel-
las see Samsó, Las ciencias, pp. 175–80; Comes, Historia, pp. 190–202.
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that these attributions may derive from mistakes in the transmission. Finally, 
he also says that a correct understanding of the Tetrabiblos shows that the 
method (‘opinion’) of Ptolemy is closest to that of Ibn Muʿādh.

Thus, it seems that in the thirteenth century Rabiçag identified the systems 
of Hermes with Ibn Muʿādh, and he also said that the methods of Ibn Muʿādh 
and Ptolemy are almost the same.

This is a paraphrase of the text:
On knowing how to perform the tasyīr following the opinion of Ibn Muʿādh 
[Aben-Mohat].
This man called Ibn Muʿādh [Aben-Mohat] was a great scholar of geometry and 
astrology, and wrote a book dealing with the projection of the rays, and the tasyīr, 
and the equalization of the twelve houses, and he showed in it reasons and proofs 
very near the truth, and he also showed how those mentioned things [i.e. rays, tasyīr 
and houses] have to be performed. And he said about Hermes that he agreed with 
him. And from that book the projection of rays and the tasyīr according to the 
method of Hermes were taken. And they are those that we put here in this book 
under the name of Hermes. And later scholars in this science agreed with him on 
that. And I, being smaller than all of them, also agree with them. And if you read 
in that book, you will see the good things that it contains. And all that I said here 
to be Ptolemy’s method about the projection of the rays and the tasyīr, you must 
know that I did not find it in the books of Ptolemy, but Abū Maʿshar [Abumassar] 
and Azarquiel [Abuçac el Zarquiel] said that it was so.39 And it may well be that it 
was not Ptolemy’s method. But someone attributed it to him, as often happens, due 
to transmission errors, and they change one name for another, even more considering 
the long time that has passed since Ptolemy’s day, more than one thousand years 
ago. However, if you correctly understand Ptolemy’s Tetrabiblos [quarto partido] you 
will understand that his opinion is nearer to what Ibn Muʿādh [Aben-Mohat] said 
than to any other’s [opinion]. And were it not because it would be too long, I would 
show you the places where you could understand it. And I wanted to put here all the 
methods, in order for the book to be more complete and lest it seemed that I did 
not include them for laziness. And you should choose among those aforementioned 
methods the one that you find to be the best.

3.3. Ibn Muʿādh
As mentioned above, the eleventh-century Andalusī mathematician and astron-
omer Ibn Muʿādh al-Jayyānī addressed the question of the division of the 
houses and the projection of the rays in two works: his Astronomical Tables 
(the Tabulae Jahen) and a short monograph dealing with the mathematical 
aspects of these practices.

39 A different version of this passage, in Rico y Sinobas, Libros, vol. I, pp. LI–LII, mentions 
al-Battānī [Albateni], Ibn al-Samḥ [Abulcacin Abnaçam], Azarquiel [Abuiz-hac-Azarquiel] and 
others … [et algunos otros …], but not Abumassar.
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The stated intention of Ibn Muʿādh’s treatise is to draw attention to some 
errors that have spread from Ptolemy’s Tetrabiblos. For this purpose, he anal-
yses the procedures that existed in his time for the rays and the houses, and 
proposes his own solutions. In this respect, his work represents not only a clas-
sification of these methods but also an investigation of how far they conform 
to the principles that may maintain these astrological practices within a con-
sistent geometrical, astronomical and geographical whole. According to these 
principles, Ibn Muʿādh contends that the division of houses and the projection 
of rays share the same theoretical basis, and defends the use of the Equatorial 
Method only for the houses and the Four Position Circles Method for the rays.

In the course of his investigation, Ibn Muʿādh also discusses the question of 
the methods for the houses and the rays according to the methods attributed 
to Ptolemy and to Hermes. Ibn Muʿādh considers that the Standard Method 
for the houses, attributed to Ptolemy, developed out of a confusion when the 
division of houses was performed at latitudes other than the equator (φ = 0°), 
where all the methods are equivalent. He is probably referring to the fact that 
horoscopes of the world — a practice of the Hindu-Iranian astrological tradi-
tion — were cast for latitude 0° before the Greek tradition of nativities reached 
the Islamicate regions.40

The other method for the division of the houses which is of particular inter-
est to Ibn Muʿādh is the one attributed to Hermes by Ibn al-Samḥ, that is, the 
Prime Vertical Method. In this case, Ibn Muʿādh quotes a passage from a lost 
zīj (a set of astronomical tables) by Ibn al-Samḥ (d. 1035) containing an erro-
neous algorithm for this method, and presents a correct solution. However, Ibn 
Muʿādh disapproves of the use of the prime vertical and does not find its attri-
bution to Hermes convincing: he suspects that it was created by Ibn al-Samḥ’s 
misunderstanding of Hermes’ texts. There are good grounds for believing that 
Ibn Muʿādh is right, because the attribution to Hermes does not appear before 
Ibn al-Samḥ.41

Concerning the methods for the projection of rays, Ibn Muʿādh focuses 
in particular on the method attributed to Ptolemy and ‘transmitted by Abū 
Maʿshar (787–886), among others’,42 which corresponds to what we called the 
Single Hour Line Method. To alert his readers to the errors in this method, 
Ibn Muʿādh uses several numerical demonstrations including an example of the 
application of the method for a geographical latitude of 49°: in that situation, 
if the initial point of Capricorn (i.e., at an ecliptic longitude of 270°) is on the 
eastern horizon, the computation according to the ‘Method of Ptolemy’ will 
give its left trine ray at the beginning of Cancer (i.e., at an ecliptic longitude of 

40 cf. Casulleras, La astrología, pp. 179–80, and the references mentioned there.
41 cf. Casulleras, La astrología, pp. 185, 193, 256–57, 288–90.
42 cf. Casulleras, La astrología, pp. 240 (Spanish) and 268 (Arabic). On Abū Maʿshar see 

Yamamoto, ʽAbū Maʿshar’.
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90°), that is, the point diametrically opposite the beginning of Capricorn, with 
the astrologically absurd consequence that the left trine ray and the opposite 
ray fall on the same place. After other numerical proofs of the inconsistencies 
of this procedure, Ibn Muʿādh concludes that the method ascribed to Ptolemy 
is clearly erroneous.43

It may be worth recalling that, in a different historical context, John North 
mentioned another mathematical flaw related to the use of hour lines in com-
putations. In this case it was in connection with the Hour Lines Method for 
the division of the houses, when this procedure failed to cast a horoscope for 
Marie Peary (1893–1978), the daughter of the Arctic explorer, who was born at 
a latitude (φ = 77;44°) at which the method could not be applied.44

The Treatise of Ibn Muʿādh also raises the question of an intriguing connec-
tion between the mythical Hermes, the ninth-century philosopher al-Kindī,45 
and the Four Position Circles method for the projection of rays.

When dealing with the idea that a single geometrical approach should be 
applied in an analogous way to the division of houses and the projection of 
rays, Ibn Muʿādh says:

What we consider correct — and we disregard any other procedure — consists of 
dividing the equatorial circle into equal parts, for it [i.e. the equator] is the origin and 
the direction of the movement; and of that the dividing circles, for all the climates, 
are drawn from the common points of the horizon and the meridian [i.e. according 
to the definition of the position circles]. This is what expresses our opinion and our 
intention, and Ibn al-Samḥ intended to do the same in what he attributed to Hermes 
about the projection of the rays […] his specific instructions for the projection of the 
rays indicate that the circle which is divided is just the equator.46

In another passage, after describing his computation for the Method of the 
Four Position Circles, Ibn Muʿādh states that:

Among the things which this procedure verifies is the fact that the two quartiles [i.e. 
the quartile rays] are diametrically opposite in it [i.e. in this system], and similarly 
the left trine and the right sextile, and similarly the left sextile and the right trine. 
The same is true in the doctrine of Hermes.47

These allusions indicate that Hermes’ method for the projection of rays has 
position circles crossing divisions of the equator and that it retains the expected 
symmetries between the different rays (Figure 15). These two characteristics 

43 cf. Casulleras, La astrología, pp. 203–10, 241–43 (Spanish) and 270–73 (Arabic).
44 cf. North, Horoscopes and History, p. 21.
45 On this author see, for example, Cooper, ‘Kindī’ and Adamson, al-Kindī.
46 Casulleras, La astrología, pp. 258–59 (Spanish), 292 (Arabic). Here, and in the following 

citations, the italics are mine.
47 I use the edition and translation by Hogendijk, ‘Applied Mathematics’, pp. 102 (Arabic) 

and 105 (English).
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conform perfectly to the Four Position Circles Method, and confirm the attri-
bution to Hermes of this method in Western sources.48

Figure 15. Symmetries between the rays

But Ibn Muʿādh goes further and finds grounds for basing the same analogy 
between the computations applied to the division of houses and the projection 
of rays on an astrological work by al-Kindī (d. c. 873), now lost.

In the relevant passage49 Ibn Muʿādh states that:
Among the things which strengthen our view and our doctrine in combining the 
equalization [i.e. determination] of the houses and the projections of the rays is the 
following: Al-Kindī […] said in one of his writings on the rays: If the star [i.e., any 
celestial body] is on the horizon at the degree of the ascendent, the degree of the 
eleventh house and the degree of the third house are the sextiles [i.e., sextile rays] of 
it, and the degree of midheaven and lower culmination are the quartiles [i.e., quartile 
rays] of it, and the degree of the ninth house and the degree of the fifth house are 
the trines [i.e., trine rays] of it.

But, according to Ibn Muʿādh:
This does not occur in any way in the doctrine attributed to Ptolemy, and we have 
demonstrated the absurdity of that doctrine. But this occurs if the equator is divided 
into equal parts, as we mentioned, and if circles are drawn to these division points 
from the common points of the horizon and the meridian. So those circles divide 
the ecliptic into its twelve houses. If any star is on any of those circles, its trines, 
quartiles and sextiles are at a distance of four, three and two houses.

48 And, incidentally, they dismiss the use of the Single Position Semicircle Method, because 
this method does not retain the mentioned symmetries. See Casulleras, La astrología, p. 214; 
Casulleras and Hogendijk, ‘Progressions’, p. 79.

49 Hogendijk, ‘Applied Mathematics’, pp. 100 (Arabic) and 102–03 (English).



 THE ASTROLOGICAL COMPUTATIONS ATTRIBUTED 217

Houses and Aspects according to al-Kindi and Hemes

Figure 16. Rays and houses according to al-Kindī

Thus, there seems to be a possibility that the Four Position Circles Method for 
the projection of rays, attributed to Hermes in al-Andalus and defended by Ibn 
Muʿādh, was geometrically equivalent to the one used by al-Kindī, and clearly 
different from ‘the doctrine attributed to Ptolemy’, that is, the Single Hour Line 
method for the projection of rays.

3.4. Ptolemy’s Tetrabiblos
As we have seen, the Tetrabiblos does not indicate how the astrological rays 
and houses should be computed. There is, however, one relevant passage. In 
Book III, Chapter 10, when defining the astrological elements involved in the 
progressions, which are called the ‘prorogative places’, in connection with find-
ing the length of life, Ptolemy establishes the following relationship between 
the houses and the rays:

In the first place we must consider those places prorogative in which by all means 
the planet must be that is to receive the lordship of the prorogation; namely, the 
twelfth part of the zodiac surrounding the horoscope, from 5° above the actual hori-
zon up to the 25° that remains, which is rising in succession to the horizon [i.e. the 
first house]; the part sextile dexter to these thirty degrees, called the House of the 
Good Daemon [11th house]; the part in quartile, the midheaven [10th house]; the 
part in trine, called the House of the God [9th house]; and the part opposite, the 
Occident [7th house].50

50 Robbins, Tetrabiblos, pp. 272–73 (the ordinal numbers of the houses between square 
brackets are my interpretation). In footnote 2 Robbins lists the Greek names for the twelve 
houses and mentions that slightly different names are given in P. Mich. 149, col. ix, 13–19. 
On Papyrus Michigan 149, see Greenbaum, The Daimon, pp. 152–55 and the references men-
tioned there. The papyrus can be viewed at https://quod.lib.umich.edu/a/apis/x-1451/149R_A.
TIF (accessed 12 December 2018).
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Houses and Aspects according to Ptolemy, Tetrabiblos, III, 10

Figure 17. Houses and Aspects according to Ptolemy, Tetrabiblos, III, 10

The information contained in this passage is obviously insufficient to estab-
lish which method (if any) Ptolemy had in mind for the construction of the 
houses. The five-degree displacement from the ascendent is a convention that 
was sometimes associated with Ptolemy in the Middle Ages,51 but what is 
relevant for our discussion here is that Ptolemy establishes the same relation-
ship between rays and houses mentioned by Ibn Muʿādh in connection with 
al-Kindī and Hermes (compare Figures 16 and 17).52 The fact that this rela-
tionship, as demonstrated by Ibn Muʿādh, ‘does not occur in any way in the 
doctrine attributed to Ptolemy’, is clear evidence that the method attributed to 
Ptolemy (that is the Single Hour Line Method) is not really his.

4. Conclusions

This sketch of the attributions of methods to Ptolemy and Hermes confirms 
the idea that they should not be regarded as bearing direct historical informa-
tion regarding the transmission of these methods. Probably used to give prestige 
to astrological practices, the names of Ptolemy and Hermes are also ascribed 
to different geometrical approaches which are correctly understood only when 
compared to each other, and generally indicate that the methods used hour 
lines or position circles (or semicircles) respectively without any further con-
siderations. Note, in this respect, that the principle of the Position Semicircle 
Method for progressions is found in Ptolemy’s Tetrabiblos, so it should have 
been attributed to Ptolemy and not to Hermes.

Another conclusion that can be drawn is that perhaps the astrologers and 
the mathematicians had different understandings of the Tetrabiblos. A practi-

51 cf. North, Horoscopes and History, p. 111 and the index on p. 225; Bouché-Leclercq, L’as-
trologie, p. 270 and n. 1.

52 It may be a coincidence that Ibn Muʿādh, like Ptolemy, does not pay much attention to 
the houses below the horizon. See Casulleras, La astrología, pp. 175–77.
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tioner of astrology may not have seen the geometrical differences between the 
use of hour lines (presented by Ptolemy as a computational approximation) and 
position circles, whereas the mathematicians probably did. This may be the rea-
son why competent astronomers like al-Bīrūnī, Rabiçag or Ibn Muʿādh com-
plain53 about the usual attributions of methods and warn their readers about 
their inconsistencies; and all of them defend the use of position circles which, 
according to the principle expressed by Ptolemy in the Tetrabiblos, represent 
the true system for the tasyīr.
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III. The Latin Tradition





Glosses on the Almagest by Campanus of Novara and  
Others in Paris, Bibliothèque nationale de France, lat. 7256

Henry Zepeda

While studies of the Arabic and Latin translations of Ptolemaic texts are desi
derata in the history of medieval science, analysis of the commentaries on these 
texts is also needed in order to understand Ptolemy’s importance in the history 
of medieval astronomy and astrology. The actual text of Ptolemy’s Almagest 
appears to have been more authoritative among Latin than Arabic astronomers. 
This is evidenced by the differing ratios of the number of surviving manuscripts 
containing the Almagest to the number of manuscripts containing commentar-
ies. There are 73 manuscripts with the Latin translations of the Almagest writ-
ten before the middle of the fifteenth century and 178 manuscripts containing 
commentaries written during the same period; however, among Arabic man-
uscripts, there are only 12 surviving witnesses of the Almagest and well over 
a hundred manuscripts containing just al-Ṭūsī’s reworking of the Almagest.1  
Despite the relative prominence of the Latin translations of Ptolemy’s own 
text, there were at least seventeen separate commentaries on the Almagest that 
were translated into or composed in Latin before the mid-fifteenth century. 
A few of these commentaries on the Almagest had wide circulation in medie-
val Europe (e.g., the translation of Thābit ibn Qurra’s ‘Things necessary before 
reading the Almagest’, Gerard of Cremona’s translation of Jābir ibn Aflaḥ’s 
Correction of the Almagest, and the Almagesti minor); however, even these can 
only provide limited insight into the reception of Ptolemaic thought. While 
such commentaries provide knowledge of their authors’ thinking, they and 
the Almagest are only influences on the thought of other medieval students of 
astronomy. They cannot reveal how their readers incorporated what they read 
into their own understandings of astronomy. The lesser known commentaries 
written in Latin2 provide us with more representative evidence of what medie-

1 For the numbers of Latin manuscripts, I have relied upon David Juste’s work for his 
forthcoming manuscript catalogue of the Latin Ptolemaic corpus. For the Arabic, I relied upon 
María José Parra Pérez’s work for the Arabic side of the Ptolemaeus Arabus et Latinus project 
and her article ‘A List of Arabic Manuscripts’.

2 These include the Erfurt Commentary I, the Vatican Commentary, Simon Bredon’s 
Commentary, which I have discussed and partially edited in Zepeda, The Medieval Latin 
Transmission, pp. 184–251, 282–301, and 493–686.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 225–244
© F  H  G  10.1484/M.PALS-EB.5.120181
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val students of Ptolemy thought — e.g., which parts of the Almagest they were 
interested in, why they read it, in what contexts they studied Ptolemy, how it 
was taught, and whether they agreed with his methods and results. For the 
same reasons, the examination of the glosses that medieval scholars added to 
manuscripts of the Almagest is critical for a comprehensive view of medieval 
Ptolemaic astronomy. The material is plentiful. Of the 45 manuscripts contain-
ing Gerard of Cremona’s translation of the Almagest that I have been able to 
examine, 28 contain a large number of significant glosses, and scattered short 
glosses are found in some of the others. I offer here my examination of a sam-
ple of glosses to not only provide an example of what such glosses contain, but 
also to suggest some ways of approaching them.

For this first foray into medieval glosses on the Almagest, I have turned to 
Paris, Bibliothèque nationale de France, lat. 7256, a French manuscript from 
the mid-thirteenth century, that contains many marginal glosses, almost all 
of which are also found in a fifteenth-century manuscript, Vatican, Biblioteca 
Apostolica Vaticana, Barb. lat. 336, which is likely copied from BnF, lat. 7256.3 
Although in both manuscripts almost all of the notes are in the same hands 
as the main text, these glosses were composed by multiple scholars during 
the span of time from the late twelfth century to the mid-thirteenth century. 
Gerard of Cremona appears to have composed some of these glosses in these 
manuscripts himself. He had originally translated different parts of the Almag
est from the Ḥajjāj and Isḥāq-Thābit versions of the Almagest, and in one 
group of manuscripts (Kunitzsch’s B-class), the margins contain his alternate 
translations of some passages (i.e., where he originally translated from Ḥajjāj, 
he supplied translations from Isḥāq-Thābit, and vice versa).4 While the number 
and location of all of Gerard’s marginal additions have not been established, 
seven of the notes in BnF, lat. 7256 seem to be Gerard’s, because they appear 
in the manuscripts of the B-class, including Florence, Biblioteca Medicea Lau-
renziana, Plut. 89 sup. 45, which was copied from an exemplar dated to 1175.5

3 I examined the glosses in these manuscripts having to do with the Menelaus Theorem 
for my dissertation. See Zepeda, The Medieval Latin Transmission, pp. 130, 134–366, 142–60, 
and 398–431. Paris, BnF, lat. 7256 is described in Kunitzsch, Der Sternkatalog, vol. II, p. 13; 
and in Catalogus codicum, p. 331. Vatican, BAV, Barb. lat. 336 is described in Silverstein, Me
dieval Latin Scientific Writings, pp. 101–02.

4 Kunitzsch, Der Sternkatalog, vol. II, pp. 2–3 and 7. These glosses by Gerard should be 
considered an integral part of his translation of the Almagest and should be included in the cri-
tical edition of the text. In Clagett, Archimedes in the Middle Ages, vol. I, pp. 231–33, it is es-
tablished that Gerard wrote similar notes in his translation of the Banū-Mūsā’s Verba filiorum.

5 Florence, BML, Plut. 89 sup. 45, 183ra. As in this Florentine manuscript, these notes are 
found in the same hand as the main text of the Almagest in another early witness, Melbourne, 
SLV, RARES 091 P95A.
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Other notes in BnF, lat. 7256 and Barb. lat. 336 were composed approximately 
75 years later. The first of a pair of notes on Almagest III.9 provides the dates 
according to various epochs that correspond with 30 June, 1251 ad, and the 
second reports the value for the sun’s position that the commentator calculated 
for that date using Ptolemy’s tables.6 Additionally, many notes in the manu-
script are attributed to Campanus of Novara, who is best known for his ver-
sion of Euclid’s Elements. The works of Campanus, who died in 1296, that can 
be dated with any amount of certainty come from the 1250s and 1260s, so his 
glosses on the Almagest probably spring from those decades or shortly before 
or after.7

That Campanus is the author of the glosses attributed to him is not to be 
doubted.8 One of the notes attributed to Campanus, in which he discusses the 
different cases of the Menelaus Theorem and how Ptolemy does not treat all 
of them, ends, ‘Et ideo Thebit fecit tractatum unum qui intitulatur Thebit De 
figura sectore, in quo hec omnia probat. Ego etiam feci tractatum alterum de 
eodem planiorem ut puto et manifestiorem’.9 And another note includes a justi-
fication, ‘… per librum de proportione et combinationibus proportionum quem 
composuimus’.10 Campanus did indeed write works on the ‘sector figure’ (i.e. 
the Menelaus Theorem) in which he proves the various cases of the theorem, 
and on the compound ratio and its ‘modes’.11 Additionally, a table (unrelated to 
the Almagest) has the heading ‘ad latitudinem 45 graduum’, which agrees with 
the latitude of Novara.12

It appears that only the notes specifically attributed to Campanus are part 
of his set of glosses and that the other notes are by other commentators. A few 
of the glosses that are attributed to him are very similar to notes that do not

6 BnF, lat. 7256, 34v.
7 Benjamin and Toomer, Campanus of Novara, pp. 5, 9, and 13; this is supplemented by 

Toomer, ‘Campanus of Novara’.
8 Silverstein, Medieval Latin Scientific Writings, p. 102. Silverstein noticed that the Almag

est in Barb. lat. 336 was ‘heavily glosed [sic] in marg. (esp. through dictio 3a, fol. 72) with 
extensive passages from Campanus (many marked Campanus, Camp., or C)’, but he did not 
determine that these notes are Campanus’ commentary on the Almagest and not merely ex-
cerpts from Campanus’ other works.

9 BnF, lat. 7256, 10r.
10 BnF, lat. 7256, 21r.
11 An edition of Campanus’ work on the sector figure is found in Lorch, Thābit ibn Qurra,  

pp. 436–42, and an edition of the work on compound ratio in Busard, ‘Die Traktate De Pro 
portionibus’, pp. 213–22. While it has been unclear whether these works should be considered 
one work or two (Lorch, Thābit ibn Qurra, pp. 426–33), these notes show that Campanus 
himself considered them to be separate works. Nevertheless, Lorch does establish that the two 
works were often treated as a pair.

12 BnF, lat. 7256, 103v.
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bear his name; for example, most of the notes that provide outlines of the text 
do not contain an attribution to Campanus, but one does. Because these notes 
are all similar in style, it is tempting to take the single attribution as evidence 
that he wrote all of them; however, because the attribution to Campanus is 
not in Barb. lat. 336, its presence in the Parisian manuscript is probably due to 
scribal error, which would have been easy to make if the Parisian manuscript’s 
exemplar ended the note with an abbreviated form of ‘et cetera’, which could 
have appeared very similar to the letter ‘c’ for Campanus.13 Also, Campanus’ 
name is attached to two notes that appear to include one of the numbered set 
of enunciations (to be discussed below), and again one might see this as evi-
dence that he composed the entire set; however, this only occurs when the note 
includes the enunciation and additional commentary.14 A simple explanation 
for these cases is that the numbered enunciations are not Campanus’ and that 
the attribution to Campanus only applies to whatever is written before and 
after the enunciation. Additionally, even very small pieces of commentary are 
attributed to him. For example, there is one small added line in a figure, and it 
is marked with ‘·c·’ for Campanus.15 Similarly, an interlinear gloss that consists 
of only the two words ‘puncto sumitur’ is followed by ‘Campanus’.16 This sug-
gests that Campanus or whoever added the attributions had a fastidious con-
cern with marking each of his contributions, and that any gloss without his 
name was not composed by him. It is also very possible that Campanus wrote 
more glosses on the Almagest and that only the notes that a subsequent reader 
found interesting were transmitted.

The Parisian manuscript provides an example of how sets of notes were cop-
ied from one manuscript into the margins of another. Because this manuscript 
was made in the mid-thirteenth century, the marginal notes from Gerard of 
Cremona were clearly copied into it; moreover, it is likely that many or all of 
the glosses were copied from other manuscripts. We find evidence of this in 
five notes, including two from Campanus, two from the series of divisiones 
textus, and one proof that is not attributed to Campanus. In these the scribe 
omitted text (due to eye-skip in two of the cases) and then supplied the miss-
ing text alongside the note.17 As stated above, the notes from BnF, lat. 7256 are 
also found in Barb. lat. 336. Also, Oxford, All Souls College, 95, and Oxford, 
New College, 281, contain notes derived from one in BnF, lat. 7256 and Barb. 
lat. 336, i.e. the note providing the dates corresponding to 30 June, 1251 ad 

13 BnF, lat. 7256, 2r; Barb. lat. 336, 3r.
14 BnF, lat. 7256, 9v and 21r.
15 BnF, lat. 7256, 21v.
16 BnF, lat. 7256, 21v.
17 BnF, lat. 7256, 4v, 10r, 10v, 11v, and 14r.
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mentioned above.18 There are other examples of notes being copied from man-
uscript to manuscript: Gerard’s alternate translations were copied into the 
margins of many manuscripts along with the main text, as stated above, and 
another sets of glosses are found in Vatican, BAV, Vat. lat. 2057; Vatican, BAV, 
Barb. lat. 173; Cracow, Biblioteka Jagiellońska, 590, and Florence, Biblioteca 
Nazionale Centrale, Conv. Soppr. J.IV.20 (San Marco 182).19 A consequence of 
this medieval practice of copying glosses is that historians must be cautious in 
using dates in marginalia to date manuscripts. Crossley writes about the note 
with the date in the All Souls College manuscript, ‘… it strongly suggests that 
the scribe was writing this text in the sixth month, i.e. June, 1250’.20 However, 
this date can only suggest that the commentator who originally composed the 
note, wrote it at that time. It can only provide a terminus post quem for the 
manuscripts into which it was copied. In this case, it is seen for other rea-
sons that the manuscript was written at the end of the thirteenth century,  
not 1250.21

In order to gain a rough overview of glosses, the Ptolemaeus Arabus et La  
tinus project is cataloguing marginal and interlinear notes in select chapters 
and manuscripts that are more than around ten words or that appear to be 
important for one reason or another. Although such a method of counting 
notes has its deficiencies — e.g. some notes consisting of only a few words are 
more important than longer ones, and it is not always clear what constitutes 
a single note, this is still an important first step in studying glosses that can 
indicate which sections of the text were of interest or were in need of further 
elucidation.

I made such a catalogue of the notes of BnF, lat. 7256 (using Barb. lat. 336 
when notes were illegible in my reproductions of the Parisian manuscript). The 
text is glossed unevenly. Of the 144 chapters contained in the thirteen books 
of the Almagest, only 49 have glosses while 95 do not. Approximately 87% of 
the notes are written on the first three books of the Almagest. There are no 
glosses of more than approximately ten words in Books VII, VIII, X, or XI. 
However, one cannot make sweeping claims about which parts of the Almag
est were of interest to medieval readers from this manuscript alone. It appears 
to be more normal for the glosses to be spread more consistently, and some

18 For comparison, the beginning of the notes are: ‘Creditur quod isti anni sibi conve - 
niant …’ in All Souls College, 95, 27r; ‘Isti anni omnes sibi conveniunt sine errore aliquo se-
cundum quod invenitur discreta inquisitione …’ in New College, 281, 57v; ‘Isti anni omnes 
sibi conveniunt secundum quod inveni discreta inquisitione …’ from BnF, lat. 7256, 34v and 
Barb. lat. 336, 70r.

19 See Zepeda, The Medieval Latin Transmission, pp. 130 and 386–89.
20 Crossley, ‘Ptolemy’s Almagest’, p. 122.
21 Watson, A Descriptive Catalogue, pp. 195–96.
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manuscripts have very different distributions of notes than that which we find 
in BnF, lat. 7256. For example, Cracow, BJ, 589 has more glosses on Book VI 
than on Books I–III combined, and has many glosses on Books IX–XIII. Also, 
Paris, BnF, lat. 7258 has almost no glosses in Books I, II, XI, XII, and XIII, 
but many in the remaining books. Memmingen, Stadtbibliothek, 2° 2,33 pro-
vides an extreme example; it contains approximately 100 notes on the table of 
fixed stars and only three glosses of more than a few words on the entirety of 
the remainder of the Almagest. While BnF, lat. 7256’s preponderance of notes 
in the early books may be a rarity among Almagest manuscripts, this bears a 
likeness to some of the stand-alone commentaries: the Almagesti minor only 
covers the first six books, the Erfurt Commentary treats only the first two, and 
Simon Bredon’s commentary covers only the first three.

There are a variety of types of notes in this manuscript. Editorial comments 
concerning the establishment of the text include not only Gerard’s alternate 
translations of passages, but also what appears to be a reading from another 
exemplar,22 and a remark upon chapter division.23 Many of the notes are sum-
maries, which make the main thrust of a chapter or passage apparent quickly, 
and which sometimes serve as ‘roadmarks’ that allow readers to find relevant 
passages or to understand how the passages in chapters are related. There are 
also a number of ways in which notes provide explanations of Ptolemy’s text; 
they express words, phrases, or longer passages in simpler wording; they elabo-
rate on passages; they supply steps implicit in Ptolemy’s calculations and proofs; 
and they provide citations to justify claims made by Ptolemy. References can be 
internal, as with ‘per 25 huius’,24 or to other works ‘per 1 sexti Euclidis’,25 ‘per 
primam propositionem De ysoperimetris’,26 ‘per quartam primi libri Milei’,27 
‘per 21 primi Theodosius’.28 Glosses also include lists of values, calculations for 
values that Ptolemy reports, and lists of places where unusual words appear. 
For the sake of brevity, I will discuss in more detail only a few types of notes: 
outlines, enunciations, figures, proofs, and corrections.

22 BnF, lat. 7256, 27v. This note is not found in Florence, BML, Plut. 89 sup. 45 or Mel-
bourne, SLV, RARES 091 P95A, and thus does not appear to be one of Gerard’s notes.

23 BnF, lat. 7256, 2r. The proposed chapter division matches that found in Toomer, Ptole
my’s Almagest, p. 38.

24 BnF, lat. 7256, 20r. As is clear here, internal references were not only to book and chap-
ter, but also to the division of propositions as provided by the numbered enunciations.

25 BnF, lat. 7256, 6r.
26 BnF, lat. 7256, 2v. The enunciations of the cited propositions of this work are also given 

in the margin.
27 BnF, lat. 7256, 13r.
28 BnF, lat. 7256, 16r.
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The divisio textus is one type of note that is found in BnF, lat. 7256. In the 
notes of this type, the commentator outlines the text and reports where parts 
of the text begin. Such divisions are made for passages of differing organiza-
tional strata: books, groups of chapters, chapters, and parts of chapters. Notes 
are given at the beginning of Books I and II, summarizing their main goals 
and dividing them into main sections (e.g., Book I is divided into sections on 
the form of the universe, chords, declinations, and right ascensions), most of 
which consist of multiple chapters. While some other chapters (I.3–4, 6, II.9) 
receive notes providing short outlines, the bulk of the outlining occurs in Book 
I, ch. 9–10, 12–4, and Book II, ch. 1–6.29 These sections of the text are not 
merely divided into sections, but into layer after layer of subsection. At points 
the division reaches the twelfth level of subdivision. [See the table below.] Out-
lining the text in such detail would have been quite an undertaking. While the 
outline I have provided based upon these glosses is relatively brief, the notes 
generally express the relations between the sections of text not graphically, but 
with words only (there are some exceptions such as in Figure 1). The glossator 
starts to divide the second part of Book I in this way:

Terminata parte prima principali huius primi libri in qua determinavit de forma uni-
versi. In hac secunda intendit demonstrare qualiter sciatur corda omnis arcus noti. 
Et dividitur in duobus. In prima ponit prohemium in quo utitur transitu, contin-
uans dicta dicendis. In secunda prosequitur intentum, ibi ‘Dividam igitur’ etc. Hec 
secunda dividitur in 3. In prima ponit demonstrationes per quas cognoscitur omnis 
corda que subtenditur alicui arcui minori semicirculo non minori medietate partis. 
In secunda ponit modum compositionis tabularum cordarum arcuum. In tercia com-
parat demonstrationes ad tabulas. Secunda ibi ‘Et quoniam necesse est nobis scire 
numerum partium’ etc. Tercia ibi ‘O quam bene’ etc. Prima istarum dividitur in 3…30

Figure 1. BnF, lat. 7256, 5r

29 Notes including divisions of the text are found in BnF, lat. 7256, 1v–2v, 3v, 4v, 5v–6r, 
9r–14v, 15v, and 19v.

30 BnF, lat. 7256, 4v.
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Division of Section on Chords according to Glosses of Paris, BnF, lat. 7256

Chords of arcs  (‘Summa vero principiorum . . .’) 
• Preface        [84 words]
• Intended subject  (‘Dividam igitur . . .’)
 ― Proofs through which chords of arcs are found
  ▪ Hypotheses
   ◦ 1st hypothesis     [27 words]
   ◦ 2nd hypothesis  (‘Et dividam dyametrum . . .’) [76 words]
   ◦ 3rd hypothesis  (‘Et assumemus numerum . . .’) [42 words]
  ▪ Proofs  (‘Sit itaque . . .’)
   ◦ Proofs through which chords are found directly from diameter
    • Chords that are sides of inscribed figures
     ― How to find them
      ▪ Side of decagon & pentagon
       ◦ DZ is side of decagon, BZ side of pentagon
        • Decagon  [175 words]
        • Pentagon  (‘Et similiter quoniam latus penthagoni . . .’)      [47 words]
       ◦ Each of these is known  (‘Et quia dyametrum circuli . . .’)
        • Decagon  [119 words] 
        • Pentagon  (‘Et etiam quoniam linea DZ est . . .’)             [105 words]
      ▪ Side of square & triangle  (‘Iam ergo manifestum est . . . ’)            [103 words]
     ― Summary  (‘Iam ergo leviter novimus. . .’)  [9 words]
    • Chords of their supplements  (‘Et declarabitur nobis quod cum . . .’)          [117 words]
   ◦ Proofs through which chords are found indirectly from diameter  
      (‘Et declarabo in sequentibus . . .’) 
    • Preface      [24 words]
    • Tract  (‘Sit itaque . . .’)
     ― Chords known geometrically
      ▪ Chords found by geometry
       ◦ Preliminaries    [219 words]
       ◦ Propositions  (‘Et postquam hoc iam premisimus . . .’)
        • Chord of difference of arcs
         ― Proof     [142 words]
         ― Application  (‘Declarabo etiam . . .’)  [36 words]
        • Chord of half arc  (‘Quod si etiam arcus . . .’)
         ― Proof  [263 words]
         ― Application  (‘Per hoc ergo capitulum . . .’)             [89 words]
        • Chord of sum of arcs  (‘Describam etiam circulum . . .’)      [191 words]
      ▪ Construction of table  (‘Post hoc autem capitulum . . .’)  [80 words]
     ― Chord not known geometrically  (‘Quod si nos reperiremus . . .’)
      ▪ Chord of 1/2°
       ◦ It cannot be found exactly  [78 words]
       ◦ How to find approximately  (‘Perscrutabor igitur . . .’)
        • Preface  [53 words]
        • Tract  (‘Et ad hoc premittam . . .’)
         ― Premiss  [350 words]
         ― Finding of chord  (‘Postquam affirmavimus . . .’)       [303 words]
      ▪ How to complete tables  (‘Et per hoc complebitur . . .’)                   [62 words]
  ▪ Summary  (‘Autem sciatur . . .’)  [31 words]
 ― How to make table of arcs and chords  (‘Et quoniam necesse est. . .’) [138 words]
 ― Proofs for tables  (‘O quam bene. . .’)  [77 words]
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Figure 2. BnF, lat. 7256, 3r

The note continues in this vein. It and three other notes, consisting of over 
700 words in total, divide the texts of I.9–10, which are made up of 3027 
words. Keeping this ratio, it would require approximately 47,000 words just 
to outline the complete Almagest. Lecturers at universities often provided divi-
sions of the text for their students, so it is possible that these notes arose from 
university lectures on the Almagest. Whether or not these outlines were given 
in lectures or were only written commentary, producing such detailed commen-
taries must reflect a medieval scholar’s deep interest in the Almagest, especially 
the chapters on trigonometry and calculations of spherical astronomy found in 
Almagest I–II.

Another type of marginalia consists of the added geometrical figures and 
illustrations. Most of these are part of complete proofs added in the margins 
(to be discussed below). Of the other figures that appear in the glosses, some 
illustrate arguments presented in the text of the Almagest. For example, fig-
ures [Figure 2] are added in the margins to illustrate Ptolemy’s argument by 
reductio ad absurdum that the earth is spherical. They depict the heavens sur-
rounding the earth drawn as if it were concave, flat, polygonal, or cylindrical, 
and the first of these includes lines of sight drawn to a rising star to show that 
if the earth were concave, a star would appear first to people who lived fur-
ther west.31 Likewise, the manuscript includes figures to accompany Ptolemy’s 
argument that the earth is in the middle of the universe.32 Such illustrations 
were probably intended to aid the imagination of astronomy students, as were 
realistic depictions of instruments, such as the one described in Almagest V.12. 
[Figure 3] It is not a mere geometrical figure, but portrays the various parts 
of the instruments and even includes a disembodied arm holding a plumb in 
order to set up the instrument properly.33 Besides accompanying or presenting

31 These can barely be made out on my reproductions of BnF, lat. 7256, 3r, but they are 
clear on Barb. lat. 336, 4v.

32 BnF, lat. 7256, 3r–3v. Some of these are difficult to make out in my reproductions, but 
they are all clear in Barb. lat. 336, 5r–5v.

33 Florence, BML, Plut 89 sup. 45 and Melbourne, SLV, RARES 091 P95A do not include 
any depiction of this instrument. Another realistic image of a man using an instrument is 
found on BnF, lat. 7256, 56v.
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Figure 3. BnF, lat. 7256, 55r

ideas already present in the text in a visual manner, figures in the margins can 
suggest concepts or entire arguments that are not contained in the text at all. 
An excellent example is a figure [Figure 4] placed next to a note clarifying that 
while Ptolemy claims that the phenomena shows that the heavens are spheri-
cal, his arguments only show that the heavens move spherically and that the 
heavens could indeed be square-shaped. The figure indeed shows a square sur-
rounding the earth, but the labels show that the text does not only represent 
the argument written in the note, but that there is also an implicit argument. 
The points labeled ‘A’ seem to identify the same star at equal intervals of time 
as it travels at a constant speed along a square path, not a circular one. The 
lines from the earth to the star show that angles would not be equal, and thus 
the star would appear to change its speed if its course were not circular.34

Besides adding new figures, commentators also clarified the connection 
between Ptolemy’s text and his figures, which are in the margins in this man-
uscript. This was sometimes accomplished without the use of any words, but 
only with pairs of identical marks by the text and the corresponding figures.35 
Also, labels identifying the astronomical significance of different parts of

34 BnF, lat. 7256, 2v.
35 E.g. BnF, lat. 7256, 123v–124r.
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Figure 4. BnF, lat. 7256, 2v

Figure 5. BnF, lat. 7256, 48v

geometrical figures were added. Some of these ‘astronomical labels’ may have been 
included in Gerard’s translation, but it is clear that commentators added more.36 
By allowing the reader to focus on the figure and to not constantly move his gaze 
back and forth from text to figure, these labels would have made it easier for 
readers to grasp complex models. The figure for V.2, [Figure 5] which attempts 
to depict the motions of the lunar model in one static image, is able to be under-
stood without constantly consulting the text because of its astronomical labels 
and its added lines representing the northernmost point of the moon’s inclined 
circle, the position of the mean sun, and the starting position of all the motions.

Enunciations are a type of note that is found frequently in BnF, lat. 7256. 
Ptolemy intended many of his calculations to serve as examples that could be 
applied to other situations, but he often did not pose them in general terms. 
Likewise, Ptolemy’s general proofs are interwoven into the surrounding text 
and are not given in as structured of a format as medieval scholars encountered 
in geometrical and arithmetical works such as Euclid’s Elements or Jordanus de 
Nemore’s Arithmetica. Commentators provided generalized statements in the 
margins by the beginning of many calculations and proofs. For example, in 

36 Several labels of this kind are found in early manuscripts including Florence, BML, Plut. 
89 sup. 45 and Melbourne, SLV, RARES 091 P95A, and very infrequently in Paris, BnF, lat. 
7254.
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I.13 we find: ‘16. Dato puncto orbis signorum declinationem eius ab equinoc-
tiali circulo invenire. Unde manifestum est quod si sinus arcus orbis signorum 
qui intercipitur inter equatorem et punctum datum ducatur in sinum maxime 
declinationis, et productum dividatur per sinum quarte, exibit sinus declina-
tionis puncti dati’.37 By providing the enunciation (i.e. the first sentence), the 
glossator gives a summary of the chapter to assist the reader in locating Ptole-
my’s treatment of declinations of the ecliptic. This sort of note also makes the 
universal applications more apparent and makes Ptolemy’s astronomy match 
the ideals of a mathematical science closer. While there were competing ideas 
of what constituted scientia, most medieval scholars believed that it was derived 
deductively from certain principles and that it should concern universal truths. 
For a model of such a science, medieval scholars turned to Euclid’s Elements, 
the books of which include lists of principles (definitions, postulates, and com-
mon notions), followed by proofs, each consisting of a general proposition and 
its demonstration that relies upon the principles and the earlier propositions.38 
The enunciations are a step in that direction. The corollaries that are often 
found with the enunciations (the second sentence in the example given above) 
provide rules for performing calculations. In fact, the important part of many 
of the proofs is not that a quantity is known geometrically, but that there is 
an algorithm that can be used to calculate its value from other given values.39

The enunciations included in the margins of BnF, lat. 7256 are found only 
in the first two books. They are numbered sequentially 1–17 for Book I and 
1–39 for Book II. The enunciations and their corollaries are derived from 
the Almagesti minor, which was a summary of Almagest I–VI. In a few cases, 
enunciations directly from the Almagesti minor are given in addition to the 
set of enunciations with continuous numbering.40 By fitting it into a struc-
ture and style that imitated the Elements, the author of this early thirteenth- 
century work ‘Euclidized’ Ptolemy’s astronomical work. One of the many 

37 BnF, lat. 7256, 10r.
38 For example, see Høyrup, ‘Jordanus de Nemore’ and Evans, ‘Boethian and Euclidean’.
39 This is clear from the passage in Almagest I.9 that corresponds to the first enunciation: 

‘1. Data circuli dyametro ex ipsa latus exagoni, decagoni, pentagoni, quadrati, trigoni, equi-
laterorum circulo inscriptorum elicere’ (BnF, lat. 7256, 5r). Ptolemy does not merely inscribe 
these equilateral polygons in the circle, as one might think from the enunciation alone, instead 
he proves the validity of procedures for finding their lengths in terms of the parts of the diam-
eter (Toomer, Ptolemy’s Almagest, pp. 48–50). In this case, no rule is provided in the corollary, 
probably because it would be extremely wordy.

40 BnF, lat. 7256, 5v. The enunciations of Almagesti minor I.3–5 (but here numbered 4–6) 
are given at the bottom of the folio.
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changes that the author of this work adopted to achieve this was to add these  
enunciations.41

Some of the enunciations are taken from the Almagesti minor with no 
changes or only trivial ones. For example, the enunciation ‘8. Maximam dec-
linationem per instrumenti artifitium et considerationem reperire’ is identical 
to one in the Almagesti minor, except it is the 15th proposition in that work.42 
Approximately ten other enunciations match ones in the Almagesti minor. Sev-
eral others share common language. For example, compare the following corre-
sponding enunciations (differences besides word order italicized):

Almagesti minor: ‘25. Maxima declinatione nota angulum ex meridiano et circulo 
signorum aput punctum equinoctii provenientem notum esse oportet. Unde patet 
quod si maximam declinationem addas super quartam vel ab ea subtrahas, exibit 
angulus quesitus’.
BnF, lat. 7256, 20r: ‘29. Nota maxima declinatione angulum qui provenit ex sectione 
meridiani et orbis signorum aput utrumlibet punctum equinoctii invenire. Unde 
patet quod maxima declinatione addita super quartam vel ab ea diminuta, provenit 
angulus quesitus’.

Since one change, such as the word ‘sectione’, added for clarity, requires changes 
in the endings of other words, the changes are even fewer than the simple 
marking suggests. Not all enunciations, however, correspond closely to those 
in the Almagesti minor. For example, the following enunciations from Book 
I convey the same meaning, but with scarcely any sign of the glosses’ reliance 
upon the prior work (differences are italicized):

Almagesti minor: ‘3. Si in semicirculo corde arcuum inequalium certe fuerint, corda 
quoque arcus quo maior minorem superat erit nota’.
BnF, lat. 7256, 5v: ‘4. Cognitus duabus cordis duorum arcuum inequalium in semicir-
culo, cordam superflui inter eas invenire’.

There are no more similarities between these two enunciations than one would 
expect of any two passages written separately that convey the same meaning. 
The reason for the change in language is not apparent and may be due to the 
mere fact that the glossator wanted to try his hand at expressing the ideas of 
his source in his own wording. Other differences from the source are the reor-
dering of some enunciations and a different division (i.e. sometimes multiple 
enunciations correspond to single enunciations from the Almagesti minor, and 
vice versa).

41 For more on these themes and on the Almagesti minor, which has often been erroneously 
called the ‘Almagestum parvum’ by me and other scholars, see Zepeda, ‘Euclidization in the 
Almagestum parvum’, and Zepeda, The First Latin Treatise.

42 BnF, lat. 7256, 9r.



238 HENRY ZEPEDA

Glosses Almagesti 
minor

Reason for Change

Book I Book I
1–2 1 The glossator considers the corollary of Almagesti minor I.1  

to be its own proposition.
3–7 2–6
8 15 The Almagesti minor does not follow order of the Almagest,  

in order to emphasize mathematical proofs.
9–10 7–8
10 
(bis)

9 Two enunciations are numbered 10 in the glosses.

11–15 10–14
16–17 16–17
Book 
II

Book II

1–2 2–3 The Almagesti minor does not follow the order of the Almagest, 
probably in order to first prove effect from cause. 

3 1
4 4
5 — This is mentioned in the text of Almagesti minor I.4, but is  

not given in the enunciation or as a separate enunciation because  
the mathematics is fundamentally the same. 

6 5
7–8 6 The glosses split one enunciation with two parts into two separate 

enunciations.
9–20 7–18
21–22 19 The Almagesti minor does not follow the order of the Almagest.
23 20 ‘…’
24 19 ‘…’
25–35 21–31
36 32–33 The glosses combine two enunciations because they are cases of  

the same proof. 
37–39 34–36

Enunciations for the astronomy of the Almagest are not only found in BnF, lat. 
7256, Barb. lat. 336, and the 23 manuscripts of the Almagesti minor (among 
which is one Almagest manuscript, Paris, BnF, lat. 16200, that has the Almagesti  
minor written in the margins), but they also appear in several other Almagest 
manuscripts: Cracow, BJ, 589; Cracow, BJ, 619 (enunciations excerpted from 
the Almagesti minor); Erfurt, Universitätsbibliothek, Dep. Erf. CA 2o 375; 
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Florence, BML, Plut. 89 sup. 57; Oxford, New College, 281; and Melbourne, 
State Library of Victoria, RARES 091 P95A. Also, the Erfurt Commentary, 
Simon Bredon’s commentary, Johannes Blanchinus’ Flores Almagesti, and Peur-
bach and Regiomontanus’ Epitome Almagesti contain enunciations.

Complete proofs are another class of notes that were written in Almagest 
manuscripts. There are 28 such notes in BnF, lat. 7256. The bulk of the proofs 
are on I.9 (5 notes), I.12 (5 notes), and I.13 (8 notes), and the remaining proofs 
are scattered throughout the Almagest: 2 notes in I.14, 2 in II.11, and 1 each in 
I.5, II.7, II.10, V.15, XII.1, and XIII.3. Much of the imbalance in the dispersal 
of these glosses is due to Campanus’s interest in establishing the proportion 
theory that is needed to prove and utilize the Menelaus Theorem. Of the 15 
proofs in notes on Almagest I.12–14, 13 are the work of Campanus, and 8 
of these involve proportion theory;43 however, Campanus only wrote 3 of the 
proofs in the other chapters (II.11 and XIII.3). Among the notes that were not 
written by Campanus, there is a clear focus upon Almagest I.9, in which Ptol-
emy gives the theory behind his table of arcs and chords (5 of the 12 non-Cam-
panus notes are on I.9). These notes with proofs were added for a variety of 
reasons. Most of these proofs justify parts of Ptolemy’s arguments and proofs. 
As stated above, Campanus’ many proofs regarding proportions give the theo-
retical background for proving the Menelaus Theorem and performing calcula-
tions with it. Another example is a proof that supplies part of Ptolemy’s argu-
ment in Almagest I.5, showing the impossibility of the earth standing under 
the equator but not on the axis that runs between the north and south poles; 
the glossator proves the general statement, ‘Quod omnium duorum gnomonum 
equalium illuminatorum ab aliquo corpore luminoso inequaliter tamen ab eo 
distantium, magis distantis maior est umbra’.44

Of the remaining notes with proofs, one supplements one of Ptolemy’s proofs: 
after Ptolemy proves a property of inscribed quadrilaterals, a note includes the 
proof for the special case when the quadrilateral is a square.45 Another proof in 
the margins provides a geometrical demonstration that is more restrictive than 
one given in the text by Ptolemy. In Almagest XII.1, Ptolemy gives and uses 
a proof for a theorem from Apollonius that applies for both the situation in 
which a certain line is equal to a second or the situation in which it is greater 
than the second; however, Ptolemy applies it only for the latter of these two 
cases. A commentator reproves the lemma in a slightly different form so that it 
only applies to the case used by Ptolemy.46

Some notes provide alternates proofs, i.e. they demonstrate things proved by 
Ptolemy in other ways. While it is conceivable that some alternate proofs could 

43 BnF, lat. 7256, 9v, 10v, 11v.
44 BnF, lat. 7256, 3v.
45 BnF, lat. 7256, 5v.
46 BnF, lat. 7256, 138r.
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be included in the glosses merely because the commentator was compiling dif-
ferent methods, the alternate proofs in the Parisian manuscript are at least to 
some degree criticisms of Ptolemy. For example, two of Jābir ibn Aflaḥ’s trigo-
nometrical proofs are included, one for finding the chord of the half of an arc 
of which the chord is known, and the other for finding the chord of the sum 
of two arcs with known chords. The commentator explains that the first proof 
leads to more accurate calculations than Ptolemy’s corresponding proof, and 
that the second is both simpler and easier than Ptolemy’s. The commentator 
recreated Ptolemy’s calculations for the chords of 1º30′ and 45′ according to 
the methods of calculation that can be derived from Ptolemy’s half-arc proof, 
and he arrived at the values 1P34′14″ and 47′7″; however, Ptolemy writes that 
the chords are 1P34′15″ and 47′8″. The commentator found that calculating 
with Jābir’s method leads to the values that Ptolemy reports in the Almagest, 
and from this he concluded that Ptolemy used the same method as Jābir and 
did not find the values of these chords in the way that he had laid out in the 
Almagest.47 Another proof that tacitly critiques Ptolemy is found in a note on 
Almagest II.7. Because Ptolemy’s second way of finding oblique ascensions does 
not easily reveal the corollary taken from the Almagesti minor, a commenta-
tor provides another proof of it that remains on the general level and makes 
the corollary manifest.48 While not as obvious of a correction as the previous 
example, the inclusion of this alternate proof suggests that Ptolemy’s calcula-
tion did not provide what the commentator wanted, i.e. the justification for 
a simple, general rule for performing calculations. Similarly, because Ptolemy 
finds the angle formed by the ecliptic and the horizon for any point of the 
ecliptic in a way that does not reveal the corollary found in the margins, Cam-
panus provides a proof that shows this more clearly.49

A large correction that is found in the Parisian manuscript is a complete 
second table of chords and arcs reworked by Campanus. Although Ptolemy’s 
table of arcs and chords is in Almagest I.11, this corrected table is placed after 
Almagest V.4. This table, which is entitled ‘Tabule cordarum et arcuum secun-
dum quod eas verificavit Magister Campanus Novariensis’, is based on the 
table found in Gerard’s translation, but approximately 16% of the values of the 
chords have been changed.50 Presumably Campanus calculated the value of the 
chord of each of the 359 arcs of the table. In marginal notes, a commentator 
— it is unclear whether Campanus or another glossator — states that he cal-
culated the values of the chords for 5°30′ and 6° according to both Ptolemy’s 

47 BnF, lat. 7256, 5v. Several modern scholars have addressed the discrepancies between 
Ptolemy’s proofs in Almagest I.9 and the values that he gives for chords in that chapter and 
in his table of chords. For an overview see Van Brummelen, Mathematical Tables, pp. 46–73.

48 BnF, lat. 7256, 17r.
49 BnF, lat. 7256, 21r.
50 BnF, lat. 7256, 101v–103r.
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methods and Jābir’s alternatives, which had been given earlier in the glosses, 
and that while the values according to Jābir’s methods are more accurate, 
he did not replace the values in the table because doing so would make the 
increase of the column of thirtieths inconsistent.51

As a final topic, there are two notes, in which commentators relate the 
mathematics of the Almagest to other problems that do not involve astronomy. 
In one note, a commentator provides a discussion of how one could determine 
how long it takes one mean conjunction of the sun and moon to the next. 
This is followed by a more complex question concerning a tower whose base 
is of a certain size that is filled from water from a stream at one rate as some 
of the water is drained from the tower into a moat of a certain size at another 
rate. The note asks how long it would take to fill the moat and how tall the 
tower must be so that it is filled at the same time the moat is filled. This ques-
tion is followed by the solution to the problem, marked with ‘Respondeo’. That 
this problem is more complicated than the one concerning the sun and moon 
shows that it is not intended as an explanation of the astronomy. Rather, the 
astronomical question was seen as an opportunity to practice skills of problem 
solving.52 The content and the format suggest the possibility that this note was 
the result of a disputation held after a lecture on the Almagest. A similar case 
of the astronomy leading to this type of problem is found in the margins by 
Almagest XIII. There Campanus proves that if two quantities are known and 
the ratio of the remainders are known when one unknown quantity has been 
subtracted from each of the two known quantities, then the size of the remain-
ders and of the subtracted quantity can be found. After proving this generally, 
Campanus proposes a problem concerning a paterfamilias who hires two men 
and their sons to complete two jobs. He then shows how the problem is solved 
through the algorithm whose validity he had proved. Again, this shows the 
astronomy serving as a springboard to discuss other mathematics of the sort 
found in algebraic or abbaco texts.53

From this brief exposition of some of the features of the glosses found in 
BnF, lat. 7256, and which are copied into Barb. lat. 336, it is clear that there is 
much to gain from an examination of the glosses in the Almagest manuscripts. 
Although difficult to decipher and understand, Almagest glosses provide a 
unique opportunity to observe the practice of the science of the stars during the 
Middle Ages. Therefore, one of the goals of the Ptolemaeus Arabus et Latinus  
project is to provide a survey of glosses on Ptolemy’s astronomical and astro-
logical corpus. The first book-length study devoted to this effort will be a cat-

51 BnF, lat. 7256, 101v.
52 BnF, lat. 7256, 103v. I also consulted Barb. lat. 336, 201v because very little of the text 

was legible in my reproductions of the Parisian manuscript.
53 BnF, lat. 7256, 153v.
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alogue of glosses from all manuscripts of Gerard’s translation of the Almagest 
that is being produced by Stefan Georges. In ten selected chapters, each note 
over 10 words will be given an entry that includes a transcription for shorter 
notes or its incipit and explicit for lengthy notes, which manuscripts have it, 
and any names or dates mentioned in it. This catalogue will allow researchers 
to identify sets of notes that occur in more than one manuscript, and to easily 
determine which manuscripts have notes that merit closer examination. The 
project will also attempt to identify glossators and to date their comments. 
Further transcriptions of a select number of representative or innovative glosses 
may also be made. The survey of glosses will be an invaluable resource for other 
historians of medieval astronomy, especially when paired with the manuscript 
reproductions that will be available on the project’s website or with the digital 
collection of all the manuscripts of the Ptolemaic corpus, which will be avail-
able to those collaborating closely with the project. Researchers interested in a 
specific topic, e.g. the comparative sizes of the earth, moon, and sun, can eas-
ily find which manuscripts may contain relevant notes and then turn to them 
in the manuscripts in a matter of seconds. The project website may also offer 
an opportunity to experiment with ways of displaying transcriptions of glosses. 
While the spatial arrangement on the folio, which is especially important for 
glosses, is usually lost in the editing process, digital media allow us to present 
transcriptions of glosses that are searchable but yet retain a clear, visual connec-
tion to the commented text. In the coming years (and perhaps at the following 
Ptolemy conferences), we shall hopefully see many fruits of the catalogues and 
transcriptions of glosses, as a clearer picture of medieval astronomy emerges.
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A Discussion on Ptolemy’s Authority: 
Henry Bate’s Prologue to His Translation of  

Ibn Ezra’s Book of the World

Carlos Steel

1. Henry Bate translator of Abraham Ibn Ezra

The philosopher-astronomer Henry Bate of Mechelen (Malines) (1246–c. 1310) 
played a crucial role in the dissemination of the astrological works of the twelfth-
century Jewish scholar Ibn Ezra in the Latin world.1 Some time around 1270, 
during his studies in Paris, Henry may have been introduced to Abraham Ibn 
Ezra’s work in a circle of scholars interested in astrology, who had contacts with 
Jewish scholars. Once back in his native town, Bate decided to start working 
on a translation of the available Hebrew corpus of Ibn Ezra. In 1273, he had 
some astrological treatises of Ibn Ezra translated into French in his house in 
Mechelen. As we learn from the colophon of one of the translations (which are 
preserved in ms. Paris, BnF, fr. 24276 and fr. 1351), the translation was a joint 
venture of a Jewish scholar, named Hagins, who translated from the Hebrew, 
with a certain Obert de Montdidier, who edited and wrote down the French 
version. The Paris manuscript contains four treatises of Ibn Ezra, but we may 
suppose that more texts had been translated at that time in Bate’s house. In 
fact, in the Nativitas, which Bate composed in 1280, one finds references and 
quotations not only from these four treatises, but also from other works of 
Ibn Ezra, though Bate would ‘publish’ Latin translations of these texts much 
later, when he was residing in Orvieto in 1292. We must therefore suppose 
that Bate, at the time he composed his Nativitas, had already translations of 
much more work of Ibn Ezra than the four now preserved in the Parisian 
manuscript. Although Bate quotes from these treatises in Latin, they probably 
existed at that time only in a draft French version with some occasional glosses 
in Latin. When Bate had more time later, he would make Latin versions of 
these translations.

In this contribution, I intend to study Bate’s most succesfull translation 
of Ibn Ezra, that of the Book of the World (Sefer ha-‘Olam). This book, of 

1 On life and work of Henry Bate see Steel et al., The Astrological Biography. I refer to the 
edition in this work as Nativitas. On the role of Bate in the dissemination of Ibn Ezra’s works, 
see Sela, ‘The Ibn Ezra-Henry Bate Astrological Connection’.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 245–281
© F  H  G  10.1484/M.PALS-EB.5.120182
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which there are two Hebrew versions, deals with the prognostication of the 
influences of the conjunctions of the planets (in particular the so-called great 
conjunctions) on political and historical events. It concludes with a section on 
weather forecasting. Scholars are fortunate to have a critical edition of the two 
versions of this Book with an English translation and abundant annotations 
by Shlomo Sela: his edition will be the main reference throughout this 
contribution.2 Henry Bate translated the first version of the Book of the World. 
His translation is dated and located in a colophon, which has been transmitted 
in one family of the manuscript tradition:

Explicit liber de mundo vel seculo, completus die Lune post festum beati Luce, hora 
diei quasi decima, anno Domini 1281, inceptus in Leodio, perfectus in Machlinia, 
translatus a magistro Henrico Bate de Hebreo in Latinum.3

Thus ends the Book of the World, i.e. the Age, translated from Hebrew into Latin 
by master Henricus Bate, started in Liège, completed in Mechelen on Monday 
after the feast of saint Luke, at about the tenth hour, in the year of the Lord 1281.

The exact time references are characteristic of Bate: we find them in the col-
ophons of his other translations. The feast of St Luke is on the 16th of Octo-
ber, which was a Thursday in 1281. The translation was thus finished on the 
20th of October of that year. It is implausible that Bate himself made this 
translation from the Hebrew. Although he may have learned some elements of 
Hebrew during the intensive translation weeks in Mechelen, he would never 
have known the language adequately to make this translation without help. 
Moreover, in the years 1280–1281, Bate was extremely busy advancing his 
career, defending himself against accusations, traveling to Paris and writing his 
Nativitas. This period certainly did not leave him much time to work on De 
mundo. He may have made his Latin translation starting from a French trans-
lation produced by the Hagins-Montdidier team in Mechelen some years ear-
lier. In the Nativitas, which was composed at the same time as the De mundo 
translation, there are three references to Ibn Ezra’s book.4 Interestingly, Bate 
never refers to the treatise with the title De mundo, as found in the colophon. 
He calls the works ‘Liber coniunctionum’ or ‘Liber revolutionum annorum 
mundi’. That there are only a few references to this treatise in the Nativitas 

2 Sela, Abraham Ibn Ezra. The Book of the World. As I do not know Hebrew, I am fully 
dependent on Sela’s translation. I thank Shlomo Sela for his valuable comments and his an-
swers to my multiple questions.

3 Surprisingly this full colophon is lacking in the oldest and most important manuscript, 
Paris, BnF, n.a.l. 3091 (P), which only has a short version: ‘Explicit liber Auenesre de mundo 
translatus de Hebreo in Latinum a magistro Henrico Bate anno domini 1281’. For an explana- 
tion of the different forms of the colophon see my edition of the complete text of Bate’s trans-
lation in Steel, ‘Henry Bate’s Translation’, pp. 233-234.

4 See Nativitas, 233–35 (‘in Libro Revolutionum annorum mundi’), 380–82 (‘in libro Con - 
iunctionum’) and 2049–2051 (‘in Libro Coniunctionum’).
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is understandable. After all, Ibn Ezra’s book is about events on a world scale, 
not about personal biography. But why, then, did Bate choose to make a trans-
lation of exactly that work, which was of not much use to him in composing 
the Nativitas? Probably because at that time he was interested in the astrolog-
ical explanation of historical events. Two years before, in 1278, he had already 
translated from Hebrew a treatise of Ibn Ezra, which seems to be the third 
version of Sefer ha-‘Olam, together with two treatises attributed to Alkindi ‘De 
iudiciis revolutionum annorum mundi’.5 According to the colophon, that trans-
lation was made at the request of Johannes van Milanen, who was alderman in 
Mechelen.6 It is possible that Bate made the translation of De mundo, which 
deals with similar issues, for the same patron.

In the present contribution, I will not discuss Bate’s translation of the whole 
treatise, but only focus on the preface of the translator and his additions in 
the translation. This preface is in many ways a remarkable document.7 We 
shall see how the young Henry, notwithstanding his admiration for Ibn Ezra, 
whose works he translated and helped to disseminate in the Latin world, is 
very critical about Ibn Ezra’ attitude towards Albumasar and Ptolemy. What at 
first seems to be a polemical text becomes in fact an interesting manifesto on 
method in astronomy. In what follows, I will present an analysis of this text. 
In an appendix, I offer an edition of the Latin text of this preface and the 
additions of Bate, together with a translation.8

2. Ibn Ezra’s misrepresentation of Albumasar
Henry starts his preface by expressing his indignation and his unbelief at Ibn 
Ezra’s criticism of Albumasar:

When we started working on the translation of Ibn Ezra’s treatise On the conjunctions 
of the planets and the revolutions of the years of the world, we were shocked at 
the opening of this work, as we did not understand for what reason [the author] 
neglected to pay respect to the prince of the astrologers, Albumasar:9 why had he not 
at least interpreted the words of such a great philosopher in a more charitable way? 
For it seems to be a want of judgement to say what he dared to say here, that one 

5 For an edition and study of this newly discovered text see Sela et al., A Newly discovered 
Treatise.

6 See on this translation Steel et al., The Astrological Biography, pp. 49–50.
7 The preface and the additions attracted the attention of many scholars. See Grant, Ni-

cole Oresme, pp. 111–16 and 168 (notes) with reference to previous discussions in Thorndike’s 
A History of Magic and Duhem’s Le système du monde. Unfortunately, they draw conclusions 
from a problematic text edition, as will be shown below. Lemay analysed the preface in his 
edition of Albumasar; see Lemay, Abū Ma‘šar, vol. VII, pp. 63–70.

8 I shall refer to this edition as Praef. or Add. with line numbers.
9  As I am discussing a Latin text,  I use throughout the Latinized name Albumasar  for Abū 

Maʿshar, also in the translations I adopted from Sela’s edition.
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should not give assent to what Albumasar says in his Book of Conjunctions, since he 
makes his judgments according to the mean motions (Praef. 2–8).

One finds indeed a harsh criticism of Albumasar in the opening section of the 
Book of the World, which I now quote in Sela’s translation:

If you come across Albumasar’s Book on the Conjunctions of the Planets you would 
neither like it nor trust it, because he relies on the mean motion for the planetary 
conjunctions. No scholar concurs with him, because the truth is that the conjunctions 
should be reckoned with respect to the zodiac. […] Rather, the correct approach is 
to rely on the astronomical tables of the scientists of every generation who rely on 
experience (§ 1:1–4, tr. Sela).

As Sela notices, Ibn Ezra refers here to a passage in Albumasar’s work On 
the Great Conjunctions, where the astronomer uses the ‘mean motion’ of the 
planets to calculate the period between two successive conjunctions of Saturn 
and Jupiter.10 That Ibn Ezra is here so negative about the ‘prince of astrolo-
gers’ is indeed surprising, for, as Sela observes, Ibn Ezra usually draws heavily 
on Albumasar’s introductions to astrology and even extracts literally from his 
works. Henry, however, is irritated by Ibn Ezra’s negative comments on Albu-
masar. As he says, even if certain passages in Albumasar may raise problems, 
given the way they are formulated, one should first try to interpret them ‘in a 
more charitable way’: ‘quin saltem tanti uerba philosophi in partem interpreta-
tus fuisset meliorem’. The expression ‘in meliorem partem interpretari’ is often 
used by patristic and medieval authors, whenever a sentence of an authority 
(above all a biblical text) has an ambiguous meaning. The right interpreter will 
always attempt to interpret it ‘in the best sense’.11 This is Bate’s own attitude 
towards authorities. Moreover, whenever he notices an opposition between Ibn 
Ezra and Albumasar, he will not hesitate to defend the latter.12 He will thus 
use his preface to his translation of Ibn Ezra to write an extensive refutation of 
the author’s criticism of Albumasar.

Henry opens his refutation with an argument ad hominem. How could Ibn 
Ezra criticise Albumasar on this issue, when even his own master, ‘Abraham 
called the prince, whom Ibn Ezra respects so much’, used the same method 
of calculation from ‘mean motions’ in the fifth section of the treatise On the 

10 See Sela, Abraham Ibn Ezra. The Book of the World, ad I § 1:1–2, p. 102.
11 See e.g. Thomas Aquinas, Summa theologiae, II–II, 60, 4, especially the contra argu-

ment, based on the Glossa ordinaria: ‘Dubia in meliorem partem sunt interpretanda’. I owe 
this reference to Guy Guldentops.

12 Bate’s preference for Albumasar over Ibn Ezra is evident from his commentary on Al-
bumasar’s De magnis coniunctionibus partially preserved in extracts by Pierre d’Ailly. I also 
noticed that Bate in translating Ibn Ezra’s Ṭeʿamim I (Liber rationum) adds some comments in 
which he expresses his preference for Albumasar (on which Ibn Ezra depends): see ms. Leipzig, 
UB, 1466 f. 61v: ‘Dicit translator: Si autem veritatem confitendum est multo melius assignat 
Albumasar huius rationem in suo maiori Introductorio’ and again ‘Inquit translator quod hic 
insufficienter dictum est, satis completum est per Albumasar’.
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Redemption of Israel? Abraham the Prince, to whom Bate refers, is Abraham Bar 
Ḥiyya  (c. 1065–c.  1136),  an  astronomer who was  known  as Abraham ha-Naśiʾ 
(Abraham the Prince). Bate refers to the fifth chapter of his Megillat hamegalleh 
(Scroll of the revealer), which was known in Latin as Liber de redemptione 
Israel.13 Bate quotes the same work further on in this preface, and he also refers 
to it in his Nativitas.14 He must have had a Latin translation of this interesting 
astrological history, which is no longer extant.15 That Bate calls Abraham the 
Prince the venerated master of Ibn Ezra poses many problems, which have 
been resolved in a recent article by Shlomo Sela.16  In  fact, Abraham Bar Ḥiyya 
was not at all Ibn Ezra’s master, and the latter did not respect him much.

However, even if Henry Bate had known that he had made a false claim, he 
would have felt justified to point to a contradiction, not, then, between Ibn Ezra 
and his ‘master’, but in Ibn Ezra himself. In fact, notwithstanding his rejection 
of Albumasar’s use of the ‘mean motions’, Ibn Ezra relies on that method in the 
calculation of the intervals between the great conjunctions, as Bate explains:

Moreover, Ibn Ezra himself noticeably establishes the number <of years> of the 
conjunctions according to the mean motions, just as Albumasar did. For the changes 
of the triplicities do not always happen after 240 or 260 years according to the true 
motions, but sometimes faster, sometimes slower, as is clear from experience. For 
what reason, then, can Ibn Ezra criticize both the famous Albumasar and himself? 
(Praef. 18–23).

In fact, when making a calculation of the years that must have passed in the 
shift from one triplicity to another to reach another conjunction of Jupiter and 
Saturn, Ibn Ezra remarks:

They [Saturnus and Jupiter] proceed in this manner until 240 or 260 years have 
passed, so that they conjoin in the houses of the <same> triplicity 12 or 13 times 
(§ 9,1, tr. Sela).

13 cf. Poznanski and Guttmann, Abraham Bar Ḥiyya, p. 117.16-19.
14 See Praef. 100–03; Nativitas, 2354–2358: ‘Iupiter et Saturnus in eodem gradu coniunc-

tionis sunt secundum medios motus ipsorum prout testatur Hispanus Abraham cognomine 
Princeps in suo tractatu Coniunctionum’. One finds also long quotations of the Megilat ha-Me-
galeh in Pierre d’Ailly’s Elucidarium. The extracts start on f. 128v: ‘Abraham Iudeus dictus 
Avenezre in quodam tractatu de magnis coniunctionibus’ and go as far as f. 133v. Pierre refers 
in this work three times to Henricus Bate and his lost commentary on the Great conjunctions 
of Albumasar. Most probably Pierre found the extracts in Bate’s commentary. The translation 
he uses is certainly different from the translation of Theodoricus de Northem (see n. 15).

15 There exists a Latin translation of the text preserved in three fifteenth-century manu-
scripts (see Steel et al., The Astrological Biography, p. 82, no. 14). According to the colophon 
this translation was made from a French translation by the Dominican Theodoricus de North-
em, a baccalarius theologie. See Federici Vescovini, ‘Una versione latina’, pp. 6–7. According 
to father E. Panella (referred to by Federici Vescovini) Theoderic of Northeim was working 
around 1300.

16 Sela, ‘The Ibn Ezra-Henry Bate Astrological Connection’, pp. 175–79.



250 CARLOS STEEL

Ibn Ezra would have certainly admitted that astronomical calculations are 
not possible without applying mean motions, and he would never have criti-
cized Albumasar for that reason. What he criticized in Albumasar is the fact 
that he only relied on mean motions in making astrological judgments. Bate 
insists, however, that Ibn Ezra should have been more charitable in his reading 
of Albumasar. For even when Albumasar relies upon the times of the ‘mean 
motions’, he does so in order to find what the ‘true motions’ are. With this 
practice, he follows the scientific method which requires both in investigation 
as in the exposition of a doctrine, to start from mean motions.17 Hence, one 
should not deduce from Albumasar’s statements that he really thought that 
astrological judgements should be based upon ‘mean motions’.

Even though Albumasar sets times of the mean conjunctions and changes of the 
triplicities, he does so that the positions and times of the true [conjunctions and 
changes] may be more suitably investigated; this is what the order of both invention 
and exposition requires; hence one cannot conclude therefrom with syllogistic force 
that the author thought that judgments of the conjunctions should be related to the 
mean motions, unless one may try to impute some madness to the author (Praef. 
14–8).

3. The discussion of Ptolemy’s authority
Next, Bate discusses a second point where he disagrees with Ibn Ezra, namely 
the way in which he manipulates the authority of Ptolemy.

What the same Ibn Ezra attempts to establish as an assertion of Ptolemy, deserves 
certainly to be examined and discussed, I think, namely his claim that it was not 
possible, either for Ptolemy or for his predecessors and his successors, to find the 
ascendant degree in the hour of the entrance of the Sun into Aries because of the 
incertitude of the observations, which comes both from an error in the preparation 
of the instruments and from the different judgment regarding the length of the year 
because of the discordant observations of the experimental masters (Praef. 31–39).

This is indeed what Ibn Ezra makes Ptolemy say:
Now I will give you another explanation. Ptolemy said: The scientists of our 
generation boast that they can find the sign of the ascendant in any city at the 
revolution of the year, which is the moment when the Sun enters Aries. But I say 
that I cannot do so and that those who preceded me did not know how, nor will 
those who come after me (§ 12,1–3, tr. Sela).

17 ‘prout expostulat doctrine ordo ac inuentionis’ (Praef. 16). The distinction between ‘in-
uentio’ and ‘doctrina’ (based on Aristotle’s Posterior Analytics) is often found in scholastic au-
thors: ‘doctrina’ stands for the systematic exposition of a given science from its first principles 
to its last conclusions, ‘inventio’ for the investigation of a certain matter which may lead to 
new insights. The ‘ordo doctrinae’ and ‘ordo inuentionis’ may be different, not however in 
this case (where always the astronomer starts from mean motions, both in investigation and 
in exposition).



 A DISCUSSION ON PTOLEMY’S AUTHORITY 251

And after having developed what he considers to be Ptolemy’s arguments — 
the imprecision of astronomical instruments (see § 13,3–6) and the difficulty 
to determine exactly the length of the year (see § 14–17) –, Ibn Ezra concludes:

So now you realize that no man can know the sign of the ascendant at the revolution 
of the year. This is why Ptolemy said, […] that we should always observe the moment 
of the luminaries’ conjunction or opposition, whichever occurs last before the Sun 
enters Aries, for we can be precise about this without approximation, in any place we 
wish, and from it we can know all the judgments of the world (§ 18,1–2, tr. Sela).

In these texts Ibn Ezra seems to be sceptical about the possibility of knowing 
with precision the time of the entrance of the Sun into Aries (i.e. the vernal 
equinox), and he finds in Ptolemy a similar doubt. Therefore, he advocates 
with Ptolemy another method for making prognostications. One should rely 
upon the time of the syzygies of the luminaries that immediately preceded that 
event: for this can be known with precision.18

Bate is not at all convinced by this conclusion, and certainly not by Ibn 
Ezra’s claim that this is the view of Ptolemy himself. First, he expresses with 
some sarcasm his surprise that Ibn Ezra claims to establish this unacceptable 
conclusion by relying upon arguments taken from Ptolemy’s Tetrabiblos. In 
fact, Bate notices that Ibn Ezra declares elsewhere that the Tetrabiblos has no 
value at all. How, then, could he rely on a text whose authority he rejects?

What is first of all astonishing here is the fact that he [Ibn Ezra] grounds his 
argument upon something about which the same Ibn Ezra affirms the following in 
his Book of Reasons, in the first section, first chapter, when speaking about Ptolemy’s 
Tetrabiblos, from which also the argument mentioned before was taken: ‘But I, 
Abraham, the author, say that this book was not composed by Ptolemy, because 
there are many arguments in that have no weight when compared to science and 
experience’. Likewise in the Book on Nativities in the chapter on the fifth house: ‘I 
warn you not to rely somehow upon the arguments of this book, because it has no 

18  As  David  Juste  informed  me,  already  al-Battānī  defended  the  view  that  it  is  preferable 
to take into account the syzygies preceding the entrance of the Sun into Aries and that this 
was also Ptolemy’s doctrine. However, most Arabic astrologers thought that the horoscope of 
the year  should be based on the vernal equinox. See on al-Battānī, Kennedy et al.,  ‘Al-Battānī’s 
Astrological History’, in particular the quotation on p. 19: ‘[…] since we have looked into what 
was said about it by most of its practitioners in our time, and we found them to have searched 
for this knowledge and sought its lore through year-transfers, the beginnings of which are the 
entry of the Sun into the sign of Aries at the times of conjunctions, by casting the horoscopes 
of such times, and similar things of this sort, for the use of which there is no justification, 
nor are there any principles to go by. They did not take into account eclipses accompanying 
conjunctions in their places in the ecliptic, as well as the participation of the planets in these 
configurations, since that (the occurrence of eclipses) is among the best indicators regarding 
variations and the beginnings of changes. Since Ptolemy, with all his preeminence in this art, 
paid no heed to anything other than it concerning events coming to pass in this world, we 
deem it well to adopt his doctrine’.
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value’ and in the second chapter of the Book of Reasons: ‘I give you a general rule: 
anything that Ptolemy says about the orbs is correct and no one surpasses him; but 
his astrological judgments do not befit his science’ (Praef. 37–48).

As we can learn from this passage, at the time he wrote his preface, Bate was 
already well acquainted with Ibn Ezra’s works. He knows indeed the main 
passages in Ibn Ezra’s œuvre wherein the author expresses his negative judg-
ment about the scientific value of the Tetrabiblos, and even his doubts about 
the authenticity of this work. He first refers to a passage in the Book of Rea-
sons (Te’amim) (I § 1 5:5, tr. Sela, Abraham Ibn Ezra. The Book of Reasons, 
p. 35): ‘But I, Abraham, the author, say that this book was not written by Pto-
lemy, because there are many things in it that have in them nothing of rational 
thought or experience, as I shall explain in the Book of Nativities’. Interest-
ingly, this self-reference of Ibn Ezra made Bate look up the Book of Nativi-
ties, where he found the following aspersion of Ptolemy’s authority: ‘Ptolemy 
said in the Tetrabiblos that regarding children we should always observe the 
tenth and eleventh mundane houses. All those who came after him, includ-
ing  Māshā’allāh,  laugh  at  him;  and  they  are  right.  I  have  mentioned  this  so 
that you will not rely on everything written in that book [i.e., the Tetrabiblos], 
because it has no substance’ (III, V, 4, 3, tr. Sela, Abraham Ibn Ezra on Nativ-
ities, p. 145). Finally Bate quotes again from the Book of Reasons: ‘Now I give 
you a general rule: anything that Ptolemy says about the orbs is correct and 
no one surpasses him; but his astrological decrees and judgments do not befit 
his wisdom’. (I § 2 18:1–2, tr. Sela, Abraham Ibn Ezra. The Book of Rea-
sons, p. 59). Ibn Ezra clearly opposes the Ptolemy of the Almagest, whom he 
admires, and the Ptolemy of the Tetrabiblos. In making this opposition Ibn 
Ezra follows an Arabic tradition in which scholars express their mistrust of the 
author of the Tetrabiblos.19 A notorious early example of this hesitant attitude 
towards Ptolemy is Albumasar’s introduction to Book IV of the Introductorium 
maius. According to Albumasar, some scholars attributed the Tetrabiblos to the 
same Ptolemy who also composed the Almagest; others, however, ascribed it 
to another author named Ptolemy. He leaves the question open, but notices 
that the author of the Tetrabiblos is much less reliable in his exposition of 
the nature of the stars.20 The Arabic commentator on the Tetrabiblos, Ali ibn 
Riḍwān  (Haly  Abenrudian),  deals  with  these  doubts  in  his  introduction  and 
develops a lengthy argument to defend the attribution of the Tetrabiblos to the 
same author who also composed the Almagest.21

19 For Ibn Ezra’s attitude towards Ptolemy, see Sela, Abraham Ibn Ezra and the Rise, 
pp. 240–56.

20 Introductorium maius (tr. Hermann of Carinthia), IV.1, ed. Lemay, Abū Ma‘šar, vol. VIII, 
p. 56.19–23.

21 See Liber Quadripartiti Ptholomei, ed. Venice, Bonetus Locatellus, 1493, fol. 2va: ‘de 
nomine compositoris dico quod fuit Ptolomeus Pheludianus ille qui fecit Almagesti’. In what 
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Henry Bate does not defend the authority of the Tetrabiblos against Ibn 
Ezra. He is more concerned with the question of where, in Ptolemy, Ibn Ezra 
could have found the argument he attributes to the astronomer, namely that it 
is impossible to determine the time of the entrance of the Sun into Aries (i.e. 
the moment of the vernal equinox) and that one should therefore rely upon the 
time of a conjunction or opposition of the luminaries preceding that event. If, 
however, one cannot rely on the Tetrabiblos, as Ibn Ezra says, where else, Bate 
asks, can this conclusion be found in Ptolemy? It is certainly not found in the 
Almagest, where one reads rather the contrary. Where then? It seems that, after 
all, even Ibn Ezra has to rely upon the Tetrabiblos to make his claim:

if it should be found somewhere, it has to be in the Tetrabiblos, in the 11th chapter of 
the second book, which deals with the beginning of the year (Praef. 50–51).

It is this chapter, Bate believes, that Ibn Ezra has in mind when he attributes 
the above claim to Ptolemy. However, as Bate intends to show, Ibn Ezra inter-
prets this text perversely. To counter this interpretation, Bate first wants to 
establish the text of that chapter with the greatest precision. He quotes the 
full text of Ptolemy in three different translations. The first translation, which 
comes from an anonymous scholar, circulated around 1250–1260 in Paris and 
was used by Roger Bacon and by the author of the Speculum astronomiae.22 
The second is the well-known translation of Plato of Tivoli.23 The third is 
the translation made directly from the Greek by William of Moerbeke, from 
whom Bate had received a personal copy.24 Apart from Bate, no other medieval 
author ever quoted this translation. As one can see, Bate exploits his extraor-
dinary erudition to present Ptolemy’s text in its purest state without corrup-
tions.25 He places Moerbeke’s translation in the last position because, whenever 

follows, Haly gives the main arguments in favor of the attribution to Ptolemy. On this text see 
Boudet, ‘Ptolémée dans l’occident médiéval’, in particular pp. 200–04.

22 Ptolemaeus, Quadripartitum, II.10 transl. anonyma (PAL A.2.4), cf. Vatican, BAV, Vat. 
lat. 4075, f. 28v28-40. On this anonymous translation see Juste, ‘Ptolemy, Quadripartitum’.

23 Ptolemaeus, Quadripartitum, II.10 transl. Platonis Tiburni, ed. Ven. 1484, f. C 5va.
24 Ptolemaeus, Iudicialia (=Quadripartitum), II.11, 688-693, ed. Vuillemin-Diem and Steel. 

On Bate’s use of this translation see Vuillemin-Diem and Steel, Ptolemy’s Tetrabiblos, pp. 39–
44.

25 When writing his preface, Bate did not yet know the new translation made by Aegidius 
de Thebaldis (after 1257). One of the first scholars in Paris to use the new translation was 
Pierre de Limoges, who owned a personal copy of the text (Paris, BnF, lat. 16653). In Aegidius’ 
translation the quoted text reads as follows: ‘Et quod teneo melius et proximius esse opinioni 
naturali in facto anni est operari per hec quatuor principia et inspicere ad coniunctiones et 
ad oppositiones Solis et Lune que sunt proximiores istis principiis ante hec tempora, et in ea 
propria que erit eclypsis; ita quod sciamus a principio hore qua ingreditur Sol Arietem qualiter 
erit status ueris, et a principio quando Cancrum ingreditur quomodo erit estas, et a principio 
quando Capricornum ingreditur quomodo erit hiems; ita quod qualitates uniuerales temporum 
et suorum statuum erunt propter Solem’.



254 CARLOS STEEL

possible, he prefers to use translations made immediately from the Greek, since 
he believes that they are less corrupt than translations through Arabic inter-
mediaries.26 Moerbeke’s translation is undoubtedly the most accurate and the 
closest to the Greek, but because of its literality almost unintelligible. Plato of 
Tivoli’s translation, though made from the Arabic and less literal, renders Ptol-
emy’s argument rather well. The anonymous translation, however, is a disaster: 
it only makes sense when compared to Plato’s version. In one section, however, 
both translations from the Arabic lack an element of Ptolemy’s text.27 Whereas 
Moerbeke has ‘coniugationes Solis et Lune coniunctionales aut pleniluniares’ to 
render  ‘ἡλίου  καὶ  σελήνης  συζυγίας  συνοδικὰς  καὶ  πανσεληνιακάς’,  i.e.  ‘the 
sizygies of the Sun and Moon at new or full Moon’, Plato of Tivoli translates 
‘coniunctionum et preuentionum Solis et Lune’ and the anonymous ‘eorundem 
conuentum aut oppositionem’. The addition ‘at new or full Moon’ is absent in 
the Arabic text, maybe because it was thought to be redundant.

As we cannot rely here on a Latin translation to follow Bate’s argument, 
I insert Robbins’s excellent translation from the Greek, though making it 
somewhat more literal:

It seems more appropriate and natural to me, however, to employ the four starting-
points for investigations which deal with the year, observing the syzygies of the Sun 
and Moon at new or full Moon which most nearly precede them, and among these in 
particular the conjunctions at which eclipses take place, so that from the starting-
point in Aries we may conjecture what the spring will be like, from that in Cancer 
the summer, from that in Libra the autumn, and from that in Capricorn the winter. 
For the Sun creates the general qualities and conditions of the seasons.28

After having quoted the Tetrabiblos chapter in three versions, Bate expresses 
his exasperation at Ibn Ezra’s misinterpretation. Unless one manipulates this 
text (‘nisi littere uiolentia fiat’), Bate says, it is clear that Ibn Ezra’s view cannot 
be founded upon Ptolemy. In fact, one cannot deduce from Ptolemy’s text, as a 
general rule, that in predictions one should take, not the ascendant at the exact 
hour of its occurrence, but the syzygy preceding it. What Ptolemy has to say in 
this chapter, is about how to predict the general qualities of the seasons of the 
coming year. It is in that perspective that he recommends that one should not 
only know the entrance of the Sun into the cardines (equinoxes and solstices), 
but also the syzygies of the Sun and the Moon preceding its entrance.

26 cf. Nativitas, 2719–2720: ‘Alia uero translatio que de greco melius habet hoc modo’ and 
De diebus creticis periodorumque causis, c. 9 (ed. Dell’Anna, Dies critici, vol. II, pp. 111–12): 
‘oportet igitur litteram que de Arabico intelligi per translationem que de Greco in qua magis 
confidendum est cautius’.

27 The same omission is found in Aegidius’ translation.
28 Tetrabiblos, II.11, tr. Robbins, Ptolemy, pp. 197–99.
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From what is said one cannot draw the conclusion Ibn Ezra made, unless one 
manipulates the text, but rather that, in order to know the disposition of the year 
and of its parts [i.e. the seasons], one has not only to know when the Sun enters the 
vernal equinox and the other points on the tropic; but, in addition to these, it is also 
appropriate to observe the conjunctions of the Sun and the Moon at new and full 
Moon (Praef. 83–7).

To confirm his position, Bate refers to Albumasar who says in his Book on Con-
junctions that, when we have to make predictions of general conditions, which 
affect mankind as a whole, such as pestilence, ‘it is necessary to have two ascen-
dants, namely that of the conjunction or opposition preceding the entrance of 
the Sun in the mobile vernal point, and also that of the revolution in which 
the Sun enters that mobile vernal point’.29 But when one has to make predic-
tions regarding humidity or dryness of the coming year, Bate says, it is enough 
to examine the syzygies of the Sun and of the Moon preceding the seasons, as 
particular climatological changes follow from different relations of the Moon 
to the Sun. The case is different for cosmic changes that have a more pervasive 
and far-reaching effect: they depend on a more permanent cause in the celes-
tial constellations; here the conditions for making predictions are more strict. 
And with a final blow to Ibn Ezra, Bate refers again to ‘Abraham the prince, 
whom Ibn Ezra calls his teacher’. He too requires strict conditions, including 
the determination of the vernal equinox, for the prediction of general events. 
Thus, in the fifth chapter of the Redemption of Israel, where he talks about 
general events, such as the change of reigns, battles, famine, drought, low and 
high [prices] of grain, he says: ‘all this we shall know through the revolution 
of the conjunction of Saturn and Jupiter, that is, when the Sun enters Aries’.30

29 Bate refers to ‘in primo Coniunctionum, differentia prima, et in octavo etiam, differen-
tia prima’. See Albumasar, De magnis coniunctionibus, VIII,1,9: ‘Qualitas autem rerum com-
munium comprehendentium genus, ut pestes et bubones et fertilitas et siccitas et pluvie, scitur 
illud quidem ex ascendentibus inceptionum universalium que erunt ante equidistantiam lumi-
naris signo mobili vernali, in hora equidistantie, ex parte Lune duorum locorum, et gradus 
coniunctionis et impletionis, in annis coniunctionum et aliis’ (ed. Yamamoto and Burnett, 
Abū Maʿšar on Historical Astrology, pp. 296–98). Yamamoto and Burnett translate the Arabic 
text as follows: ‘As for the question of the things of general kind like an epidemic, a plague, 
fertility, barrenness, and rain, this is known from the horoscopes of the universal beginnings 
occurring before the parallelism of the great luminary with the spring tropic, and at the time 
of its parallelism, and from the Moon in its two positions, i.e. the position of the conjunction 
(New Moon) and that of the opposition (Full Moon) in the year of the conjunctions or other 
<years>’. Bate’s reference to the first book is less evident. See however I,1,28, pp. 16–17: ‘veluti 
significatio signo profectionis ab ascendente coniunctionis que fit in Ariete super res universales 
atque generales ut sunt diluvia, terremotus et pestilentie et his similia’. The reference to book 
VIII is lacking in the oldest and best copy of the text (P). It was probably added later by Bate.

30 cf. Poznanski and Guttmann, Abraham Bar Ḥiyya, pp. 117, 16–19.
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Bate may be right in his claim that Ibn Ezra manipulates somehow Ptolemy’s 
text to make him say what he, Ibn Ezra, wants to say. Even his modern editor, 
Sela, must admit that, although Ptolemy expresses a similar view in a number 
of places in the Tetrabiblos, ‘it is not in the precise form as it is presented by 
Ibn Ezra’. Sela refers in his annotations to the same chapter (II.11) quoted by 
Bate as Ibn Ezra’s possible source, but adds three other passages where one may 
find a similar view (II.1; II.12, and III.2).31 In particular the last text which 
deals with ‘the degree of the horoscopic point’ is illuminating. I quote it in 
Robbins’ translation:

Difficulty often arises with regard to the first and most important fact, that is, 
the fraction of the hour of the birth; for in general only observation by means of 
horoscopic astrolabes at the time of birth can for scientific observers give the minute 
of the hour, while practically all other horoscopic instruments […] are frequently 
capable of error […]. It would therefore be necessary that an account first be given 
how one might discover […] the degree of the zodiac which should be rising, given 
the degree of the known hour nearest to the event […]. We must, then, take the syzygy 
most recently preceding the birth, whether it be a new moon or a full moon.32

This text does not as such deal with the question discussed by Ibn Ezra, 
namely how to establish the moment of the vernal equinox, but with another 
issue, how to establish the ascendant degree at the moment of birth, which 
is difficult to determine empirically. Nevertheless, it is relevant to the discus-
sion for another reason. In fact, in both questions, we are confronted with the 
difficulty of establishing empirically with instruments a particular astronomical 
position. Ptolemy recommends an alternative method to establish the ascen-
dant degree of the nativity: ‘take the syzygy most recently preceding the birth, 
whether it be a new moon or a full moon’. In an analogous way, one can use a 
similar alternative (i.e. turning to the preceding syzygies) when it is difficult to 
establish the vernal equinox. However, even in this text Ptolemy does not give 
up the possibility of determining the ascendant at the very hour, he only says 
that it is often very difficult to know it with precision and, therefore, recom-
mends another procedure.

4. How to deal with the incertitude of observations

Having shown that Ibn Ezra could not invoke Ptolemy’s authority for his claim 
that one cannot determine the exact moment of the entrance of the Sun into 
Aries, Bate next discusses Ibn Ezra’s main arguments for his conclusion, which 
he had summarized in this way: ‘the incertitude of the observations, which 

31 See Sela, Abraham Ibn Ezra. The Book of the World, pp. 114–15 and comment p. 108 
(ad I § 12): ‘This ostensible quotation from Ptolemy… has no clear basis in the Tetrabiblos’.

32 Tetrabiblos, III.2, tr. Robbins, Ptolemy, pp. 229–31.
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comes both from an error in the preparation of the instruments and from the 
different judgment regarding the length of the year because of the discordant 
observations of the experimental masters’ (Praef. 27–30).

Ibn Ezra discusses the problem of the instruments in § 13: 3–6:
The instruments used to determine the Sun’s altitude at noon, if they are very 
accurate, can provide a result  in minutes but not seconds. The Banū Shākir [brother] 
said that they made three instruments that were graduated in minutes and with 
which they could also measure ten seconds. But when they measured the Sun’s 
altitude at noon there was a discrepancy among them of two minutes, which stems 
from the imprecision of the instruments. There will be an error if we cast a shadow 
on the earth, too, either because the surface of the earth is not straight, or because 
the stake is not straight, or because it does not stand upright (tr. Sela).

Bate only briefly refers to the problem of instruments in the preface, but he 
returns to the question at the end of his life, in the last part of his Speculum 
divinorum, where he  refers  to  the  same  example  of  the Banū Shākir  brothers:

With regard to sight it is quite clear that it can be frequently be changed and 
deceived in its state, as also Alhazen declares in many places.33 An absolutely 
accurate fabrication of precise instruments and their exact installation, executed with 
indubitable verification so that no error can occur from it, is a so difficult and nearly 
impossible operation that only a few could believe it except for experts who have 
frequently tried it out. Hence Abraham the Jew says in his book On Tabulation that 
he found two brothers Bensechit, who had composed two instruments, i.e. astrolabes, 
with a diameter of 9 spans. They divided the degrees of the quadrant to measure 
the sun’s altitude in minutes, and the minutes in five. And when these two men 
measured the Sun’s altitude, when the Sun was entering the head of Aries, a difference 
of 2 minutes was found between the two instruments.34 Likewise, in our time, two 
technical specialists (‘artificiosi viri’), making use of two very large skilfully produced 
and ingeniously verified quadrants, measured in Paris the maximal elevation of the 
Sun at noon on the summer solstice: the result found by one was 64°42’; while the 
other 64°45’; and so there was a difference of 3 minutes.35

As one can see, Bate was as much aware as Ibn Ezra of the difficulty, the vir-
tual impossibility of making absolutely precise observations. Nevertheless, this 
was not for him a sufficient reason to give up all attempts to come closer to the 

33 See Alhazen, Optica, III.2 (ed. Basel, 1572, p. 75); III.7 (ed. p. 102); VI.2–9 (ed. p. 188); 
VII.7 (ed. p. 230).

34 Bate does not take the example of the two brothers from De mundo, but from the par-
allel text De rationibus tabularum, ed. Millás Vallicrosa, El libro de los fundamentos, pp. 81, 
7–12. See on these two parallel texts, Sela, Abraham Ibn Ezra. The Book of the World, p. 110.

35 Speculum divinorum XXII.17, lines 31–40 (ed. Steel and Guldentops, Henricus Bate, 
p. 337, translation Guldentops). This passage is quoted and commented by Giovanni Pico della 
Mirandola, see Garin, Pico, vol. II, pp. 322–24.
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truth, or to opt for an alternative method to circumvent the difficulty, as Ibn 
Ezra seems to suggest. This is clear in the way Bate summarizes the discussion 
among astronomers on the length of the solar year, which he read in the Book 
of the World § 13:7–9, 17:1 and 17:9–11. He agrees with Ibn Ezra that the mas-
ters who made observations came to different results in their calculations: some 
put the motion of the Sun too fast, others too slow. Although they seem to 
turn in circles, now putting a time below than above the true time, nevertheless

they could in the end, through a proportional division of the differences, investigate 
the truth or what is so close to the truth that it excludes an error that may harm 
(Praef. 107–109).

Bate confirms his optimistic conclusion with examples he found in Ibn Ezra’s 
own discussion of the problem (in § 17–18). The motions Ptolemy proposed 
are faster than those that Hipparchus had proposed and yet ‘fall short of the 
due  velocity’.  Al-Battānī  posited  a  solar  motion  that  is  too  fast,  yet  closer  to 
the  truth  than  that  of  Ptolemy. Al-Ṣūfī  and  Ibn Ezra  posited motions  that  are 
somewhat  slower  than  those  of  al-Battānī  and  yet  they  too  fall  short  from  the 
due velocity.36 Finally, Bate refers to his own efforts in correcting and improv-
ing the astronomical tables, starting from his observations in Mechelen:37

Finally, in our own times, by saving appropriately the observations of Ptolemy, 
al-Battānī  as  well  as  our  own,  we  posited  a  motion  [with  a  velocity]  of  almost 
intermediate  proportion  between  al-Battānī  and  Ibn  Ezra,  so  that  this  way  we  may 
come closer to the middle, where the truth lies (Praef. 117–120).38

To be sure, with this method of proportional division, one may not ‘reach the 
indivisible truth’. However, as Bate believes, we may come closer to it, and that 
is enough, given our human possibilities. Even if our calculations are imper-
fect, there is no reason to despair about the possibility of astronomical science. 
Bate refers to what Ptolemy says in his introduction to the Tetrabiblos: ‘Even if 
prognostication be not entirely infallible, at least its possibilities have appeared 
worthy of utmost zeal’.39 And he associates with him Albumasar who, in the 
first chapter of the Introductorium maius says that ‘an error of a number of 
minutes, or — rarely — even a whole degree, does not harm a lot’.40 Moreover, 

36 This argument on the value of the precession of the equinoxes (central to the problem 
of the length of the solar year) finds an exact parallel in Speculum divinorum, XXII.5, lines 
146–53 (ed. Steel and Guldentops, Henricus Bate, p. 283).

37 On the Tabulae Mechlinienses, see Nothaft, ‘Henry Bate’s Tabule Machlinenses’.
38 For a more exact calculation of the different views on the length of the tropical year, see 

Nothaft, ‘Criticism of Trepidation’.
39 Tetrabiblos, I.3, tr. Robbins, Ptolemy, p. 31 (translation Robbins modified at the end).
40 Albumasar, Introductorium maius (tr. Hermann of Carinthia), I.4, ed. Lemay, Abū 

Ma‘šar, vol. VIII, p. 19.647–48: ‘punctorum seu gradus etiam integri error et raro nec multum 
impedit’.
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Bate adds, if an error originates from poor instruments, ‘it can sufficiently be 
avoided through the skilfulness of an ingenious man and through frequent 
observations’ (Praef. 125–7).

Bate keeps this optimistic belief in the possibility of an astronomical science 
starting from empirical data until the end of his life, as one can judge from an 
addition to the Speculum divinorum (dated after 31 January 1310), in which 
he comments on the information he had received on observations of a solar 
eclipse in Paris.41 He notices how ‘difficult, even impossible it is to indubitably 
and precisely grasp through some observation’ the truth of this celestial 
phenomenon. Nevertheless, he concludes with some scholarly pride:

Therefore, [our own tables of Mechelen, which have now been corrected for the 
third and last time (…)] should not at all be despised. For by means of these [tables], 
which are adjusted to the observations done previously by Ptolemy and by us later 
on, and which agree with truthful experience, it is possible to find the positions 
of the planets and their conjunctions, as well as the revolutions of the year and its 
seasons: I mean those conjunctions at least that are foremost worthwhile or of which 
one needs certainty.42

As we have seen, Bate defended a similar position already in his preface to 
De mundo, written forty years earlier. His belief in the possibility of estab-
lishing from empirical data the moment of the yearly vernal equinox made 
him reject Ibn Ezra’s proposal, that we should rather rely upon the hour of 
the conjunction or opposition of the Moon with the Sun preceding that event. 
Granted that this is the right method to proceed, he says, it would neverthe-
less be impossible unless one knew beforehand the true motion of the Moon. 
However, it is impossible to know what occurs with the Moon (conjunctions, 
eclipses) without knowing the true place of the Sun. All astrologers, he says, 
Ptolemy,  Geber,  al-Battānī,  and  all  masters  of  celestial  observation,  knew  that 
it was impossible to obtain the true positions and times of eclipses unless the 
motion of the Sun was verified.

Nevertheless, Bate admits that, though this may be the ideal procedure in 
a scientific investigation — first determine the position of the sun, then the 
position of the moon in relation to it, then cast the horoscope of that time 

41 Speculum divinorum, XXII, additio ad capitulum 18, ed. Steel and Guldentops, Henricus 
Bate, pp. 346–48. See on this discussion of the solar eclipse Nothaft, ‘Henry Bate’s Tabule 
Machlinenses’, pp. 276–78.

42 ‘Demum neque spernendae sunt omnino nostrae praefatae tabulae [i.e. Machlinenses ter-
tio iam et ultimo correctae]; per ipsas enim concordatas utique considerationibus a Ptolemaeo 
prius observatis et a nobis posterius experientiaeque veraci convenientes inveniri possunt loca 
planetarum et eorum coniunctiones, anni quoque simul et quartarum eius revolutiones; con-
iunctiones autem inquam illae saltem de quibus principaliter operae pretium aut necesse est 
aliqualem habere certitudinem’ (Speculum divinorum, XXII, additio ad capitulum 18, lines 44 
and 59–63, ed. Steel and Guldentops, Henricus Bate, pp. 347–48).
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–, this will not always be possible. If, then, for various reasons (such as lack 
of sufficient instruments), it is not possible to determine the positions of the 
luminaries with great precision (‘ad unguem seu precise’), one should worry 
about [the rates of] the motions that have been found.43 Maybe an appropriate 
[rate] was not found or there may be no trust that what was found is sufficient. 
If, then, an error arises in calculations, it will manifest itself more quickly 
regarding conjunctions and oppositions of the Moon with the Sun than 
regarding the entrance of the Sun into Aries. The reason is, as Bate explains, 
that the motion of the Moon is faster, which makes it possible to detect easier 
errors in calculation regarding the Moon’s conjunctions and oppositions, 
whereas the passage of the Sun is much slower: it takes a long time before one 
can notice errors in calculation regarding its position. This may have been the 
reason, Bate thinks, that induced Ibn Ezra to take the lunar time as root of 
his calculations and not the solar time. However, there may be even another 
explanation for this preference, Bate suggests. After all, Ibn Ezra is a Jew and 
all people love their own folks and ways of life. Moreover, a calendar is not just 
a system of measurement of time; it is always linked to a religious interpretation 
of human life in time. Bate suggests that Ibn Ezra, as a Jew, could have been 
disposed to prefer the lunar calendar over the solar calendar. In fact, according 
to the Jewish calendar, the year begins at the conjunction of the Moon.44

Besides, the love and inclination he had for his own Jewish sect, which begins 
the year at the conjunction of the Moon, could perhaps have contributed to that  
(Praef. 148–150).

This is a surprising ad hominem argument coming at the end of a scholarly 
discussion, but it is not unfriendly.

Bate admits that the method advocated by Ibn Ezra may be easier, but it is 
wrong in its principles. A perspicacious astronomer, Bate says, should not be 
content ‘with rough estimation of an incompetent and indolent mind’. As we 
can learn from Albumasar, ‘before we can make skilfully astrological judgments, 
we must beforehand have some scientific certitude about the celestial motions. 
For that reason, it is necessary to lay first the fundament regarding the Sun’. 
Even if we have difficulty in knowing the true motions, we can still rely on 
our mathematical models and calculations to approach it. And again Bate 
confronts Ibn Ezra with statements he makes in his other works. He refers to 
his treatise De rationibus tabularum, where Ibn Ezra set the study of motion 
of the Sun before the study of the motion of the Moon.45 This reference is 

43 ‘de inuentis sit cura motibus’. I thank the anonymous referee for his comment on this 
passage.

44 Regarding Ibn Ezra’s attitude towards the Jewish calendar see Sela, Abraham Ibn Ezra 
and the Rise, pp. 273–88.

45 The treatise has been published by Millás Vallicrosa, El libro de los fundamentos.
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another example of Bate’s astonishing knowledge of the works of Ibn Ezra at 
the time he was writing this preface.

To conclude my analysis of this remarkable preface of a young astronomer 
full of self-confidence I can do nothing better than offer him the last words:

To make a general conclusion, it is more connatural and suitable to the achievement 
of science and its further perfection to look not only at the conjunction of the 
luminaries or their opposition in order to know the state and being of the world, 
but to consider also skilfully, with all precaution, the entrance of the Sun into 
Aries and, if required, into the other tropical points, as in their conjunction are 
rooted the great events of the world, as is clear from the statements of the scholars  
(Praef. 161–7).

5. Additions in the translation

Bate not only wrote the long preface to his translation but also added his own 
comments at two places in the translation.

The first addition comes after I § 2–6. Bate expresses here his frustration 
with and incomprehension of Ibn Ezra’s calculation of the 120 possible 
conjunctions of the seven planets. He inserts the following comment:

The translator says: This is Ibn Ezra’s argument as it is found in Hebrew,46 but it 
seems to us that either the text has been truncated in the exemplar or, given that the 
text is sound and well written, that the doctrine he transmitted is too confused and 
not skilful enough.47

More important, however, is a second longer addition in which Bate again 
takes some distance vis-à-vis the astronomer he promoted through his transla-
tions. This comment follows on the following passage in Ibn Ezra (§ 24: 3–4 
and 7–8, tr. Sela):48

If someone argues that every cycle of seventy-five years is the same as the previous 
ones, because the planets and those that share their power are the same, the answer 
is  as  follows.  Know  that  it  is  impossible  according  to  proportion49 that, when there 
is an ascendant with a proportional relationship <of the planets> to it, that the 
proportion of one to another will always be uniform and the same, even were the 
world to last forever. […] Therefore, it is not possible for the nativity of one person 
to be the same as that of another. For the orb never remains in the same pattern, and 
at every moment there emerges a new proportion,50 whose like has never existed and 
never will; and the mathematicians know that.

46  ‘Arabo’  in manuscripts  of  the β  group.
47 See on this addition and its context Clagett, Nicole Oresme, pp. 445–47.
48 I adapted Sela’s translation to make it correspond more to the Latin translation of Bate. 

In particular, I introduced the term ‘proportion’ because it may explain Bate’s critical reaction.
49 ‘secundum viam proportionis’ (Bate) ‘arithmetically’ (tr. Sela).
50 ‘proportio’ (Bate), ‘pattern’ (Sela).
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Ibn Ezra seems to reject in this section the hypothesis that there is a perfect 
cyclical regularity in celestial motions. As he argues, every planet at any time 
has so many diverse moving relationships to the other planets and to the fixed 
stars that there will never be found one and the same proportion between them 
after a long period of time, ‘even were the world to last for ever’. Bate adds a 
long digression in his translation to explain what Ibn Ezra may have meant. As 
he says, there is a radical difference between mathematical calculations, which 
may go on in infinity, and astronomical calculations:

Although the multiplication of a number can increase to infinity, the revolutions 
of the celestial bodies are necessarily finite in species, as has been demonstrated 
with certitude in another part of philosophy. It is necessary, therefore, that similar 
[celestial] configurations should sometimes return, even though the [interval of] the 
time of such revolutions is incomprehensible to us because of the enormity of these 
intervals (Add. 175–80).

To defend Ibn Ezra, Bate offers a charitable interpretation. Ibn Ezra did not 
really reject the circular regularity of the celestial motions, he only wanted to 
say that we could never calculate exactly when a certain proportionate relation 
between planets and stars would return given the infinite possibilities of com-
bination. However, to admit the difficulty of calculation of the exact return of 
a celestial configuration does not yield the conclusion that the celestial motions 
would go on in infinity without ever returning to a certain configuration:

One must not suppose, however, that, because of the manifold diversity of the 
motions of celestial bodies, they may not come together nor be coordinated, as is 
the case with incommensurable lines, which, in the tenth book of the Elements, 
Euclid calls irrationals or surds, because of their incapacity to communicate with 
one another. For, as the Philosopher testifies in the twelfth book of the Metaphysics, 
‘all things are ordered together’[Met. XII 9, 1075a18-19]; and the Commentator 
says about this that ‘all the actions of celestial bodies in their communication with 
one another are in the organization of the world as the action of freemen in the 
organization of a house’[Averroes, In Met. XII c.52, 338 Bc]. For it is evident even 
to someone considering these matters a little, that if there must be a communication 
between some things, this communication must be more excellent in divine things. 
Therefore, it is absurd to think that the motions of the superior [i.e., celestial] 
bodies are irrational, or surd. This is what Pythagoras and other ancients wanted to 
discover through the music of the world; and Plato says similar things on this matter 
in the Timaeus and elsewhere, as does Calcidius together with innumerable other 
philosophers.51 (Add. 180–93)

This addition deals with an issue that will be often discussed in the fourteenth 
century, the question whether the motions of the different luminaries in their 
reciprocal relations are commensurable or not. Best known is the position of 

51 cf. Plato, Timaeus 36E-37A; Calcidius, In Tim. c.95 (ed. p. 147, 26-148, 9); Simplicius, 
In De Caelo II 9 (p. 469,1-32); Bate, Speculum XXII, c.23 (p. 367, 106-198).
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Nicole Oresme, who wrote different treatises in which he argued for the irra-
tionality of the celestial motions. As is clear from the addition quoted above, 
Bate radically opposes such a view. All celestial motions have rational propor-
tions which can in principle be perfectly calculated even if they surpass the 
capacities of the human intellect.

It is worth examining in what sense Bate’s addition had an influence upon 
the later debate through the diffusion of his translation of De mundo. Let me 
just give two examples of reactions to his comments.

The first and the most important example is a marginal note, which 
entered the text in a group of manuscripts of De mundo, probably related to 
the University of Paris. An unknown scholar added at the sentence beginning 
with ‘Non est autem’ (Add. 180) the following comment: ‘Non est autem, etc.: 
nescio quare hic translator deturpauit pergamentum ponendo se in textu et 
ostendendo se scire mathematicam’: ‘I do not know why this translator has 
defiled the parchment by putting himself in the text and showing that he 
knows mathematics’. Because this note is also present in the edition of 1507, 
it attracted the attention of scholars who wrote on the late-medieval discussion 
on the incommensurability of the celestial motions. Pierre Duhem is the first 
to offer a survey of this debate.52 He begins by presenting the views of Ibn Ezra 
in the above-quoted section from De mundo, in which the Jewish astronomer 
seems to admit the incommensurability of celestial motions. Duhem then 
turns to Henry Bate, who criticized this view in his additional note. Duhem 
gives a full translation of the note. However, he is puzzled by the invective 
‘nescio quare hic translator deturpauit pergamentum ponendo se in textu et 
ostendendo se scire mathematicam’. As he did not know that this sentence 
does not belong to the original version, but had been added, rather late, in one 
subgroup of manuscripts, Duhem thought it was Henry Bate’s own reaction 
against the Jew who had made the translation of Ibn Ezra, and who, in Bate’s 
view, got it all wrong. ‘Ce passage [i.e from Ibn Ezra in Hagins’ translation] 
provoque, de la part d’Henri Bate, cette brutale observation’.53 Influenced by 
his reading of Duhem, Lynn Thorndike writes: ‘Henry Bate represents the 
idea [i.e. of the incommensurability] as an innovation of the translator from 
Hebrew into French’.54 The same error is made by Edward Grant in the 
introduction to his edition of Nicole Oresme’s Tractatus de commensurabilitate 
vel incommensurabilitate motuum celi. In his survey of the discussion of the 
incommensurability before Oresme, Grant also deals with Henry Bate.55 

52 See Duhem, Le système du monde, vol. VIII, pp. 443–51 (esp. 445–47 on Ibn Ezra and 
Bate).

53 See Duhem, Le système du monde, vol. IV, p. 28; cf. vol. VIII, p. 446, n. 1: ‘Bate veut 
sans doute parler du Juif qui avait traduit en flamand (sic!) l’hébreu de Aven Ezra’.

54 See Thorndike, A History of Magic, vol. III, p. 406.
55 Grant, Nicole Oresme, pp. 111–16 and 164–66.
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He begins with the following surprising statement: ‘In 1281, Henry Bate of 
Malines criticized an anonymous translator of Abraham ibn Ezra’s Book on the 
World […]’. Grant believes that Bate is criticising the author of a ‘translation 
[in French?] that may have served subsequently as the basis for Bate’s own 
translation of the same treatise into Latin’. It seems that Grant understands 
the ‘inquit translator’ not as referring to Bate himself (for it is a third-person 
statement) but to the anonymous who made the translation from the Hebrew. 
Bate, then, would only interfere in the note starting from ‘Nescio quare hic 
translator deturpavit…’ up to the end (‘let us return to the text’). According 
to Grant, the interpretation of the anonymous translator, who had tried to 
interpret charitably Ibn Ezra’s statement, ‘aroused the wrath of Henri Bate’ as 
is clear from his reaction in what follows ‘I do not know why the translator 
has defiled the parchment…’.

All this confusion and concatenation of errors could have been avoided 
if the scholars had known that the ‘harsh reaction’ did not come from Bate 
himself, and was not addressed by him to the ‘translator’ — he was himself 
the translator! —, but had been added by a scholar reading Bate in the late 
fourteenth or fifteenth century. This scholar (maybe it be Pietro d’Abano?) was 
angry at Bate’s critique of Ibn Ezra.

The second reaction, this time a positive one, is found in a fifteenth century 
manuscript Paris, BnF, lat. 7438, fol. 273r.56 After a revised version of Nicole 
Oresme’s treatise De commensuratione motuum celi follows a long postscript 
that is written by the same scribe who had copied (composed?) the revised 
vision. ‘When I was writing this text [i.e. De commensuratione] I remembered 
what Abraham Ibn Ezra says in his Book on the World about the fardar that 
return according to circularity every 75 years. This is what he says: ‘If someone 
argues […] and the mathematicians know that’. [Ibn Ezra § 24 3–8]. He does 
not say more, but the translator of this work from Arabic57 into Latin, Henry 
Bate, a man great in the quadrivium, says the following […]’. Then follows the 
complete text of Bate’s additional note, ‘Quamquam multiplicatio — philosophis 
infinitis’. [Add. 256–73]. The scribe-scholar then concludes: ‘He does not say 
more about that issue. But I believe that he deals more with that question in 
his Speculum divinorum whose incipit is “Bonorum honorabilium preclariorem 
partem eligentes, etc.”’ Interestingly, the scribe of the postscriptum copies 
Bate’s Additio without the invective ‘nescio quare hic translator’. This should 
not surprise us, as it was not in the exemplar where he read the translation of 

56 This post-script was first noticed by Wallerand, Henri Bate, p. 16, n. 17. One finds a 
full transcription of the post-scriptum in Grant, Nicole Oresme, pp. 164–65 (with plate 8: 
fol. 273r).

57 ‘translated from the Arabic’: this may be a slip of the pen of the copyist, or he may have 
found it in his exemplar of De mundo (the error is found in the first addition in many man-
uscripts).
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De mundo, which belonged to another subfamily of manuscripts.58 But, here 
again, Grant comes with a complicated explanation, which makes no sense.59

Interestingly, the scholar refers to Bate’s Speculum divinorum, where a more 
extensive discussion of the problem of incommensurability might be found. In 
fact, some thirty years after De mundo, in the composition of the 22nd part of 
his Speculum divinorum, Bate returned to the question of the celestial harmony 
he had touched upon in his additional note, when he was still a young scholar. 
The last part of chapter 23 is devoted to the question of the harmony of the 
celestial motions. Here, Bate quotes long extracts from Plato’s Timaeus, from 
Calcidius’ commentary on the Timaeus, and from an author he did not yet 
know when he made the additional comment to De mundo, Simplicius in 
his commentary on Aristole’s De Caelo II, dealing with Pythagoras’ doctrine 
on the celestial harmony.60 He does not tackle directly the issue of the 
incommensurability of the celestial motion, though it is evident from his 
argument that he rejects it. Moreover, he quotes long extracts from Aristotle’s 
Metaphysics XII and Averroes’ commentary to which he also referred in the 
additional note of De mundo.61

6. Conclusion

As the digression in the translation of De mundo shows, Bate is convinced 
that celestial configurations, even a thousand years from now, can in principle 
be calculated with precision, since they result from motions of limited bodies 
occurring in limited sections of time and space. Even if such a calculation is 
difficult, there is no reason to abandon the attempt to come closer to the truth. 
As we have seen, Bate advocates in his Preface a method of approximating the 
truth through calculations, tested with always new observations. Even if all data 
cannot always be obtained as precisely as we would wish, this is not a reason 
for despair. With such an approximate method a real science of nature, and in 
particular astronomy, is possible. In his Speculum divinorum Bate talks about 
his frustrations with the then-dominant Aristotelian ‘logical mode’ of science, 
which attempted to explain individuals through universal specific concepts 
expressing some apparent similarity. He opposes this Aristotelian mode of 
science to what he calls a ‘real science’, in which one examines individual things 

58 The texts of Ibn Ezra and Bate quoted by the anonymous scholar have particular variant 
readings  of  the α  family.

59 ‘The few lines that were omitted [they were not omitted, but not yet added C. S.] ex-
plain why the author of the postscript mistakenly attributed the Latin passage quoted in this 
note to Henry Bate rather than to the anonymous translator whom Bate was to criticize’ 
(Grant, Nicole Oresme, p. 114, n. 83).

60 See Steel and Guldentops, Henricus Bate, pp. 367–70 (lines 106–208).
61 See Steel and Guldentops, Henricus Bate, pp. 452–53.
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thoroughly ‘usque ad minima’.62 Such a real science is difficult and almost 
impossible to obtain because the power of human intellect is not capable of 
comprehending all individual things and events. However, Bate thinks, we 
should not despair of acquiring some knowledge of real individual things, even 
if they exist only contingently and for a limited time. He refers to astronomy 
as an example of such a real science. ‘For is not a scientific knowledge possible 
about a particular eclipse at a given moment of time (in the past or future) and 
about other particular things, as the coming of the Antichrist?’63

As is well known, it took a long time before a mathematical approach to the 
study of natural phenomena was accepted.64 No doubt, medieval scholars were 
convinced that mathematical proportions were expressed in the creation of the 
world, and in particular of the celestial spheres, and they liked to refer to what 
is said in the Book of Wisdom (X, 20) ‘omnia in mensura, et numero et pondere 
disposuisti’. However, they were aware that to know the exact proportions of 
the world order is beyond the capacities of human reason. Starting from sense 
perception, one can never obtain empirical data that could satisfy the exactitude 
of mathematical analysis. As Nicole Oresme noticed, an imperceptible error in 
measurement, even less than a thousandth part, would have an effect on the 
calculations. How, then, could one in such conditions be able to know the 
exact proportion (‘punctualem proportionem’) between celestial magnitudes 
and  motions?  And  Nicole  Oresme  refers  to  al-Battānī  who,  with  reference  to 
Ptolemy’s authority, said that ‘it is not possible for anyone to understand the 
truth exactly’ (‘veritatem ad unguem comprehendere’). Nicole Oresme concludes: 
‘I will not vainly presume to solve this problem by mathematical demonstration’ 
(‘non ergo vane presumam mathematica demonstratione terminare predictum 
problema’).65  In  fact,  as Luca Bianchi argued against Alexandre Koyré,  to make 
modern science possible, it was necessary to abandon this ideal of an impossible 
exactitude. ‘The mathematical physics was only possible when innumerable 
accidental variations were set aside, if one does not take into account not 
essential deviations in measurement, if one renounces a complete correspondence 
between the result of demonstrations and the result of measurement, between 

62 Speculum divinorum, VI.13, lines 100–02 (ed. Van de Vyver and Steel, Henricus Bate, 
p. 53): ‘physice quidem et exquisite perscrutando funditus usque ad minima, licet ad huiusce-
modi nulla descendat expresse scientia ab aliquo philosopho tradita’. See on this search for a 
real science of nature my contribution ‘Nature as Object of Science’.

63 Speculum divinorum, VI.10, lines 104–06 (ed. Van de Vyver and Steel, Henricus Bate, 
p. 37): ‘Numquid et de eclipsi determinata certo tempore, seu praeterito seu futuro, potest 
haberi scientia, similiter et de antichristo et consimilibus particularibus?’

64 See on the deadlock of medieval science, Bianchi, ‘L’impossibile exactitude’. The presen-
tation of Bianchi’s views in my conclusion comes from my ‘Nature as an Object of Science’.

65 De commensuratione motuum caeli, III, lines 14–20 and 36–37 (ed. Grant, Nicole 
Oresme, pp. 284–87).
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theoretical values and observational values’.66 As Bianchi said, the principal 
reason why the late-medieval philosophers did not succeed in their efforts to 
apply the new mathematical method was ‘their incapacity or refusal to cover 
the inevitable variance between mathematical certitude and empirical data’. To 
make progress possible in natural science, we have to admit an approximate 
calculus of natural processes. That is what we see happen with Galileo, Bianchi 
explains: he passionately tried to invent always more sophisticated systems of 
measurement; he repeated with obstinacy his experiments (which were very 
primitive and far from mathematically exact); he collected data and he reflected 
on the evaluation of errors of estimation. In so doing, Galileo diverted attention 
away from the ideal of total (but impossible) precision, towards a non-ideal level 
of precision which is nonetheless indispensable for solving the problems under 
consideration and which is accessible via the available instruments. One may 
see in his scientific experiments a transition from the world of the impossible 
divine precision to a universe of approximation which is accessible to us, and in 
that sense, more human.

I by no means wish to diminish the genius of Galileo and the novelty of 
his scientific approach; it seems to me, however, that medieval astrologers had 
already taken that attitude. They knew that it was impossible to know with 
precision the true motions of heaven. However, this did not prevent them 
from developing a method of approximation to the truth. As Bate formulates 
it nicely at the end of his Preface: ‘This is the way of proceeding in things so 
sublime granted to human smallness, thanks to which we have been left with 
the possibility to investigate at the end appropriately the truth’.67

Appendix

Bate’s Preface and Additions to De Mundo
The Latin text that follows is taken from my edition in Steel, ‘Henry Bate’s 
Translation’.

66 Luca Bianchi, ‘L’impossibile exactitude’, pp. 190–91.
67 I am greatly indebted to David Juste for corrections and comments on the first version of 

this text. I express my gratitude to Dr Philipp Nothaft (All Souls, Oxford) who read carefully 
the last version of my contribution and helped me with his competence in medieval astrology 
to better understand what was at stake in the debate between Ibn Ezra and Henry Bate.
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IncIpIt lIber Avenesre de mundo vel seculo  

Tractatus Auenesre de planetarvm conivnctioniBvS et annorvm revolv-
tioniBvS mvndanorvm translationem aggressuri in uestibulo quidem sermonis 
obstupuimus, ignorantes quo animo principi astrologorum Albumasar deferre 
neglexerit, quin saltem tanti uerba philosophi in partem interpretatus fuisset 
meliorem. Indiscretionis namque uisum est hoc fore ut hic dicere sit ausus 
quod acquiescendum non est dictis Albumasar in liBro conivnctionvm eo 
quod iudicet secundum motus medios, qui se gloriatur illius discipulum qui 
significationibus coniunctionum in triplicitatibus iudicia commiscet expresse 
coniunctionum mediarum, prout apparet ex uerbis Abrahe principis in 5 par-
ticula liBri redemptioniS iSrael, quem quidem Abraham iste cognomina-
tus Auenesre magistrum suum profitetur, ut patet in liBriS nativitatvm et 
rationvm plerisque locis.

Adhuc quamquam ponat Albumasar tempora coniunctionum mediarum et 
mutationum triplicitatum, ut sic uerarum loca et tempora conuenientius inues-
tigentur, prout expostulat doctrine ordo ac inuentionis, non tamen ex hoc con-
cludi potest uirtute sillogistica quod actor intellexerit coniunctionum iudicia ad 
medios motus fore referenda nisi rabiem actori imponere quis conetur. Insuper 
ipsemet Auenesre uisus est numerum ponere coniunctionum secundum cursus 
medios, quemadmodum Albumasar. Non enim mutationes triplicitatum sem-
per fiunt in 240 annis aut 260 secundum ueros motus, sed aliquando citius, 
aliquando tardius, sicut apparere potest experienti. Qua igitur ratione famosum 
Albumasar et seipsum potest reprehendere Auenesre?

At uero pertractatione dignum uidetur necnon et discussione hoc quod idem 
Auenesre sub assertione Ptolomei confirmare nititur, uidelicet quod non fuit 
Ptholomeo possibile neque precedentibus ipsum neque sequentibus ut in hora 
introitus Solis in Arietem gradum ascendentis inuenirent propter consideratio-
num incertitudinem, tum ex errore preparationis instrumentorum proueni-
entem, tum ex diuerso quantitatis anni iudicio ob discordantes magistrorum 
probationum obseruationes. Hiis itaque de causis probare nititur auctoritate 
Ptholomei intercedente quod non est possibile in anni reuolutione gradum 
ascendentis inueniri. Quocirca concludit ulterius sustentandum esse super 
gradum ascendentis in hora coniunctionis aut preuentionis luminarium utra 
earum immediate precedat ingressum Solis in Arietem. Hoc enim documen-
tum ait esse Ptholomei atque anni principium quod absque uariatione conue-
nienter potest certificari et secundum ipsum iudicia propalari.
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TRANSLATION

When we started working on the translation of Ibn Ezra’s treatise On the Con-
junctions of the Planets and the Revolutions of the Years of the World, we were 
shocked at the opening of this work, as we did not understand for what reason 
[the author] neglected to pay respect to the prince of the astrologers, Albuma-
sar: why had he not at least interpreted the words of such a great philosopher 
in a more charitable sense? For it seems to be a want of judgment to say what 
he dared to say here, that one should not give assent to what Albumasar says in 
his Book on Conjunctions, since he makes his judgments according to the mean 
motions. Yet [Ibn Ezra] himself boasts of being the disciple of someone who obvi-
ously brings in judgments [based on] mean conjunctions when dealing with the 
significance of the conjunctions in the triplicities, as is evident from the words 
of Abraham, the prince, in the fifth section of the treatise On the Redemption 
of Israel, whom this Abraham named Ibn Ezra acknowledges as his master, as 
is evident in the Book of Nativities and the Book of Reasons in many places.

Besides, even though Albumasar sets times of the mean conjunctions and 
changes of the triplicities, he does so that the places and times of the true 
[conjunctions and changes] may be more suitably investigated; this is what the 
order of both invention and exposition requires; hence one cannot conclude 
therefrom with syllogistic force that the author thought that judgments of the 
conjunctions should be related to the mean motions, unless one may try to 
impute some madness to the author. Moreover, Ibn Ezra himself noticeably 
establishes the number <of years> of the conjunctions according to the mean 
motions, just as Albumasar did. For the changes of the triplicities do not always 
happen after 240 or 260 years according to the true motions, but sometimes 
faster, sometimes slower, as is clear from experience. For what reason, then, can 
Ibn Ezra criticize both the famous Albumasar and himself?

What the same Ibn Ezra attempts to establish as an assertion of Ptolemy, 
deserves certainly to be examined and discussed, I think, namely his claim that 
it was not possible, either for Ptolemy or for his predecessors and his successors, 
to find the ascendant degree in the hour of the entrance of the Sun into Aries 
because of the incertitude of the observations, which comes both from an error 
in the preparation of the instruments and from the different judgment regard-
ing the length of the year because of the discordant observations of the exper-
imental masters. For all these reasons, he attempts to demonstrate with the 
authority of Ptolemy that it is impossible to find the degree of the ascendant in 
the revolution of the year. Therefore, he concludes further that one should rely 
upon the degree of the ascendant at the time of the conjunction or the preces-
sion of the luminaries to see which of them precedes immediately the entrance 
of the Sun into Aries. For, as he says, this is the teaching of Ptolemy and this 
is the beginning of the year that can be suitably certified without variation and 
judgments can be issued according to it.
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Sed non uidentur hec dicta sufficientiam omnino continere. Primum enim 
quod hic admiratione dignum apparet est illud quod radicem dicti sui super 
illud fundauit de quo in liBro rationvm prima particula capitulo primo idem 
Auenesre loquens de Qvadripartito Ptholomei ex quo tractus est ille sermo 
pretactus, sic inquit: Et ego Abraham compilator dico quod hunc librum non 
compilauit Ptholomeus. Nam in eo sunt multi sermones friuoli secundum scientie 
contraponderationem et experientie. Item in liBro nativitatvm capitulo domus 
quinte: Et ego premunio te quod non sustenteris aliquatenus super sermones illius 
libri. Non enim est in ipso ualor aliquis. Item in liBro rationvm capitulo 
secundo: unam itaque generalitatem tibi dico quod omnes sermones quos inue-
nies a Ptholomeo ubi de circulis loquitur ueri sunt, et non ab ipso alii magis. 
Iudicia uero sua scientie non conueniunt.

Constat autem quod in almaGeSti non inuenitur illud dictum, sed eius con-
trarium. Igitur si usquam inueniri debeat, hoc esse deberet in Qvadripartito, 
capitulo quidem 11o secundi libri, ubi tractatur de initio anni. Illud autem 
quod ibi scriptum est de hac materia, est huiusmodi secundum unam trans-
lationem: Quia ergo nil magis conueniens nil naturali rationi propinquius hac 
obseruatione deprehendi potest, hiis quatuor punctis anni principia relinquun-
tur; nos itaque quid singulis accidat anni temporibus prescire uolentes in eisdem 
principiis Solis et Lune conuentum aut oppositionem, utrum scilicet istorum Solis 
ingressum in illius quarte principium preueniat considerare oportet. Si itaque 
eorundem conuentum aut oppositionem comitetur eclipsis, efficacior erit signifi-
catio. Quod si antequam Sol Arietis principium ingrediatur, contingat in totum 
uer et uernali qualitate, significatio illa dilatabitur in Cancro estatem, in Libra 
autumpnum, sed in Capricorno hyemem totam occupabit. Temporum namque 
alternatio et generalis eorum proprietas omnisque eorum status causam a Sole 
specialiter assumunt.

Alia quidem translatio sic habet: Et quod magis conueniens naturalique rationi 
propius in obseruatione rerum anni deprehendimus, est istorum quatuor prin-
cipiorum obseruatio, necnon coniunctionum et preuentionum Solis et Lune, que 
predicta tempora precedentes prope ipsa fuerint, maxime autem in quibus fuerint 
eclipses, ita ut per principium quod ex Solis existentia in Ariete deprehenditur 
uernalem qualitatem cognoscimus et per initium ex eiusdem existentia in Can-
cro deprehendimus qualitatem estiualem, per principium autem quod ex ipsius 
in Libram ingressu cognoscitur qualitatem autumpnalem. Initium uero quod per 
eiusdem introitum in Capricornum accipitur, hyemalem qualitatem demonstrat, 
propterea quod temporum generales qualitates et eorum omnes modi non sunt 
nisi per Solem.
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But what is said does not at all contain sufficient proof. What is first of all 
astonishing here is the fact that he [Ibn Ezra] grounds his argument upon 
something about which the same Ibn Ezra in his Book of Reasons, in the first 
section, first chapter, when speaking about Ptolemy’s Tetrabiblos, from which 
also the argument mentioned before was taken, says the following: ‘But I, 
Abraham, the compilator (author), say that this book was not composed by 
Ptolemy, because there are in it many arguments that have no weight when 
compared to science and experience’. Likewise in the Book on Nativities in the 
chapter on the fifth house: ‘I warn you not to rely somehow upon the argu-
ments of this book, because it has no value’; and in the second chapter of the 
Book of Reasons: ‘I give you a general rule: anything that Ptolemy says about 
the orbs is correct and no one surpasses him; but his astrological judgments do 
not befit his science’.

However, in the Almagest, one can certainly not find what is said [here about 
Ptolemy] , but rather the contrary. Therefore, if it should be found somewhere, 
it has to be in the Tetrabiblos, in the 11th chapter of the second book, which 
deals with the beginning of the year. What is written there on this topic, is as 
follows according to one translation: ‘Since nothing more convenient can be 
found, nothing more proximate to natural reason than this observation, there 
remain the four starting points of the year [indicated by] these points. There-
fore, if we want to know beforehand what will happen to each period of the 
year, we must consider the conjunction or opposition of the Sun and the Moon 
at these points, namely, which of them precedes the entrance of the Sun in 
the starting point of that quarter season. If an eclipse accompanies their con-
junction or opposition, the signification will be more effective. Indeed, if it is 
the case that before the Sun enters the starting-point of Aries, generally spring 
happens with its quality, this meaning will expand in Cancer into summer, in 
Libra into autumn, but in Capricorn it will occupy the whole winter. For the 
alternation of the seasons and their general qualities and all their conditions 
are caused in particular by the Sun’.

In another translation it reads as follows: ‘What we take as more appropri-
ate and closer to natural reason in an observation dealing with the year, is 
an observation of these four starting-points, and also of the conjunctions and 
oppositions of the Sun and the Moon, which precede the aforementioned times 
and come close to them, in particular of [the conjunctions] at which eclipses 
take place. Thus, through the starting-point that is found in the Sun’s being in 
Aries we may know what the spring will be like, through the starting-point of 
its being in Cancer we may know what the summer, through the starting-point 
of its entrance in Libra we may know what autumn. The starting-point of its 
entrance in Capricorn indicates what the winter will be like. For the general 
qualities and conditions of the seasons only exist because of the Sun’.
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Tertia uero translatio, que scilicet immediate de Greco interpretata, hec tenet: 
Conuenientius autem mihi uidetur et magis naturale ad annuales considerationes 
quatuor principiis uti, obseruando propinquissime sibi prius factas coniugationes 
Solis et Lune coniunctionales aut pleniluniares, et harum maxime rursum eclip-
ticas, ut a principio quidem quod est penes Arietem uer quale sit, consideremus, 
ab eo autem quod est penes Cancrum estatem, ab eo uero quod est penes Chelas 
autumpnum, ab eo autem quod est penes Capricornum hyemem. Vniuersales 
quidem enim temporum qualitates et consistentias Sol facit.

Ex hiis ergo, nisi littere uiolentia fiat, non potest elici illud dictum Auenesre, 
verum hoc potius quod ad sciendum anni dispositionem et partium eius non 
solum sufficit cognitionem habere de introitu Solis in punctum uernalis equi-
noctii et in reliqua tropica, sed cum hiis conuenientius est obseruare coniu-
gationes Solis et Lune coniunctionales et pleniluniares, secundum etiam quod 
uult Albumasar in primo conivnctionvm, differentia prima, et in octavo 
etiam, differentia prima, in qua dicit quod ad sciendum qualitatem rerum com-
prehendentium genus, ut pestes, necesse est habere duo ascendentia, coniunctio-
nis scilicet aut oppositionis, que precedit introitum Solis in punctum mobile 
uernale et cum hoc reuolutionis in qua ingreditur Sol ipsum punctum mobile 
uernale. Humiditas autem anni seu ariditas ex dispositionibus coniunctionum 
seu preuentionum luminarium perpendi debet, secundum quod etiam attes-
tantur reliqui sapientes, et rationabiliter quidem cum aure mutatio particularis 
motum Solis et Lune sibi inuicem comparatum precipue comitetur. Reliqua 
uero magis permansiua mundi accidentia permanentiorem causam necessario 
habent imitari. Et hanc quidem rationabilem uiam nititur Albumasar in suis 
iudiciis obseruare.

Insuper et Abraham princeps quem Auenesre magistrum suum profitetur in 
5° redemptioniS iSrael loquens de mutatione regnorum, de preliis, de fame et 
siccitate, leuitate et grauitate bladi sic ait: et hoc totum sciemus per reuolutionem 
coniunctionis Saturni et Iouis idest Sole intrante in Arietem, etc.

Sed redeamus ad probationem qua dictum quod Ptholomeo imponit, probare 
conatur Auenesre. Dicamus ergo quod magistri probationum diuersi diuersis 
usi considerationibus, nunc motum ponentes tardiorem debito, nunc uelocio-
rem, sic quidem circueundo tandem per proportionalem differentie diuisionem 
ipsam potuerunt ueritatem inuestigare aut quod ueritati tam propinquum sit 
ut errorem qui obesse possit excludat. Hic enim modus procedendi in rebus 
tam sublimibus humane concessus paruitati, quo mediante nobis relinquitur 
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Finally, there is a third translation, made directly from the Greek: ‘It seems 
more appropriate and natural to me, however, to employ the four starting-points 
for investigations which deal with the year, observing the conjunctions of the 
Sun and Moon at new and full Moon which most nearly precede them, and 
among these in particular the conjunctions at which eclipses take place, so that 
from the starting-point in Aries we may conjecture what the spring will be 
like, from that in Cancer the summer, from that in Libra the autumn, and 
from that in Capricorn the winter. For the Sun creates the general qualities 
and conditions of the seasons’.1

From what is said one cannot draw the conclusion Ibn Ezra draws, unless one 
manipulates the text, but rather that, in order to know the disposition of the 
year and of its parts, one has not only to know when the Sun enters the vernal 
equinox and the other points on the tropic; but, in addition to these, it is also 
appropriate to observe the conjunctions of the Sun and the Moon at new and 
full Moon. This is also what Albumasar affirms in the first book of the Con-
junctions, first difference, and also in the eighth book, first difference, where 
he says that in order to know the qualities of general conditions, such as pesti-
lence, it is necessary to have two ascendants, namely that of the conjunction or 
opposition, preceding the entrance of the Sun in the mobile vernal point, and 
also that of the revolution in which the Sun enters that mobile vernal point. 
The humidity of the year or its dryness must be judged according to the dis-
positions of the conjunctions or precessions of the luminaries, as also the other 
scholars confirm, and this is reasonable since a particular change of the air goes 
together with the motion of the Sun and of the Moon in comparison to one 
another. The other more permanent accidental qualities of the world are neces-
sarily consequent upon a more permanent cause. This, then, is the rational way 
Albumasar tries to keep in his judgments.

Moreover, even Abraham the prince, whom Ibn Ezra calls his teacher, says in 
the fifth chapter of the Redemption of Israel, where he talks about the change 
of reigns, about battles, about famine, drought, low and high [prices] of grain: 
‘all this we shall know through the revolution of the conjunction of Saturn and 
Jupiter, that is, when the Sun enters Aries’.

But let us return at the argumentation by which Ibn Ezra attempts to demon-
strate what he imposed upon Ptolemy. Let us say, then, that the masters of 
experiment, using each different observations, have sometimes posited a motion 
slower than required, sometimes one faster. Going around that way they could 
in the end, through a proportional division of the differences, investigate the 
truth or what is so close to the truth that it excludes an error that may harm. 

1 This is a slightly modified version of Robbins’ translation.
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facultas non incongrue ueritatem finaliter indagare, quemadmodum perpen-
dere possumus in exemplis. Ptholomeus enim uelociores motus posuit quam 
Abrachus, motus tamen Ptholomei a debita uelocitate defecerunt. Albate-
gni uero motum posuit nimis uelocem propinquiorem tamen ueritati ex parte 
quam Ptholomeus. Alzophi quidem et Abraham Auenesre motus posuerunt 
aliquantulum tardiores Albategni ac deficientes paululum a uelocitate debita. 
Denique nostris temporibus obseruationes Ptholomei Albategni necnon et 
nostras satis conuenienter saluantes motum posuimus proportionis fere medie 
inter Albategni et Auenesre, ut sic ad medium in quo consistit ueritas pro-
pinquius pertingamus. Et quamuis ad ipsum indiuisibile ueritatis non uenia-
mus, dummodo prope accedamus, nostre debet sufficere possibilitati. Ait enim 
Albumasar in primo introdvctorii quod punctorum seu gradus etiam integri 
error et raro nec multum impedit. Vnde in primo Qvadripartiti: estimo autem 
de ipsa pronosticatione etsi non ex toto sit sine errore tamen quod possibile est 
de ipsa maximo studio dignum uidetur. Verum error qui ex instrumentis con-
surgere dicitur per artificiositatem hominis ingeniosi satis caueri potest necnon 
et per frequentiam considerationum. Demum uero propter ultimam Auenesre 
conclusionem minus sufficienter subillatam aduertendum est quod non est pos-
sibile scire horam coniunctionis seu oppositionis Lune cum Sole nisi prescia-
tur motus Lune. Dicit autem Ptholomeus tertia dictione almaGeSti capitulo 
primo quod non est possibile scire aliquid eorum que contingunt in Luna ante 
scientiam Solis et eorum que in ipso contingunt. Vnde in omnibus eclipsium 
considerationibus tam Ptholomeus quam Ieber et Albategni cum ceteris 
magistris probationum ad accipiendum uera eclipsium loca et tempora necesse 
habuerunt motum Solis uerificatum presupponere, secundum quod in demon-
strationibus ipsorum perpendi potest manifeste. Et hoc etiam cuilibet palam 
esse potest etiam parum consideranti. Etenim non est uera Lune coniunctio aut 
oppositio cum Sole nisi cum Luna fuerit in eodem puncto cum Sole uel in eius 
opposito. Quod si locum Solis uerum ignoremus, quomodo sciri potest, quando 
sibi Luna secundum uertitatem coniungi debeat aut opponi.

Sane licet secundum ordinem inquisitionis demonstratiue necessarium sit hoc 
ita se habere, si tamen non fit ad unguem seu precise, de inuentis sit cura moti-
bus aut forsan conueniens desit inuentio aut inuentionis fiducia sufficientis, 
error inde proueniens citius seipsum prodit manifestando in coniunctionibus 
luminarium et oppositionibus propter uelocem Lune motum quam error con-
tingens circa introitum Solis in Arietem propter motum tardiorem. Manifestior 
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This is the way of proceeding in things so sublime granted to human small-
ness, thanks to which we have been left with the possibility to investigate at 
the end appropriately the truth, as we can consider in the [following] exam-
ples. Ptolemy for instance posited motions that are faster than [those of] Hip-
parchus; yet Ptolemy’s motions  fall  short of  the due velocity. Al-Battānī posited 
a motion that is too fast, yet closer to the truth [than that of] Ptolemy. Al-Sufi 
and Abraham Ibn Ezra posited motions that are somewhat slower than those of 
Al-Battānī  and  falling  short  a  little  from  the  due  velocity.  Finally,  in  our  own 
times,  saving appropriately  the observations of Ptolemy and Al-Battānī and our 
own, we posited a motion [with a velocity] of almost intermediate proportion 
between Al-Battānī  and  Ibn Ezra,  in order  to come closer  the middle  in which 
consists the truth. And although we did not reach the indivisible truth, if only 
we could come closer to it, this must be sufficient to our possibilities. For Albu-
masar says in the first <chapter> of his Introduction that ‘an error of a number 
of minutes or rarely even a whole degree does not harm a lot’. Hence, in the 
first book of the Tetrabiblos it is said: ‘But, I think, just as with prognostica-
tion, even if it be not entirely infallible, at least its possibilities have appeared 
worthy of the highest zeal’. Indeed, an error that is said to originate from the 
instruments, can sufficiently be avoided through the skilfulness of an ingenious 
man and through frequent observations. Finally, because of Ibn Ezra’s last con-
clusion, which has been drawn in an unsatisfactory manner, one should notice 
that it is not possible to know the hour of the conjunction or opposition of the 
Moon with the Sun unless one knows beforehand the motion of the Moon. 
Now, Ptolemy says in the third section of the Almagest, chapter one, that ‘it 
is not possible to know what occurs in the Moon without knowing the Sun 
and what occurs in the Sun’. Hence, in in all observations on eclipses, Ptolemy, 
Geber  and  al-Battānī,  as  well  as  other  masters  of  experiment,  thought  that  it 
was necessary for obtaining the true places and times of the eclipses, to have 
the motion of the Sun verified, as one can clearly notice in their demonstra-
tions. And this can also become evident to anyone who considers this even a 
little. In fact, there is no true conjunction or opposition of the Moon with the 
Sun unless the Moon is at the same point as the Sun or in opposition to it. 
Hence, if we do not know the true place of the Sun, how could we know when 
the Moon is due to be in conjunction or opposition to [the Sun]?

Yet, although, according to the order of a demonstrative investigation, it is nec-
essary that this must be the procedure, if it is not possible to do it precisely 
and exactly, one should worry about [the rates] of the motions that have been 
found; or maybe an appropriate [rate] was not found or sufficient trust in what 
is found may be lacking. An error that arises thereof quickly betrays itself, when 
it is manifest in the conjunctions and oppositions of the luminaries because of 
the fast motion of the Moon, more so than an error regarding the entrance of 
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itaque perceptibilitas transitus Lune per puncta coniunctionis et oppositionis 
eius cum Sole mouit Auenesre ut illud tempus poneret pro radice. Adhuc et 
amoris inclinatio quam habuit ad sectam suam Iudaicam, que annum initiat 
a coniunctione Lune, ad idem potuit cooperari forsan. Verum propter ratio-
nes supratactas non sufficere debet hoc astronomo perspicaci qui rationabiliori 
uie magis inniti debet quam inhertis ingenii et pigritantis estimationi grosse. 
Idcirco tutius est rationique magis consentaneum sapientibus quoque ceteris 
magis concordius sententie principis astrologorum Albumasar confidentius 
adherere. Postquam enim de motibus celestium aliquam certitudinem scien-
tificam, antequam artificiose secundum astrologica iudicandum sit iudicia, 
presupponere debeamus, necessarium est de Sole primum subicere fundamen-
tum. Quapropter etiam Abraham ipse in tractatu suo de motiBvS et opere 
taBvlarvm Svper piSaS scientiam de motu Solis ante scientiam que de Luna 
preordinauit.

Vt igitur ad omne dicatur, connaturale est magis et conuenientius scientie com-
plemento atque perfectioni eius ampliori non solum ad coniunctionem lumi-
narium seu oppositionem eorum aspicere pro statu et esse mundi cognoscendo, 
verum etiam omni cautela mediante introitum Solis in Arietem et, si necesse 
fuerit, in reliqua puncta tropica artificiosius considerare, cum in coniunctione 
magnorum mundi accidentium non modica radix sit, secundum quod patet ex 
dictis sapientum. Nunc autem tempus est ut ad id quod intendimus acceda-
mus, non pretermittentes que ab Auenesre rationabiliter dicta sunt et bene. 
Sermones igitur eius prout melius poterimus interpretemur.

ADDITIONES

1. Inquit translator: hic est itaque sermo Auenesre secundum quod iacet in 
Ebraico, sed uisum est nobis aut truncatam fuisse litteram in exemplari aut 
saluis bene dictis eius doctrinam nimis confusam tradidisse et minus artificio-
sam

2. Dicit translator: Quamquam multiplicatio numeri possit crescere in infini-
tum, reuolutiones tamen corporum celestium finite sunt secundum speciem ne - 
cessario, quemadmodum in alia parte phie demonstrari habet cum certitudine. 
Quapropter necessarium est consimiles interdum redire constellationes, licet 
incomprehensibile sit a nobis tempus huiusmodi reuolutionum propter inter-
vallorum immensitatem. Et hoc forsan est quod hic innuit actor iste. Non est 
autem opinandum quod propter multiplicem diuersitatem motuum corporum 
celestium possibile sit ipsos in reuolutionibus quibuslibet non conuenire seu 
communicare, quemadmodum est de lineis incommunicantibus quas in decimo 
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the Sun into Aries because of its slower motion. The fact that the passage of 
the Moon through the points of conjunction and opposition with the Sun is 
more manifest induced Ibn Ezra to take that time as root [of his calculation]. 
Besides, the love and inclination he had for his own Jewish sect, which begins 
the year at the conjunction of the Moon, could perhaps have contributed to 
that. However, for the aforementioned reasons, this [procedure] should not be 
sufficient for a perspicacious astronomer, who has to rely more on the rational 
way than on a rough estimation of an incompetent and indolent mind. There-
fore, it is safer and more in agreement with reason and also more concordant 
with the other scholars to adhere faithfully to the view of the prince of astrol-
ogers, Albumasar. In fact, before we can make expertly astrological judgments, 
we must beforehand have some scientific certitude about the celestial motions. 
For that reason, it is necessary to lay first the foundation with regard to the 
Sun. Therefore, Abraham himself, in his treatise On the Motions and the Use 
of [Astronomical] Tables for Pisa set the study of motion of the Sun before that 
of the Moon.

To make a general conclusion, it is more connatural and suitable to the achieve-
ment of science and its further perfection to look not only at the conjunction 
of the luminaries or their opposition in order to know the state and being of 
the world, but to consider also skilfully, with all precaution, the entrance of the 
Sun into Aries and, if required, into the other tropical points, as in their con-
junction the great events of the world are rooted, as is clear from the sentences 
of the scholars. Now it is time to proceed to what we intend to do, without 
leaving out what has been well said and reasonably by Ibn Ezra. Let us then 
translate his arguments, as well as we can.

Additions

(1) The translator says: this is Ibn Ezra’s argument as it is found in the Hebrew, 
but it seem to us that either the text has been truncated in the exemplar or, 
given that the text is sound and well, that the doctrine he transmitted is too 
confused and not skilful enough.

(2) The translator says: Although the multiplication of a number could increase 
to infinity, the revolutions of the celestial bodies are necessarily finite in spe-
cies, as has been demonstrated with certitude in another part of philosophy. It 
is necessary, therefore, that similar constellations should at some time return, 
even though the [period of] time of such revolutions is incomprehensible to 
us because of the immensity of these intervals. Perhaps this is what the author 
[i.e., Ibn Ezra] means here. It must not be thought, however, that, because of 
the manifold diversity of the motions of celestial bodies, it would be possible 
for them not to meet or to communicate, whatever the revolutions may be, as 
is the case with incommensurable lines, which, in the tenth book of the Ele-
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elementorvm Euclides uocat irrationales siue eu surdas propter impotentiam 
communicandi. Omnia namque coordinata sunt, ut testatur Philosophus 12° 
METAPHYSICE, super quo dicit Commentator quod omnes actiones corpo-
rum celestium in communicatione eorum ad inuicem in constitutione mundi sunt 
sicut actio liberorum in constitutione domus. Palam autem est etiam modicum 
consideranti circa hoc quod, si inter aliqua debet esse ordo siue communicatio, 
excellentius esse debet in diuinis. Quare absurdum esset opinari motus corpo-
rum superiorum irrationales esse siue surdos, et hoc est quod Pitagoras et alii 
antiqui per musicam mundanam innuere uoluerunt. De qua similiter Plato in 
tHymeo et alii necnon et Calchidius cum aliis philosophis infinitis.
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ments, Euclid calls irrationals, or surds, because of their incapacity to commu-
nicate. For, as the Philosopher declares in the twelfth book of the Metaphysics, 
‘all things are ordered together’; and the Commentator says about this that ‘all 
the actions of celestial bodies in their communication with one another are in 
the organization of the world as the action of freemen in the organization of 
a house’. For it is evident even to someone considering these matters a little, 
that if there must be a communication between some things, this communi-
cation must be more excellent in divine things. Therefore, it would be absurd 
to think that the motions of the superior bodies are irrational, or surd. This 
is what Pythagoras and other ancients meant to intimate through the music 
of the world; and on this matter, Plato says similar things in the Timaeus and 
elsewhere, as does Calcidius along with innumerable other philosophers. But 
let us return to the text.2

Bibliography

Bianchi, Luca, ‘L’impossibile exactitude. Science and ‘calculationes’ au XIVe siècle’, in 
Luca Bianchi and Eugenio Randi (eds), Vérités dissonantes. Aristote à la fin du 
Moyen Age, Fribourg/Paris: Saint-Paul, 1993, pp. 153–94.

Boudet, Jean-Patrice, ‘Ptolémée dans l’occident médiéval. Roi, savant et philosophe’, 
Micrologus 21 (2013), pp. 193–217.

Clagett, Marshall, Nicole Oresme and the Medieval Geometry of Qualities and Motions, 
Madison: University of Wisconsin Press, 1968.

Dell’Anna, Giuseppe, Dies critici. La teoria della ciclicita delle patologie nel XIV secolo, 
2 vols, Galatina: Congedo, 1999.

Duhem, Pierre, Le système du monde. Histoire des doctrines cosmologiques de Platon à 
Copernic, 10 vols, Paris: Hermann, 1913–1959.

Federici Vescovini, Graziella, ‘Una versione latina medievale dell’opera escatologica di 
Abramo bar Hijja (Savosarda) “Megillat ha-Megalleh”: il “Liber de redemptione 
Israhel”’, in Michele Ciliberto and Cesare Vasoli (eds), Filosofia e cultura. Per 
Eugenio Garin, Roma: Editori Riuniti, 1991, vol. I, pp. 5–37.

Garin, Eugenio, Pico della Mirandola. Disputationes adversus astrologiam divinatricem, 
2 vols, Firenze: Vallecchi, 1952.

Grant, Edward, Nicole Oresme and the Kinematics of Circular Motion. Tractatus de 
commensurabilitate vel incommensurabilitate motuum celi, Madison: University of 
Winconsin Press, 1971.

Juste, David, ‘Ptolemy, Quadripartitum (tr. anonymous, before c. 1250)’ (update: 
27.09.2017), Ptolemaeus Arabus et Latinus. Works, URL= http://ptolemaeus.
badw.de/work/34.

2 For the translation of this addition, I modified Grant’s translation, which was based on 
the 1507 edition of De mundo.



280 CARLOS STEEL

Kennedy,  Edward  S.,  Benno  van  Dalen,  George  Saliba,  and  Julio  Samsó,  ‘Al-Battānī’s 
Astrological History of the Prophet and the Early Caliphate’, Suhayl 9 (2009–
2010), pp. 13–148.

Lemay, Richard, Abū Ma‘šar al-Balḫī [Albumasar]: Liber introductorii maioris ad scien-
tiam judiciorum astrorum, 9 vols, Napoli: Istituto orientale di Napoli, 1995–1996.

Millás Vallicrosa, José Maria, El libro de los fundamentos de la Tablas astronómicas de 
R. Abraham ibn ‘Ezra. Edición crítica, con introducción y notas, Madrid/Barce-
lona: Consejo Superior de Investigaciones Científicas, Instituto Arias Montano, 
1947.

Nothaft, C. Philipp E., ‘Criticism of Trepidation Models and Advocacy of Uniform 
Precession in Medieval Latin Astronomy’, Archive for History of Exact Sciences 71 
(2017), pp. 211–44.

Nothaft, C. Philipp E., ‘Henry Bate’s Tabule Machlinenses. The Earliest Astronomical 
Tables by a Latin Author’, Annals of Science 75 (2018), pp. 275–303.

Poznanski, Adolf, and Julia Guttmann, Abraham Bar Ḥiyya, Sefer Megillat ha-megalleh, 
Jerusalem: Mekize Nirdamim, 1968.

Robbins, Frank E., Ptolemy. Tetrabiblos, Cambridge (Mass.) [Cambridge (Mass.): Har-
vard University Press, 1940.

Sela, Shlomo, Abraham Ibn Ezra and the Rise of Medieval Hebrew Science, Leiden/Bos-
ton: Brill, 2003.

Sela, Shlomo, Abraham Ibn Ezra. The Book of Reasons. A Parallel Hebrew-English Crit-
ical Edition of the Two Versions of the Text, Leiden/Boston: Brill, 2007.

Sela, Shlomo, Abraham Ibn Ezra. The Book of the World. A Parallel Hebrew-English 
Critical Edition of the Two Versions of the Text, Leiden/Boston: Brill, 2010.

Sela, Shlomo, Abraham Ibn Ezra on Nativities and Continuous Horoscopy. A Parallel 
Hebrew-English Critical Edition of the Book of Nativities and the Book of Revolu-
tion, Leiden/Boston: Brill, 2013.

Sela, Shlomo, ‘The Ibn Ezra-Henry Bate Astrological Connection and the Three Abra-
hams’, Mediterranea. International Journal on the Transfer of Knowledge 2 (2017), 
pp. 163–86.

Sela, Shlomo, Carlos Steel, C. Philipp E. Nothaft, David Juste and Charles Burnett, ‘A 
Newly Discovered Treatise by Abraham Ibn Ezra and Two Treatises Attributed 
to  al-Kindī  in  a  Latin  Translation  by  Henry  Bate’,  Mediterranea. International 
Journal on the Transfer of Knowledge 5 (2020), pp. 193-305.

Steel, Carlos, and Guy Guldentops, Henricus Bate. Speculum divinorum et quorundam 
naturaliam. Parts XX–XXIII. On the Heavens, the Divine Movers, and the First 
Intellect, Leuven: University Press, 1996.

Steel, Carlos, ‘Nature as Object of Science. On the Medieval Contribution to a Science 
of  Nature’,  in  Chumaru  Koyama  (ed.), The Concept of Nature. Some Approaches 
East and West, Leiden: Brill, 2000, pp. 125–52.

Steel, Carlos, ‘Henry Bate’s Translation of Ibn Ezra’s Treatise The Book of the World ’, 
Quaestio 19 (2019), pp. 227-278 [part of Stars, Kingdoms, Beliefs, and Masses. 



 A DISCUSSION ON PTOLEMY’S AUTHORITY 281

Political Astrology in the Mediterranean Area from Middle Ages to the Renaissance. 
Le stelle, i regni, le credenze e le masse. L’astrologia politica nel Mediterraneo tra 
Medioevo e Rinascimento, eds M. Benedetto, P. Arfé, P. Porro]. 

Steel, Carlos, Steven Vanden Broecke, David Juste and Shlomo Sela, The Astrological 
Autobiography of a Medieval Philosopher. Henry Bate’s Nativitas (1280–81), Leu-
ven: Leuven University Press, 2018.

Thorndike, Lynn, A History of Magic and Experimental Science, vol. III, New York: 
Columbia University Press, 1934.

Vuillemin-Diem, Gudrun, and Carlos Steel, Ptolemy’s Tetrabiblos in the Translation of 
William of Moerbeke. Claudii Ptolemaei Liber Iudicialium, Leuven: University 
Press, 2015.

Van de Vyver, Emiel, and Carlos Steel, Henricus Bate. Speculum divinorum et quorun-
dam naturalium. Parts VI–VII. On the Unity of Intellect. On the Platonic Doc-
trine of the Ideas, Leuven: Leuven University Press, 1993.

Yamamoto, Keiji,  and Charles Burnett, Abū Maʿšar on Historical Astrology. The Book of 
Religions and Dynasties (On the Great Conjunctions), 2 vols, Leiden: Brill, 2000.

Wallerand, Gaston, Henri Bate de Malines. Speculum divinorum et quorundam natura-
lium, Louvain: Institut superieur de philosophie de l’université, 1931.





The Medieval Latin Versions of Pseudo-Ptolemy’s  
Centiloquium: A Survey∗

Jean-Patrice Boudet

The main Greek version of the pseudo-Ptolemaic Καρπóς (Kitāb al-thamara in 
Arabic, Liber fructus or Centiloquium in Latin) has been edited by Emilie Boer 
in the Teubner Collection in 1952 and again in 1961 with some corrections.1 
This version contains the hundred astrological propositions or aphorisms alone, 
without any commentary and any transliteration from Arabic. It comes very 
probably from a Greek archetype and is preserved in c. 50 manuscripts of 
which none, nevertheless, is anterior to the fourteenth century.

We do not know exactly how and when the Greek archetype of this Byzan-
tine version may have been translated into Arabic. A commentary to the Kitāb 
al-thamara is ascribed by al-Bīrūnī (c. 1040) to Abū’l Abbās al-Iṣbahānī (tenth 
century?),2 but it seems to be lost, and the main Arabic version was drawn up 
by Abū Jaʿ far Aḥmad ibn Yūsuf, an Egyptian physician, mathematician and 
astrologer who wrote his commentary after 300H/912–13 ad.3 According to 
Richard Lemay, the text and the commentary were written together by Aḥmad 
ibn Yūsuf and the commentary constituted the true substance of the text. As 
Maria Mavroudi has shown in her paper, Lemay’s hypothesis is invalidated. 
Aḥmad ibn Yūsuf was probably inspired, indirectly or directly, by a Greek, a 
Syriac4 or an Arabic version bereft of a commentary. But Aḥmad may be con-
sidered, in a way, as the real ‘inventor’ of the Centiloquium from a Medieval 
Latin point of view, even if his identity has been generally unknown to Euro-
pean scholars. As a matter of fact, most of the Latin translations of this text 
derive from his Arabic version.

* Many thanks to David Juste for his numerous and very helpful remarks on the Latin 
translations of the Centiloquium, to Maria Mavroudi for her remarks and corrections of Greek 
and Arabic words in this article, and to Charles Burnett for all his suggestions and corrections. 

1 Boer, Καρπός.
2 Sezgin, Geschichte, vol. VII, p. 167; Haddad et al., ‘Al-Bīrūnī on Astrological Lots’, 

pp. 30–31 and 48.
3 c. 922 according to Lemay, ‘Origin and Success’. The date 300 in the Muslim calendar or 

912–13 in the Christian calendar corresponds to a comet studied by Aḥmad in his commen-
tary on kalimah/verbum 100. See Boudet, ‘Les comètes’.

4 See Nau, ‘Un fragment syriaque’.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 283–304
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The Centiloquium has attracted much attention from Latin scholars from 
the beginning of the twelfth century and six different translations may be 
ascribed to that century. Those six translations are the following:

1. Adelard of Bath’s translation (c. 1116–1120?), incipit ‘Doctrina stel-
larum’. He translates only the first 39 verba (propositions) without their 
commentary. Two independent manuscript copies of this translation 
survive: London, British Library, Sloane 2030, fols 87r–87v (this part 
of the codex is an author’s manuscript, probably autograph, from the 
first half of the twelfth century), and Lyon, Bibliothèque Municipale, 
328, fols 70r–74r (dated 1395).5 Sometime during the twelfth or thir-
teenth century, Adelard’s partial translation was incorporated into the 
tradition of the principal translation made by Plato of Tivoli, together 
with a third version, incipit ‘Mundanorum mutatio’. This triple con-
flated text or threefold version (R. Lemay called it ‘la version agglom-
érée du Centiloquium’) seems to survive in more than 15 manuscripts, 
of which several good copies may be used for the edition of Adelard’s  
translation.

2. Plato of Tivoli’s version, finished in Barcelona in 1136, incipit ‘Iam scripsi 
tibi, Iesure’. The majority of surviving manuscripts of the Centiloquium 
carry this version (c. 100 copies).6 Aḥmad ibn Yūsuf ’s commentary (expo-
sitio) follows each verbum and is attributed by Plato to a certain ‘Hali’, 
which may be a confusion with A̔lī ibn Aḥmad al-̔ Imrānī (d. 955) — 
author of a treatise on astrological elections translated also in Barcelona 
in 1133 by the Jewish scholar Savasorda (Abraham Bar Ḥiyya)7 — or 
with A̔lī ibn Riḍwān (d. 1068), an Egyptian physician and astrologer 
who composed a famous commentary on Ptolemy’s Tetrabiblos (Kitāb 
al-arbaʿa in Arabic, Quadripartitum in Latin), translated into Latin in 
the thirteenth century, but most probably already known and used by 
Plato in his translation of the Quadripartitum (1138).8

5 See Burnett, ‘Catalogue. The Writings of Adelard of Bath’, pp. 166 and 183–84; Lemay, 
Le Kitāb at-Tamara, vol. I, pp. 86–88. The Latin manuscripts of the Centiloquium are in the 
process of being described by David Juste, see https://ptolemaeus.badw.de/manuscripts.

6 Lemay, Le Kitāb at-Tamara, vol. I, pp. 88–92. For Plato of Tivoli, see Samsó, ‘El procés 
de la transmissió’.

7 See Millás Vallicrosa, Las traducciones orientales, pp. 328–39; Carmody, Arabic Astro-
nomical and Astrological Sciences, pp. 137–39; and the ‘New Carmody’ catalogue prepared by 
Charles Burnett and David Juste, whom I warmly thank for the information they were kind 
enough to give me about Plato of Tivoli’s and Abraham Bar Hiyya’s translations.

8 Carmody, Arabic Astronomical and Astrological Sciences, pp. 155–56.
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3. An anonymous version with incipit ‘Mundanorum mutatio’ mentioned 
above, in which Richard Lemay thought it was possible to recognize 
the influence of Hermann of Carinthia or someone from his circle.9 
This version, of which Dag Nikolaus Hasse showed most recently that 
it was, at least partly, attributable to John of Seville,10 survives in c. 50 
manuscripts. But each proposition of Mundanorum is in fact given in 
two versions, one being a fresh translation from Arabic (‘Mundanorum 
1’) and the other offering a more elegantly Latinized version, using and 
quoting Plato of Tivoli’s translation (‘Mundanorum 2’).11

4. A version by Hugo Sanctelliensis, a contemporary of Plato and Her-
mann.12 Just like most of Hugo’s translations, this one is addressed to 
Michael, bishop of Tarrazona (1119–1151). On account of Hugo’s con-
nection to Michael during the later years of his office and of Hugo’s 
more scrupulous rendering of the Arabic in comparison with his other 
translations, R. Lemay tended to consider it later than the other versions 
(c. 1138–1151?), especially Plato’s translation, which Hugo seems to have 
known. But this new translation was very difficult to use from a techni-
cal point of view and it survives in only two manuscripts: Madrid, Bibli-
oteca Nacional, 10009, fols 85ra-105vb (thirteenth century), and Naples, 
Biblioteca Nazionale, VIII. D. 4, fols 3r–30v (fifteenth century).

5. An anonymous version with incipit ‘Iam premisi libros’ seems also to 
date from the twelfth century. R. Lemay called this version ‘Abugafarus’ 
because he thought that it was the only one that gives the true name of 
the commentator in the transliterated form ‘Abugafarus’ (for Abū Jaʿ far), 
sometimes distorted into ‘Bugafarus’ or ‘Bugufarus’, but in fact it is also 
the case in at least three codices of Plato of Tivoli’s version. This version 
seems to partly survive in eight manuscripts but it is also known by some 
indirect witnesses. Because of its ‘coarse’ Latin resembling to the style of 
John of Seville and Gerard of Cremona, R. Lemay tended to ascribe this 
translation to one or the other, or both (considering Gerard of Cremona’ 
‘strategy of revision’ of older translations from Arabic), but D. Hasse has 

9 Lemay, Le Kitāb at-Tamara, vol. I, pp. 111–17.
10 Hasse, ‘Stylistic Evidence’, esp. pp. 27–30.
11 See Lemay, Le Kitāb at-Tamara, vol. I, pp. 111–17. See also Boudet, ‘Les comètes’, 

pp. 206–09, for a primitive version of ‘Mundanorum’ containing many transliterations from 
Arabic, being rather close to that of Adelard de Bath.

12 Lemay, Le Kitāb at-Tamara, vol. I, pp. 117–19. For Hugo Sanctelliensis’ translations, see 
Haskins, Studies, pp. 67–81; Burnett and Pingree, The Liber Aristotilis; Martínez Gázquez, 
The Attitude of the Medieval Latin Translators, pp. 51–61. For the identity of Hugo, see now 
Santoyo, ‘El Normano Hugo de Cintheaux’, pp. 341–57.
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recently shown that it is probably not attributable to either and appears 
to be a revision of Plato of Tivoli’s version.13

6. A sixth Latin translation has been discovered by David Juste in 
MS Vatican, BAV, Vat. lat. 5714, fols 105r–112v, a Northern Italian 
codex which can probably be dated to before 1229. Unfortunately, the 
beginning and the end of this copy are lost: it begins in the middle of the 
6th sermo and ends just after the beginning of the 88th sermo. Recently, 
this version has also been identified by D. Juste in two fragmentary folia 
found in the binding of a printed book in the Diocesan Library of Vác, 
Hungary, where we find the preface of the text and fragments of verba 1, 
3–4, 24–26 and 28–31.14 However, fols 1r and 2v are faded and almost 
entirely illegible. This means that, for the purpose of textual comparison, 
we will have to choose propositions 7 to 39, if we want to compare 
with Adelard of Bath’s version, and propositions 7 to 87, if we want to 
compare with the five other versions. I have chosen two very important 
verba: 8 and 51.

Another Latin version (but it is not an original translation) was made by Wil-
liam of Aragon much later, c. 1300 (and, in any case, before 1330, which corre-
sponds to the terminus ante quem of one of the codices). It is a sort of copy or 
paraphrase of previous translations (mainly Plato of Tivoli’s), with a new title 
for each verbum and a personal glosa.15 At least four manuscripts survive.

The Greek version of the eighth proposition, edited by Emilie Boer, has 
been translated by James Hershel Holden as follows:

8. The sagacious mind helps the heavenly effects, just as the best farmer helps nature 
through plowing and clearing [the fields].16

Here is a translation of Aḥmad ibn Yūsuf ’s Arabic version:
Proposition (kalimah) 8. Ptolemy says: the wise soul (al-nafs al-ḥikmīyah) [of the 
astrologer] aids the action of the celestial sphere just like the sower aids the natural 
forces through plowing and clearing.

13 Lemay, Le Kitāb at-Tamara, vol. I, pp. 108–11; Hasse, ‘Stylistic Evidence’, pp. 27–30. 
For Gerard of Cremona’s translations, see Lemay, ‘Gerard of Cremona’; Pizzamiglio, Gerardo 
da Cremona; Burnett, ‘The Coherence’; Id., ‘The Strategy of Revision’.

14 Vác, Egyházmegyei Könyvtár, 708.012/Fragm. 2 (see http://ptolemaeus.badw.de/ms/591). 
The beginning of this version seems to have been inspired by Plato of Tivoli’s translation but 
afterwards it becomes original and was probably used as a draft by Hugo Sanctelliensis. See 
infra.

15 On this scholar who flourished around 1330 and wrote a very interesting treatise of oni-
romancy, see particularly Pack, ‘De pronosticatione sompniorum’; Weijers, Le travail intellectuel, 
pp. 101–03; Val Naval, Estudio, edición crítica.

16 Holden, Five Medieval Astrologers, p. 72. Greek text in Boer, Καρπός, p. 39.
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Commentary. By ‘wise soul’, Ptolemy means the soul knowing the celestial forces 
and their application to each natural individual [i.e. each individual belonging to the 
natural world]. In fact, this soul, when it senses that a benefit will come to a certain 
individual, moves that individual to be well disposed to that benefit, so that it will 
be available to him [in advance] and will become manifest in him, but this argument 
was sufficiently explained in our commentary to the fifth proposition.17

The text of the fifth proposition says that ‘the astrologer will be able to prevent 
many (bad) effects of the stars when he knows the nature of their influence 
on him (the client), and sometimes he will then prepare [his client] for action 
before it occurs, so that he is able to withstand it’.18 Aḥmad ibn Yūsuf ’s com-
mentary on the fifth proposition gives as an example a physician and astrologer 
who is able to adjust the balance of the temperament of a person, and, being 
aware of his nativity and of the indications of the stars associated to a disease 
of the nature of Mars, he can try to modify his balance, free his complexion 
from this bad influence and get rid of the disease.

Here are now the six Latin translations of the twelfth century:

Verbum 8
1. Adelard of Bath. MSS S = London, British Library, Sloane 2030, 

fol. 87v (twelfth century); L = Lyon, Bibliothèque municipale, 328 
fol. 69 (dated 1395). Collation with some manuscripts of the ‘threefold 
version’ (Adelard + Plato + ‘Mundanorum’): P = Paris, BnF, n.a.l. 3091 
(end of the thirteenth century); V = Vatican, BAV, Reg. lat. 1452 
(beginning of the fourteenth century).

VIII. Anima sapiens actum19 stellarum adiuvat sicut20 seminator potens (reading Ara-
bic ألقوي ألزراّع   /‘al-zarrāʿ’ for ‘al-qawīy’) adiuvat naturalia cum aratione et munda-
tione.

Adelard does not seem to know Aḥmad ibn Yūsuf ’s commentary. His literal 
translation is quite good and the comparison between ‘anima sapiens’ (of the 
astrologer) and ‘seminator potens’ (of the powerful sower) is elegant and correct.

2. Plato of Tivoli (1136). MSS: F = Florence, Biblioteca Riccardiana, 163, 
fol. 4r (thirteenth century); B = Basel, Universitätsbibliothek, F. III. 25, 
fol. 45ra (thirteenth century); C = Cambridge, University Library, Ii 3.3, 
fol. 221va-221vb (c. 1299); M = Madrid, Biblioteca Nacional, 10015, 
fol. 20va (dated 1251).

17 Martorello and Bezza (eds), Aḥmad ibn Yusūf ibn al-Dāya, pp. 70–71. The Arabic text of 
the proposition says: ألتنقية و  بألحرث  ألطبيعية  ألقوى  ألزرّاع  يعين  كما  ألفلكيّ  ألفعل  يعين على   I follow .ألحكيمة 
the Italian translation of Martorello and Bezza.

18 ibid., pp. 62–63.
19 actum SL] actus PV.
20 sicut om. S.
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Verbum 8. Anima sapiens ita adiuvabit opus stellarum quemadmodum seminator 
fortitudines naturales.
Expositio. Sapiens anima est illa21 que scit illud quod de fortitudine celi22 diximus, 
et eius adiutorium est quando aliquod bonum alicui homini eventurum cognoverit, 
ei res suas sic aptare precipiat ut illud bonum venturum maius ac melius deveniat23 
quam eveniret nisi eum sic premuniret. Et iam locuti sumus de hoc sufficienter in 
quinto capitulo.

Plato of Tivoli’s translation of the proposition is not literal but it is quite 
good from a stylistic point of view; his translation ‘fortitudines naturales’ is 
very close to the Arabic phrase ألطبيعية  but he omits the following words ألقوى 
(‘through plowing and clearing’). The translation of the commentary is totally 
literal and does not pose any problem.

3. ‘Mundanorum’. MSS: A = Paris, BnF, lat. 16204, p. 556b (thirteenth 
century); B = Paris, BnF, lat. 16204, p. 543b (thirteenth century, 
without commentary).

Verbum 8.24 Anima sapiens potest adiuvare celestem operationem quemadmodum 
seminans virtutem naturalem25 per cultum et purgationem. Dixit Ptholomeus: Anima 
sapiens, etc. Anima sapiens ita adiuvat opus stellarum quemadmodum seminator for-
titudines naturales.26

Expositio. Sapiens est anima illa que scit id quod de fortitudinibus celi prediximus. 
Et eius adiutorium est quando aliquod bonum alicui hominum eventurum27 cogno-
verit ei res suas sic aptare precipiat ut id bonum venturum maius et melius eveniat 
quam eveniret nisi eum premuniret28. Et iam locuti sumus de hoc sufficienter in 5°29 
capitulo.

As we can see, the ‘Mundanorum 1’ translation of the verbum tries to improve 
on Plato’s version with the addition ‘per cultum et purgationem’, which is an 
accurate translation of the Arabic. But ‘Mundanorum 2’ only quotes Plato’s 
version and the translation of the commentary is almost a copy of Plato’s.

4. Hugo Sanctelliensis. MSS: A = Madrid, Biblioteca Nacional, 10009, 
fol. 87va (thirteenth century); B = Naples, Biblioteca Nazionale, VIII. 
D. 4 (fifteenth century).

21 Sapiens est illa anima BC.
22 de fortitudine celi] om. F – de fortitudinibus celi M – de celi fortitudinibus B.
23 eveniat BM.
24 9 [sic] A.
25 naturalem om. AB.
26 Dixit Ptholomeus… naturales om. B.
27 eventurum] eventurus A.
28 premuniret] premineret A.
29 5°] 3 [sic] A.
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Verbum 8. Anima sapiens et discreta circularem actionem iuvat, quemadmodum agri-
cola et purgando nature subvenit.
[Expositio] Per hoc quod dicit: anima scilicet30 sapiens, eam vult intelligere que cir-
culi vires comprehendit arte31 atque potenciam eiusque processum atque ordinem in 
individuis naturalibus attendit. Si itaque huiusmodi anima aliquid prosperitatis ali-
cui individuo futurum perpendat, ipsum individuum ut illud ipsum bonum suscipiat 
motu debito compellet. Hoc autem taliter collectum quin appareat nullatenus poterit 
occultari. Verum 532 sermonis exposicio que ad huius loci evidenciam sufficere debent 
satis ut arbitror comprehendit.

With Hugo Sanctelliensis’ translation, the contrast with the three first versions 
is total. If we except the word ‘anima sapiens’ and ‘quemadmodum’, perhaps 
inspired by Plato of Tivoli, almost all the vocabulary is different and affected. 
The sense of ‘discreta circularem actionem’ is not clear (like ‘circuli vires’ in 
the commentary). But in the commentary, Hugo is sometimes more precise 
than the others translators and he seems to have been the first to render the 
full sense of the Arabic ألطبيعة للأشخاص / al-ṭabīʿa lil-ashkhāṣ (‘nature in indi-
viduals’, the Arabic word for ‘individual’ applies to any class of individuals (as 
opposed to species and genera) whether human, animal, vegetable or mineral.). 
Significantly, he adds one phrase, ‘Hoc autem taliter collectum quin appareat 
nullatenus poterit occultari’ (‘This is collected in such a way that it cannot 
be occultated’), showing that the astrologer is par excellence the person able to 
discover the occult part of the future of the individual.

5. MS Vatican, BAV, vat. lat. 5714, fol. 105rb (thirteenth century).
Sermo octavus. 8. Dicit Ptolomeus: Anima sapiens et discreta efficacie circulari auxi-
liatur, vel ut brachium robustum auxiliatur nature, inquam, et aliis operibus.
Explanatio. Per hoc dicit: Anima sapiens, illa vult intelligere que circulari vires 
dignoscit; etiam enim effectum in individuis naturalibus. Hec igitur anima, cum 
cognoverit aliquid astrorum alicui individuo provenire, ipsum ita preparabit ut illam 
bonam stellam suscipiat. Cum autem ita fuerit, multum inde colliget et maxime 
in eo apparebit. In quinto quidem sermone tantum quod ad huius loci evidentiam 
suf[f]icere debet.

This newly discovered translation has some typical words in common with 
Hugo Sanctelliensis’ version: ‘discreta’, ‘circulari’ or ‘circuli vires’, ‘individuis 
naturalibus’, ‘suscipiat’, ‘sermo’. This is certainly no accident. The translation 
by ‘ut brachium robustum auxiliatur nature’ can be explained by the confusion 
of two very similar-looking letters in the Arabic.33 The end of the commentary 
is strange and shows a lack of understanding. I think, therefore, that this ver-

30 scilicet om. B.
31 arte] ante B.
32 5] quinti B.
33 Reading ذراع ( ‘dhirāʿ’, ‘forearm’) for زراّع (‘zarrāʿ’, ‘sower’).
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sion has not been diffused because it was rather bad and that it may have been 
used as a kind of first draft by Hugo Sanctelliensis to make his own and much 
better translation. Thus it seems to be also a twelfth century translation, older 
than Hugo’s final version.

6. ‘Iam premisi’. MS Basel, Universitätsbibliothek, F. III. 33, fol. 2r 
(thirteenth century, basic manuscript).

[Verbum 8] Anima sapiens adiuvat celestem effectum sicut adiuvat seminans vir-
tutem naturalem cum aratione et purgatione.
[Expositio] Animam sapientem intelligit que novit virtutes celestes et comprehendit 
singulares naturas. Talis anima cum accidet quod aliqua fortuna consequatur ali-
quod singularium movet illud ad bonam fortunam et aptabit ita quod meliorabitur 
bonum fortune per premunitionem. Et iam locuti fuimus sufficienter super hoc in 5to 
capitulo quod sufficit hoc loco.

The ‘Iam premisi’ version is clearly an improvement of Plato of Tivoli’s version, 
perhaps also partly based on the ‘Mundanorum’ version. The translation of the 
verbum is perfect. The translation of the commentary is very clear, although 
less literal and accurate with the introduction of the notion of chance (‘acci-
det’); the translation of saʿāda as ‘fortuna’ and ‘bona fortuna’, on the other 
hand is an accurate representation of the Arabic.

So we have at least six different Arabic-Latin translations of the Centiloquium 
dating from the twelfth century. But there were probably more than six trans-
lations at the end of the thirteenth century. In his Nativitas, or Liber super 
inquisitione et verificatione nativitatis incerte, an astrological autobiography 
written in 1280, Henry Bate of Malines quotes five different translations of 
verbum 38, of which four may be identified with Plato of Tivoli’s, Adelard 
of Bath’s and ‘Mundanorum’ 1 and 2. But Henry Bate also refers to a Greek-
Latin translation:

Et Ptolemeus in Centilogio, 38 verbo, quod ‘si Mercurius fuerit in duobus signis 
Martis, dabit fortitudinem perfidie et stultitie. Et fortior duobus locis est Aries’.34 
Et hoc quidem secundum unam translationem. Alia vero translatio sic habet: ‘et si 
fuerit Mercurius in domibus Martis, dabit ei acuitatem ingenii in astutia et maxime 
in Ariete’.35 Item illa translatio: ‘cum vero fuerit in signo Martis super primitias et 

34 That is Plato of Tivoli’s version, Iam scripsi: ‘Verbum 38. Cum fuerit Mercurius in ali-
qua domorum Saturni et ipse fortis in esse suo dat bonitatem intelligentie medullitus in rebus 
[FM in marg.: scilicet in radicalibus rebus et in principiis artium [alio in principiis M]. Et si 
fuerit in duobus signis Martis, dabit fortitudinem perfidie et stultitie [M in marg.: vel in alio 
bonitatem subite eloquentie et dehonestationis], et fortior duobus locis est Aries’.

35 That is ‘Mundanorum 1’. The ‘Iam premisi’ version is different: ‘Cum fuerit Mercurius 
in aliqua domorum Saturni et ipse fortis in esse suo, dat bonitatem intelligencie medullitus in 
rebus, et si fuerit in duobus signis Martis dabit fortitudinem perfidie et astucie et forcior duo-
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fortunam, potentior autem horum duorum locorum est Aries’.36 Et iterum alia trans-
latio: ‘et cum in uno signorum Martis fuerit significat hominem qui cito respondet 
interrogationi, et Aries melius est Scorpione’.37 Translatio denique de Greco autem 
talis est: ‘in domo autem Martis dabit facilem linguam et maxime in Ariete’. Huic 
vero sententie ultime translationis concordant commentatores. Unde prima translatio 
impropria est.38

Henry Bate quotes earlier in his Nativitas a ‘Liber arboris’ which is the title 
of the Centiloquium given in some manuscripts (e.g. Boulogne-sur-Mer, Biblio-
thèque Municipale, 198; Venice, Museo Civico Correr, cod. Cic. 617; Erfurt, 
Universitätsbibliothek, Dep. Erf. CA 4° 361), and he also knows the real 
name of its commentator, Aḥmad ibn Yūsuf ibn Ibrāhīm.39 He quotes later 
the eight verbum of the Centiloquium in an unknown version: This transla-
tion from the Greek has not been found in the manuscripts, but Bate quotes 
from it on several occasions, including in the following one from the eight  
verbum:

Nam ut dicit Ptolemeus in Centiloquio: ‘Anima sapiens cooperatur celesti effectui, 
sicut optimus agricola cooperatur nature per arationem seu purgationem’.40

A totally different translation from the Arabic of proposition 8 is preserved in 
the thirteenth-century Latin version of the Ġāyat al-ḥakīm / Picatrix, IV, iv, 
48, with a selection of nine other verba:

Spiritus operantis effectus celestes adiuvat sicut messes naturales, videlicet arare et 
cultu terrarum adiuvantur messes.41

bus locis est Aries’. Bate’s quotation does not correspond either with Sanctelliensis’, nor with 
the version of MS Vatican, BAV, Vat. lat. 5714.

36 This is very close to Adelard’s translation: ‘Cum fuerit Mercurius in signo Saturni po-
tensque in seipso, dabit fetui bonitatem cogitationis in radicibus. Cum vero fuerit in signo 
Martis, supra primitias et fortunam. Potentior autem horum duorum locorum Aries’.

37 Here is the ‘Mundanorum 2’ version: ‘[…] Et cum in uno signorum Martis fuerit, signifi-
cat hominem qui cito respondet interrogationi. Et Aries est melius Scorpione’.

38 Nativitas 1065–1078, ed. Steel et al., The Astrological Autobiography, pp. 169–70. 
I thank the authors for giving me access to Bate’s text before publication.

39 ‘[…] ut testatur Avenezre in Initio sapientie, cui etiam concordat tota cohors astrologo-
rum. Nichil autem confert planeta aut parum nisi in nativitate promiserit, ut habetur in Libro 
arboris 78° verbo, quod et manifestius affirmant eius expositores Haly et Abuiafar Hamet filius 
Ioseph filii Abrahe’ (Nativitas 1025–1030, ed. ibid., p. 168).

40 Nativitas 2709–2711. According to Carlos Steel, this translation exhibits the style of 
William of Moerbeke, see Steel et al., Astrological Autobiography, p. 85.

41 Pingree, Picatrix, p. 193. See Ritter, Pseudo-Mağrītī, p. 324. The Andalusian author of 
the Ġāyat, Maslama al-Qurtubī, is one of the very first Arabic scholars who used and quoted 
Aḥmad ibn Yūsuf ’s version of the Kitāb al-thamara. For this author, see Fierro, ‘Bātinism in 
Al-Andalus’; de Callataÿ, ‘Magia en al-Andalus’.
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This is not the place to examine in detail William of Aragon’s fourteenth cen-
tury version of the same verbum, since, as we have seen, his textus and commen-
tum are copied mainly from Plato of Tivoli’s translation. But his glosa is orig-
inal and rather interesting for its explanations inspired by natural philosophy 
and its reference to the famous historico-mythical example of Nectanabo and 
the birth of his son, Alexander the Great:

De significatione contracta ex stellis per animam sapientem super res futuras. 9um 
[sic].
Textus. Anima sapiens ita ai[u]vabit opus stellarum quemadmodum seminator forti-
tudines naturales.
Commentum. Sapiens est illa anima que scit illo [sic] quod diximus de fortitudinibus 
celi, et eius adiutorium est quando aliquod bonum alicui homini eventurum cogno-
verit, ei res suas sic aptare precipiat ut illud bonum venturum maius ac melius eveniat 
quam eveniret nisi sic eum premuniret. Et iam locuti sumus de hoc sufficienter in 
quinto capitulo.
Glosa. Postquam docuit Ptholomeus per quid astrologus habet iudicare quia per 
bonam et prudentem acceptionem et applicationem complexionis et moris hic docet 
modum per quem [sic] ex quadam proportionali actione. Unde dicit quod anima 
sapiens, supple in hiis que dicta sunt, scilicet de complexione stellarum ex moribus et 
de eisdem a parte receptoris, talis anima sapiens potest iuvare opus vel virtutem stel-
larum sicut seminator virtutes naturales. Seminator duo considerat, scilicet naturam 
loci et seminis proprietatem, et naturam loci duppliciter, scilicet quod sit convenientis 
nutrimenti nec arida nec aquosa sed pinguis et temperata; secundo quod sit calida 
vel frigida secundum exigentiam seminis. Videmus enim quod semen vult calidam et 
temperata[m] regionem et plantari vult in aqua et sic de aliis proportionalibus diver-
sificamus eis loca ut bonum eorum [earum ms.] sit maius post nativitatem; ante nati-
vitatem etiam eligemus materiam in qua melius recipiatur materia quam in alia, sicut 
fecit Neptanebus de Alexandro.42

Let us now examine proposition 51, a very important proposition for historians 
of astrology because it shows quite clearly the difference, not to say the con-
tradiction, between the authentic Ptolemy of the Tetrabiblos/Kitāb al-arbaʿa/
Quadripartitum, and the Pseudo-Ptolemy of the Centiloquium. In the Tetra-
biblos, III, 2, Of the Degree of the Horoscopic Point, Ptolemy gives a procedure 
to find the real ascendant of the native and rectify his nativity when the time 
of its birth is not precisely known. This procedure is in three steps: 1. ‘Take the 
syzygy most recently preceding the birth, whether it be a new Moon or a full 
Moon’; 2. See what planet is the ruler of the degree of conjunction or opposi-
tion of the two luminaries; 3. Take the position of the ruler to be one of the 
cardines of the natal horoscope (mid-heaven, ascendant, etc.).43 This method 
was known to Aḥmad ibn Yūsuf, who speaks about it in the 34th proposition 

42 MS Paris, BnF, lat. 7480 (fourteenth century), fols 23v–24v.
43 Robbins, Ptolemy. Tetrabiblos, pp. 230–35.
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of the Kitāb al-thamara and who says in his commentary that this doctrine of 
Ptolemy concerning the namūḏār (‘indicator’) is a valuable technique for the 
determination of the nativity of human beings, unlike that of animals.44 But 
this method was already challenged in Antiquity. Vettius Valens, an astrologer 
of the second century ad, in the third book of his Anthologies, says: ‘Assume 
the position of the Moon at the conception to be the same as the position of 
the ascendant at the time of the delivery, and from this you can know whether 
the conception was at new or full Moon’.45 Vettius Valens, in his Book I, 21, 
also has a whole chapter on this subject,46 which is perhaps the indirect source, 
via Abraham Ibn Ezra, of an appendix to the Latin Centiloquium, verbum 51, 
called from the thirteenth century Trutina Hermetis.47 But this appendix seems 
to be lost in Arabic and I will focus only here on this verbum, not its appendix.

The Greek version of the 51st proposition of the pseudo-Ptolemaic Καρπός 
was probably inspired by Vettius Valens, Anthologies, III,10:

51. Where the Moon is at the time of birth, that sign will be at the ascendant at 
conception; and where it is at conception, it will be in the ascendant at birth.48

Here is now Aḥmad ibn Yūsuf ’s Arabic version:
Proposition 51. Ptolemy said: The place of the Moon at the time of birth is the 
ascendant degree of the sphere at the time of the fall of the sperm (suqūṭ al-nutfah) 
and the place of the Moon at the time of the fall of the sperm is the ascendant 
degree at birth.
Commentary. Scholars in the things of nature agree that the period of gestation of 
babies in maternal wombs is diverse and is not the same for all. In the case of an 
average period (of gestation), the Moon and the ascendant degree perform equal rev-
olutions (adwār), and the Moon is then found in the ascendant degree of the nativ-
ity. A longer gestation corresponds to an additional duration compared to the average 
gestation, and after having completed full revolutions, the ascendant performs one 
revolution (dawra) less and the Moon is found to have already transited the ascen-
dant degree. A shorter gestation corresponds to a period of time shorter than the 

44 Martello and Bezza, Aḥmad ibn Yusūf ibn al-Dāya, pp. 114–17.
45 Pingree, Vettius Valens, p. 144.
46 Bara, Vettius Valens d’Antioche, pp. 214–21.
47 See Sela, Abraham Ibn Ezra on Nativities, pp. 41–45, 88–99, 220–21, 443–49; Id., 

‘Abraham Ibn Ezra’s Role’; Boudet, ‘Naissance et conception’. In the beginning of his Nativi-
tas, Henry Bate refers to it. See Nativitas 81–91, ed. Steel et al., The Astrological Autobiogra-
phy, pp. 129–30: ‘Hiis vero prelibatis ad artem inveniendi cum precisione nativitatis dicte grad-
um ascendentis ex hora estimationis veritati propinqua accessimus in hunc modum. Dimisso 
annimodar Ptolemei ab auctoritatibus improbato, licet veritati ex parte consonum per nos ali-
quando sit inventum ad trutinam Hermetis, qui et Enoch, confugimus iuxta consilium Abrahe 
cognomine Principis et Ptolemei in Centilogio 51 propositione, et Albumasar in Sadan, nec 
non et reliquorum et precipue Abrahe Avenesre in suo Libro de nativitate corrigentis ibidem 
et verificantis pretactam trutinam sive annimodar Hermetis’. See now Sela, ‘Calculating Birth’.

48 Holden, Five Medieval Astrologers, p. 78. Greek text in Boer, Καρπός, pp. 48–49.
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average period, its decrease being inferior by one revolution and, in this case, the 
Moon is decreased compared to the ascendant degree.
Astrologers have already abundantly spoken in their books about the gestation period 
of babies because it was very necessary for their judgments. For, it shows us the ascen-
dant at the time of the fall of the sperm corresponds to the beginning of the life of 
the native, whereby one discerns the temperament of his body, the appearance of his 
limbs and many things that are completed before it comes out. There were [astrolo-
gers] already before Ptolemy, who painstakingly sought to know the time of the fall 
of the sperm. But Ptolemy showed us briefly and in a very simple way that the place 
of the Moon at the time of the nativity is the ascendent at the time of conception, 
and the ascendant of the nativity is the place of the Moon at the time of conception, 
because the Moon returns to its place after having performed equal revolutions. Sim-
ilarly, the ascendant, compared to the average gestation, increases and decreases by 
increasing and decreasing.49

So Aḥmad ibn Yūsuf refers explicitly to an ‘average’, ‘longer’, and ‘shorter’ peri-
ods of gestation defined by the revolutions of the Moon, but without specify-
ing their respective lengths in days or months.50 This does not facilitate the 
full understanding of his commentary and contributes to explain the variety of 
the Latin translations of the twelfth century; none of them rendered, for exam-
ple, the Arabic word ‘dawr’ or ‘dawra’ by ‘revolutio’. Here are the five Latin 
translations of Aḥmad’s version:

1. Plato of Tivoli. MSS: F = Florence, Biblioteca Riccardiana, 163, 
fol. 14r–14v; B = Basel, Universitätsbibliothek, F. III. 25, fols 47vb-48ra; 
C = Cambridge, University Library, Ii 3.3, fol. 229va-229vb; M = 
Madrid, Biblioteca Nacional, 10015, fol. 22va-22vb.

Verbum 51. Dixit Ptholomeus: Locus Lune51 in nativitate est ipse gradus ascendens 
de circulo hora casus spermatis, et locus Lune hora casus spermatis est gradus ascen-
dens hora nativitatis.
Expositio. In hoc concordati sunt physici quod more natorum in uteris matrum 
sunt52 diverse et non sunt eedem53 in omnibus. Ex illis igitur est mora media, et est 
cum Luna54 et gradus ascendens perfecerunt55 in tempore more56 orbes equales et 

49 Martorello and Bezza, Aḥmad ibn Yusūf ibn al-Dāya, pp. 144–47.
50 In the Latin appendix to aphorism 51, called ‘Trutina Hermetis’ (cf. supra, n. 47), the 

average duration of gestation (‘mora media’) amounts to 273 days corresponding to nine com-
plete revolutions of the Moon, the longer gestation (‘mora maior’) to 288 days corresponding 
to 9.5 revolutions and the shorter gestation (‘mora minor’) to 258 days, corresponding to 8.5 
revolutions.

51 Lune] Luna F.
52 sunt] sint FM.
53 sunt eedem] sint heedem F – sint eedem M.
54 nedia add. M.
55 perfecerunt] perfecerint FM.
56 F in marg.: ‘scilicet natorum in ventre matrum’.
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invenietur tunc Luna in gradu ascendente nativitatis. Maior vero mora est tempus 
auctum super tempus more medie post orbes perfectos minus orbe57 et invenietur 
Luna per hoc ultra58 gradum ascendentem. Minor mora est subtractio de tempore 
medio et subtractio illa minor est orbe, et invenitur Luna per hoc subtracta de gradu 
ascendente.
Iamque commemoraverunt astrologi in libris suis sermonibus prolixis moras nativi-
tatum quia erant sibi valde necessarie in59 iudiciis. Ille enim ostendunt nobis locum 
ascendentis in casu seminis60 et illud est principium inceptionis nati ex quo discerni-
mus61 complexionem corporis eius et modum membrorum et multa que accidunt illi 
antequam egrediatur a matrice. Illi autem qui fuerunt ante Ptholomeum pro62 inqui-
sitione casus spermatis passi sunt laborem nimium. Patefecit autem nobis Ptholomeus 
breviter et63 via levi quod locus Lune in tempore nativitatis est ascendens casus sper-
matis, et locus Lune in tempore casus spermatis est gradus ascendentis nativitatis,64 
quia65 Luna et ascendens revertuntur66 ad locum suum orbibus equalibus in mora 
media, et augetur et minuitur in maiori et minori mora.

Plato of Tivoli’s translation here appears to be very reliable and congruent with 
its Arabic model, even if the matter is not an easy one. The choice to translate 
by ‘orbis’ the Arabic word dawr/dawra turns out to be sensible to denote the 
orbits of the Moon.

2. ‘Mundanorum’. MS A = Paris, BnF, lat. 16204, p. 569a–569b
Verbum 51. Locus Lune qui est in nativitate ipse est gradus ascendens in hora casus 
spermatis. Et locus Lune in hora casus spermatis est gradus ascendens in hora nativi-
tatis. Dixit Ptholomeus: Locus Lune, etc. Gradus in quo est Luna in nativitate alicu-
ius est gradus ascendens in hora qua infusum est semen in matrice a patre. Et gradus 
in quo fuerit Luna hora qua infuditur sperma est ascendens in nativitate.
Expositio. Omnes homines periti in naturali scientia sciunt quod tempora quibus 
in matrum ventribus morantur infantes non sunt equalia omnibus, immo quidam 
faciunt mediocrem moram in quorum nativitatibus invenitur Luna in ascendente 
quia Luna perfectos circulos peragravit. In maiori autem mora addetur pars medi-
ocri postquam perfecti sunt circuli, et minor minuetur a mediocri et minuetur quod 
Luna non perveniet in nativitate ad gradum ascendentis.

57 orbe om. C.
58 F in marg.: ‘id est ultra gradum in quo est Luna hora casus spermatis qui erit gradus 

ascendens in hora nativitatis’. B in marg.: ‘id est ultra gradum ascendentis, id est ultra gradum 
in quo est Luna hora casus spermatis qui erit gradus ascendens in hora nativitatis’.

59 dandis add. M.
60 seminis] spermatis C.
61 discernimus] decernimus C.
62 pro] in C.
63 et] ex C.
64 est ascendens casus spermatis… ascendentis in nativitate om. M.
65 quia] quod quia F.
66 revertuntur] revertitur M.
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Antiqui autem astrologi de spermatis casu multa dixerunt. Volebant enim scire qua-
mdiu infans in utero matris morabatur, et qua hora semen infundebatur quia hoc eis 
necessarium erat. Erat enim initium generationis infantis, et inde poterat sciri com-
plexio corporis sui et qualitates membrorum. Illi autem qui ante Ptholomeum fuer-
unt in extrahendo horam conceptionis valde laboraverunt. Ptholomeus autem leviter 
nos docuit quando dixit quoniam gradus Lune in nativitate erat ascendens quando 
infundebatur semen et in ascendente nativitatis erat iam hora infusionis seminis. 
Luna enim ad locum suum revertitur quando equales circuli sui perfecti sunt. Et 
ascendens similiter. Et addes vel minues quando debes addere vel minuere.

As is usually the case in the translation of each verbum, the text of ‘Mundano-
rum’ offers two versions for each proposition, i.e. a new translation from the 
Arabic (‘Mundanorum 1’) and Plato of Tivoli’s translation (‘Mundanorum 2’). 
The commentary consists of a new translation from the Arabic, more elegant 
than the previous versions.

3. ‘Iam premisi’. MS Basel, Universitätsbibliothek, F. III. 33, fol. 4v.
[Verbum 51.] Locus Lune in nativitate ipse est gradus ascendens de circulo hora casus 
spermatis, et locus Lune in hora qua ceciderit sperma est gradus ascendens in hora 
nativitatis.
[Expositio.] Phisici noverunt quod more natorum in utero matrum sunt diverse nec 
sunt eedem in omnibus. Ex illis igitur est media mora et est cum Luna et gradus 
ascendens perfecerunt in tempore more orbes equales, et invenietur tunc Luna in 
gradu ascendentis nativitatis. Maior vero mora est tempus auctum super tempus more 
medie post orbes perfectos minus uno orbe, et invenietur per hoc Luna ultra gradum 
ascendentis. Minor mora est subtractio de tempore medio et illa subtractio minor est 
orbe, id est infra gradum in quo est Luna in tempore casus spermatis qui erit gradus 
ascendentis hora nativitatis et invenietur per hoc Luna subtracta de gradu ascenden-
tis.
Iam commemoraverunt ast<r>ologi in libris suis sermonibus prolixis moras nati quia 
erant valde sibi necessarie in iudiciis. Ille enim ostendunt nobis locum ascendentis in 
casu spermatis et id principium inceptionis nati ex quo decernimus principium com-
plexionis eius et modum membrorum et multa que accidunt ei antequam egrediatur 
a matrice. Illi autem qui fuerunt ante Ptholomeum pro inquisitione casus spermatis 
passi sunt laborem nimium et patefecit nobis breviter et via levi quod locus Lune in 
tempore nativitatis est ascendens in tempore casus spermatis, et locus Lune in tem-
pore casus spermatis est ascendens gradus nativitatis, quia Luna et ascendens rever-
tuntur ad locum suum orbibus equalibus in mora media, et augebitur et minuetur in 
maiori et minori mora.

This translation is closer to that of Plato of Tivoli, with some improvements. 
Here is, by contrast, the very personal version of Hugo Sanctelliensis:

4. Hugo Sanctelliensis. MSS: A = Madrid. Biblioteca Nacional, 10009; B = 
Naples, Biblioteca Nazionale, VIII. D. 4.
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Verbum 51. Locus Lune in nativitate est ipsius orientis in circulo gradus sub concep-
tione,67 et quem sub conceptione possidet est ipsius68 natalis orientis gradus.
[Expositio.] Astrologorum omnium et qui nature69 secreta rimantur generalis est sen-
tencia varios70 esse status fetuum in materno utero existentium. Est enim quidam 
medius, dum71 videlicet Luna et orientalis72 gradus equalem debiti status perficiunt 
circuitionem. Unde Luna sub73 huiusmodi nativitatis in orientis gradu repperiri 
necesse est. Maior quidem status est qui circuitione perfecta supra medium, minus 
quam circulum augmentat. Sub eo enim Luna orientalem pertransivit gradum. 
Minor rursum status citra medium minus una circuitione repperitur, necdum Luna 
ad orientalem gradum poterit pervenire.
Astrologi quidem in suis voluminibus et satis prolixo sermone nascentium status ad 
iudicia summe afferunt necessarios. Hec enim ex eorum documento74 contrahimus 
quatinus conceptionis gradu comprehenso quod est origo universe generationis atque 
principium inde complexionem75 atque membrorum formam et alia multa antequam 
de materno procedat utero plenissime decet76 intueri. Verum qui ante Ptholomeum 
fuerunt astrologi ad conceptionis77 horam dispendio longe difficili conabantur acced-
ere de quo idem actor Ptholomeus compendiosum hoc in loco78 subgerit79 edictum. 
Inquid enim locum Lune sub hora nativitatis oriens esse conceptionis, et oriens nata-
lis lunarem locum esse sub conceptione. Luna enim sub equali circuitione ad eum-
dem revertitur locum. Nec aliter status medius, idem etiam secundum augmentum et 
diminutionem addit et minuit.

We may note the emphasis at the beginning of the ‘expositio’ on the ‘secreta 
nature’, which shows a common interest for the secrets of nature with Hugo’s 
translation of the 8th verbum. In spite of its elegance, the neo-classical and 
rather difficult Latin of Hugo Sanctelliensis clearly affected the diffusion of 
his translation, especially for technical reasons: instead of ‘ascendens’, we have 
here ‘oriens’. But it is not the only problem and we can see that the copyist of 
the Naples manuscript does not seem to have understood the text at all. Some 
lexical features of this version are also found in the strange version discovered 

67 conceptione] conclusione B.
68 ipsius] ipse B.
69 nature] inter B.
70 varios] id est varios B.
71 medius, dum] medius qui dum B.
72 et orientalis] est in orientali B.
73 Luna sub] Lunam in B.
74 documento] nocumento B.
75 complexionem] compressionem B.
76 decet] licet B.
77 conceptionis] contemptionis B.
78 hoc in loco] in hoc loco B.
79 subgerit] sugerit B.
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by David Juste, including the word ‘circuitio’ for dawr/dawra (instead of ‘orbis’ 
in Plato of Tivoli and ‘Iam premisi’, and ‘circulus’ in ‘Mundanorum’):

5. MS Vatican, BAV, Vat. lat. 5714, fol. 109rb-109va.
Sermo quinquagesimus primus, 51. Dicit Ptolomeus: Lune locus in nativitatibus est 
pars surgens80 in circulo in hora casus spermatis et locus Lune in hora casus sperma-
tis est pars81 ascendens in nativitate.
Explanatio. Convenerunt sapientes et docti in natura dicentes quod status nati in 
utero matris diversificatur et non est idem in omnibus. Et eorum medius status est 
cum Luna et gradus ascendentis complent suas circu<i>tiones equalificatas et inve-
nietur Luna82 in hora ipsa in parte nativitatis ascendente. Status quoque maior est 
tempus maior isto statu medio post circu<i>tiones completas et inveniunt Lunam 
iam transactam gradum ascendentis. Status quidem minori minor? est tempus minus 
tempore medio et deest eius minus una circuitione et inveniunt Lunam in eo non 
pertigente[m] gradum ascendentis.
Astrologi vero tractatibus suis dixerunt cum sermo[ne] suo prolixo statum nati in 
iudiciis maxime esse neccessarium. Ostendunt83 namque nobis ascendente[m] manen-
te[m] in hora casus spermatis et est prima inceptio nati per quam84 commixtionem 
sui corporis dignoscant, et suorum membrorum figuram, multaque in eo complentur 
antequam de utero matris sue procedat. Illi qui antequam Ptolomeus esset extite-
runt in dignoscenda hora casus spermatis maxime laborabant. Quorum postea nobis 
apperuit Ptolomeus brevi sermone et via plana, quoniam locus Lune in hora partus 
est ascendens in hora casus spermatis, ascendens vero nati est locus Lune in hora 
casus spermatis Luna namque ad locum suum revertitur et equatur suis circuitioni-
bus equalibus. Similiter etiam ascendens in statu medio et addit et minuit in maiore 
et minore.

This rather over-literal translation (‘pars surgens’ or ‘pars ascendens’, retain-
ing the Arabic term ‘juz’, whose primary meaning is ‘part’) instead of ‘gradus 
ascendens’; ‘inveniretur Lunam’ instead of ‘invenietur Luna’) seems to be inde-
pendent from the others, and in spite of the common technical word ‘circuitio’, 
connections with Hugo Sanctelliensis’ version are less obvious for this verbum 
than for the eighth, as seen above. Anyway, it confirms that we have at least 
six different Arabic-Latin translations of the text of the Centiloquium dating 
from the twelfth century, and five different versions of Aḥmad ibn Yūsuf ’s  
commentary.

In the fourteenth century, William of Aragon copied Plato of Tivoli’s ver-
sion of this verbum 51 but added a new title for the proposition (‘De significa-

80 paras surgens [sic] ms.
81 paras [sic] ms.
82 Lunam [sic] ms.
83 Ostendit ms.
84 eam ms.
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tione contracta ex loco Lune in nativitate ut sanitur [?] locus Lune hora casus 
spermatis et ascendens nativitatis’) and his personal glosa.85

In all these versions, the Centiloquium enjoyed a wide circulation in Medi-
eval Europe, seeing that Richard Lemay and David Juste have recorded more 
than 168 different manuscripts of the Latin versions from the Arabic, which 
puts it in second place in the David Juste’s ‘Top 50 of the most popular astro-
logical texts in Latin’, just after Alcabitius’ Liber introductorius, preserved in 
more than 210 manuscripts.86 The Liber introductorius was used as a basic 
manual for teaching astrology in medieval universities and other indications 
show that the Centiloquium owed a large part of its success to the fact that it 
held a certain place in the fourteenth and fifteenth centuries in the teaching 
of astronomia (e.g. astronomy-astrology) belonging to the quadrivium, notably 
in Italian (especially Bologna) and other European universities — including 
that of Paris.87 As it also includes more than twenty propositions clearly des-
tined for medical use, one can imagine the interest of physicians in this text. 
At a time when most astrologers were first and foremost medical practitioners 
(although the reciprocal was not true), the Centiloquium may be considered as 
a key for the study of the relationship between the two university disciplines, 
astronomia and medicine, and a detailed study of its manuscript tradition will 
be very useful for a clearer understanding of the controversial subject held by 
astrology in medical theory and practice at the end of the Middle Ages.

The influence of this medieval corpus was increased by printing. Plato of 
Tivoli’s version was edited at least three times in Venice: in 1484 by Erhard 
Ratdolt, in 1493 by Bonetto Locatello, and in 1519 by the heirs of Ottaviano 
Scoto.88

More generally, the fascination astrologers held for the Centiloquium peaked 
at the end of the Middle Ages and it also aroused the interest of the human-
ists of the Quattrocento. This is why new commentaries of the Centiloquium 
appeared during this period: by Reimbotus of Castro († 1390), physician to 
Emperor Charles IV;89 by the physician and astrologer Conrad Heingarter, 

85 MS Paris, BnF, lat. 7480, fols 86r–88v: ‘Glosa. Postquam reducit nobis ad memoriam 
Ptholomeus ea que in omnibus iudiciis tanquam radices sunt accipienda in omnibus mutation-
ibus huius mundi. In hoc capitulo docet nos dirigere nativitates hominum ne acceptio figure 
celestis circuli fiat fallax, unde iudex veniat in errore. […]’.

86 Burnett et al., Al-Qabīsī. See Juste, ‘The Impact of Arabic Sources’, p. 177.
87 On this topic, R. Lemay’s article, ‘The Teaching of Astronomy’, has to be corrected. See 

Boudet, Entre science et nigromance, pp. 283–95; Id., ‘Un colliege de astrologie et medicine’.
88 These editions reproduce the threefold version (Adelard + Plato + ‘Mundanorum’) of 

the verbum primum only. The conflated manuscript tradition, on the contrary, sustained the 
triple parallel presentation for verba 1 to 39 and the double one for aphorisms 40 to 100.

89 Glossa super Centiloquium, MS Vaticano, BAV, Pal. lat. 1380, fols 65–80v (copied 
c. 1350–1366 at Bologna or Paris). See Thorndike, ‘Pre-Copernician Astronomical Activity’; 
Schuba, Die Quadriviums-Handschriften, pp. 111, 113.
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addressed to Jean II, Duke of Bourbon († 1488),90 by Lorenzo Bonincontri in 
or before 1477,91 and by several scholars at the University of Cracow in the sec-
ond half of the fifteenth century.92 And two new translations of the text itself 
appeared in the fifteenth century: in 1456 by the Byzantine humanist George 
of Trebizond, translated from the Greek version in Italy for the King Alfonso V  
of Aragon;93 and in 1477 by the poet and humanist Giovianni Pontano, which 
was also translated from Greek.94 Both were copied and printed many times 
until the middle of the sixteenth century.

From a qualitative point of view, the influence of the Centiloquium was cru-
cial. It helped to construct the Church’s doctrinal norm concerning astrology, 
a norm elaborated in the thirteenth century which could be qualified as quasi- 
consensual until the end of the Middle Ages. Aphorisms 5 and 8 of this text 
ascribed to Ptolemy played a major role in this process. The Centiloquium was 
therefore at the heart of the debate on the doctrinal validity of astrology in 
the Latin West from the middle of the thirteenth century. The sentence ‘Vir 
sapiens dominabitur astris’ (‘the wise man will dominate the stars’), attributed 
to Ptolemy and inspired by the verba 5 and 8 of the Centiloquium, became, in 
the end of the Middle Ages, a leitmotiv of criticism against astrology. But at 
the same time, it was largely used as an adage by astrologers themselves, more 
than happy to show that they had a determinist but anti-fatalist conception 
of astral causality.95 On this matter, aphorism 51, connected with aphorisms 5 
and 8, is an excellent illustration of the utility of astrology and astrologers. If it 
is correct, one can chose the very best moment for the conception and for the 
birth of a child. Is it really reliable? I am very sceptical on this point. But I am 
not a medieval astrologer…

90 MS Paris, BnF, lat. 7432, fols 134v–156r (see Juste, Les manuscrits astrologiques latins, 
pp. 152–53). For Conrad Heingarter, see in particular Préaud, Les méthodes de travail; Id., Les 
astrologues, pp. 71–100 and 240–42.

91 See Rinaldi, ‘L’inedita Expositio’, and the entry made by D. Juste, ‘Laurentius Bonincon-
trius’.

92 MSS Cracow, BJ, 2703, fols 169r–175r (anon., c. 1492); Cracow, BJ 1857, pp. 71–128 (by 
Andreas Grzymala of Poznan), etc. See Markowski, Astronomica et astrologica, pp. 31–32, 302, 
309. See also the Circulum pro exitu geniture ab utero iuxta verbum Ptolomei 51 rectificare, 
that may be ascribed to Albertus de Brudzewo: https://ptolemaeus.badw.de/work/115.

93 See the classic studies of Monfasani, George of Trebizond, and Collectanea Trapezuntia-
na, pp. 97–100, 689–95 and 750–51. For this translation and Pontano’s, see Rinaldi, ‘Pontano, 
Traepezunzio’.

94 Michele Rinaldi is about to publish Pontano’s translation of the Centiloquium in a col-
lection supported by the Ptolemaeus Arabus et Latinus project.

95 See especially Boudet, ‘Ptolémée dans l’Occident médiéval’; Id., ‘Astrology between Ra-
tional Science’.
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Regiomontanus versus George of Trebizond on Planetary 
Order, Distances, and Orbs (Almagest 9.1)∗

Michael H. SHank

It is a remarkable but largely ignored fact that the generation before Coperni-
cus witnessed a protracted controversy about the understanding of Ptolemy’s 
Almagest. During the last nine months of 1451, the rhetorician George of 
Trebizond completed two astronomical works in Rome. Using a Greek man-
uscript from Cardinal Bessarion’s library, he made a new Latin translation of 
the Almagest, which he also commented.1 Cast as a defense of Ptolemy against 
his critics, the 300-folio Commentaria ad Magnam Compositionem generated 
strong reactions from Bessarion. During the next two decades, the cardinal 
not only rebuked its contents, but also commissioned new works to replace it 
and expressed outrage at the uses to which George put it.2 Bessarion’s search 
for an alternative exposition of Ptolemy stimulated two other major works. 
The best-known is the Epitome of the Almagest that he commissioned from 
the Vienna-trained astronomer George Peuerbach (1423–61) and that the 
latter’s colleague Johannes Regiomontanus (1436–76) completed by c. 1462. 
Regiomontanus also wrote a long attack on George’s commentary, the Defen
sio Theonis contra Georgium Trapezuntium, which remains mostly unexplored. 
The primary focus of this paper is the Defensio’s striking critique of George’s 
treatment of the order of the planets while commenting on Almagest 9.1.

Behind the question of planetary order lies the more fundamental one: 
what is the ratio of the cosmos, its organizing principle? Here the criteria and 
computations of mathematical astronomy contribute data as well as food for 
thought. Thus, an order based on the classification of mean motions seems 
very promising from the fixed stars to Mars, but it offers no help in distin-
guishing the relative distances of the Sun, Venus, and Mercury, which all 
share the Sun’s mean motion. For astronomers who cared about the founda-

* For their critical readings and suggestions, I thank Bernard Goldstein, Dag Nikolaus 
Hasse, Nicholas Jacobson (also for several diagrams), Richard L. Kremer, Ronald L. Numbers, 
Noel M. Swerdlow, Scott Trigg, and Carol J. Troyer-Shank.

1 For background, see Monfasani, George of Trebizond, pp. 71, 73–75; Monfasani, Collecta
nea Trapezuntiana, pp. 671–87, esp. 672.

2 Monfasani, Collectanea Trapezuntiana, pp. 672, 676.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 305–386
© F  H  G  10.1484/M.PALS-EB.5.120184
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tions of their subject, the order of these three bodies was a genuine unsolved  
problem.3

This wrangling about planetary order in the most acrimonious astronomical 
controversy before Copernicus’s birth amply justifies the inquiry that follows. 
In addition, recent debates about the emergence of Copernican heliocentrism 
against the unfolding of fifteenth-sixteenth century astronomy and astrology 
have heightened interest in the historical puzzle of planetary order.4 This chap-
ter adds substantive new content and context to these discussions. In particu-
lar, it shows Regiomontanus challenging such staples of traditional astronomy 
as the project of computing cosmic distances, the order of the inferior planets, 
and the principle of uniform motion.

1. Introducing the controversy and its background

George’s translation of and commentary on the Almagest were not disinter-
ested. He had hoped they would generate new patronage from Pope Nicho-
las V, for whom he had successfully completed translations of non-mathemat-
ical Greek works. To assist George, Cardinal Bessarion had not only lent him 
one of his Greek Almagest manuscripts, but also advised him to use as a guide 
Theon of Alexandria’s commentary on Ptolemy’s book. To Bessarion’s dismay, 
however, George attacked Theon in his Commentaria. George’s opponents 
would later accuse him of plagiarizing the parts of Theon that he liked, and 
of incompetently criticizing those that he did not understand.5 To evaluate 
the Almagest commentary, Pope Nicholas V consulted the Augustinian canon 
Jacobus Cremonensis (Jacopo di San Cassiano), a capable mathematician and 
translator of Archimedes, who returned the manuscript bristling with little 
sheets of paper marking its errors. When the pope rejected the Commentaria, 
George blamed that outcome on the collusion of Bessarion with Giovanni 

3 Simplicius’s Commentary on De caelo quoted Geminus to emphasize that the order of 
the celestial bodies was a central problem of astronomy (2.2) and later devoted attention to 
it (2.10). See Duhem, To Save the Phenomena, pp. 10–11; Bowen, Simplicius on the Planets, 
pp. 97–110.

4 Swerdlow, ‘The Derivation and First Draft’, esp. pp. 425–26; Goldstein, ‘Copernicus and 
the Origin’; Westman, The Copernican Question, ch. 1–4; Swerdlow, ‘Copernicus and Astrol-
ogy’; Shank, ‘Made to Order’ (Isis 105 (2014), pp. 167–76), curiously followed immediately by 
Westman’s reply (pp. 177–84) and Shank’s rejoinder (pp. 185–87).

5 This was a standard charge in the circle of Bessarion. The cardinal’s protégé, Archbishop 
Niccolò Perotti, wrote a Refutatio deliramentorum Georgii Trapezuntii cretensis that accuses 
George of having deceived Pope Nicholas V and Mehmed II by dedicating to them his plagia-
risms of Theon (Mohler, Kardinal Bessarion, vol. III, p. 366, lines 33–37; pp. 368–69, lines 
31–42 and 1–9).
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Tortelli, a scholar of Greek close to the papal curia and eventually the first 
Vatican librarian.6

In the next two decades, George of Trebizond and Cardinal Bessarion 
feuded with increasing bitterness. Their fight about the merits of the philos-
ophies of Aristotle and Plato is well known,7 but the place of the Almagest in 
the tensions between them is often overlooked even though this controversy 
had profound consequences for the history of astronomy. It was during Cardi-
nal Bessarion’s long diplomatic visit to Vienna in 1460–1461 that he had asked 
the Viennese university master Peuerbach to write a summary of the Alma
gest. His goal was a competent alternative to George of Trebizond’s unsatisfac-
tory commentary of 1451, the only Latin work that purported to explain the 
entire Almagest. Peuerbach was only half-way through the project when he died 
in April 1461, but he had laid the groundwork of the Epitome. The burden 
of completing it fell on his young collaborator Regiomontanus (1436–1476). 
When Bessarion returned to Italy in September 1461, Regiomontanus left the 
university to join the cardinal’s retinue. By c. 1462, he had completed the sec-
ond half (and presumably also edited the first half) of the Epitome. The two 
earliest manuscripts of the work belonged to Bessarion (they are still in his 
library, now in the Biblioteca Nazionale Marciana, Venice).8 First printed in 
1496, the Epitome has been called the ‘finest text book of Ptolemaic astronomy 
ever written’.9

Regiomontanus’s preface to Bessarion succinctly notes the link between the 
Epitome and the controversy with George of Trebizond.10 For too long, how-
ever, these remarks have seemed a trivial detail with little bearing on the book’s 
content. At first glance, this is not surprising. Indeed, like the anonymous thir-
teenth-century Almagestum parvum, Peuerbach had begun to recast the Epit
ome of the Almagest in a Euclidean vein, with spare geometrical propositions 
followed by proofs.11 Regiomontanus completed it in this format, which by 
convention discourages digression and suppresses affect, leaving timeless proofs 
untouched by the cares of the world. Whatever its merits, the sobriety of the 

6 d’Alessandro and Napolitani, Archimede latino, pp. 70–72; Monfasani, George of Trebi
zond, pp. 106–09.

7 Hankins, Plato in the Renaissance, vol. I, pp. 161–263; Kraye, ‘The Philosophy of the 
Italian Renaissance’, esp. 30–33.

8 Codd. Marc. Lat. 328 and 329 (colloc. 1760 and 1843, respectively); see Labowsky, Bes
sarion’s Library, pp. 211, 232, 450.

9 Swerdlow, ‘The Derivation and First Draft’, pp. 425–26. The accolade predates Pedersen’s 
A Survey of the Almagest, Neugebauer’s A History of Ancient Mathematical Astronomy, and the 
revised edition of Pedersen by Alexander Jones.

10 Schmeidler, Joannis Regiomontani opera collectanea, pp. 59–61 (Epytoma, fols a2r–a3r).
11 Swerdlow, ‘The Derivation and First Draft’, p. 425; and Zepeda, ‘Euclidization in the 

Almagestum parvum’, esp. 74–75.
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Epitome has effectively obscured the sharply polemical context from which it 
sprang.

1.1. Presenting the Defensio
One important key to reading the Epitome in context and to understanding 
Regiomontanus’s tacit concerns soon after he finished it is his Defensio Theonis 
contra Georgium Trapezuntium. Its survival in one complete manuscript (and 
a fragment) was not what Regiomontanus intended. Ca. 1474, he had listed 
the Defensio among the more than two dozen editions that he planned for his 
press. His death in 1476 left that promise unfulfilled. The lack of circulation 
of the Defensio since the late fifteenth century in no way detracts from either 
its interest or its significance, however.12

Although the Defensio touches every book of the Almagest, its treatment of 
the material is unsystematic. Unlike the Epitome, it focuses combatively only 
on the errors in George’s commentary, thus giving Regiomontanus free rein to 
express his anger and reveal his assumptions. Since the Defensio was still unfin-
ished when Regiomontanus moved to Hungary sometime between 1465 and 
1467, he left Bessarion a partial copy that was long considered lost, but David 
Juste found some parts of it in 2017.13 The only complete copy of the Defen
sio so far is Regiomontanus’s autograph (manuscript IV-1–935 of the Archive 
of the Russian Academy of Sciences in St Petersburg, Russia).14 Its nearly 300 
folios are often messy, peppered with deletions, addenda, marginalia, and stylis-
tic corrections. Since the text ends well into book 13, it seems to be complete. 
When Regiomontanus announced his intention to publish it, the Defensio was 
in principle ready for his press, if not any press. Typesetting the book from this 
manuscript would have been frustrating, but not impossible: since the author 
was also the boss, his intentions were both accessible and enforcible.15

12 See Kremer, ‘Text to Trophy’; Zinner, Leben und Wirken, pp. 262–64.
13 Although listed in the inventories of Bessarion’s library for 1474 and 1543, it eventually 

became separated from most of the cardinal’s other books (now in the Marciana); Labowski, 
Bessarion’s Library and the Biblioteca Marciana, pp. 238, 324. In Escorial, RBSL, d.II.5, Juste 
discovered excerpts of the Defensio in Regiomontanus’s hand, which probably belong to this 
early version; see Juste, ‘MS Escorial, Real Biblioteca del Monasterio de San Lorenzo, d.II.5’.

14 Prior to Bessarion’s bequest of his library to Venice (the beginnings of the Biblioteca 
Nazionale Marciana), the 1468/69 inventory listed ‘Corruptio Theonis per Trapeziuntium [sic] 
et tres quinterniones Ioannis contra eum in papiro, non ligatus’, clearly a partial copy of the 
Defensio. Labowsky, Bessarion’s Library, p. 238. Many astronomical manuscripts in this library 
have yet to be studied carefully.

15 The positions of some marginal corrections are not always obvious. In other instances, 
Regiomontanus had not settled on a final choice among one or more synonyms. Such clarifica-
tions and decisions could all have been made in-house during typesetting.
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High-resolution images of the manuscript and a working transcription are 
now accessible electronically. Thanks to the efforts of Rich Kremer, with the 
support of the Russian Academy of Sciences and the U. S. National Science 
Foundation, the high-resolution autograph is available on the Defensio Theonis 
website at Dartmouth College (http://regio.dartmouth.edu, the source for all 
citations of the Defensio below). My accompanying preliminary transcription, 
originally more than 900 typescript pages, is a work in progress from which I 
continue to purge errors.

George of Trebizond’s Commentaria, the Epitome, and the Defensio all 
deserve critical editions, to say nothing of translations and comprehensive study. 
Together, they constitute hundreds of pages of critical (and uncritical) think-
ing about Ptolemy’s Almagest. They would deserve attention if they had been 
written in any era, arguably much more so in the generation before Coper-
nicus. Current generalizations about fifteenth-century Latin astronomy should 
be treated with much caution since they take almost no account of these con-
tested explanations, interpretations, and criticisms of the fundamental work of 
ancient mathematical astronomy between 1450 and 1475.

In its day, the astronomical feud between Bessarion and Trebizond was so 
well known that it outlived the principals, not least because of its geopoliti-
cal repercussions. Bessarion discovered in 1467 that George had written secret 
letters dedicating his Almagest commentary to Mehmed II, the conqueror of 
Constantinople.16 The two opponents died in 1472, but they had proxies. 
George’s son Andreas offered new dedications of the Commentaria to Pope 
Sixtus IV, whereas Regiomontanus was planning to publish the Defensio. After 
Regiomontanus’s own death in 1476, the acrimony of the famous controversy 
spawned the rumor (now discredited) that George of Trebizond’s sons had 
poisoned the astronomer.17 The content of the controversy is, however, only 
beginning to emerge. Whereas George’s Commentaria was reasonably accessible 
(some 12 manuscripts survive), the Defensio must have had a very limited read-
ership indeed. Parts of it came into the hands of Regiomontanus’s acquaintance 
Hartmann Schedel, who copied the dedication and opening excerpts.18 Regio-
montanus’s unique complete manuscript, which he had finished in Nuremberg, 
passed to his associate Bernard Walther with his Nachlass. Walther reportedly 
guarded this material closely until his death (1504). After more than two cen-
turies in a secret closet, the manuscript was rediscovered, privately purchased, 
and given to Czar Alexander I in 1805. From St Petersburg, the manuscript 
traveled to Moscow, then back to the Pulkovo Observatory near St Petersburg.19 

16 Monfasani, George of Trebizond, pp. 185–94; Shank, ‘The Almagest, Politics, and Apoc-
alypticism’ esp. 57–63; and the literature cited therein.

17 Zinner, Leben und Wirken, pp. 238–39.
18 Monfasani, Collectanea Trapezuntiana, p. 671.
19 Zinner, Leben und Wirken, p. 264; Kremer, ‘Text to Trophy’.
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Its existence and whereabouts were finally confirmed in 1958. The manuscript 
is now preserved in the Archive of the Russian Academy of Sciences, St Peters-
burg branch.

The significance of the Defensio lies in the window it unexpectedly opens on 
what Regiomontanus thought, assumed, and loathed. In addition to his specific 
comments on the Almagest itself, his polemic brings out issues that he rarely or 
never addresses in his formal writings. To date, these include unguarded eval-
uations of Ptolemy’s program as he understood it, and scattered natural phil-
osophical comments and assumptions, including his conception of the astron-
omer’s role.20 His surprising views about planetary order, cosmic dimensions, 
and astronomical modeling appear below.

Importantly, the same controversy and antagonisms underlie both the Epit
ome and the Defensio, as Regiomontanus effectively became the cardinal’s 
attack dog in matters astronomical.21 Thus the Defensio, written during the 
last decade of his life, articulates some of the more enduring assumptions that 
tacitly guided the writing of the Epitome, completed by 1462. Even at this early 
stage of research, George’s commentary (to which Regiomontanus had access 
while finishing the Epitome) and the arguments of the Defensio can help to 
explain puzzles in the Epitome, including oddities of both omission and com-
mission.22 It would, however, be a mistake to congeal Regiomontanus’s evolv-
ing views into one systematic whole. Indeed, the analysis below documents a 
momentous shift, certainly for polemical purposes but perhaps seriously, away 
from the axiom of uniform circular motion.

This astronomical controversy between George of Trebizond and Cardinal 
Bessarion was but one facet of drawn-out political, philosophical, theological 
disputes between the two men. At Bessarion’s behest, Regiomontanus’s attack 
on George in the Defensio eventually served to undermine George of Trebi-
zond before King Matthias Corvinus of Hungary, another potential patron to 
whom George sought to dedicate his commentary. No doubt with Bessarion’s 
blessing, Regiomontanus moved to Hungary and dedicated the Defensio to the 

20 Shank, ‘Regiomontanus on Ptolemy’; Shank, ‘Regiomontanus as a Physical Astronomer’.
21 The attacks are overwhelmingly directed at the Commentaria, occasionally addressing 

George’s translation of the Almagest (e.g., Defensio, fol. 245r-v).
22 One example is the Epitome’s handling of the beginning of Almagest 12, the founda-

tion of Copernicus’s mathematical bridge to heliocentrism. In Epitome 12.1–2, Regiomontanus 
quietly proves the equivalence of the eccentric and epicyclic models for the second anomaly 
for both the superior and the inferior planets, without noting that Ptolemy had declared it 
impossible for the inferior planets (Almagest 12.1; Swerdlow, ‘The Derivation and First Draft’, 
pp. 471–75). In the Defensio, however, Regiomontanus claimed that the equivalence for all five 
planets represented Ptolemy’s own view, and berated George of Trebizond’s correct summary of 
Ptolemy’s error. See Shank, ‘Regiomontanus as a Physical Astronomer’, esp. pp. 336–41.
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Hungarian king long before he had finished it.23 When he left Hungary for 
Nuremberg in 1471, however, the work was still not complete. Before he had 
finished his autograph in Nuremberg in the mid-1470s, his opponent and his 
patron both died. By then, Regiomontanus had taken full ownership of the 
attack and planned to publish it himself.

This chapter highlights but one short passage from the Defensio. After sur-
veying Ptolemy’s discussion of planetary order in Almagest 9.1, it focuses on the 
surprising responses of George of Trebizond and Regiomontanus to that text.

1.2. Planetary order in Almagest, book 9, ch. 1
Although several works offer excellent summaries of Almagest 9.1,24 I quote 
the passage in full to emphasize its narrow scope, in sharp contrast to that of 
George of Trebizond’s remarks and Regiomontanus’s subsequent critique. Most 
of the Almagest’s rare references to planetary spheres appear in the opening 
section of book 9. Referring to their order, Ptolemy states:

…almost all the foremost astronomers agree that all the spheres are closer to the earth 
than that of the fixed stars, and farther from the earth than that of the moon, and 
that those of the three [outer planets] are farther from the earth than those of the 
other [two] and the sun, Saturn’s being greatest, Jupiter’s the next in order towards 
the earth, and Mars’ below that. But concerning the spheres of Venus and Mercury, 
we see that they are placed below the Sun’s by the more ancient astronomers, but by 
some of their successors these too are placed above [the Sun’s], for the reason that the 
Sun has never been obscured by them [Venus and Mercury] either. To us, however, 
such a criterion seems to have an element of uncertainty, since it is possible that 
some planets might indeed be below the Sun, but nevertheless not always be in one 
of the planes through the Sun and our viewpoint, but in another [plane], and hence 
might not be seen passing in front of it, just as in the case of the Moon, when it 
passes below [the Sun] at conjunction, no obscuration results in most cases.25

Ptolemy reports both a consensus about the extreme spheres (those of the fixed 
stars and the Moon), and a near-consensus about the locations of Saturn, Jupiter, 
and Mars immediately below the fixed stars and above the Sun (henceforth 
the ‘superior’ planets). He orders the spheres above the Sun explicitly by size 
(which the distances measure), and implicitly by velocity (why else make the 
sphere of Saturn the greatest after that of the fixed stars?).

For the spheres of Venus and Mercury, he reports no consensus about their 
order: the older astronomers placed them below the Sun (no justification is 

23 References to King Mathias appear in books 3 and 6 (138v, 139r–v, 194r, 240r, 301r) in 
particular. My transcription of the draft dedication is presently labeled Preface (fols 37r–39r; 
http://regio.dartmouth.edu/diplomatic/00.html).

24 The fundamental work remains Swerdlow, Ptolemy’s Theory of the Distances; summarized 
in Van Helden, Measuring the Universe, chapters 3 and 4.

25 Toomer, Ptolemy’s Almagest, p. 419.
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given), whereas some later astronomers placed them above the Sun, citing the 
failure to observe what we now call transits (a planet’s apparent passage across 
the solar disk).26 Ptolemy dismisses this absence of evidence as unpersuasive, 
however. Just as solar eclipses do not occur at every New Moon, the much 
smaller Mercury and Venus may pass undetected below or above the Sun (the 
focus of latitude theory in Almagest 13).27

After rejecting the absence of evidence for transits as a reason for placing the 
spheres of Venus and Mercury above the Sun, Ptolemy notes the absence of any 
planetary parallax, the sole means for determining distances with certainty, and 
falls back on the plausibility of the traditional order, which he does not specify:

And since there is no other way, either, to make progress in our knowledge of this 
matter, since none of the stars has a noticeable parallax (which is the only phenom-
enon from which the distances can be derived), the order assumed by the older 
[astronomers] appears the more plausible. For, by putting the Sun in the middle, it 
is more in accordance with the nature [of the bodies] in thus separating those which 
reach all possible distances from the Sun and those which do not do so, but always 
move in its vicinity; provided only that it does not remove the latter close enough to 
the earth that there can result a parallax of any size.28

Building on the (unproven) near-consensus about the location of Saturn, Jupiter, 
and Mars above the Sun (which he treats as an assumption), Ptolemy advances 
a plausibility argument for placing the Sun’s sphere ‘in the middle’ (i.e., 3 plan-
etary spheres above it, 3 below). In this position, the Sun’s sphere separates the 
spheres of the 3 planets observed in opposition from those of the 2 that never 
are (no farther from the Sun than roughly 28° and 47°, respectively). Ptolemy 
here does not specifically order Venus and Mercury, implicitly following the 
‘older’ astronomers (Mercury above the Moon, then Venus). Ptolemy qualifies 
this order as physikōteron, ‘more in accordance with the nature [of the bod-
ies]’ (as Toomer expands it) or generally ‘more in accordance with nature’.29 
Although its parallax proves that the Moon is the closest to the Earth, it obvi-
ously is seen in opposition, like the 3 superior planets. In short, the criterion 
for placing the Sun ‘in the middle’ is awkward at best.30

26 Later sources ascribe both alternatives to Archimedes; Neugebauer, A History of Ancient 
Mathematical Astronomy, pp. 647, 691–92.

27 In the Planetary Hypotheses, Ptolemy also emphasizes the uncertain order of every planet 
but the Moon. He treats the subsolar positions of Venus and Mercury as assumptions and gives 
optical reasons for our inability to perceive solar transits of Venus and Mercury: some partial 
solar eclipses are not noticed even though portions of the Moon far larger than the apparent 
planets obscure it. Goldstein, The Arabic Version, pp. 6–7.

28 Toomer, Ptolemy’s Almagest, pp. 419–20.
29 Heiberg, Syntaxis mathematica, vol. II, p. 207 line 18.
30  Jābir  ibn  Aflaḥ  (Geber)  would  also  point  this  out,  arguing  that  the Moon  should  then 

be  grouped with  the  superior  planets; Lorch,  ‘The Astronomy of  Jābir  ibn Aflaḥ’,  esp.  p.  98.
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The final phrase in the quotation adds a notable qualification: it rules out a 
position for Mercury or Venus that would give either planet a parallax, which 
the Moon does display. This condition seems to exclude the lowest planet’s con-
tiguity to the Moon’s sphere — certainly at lower conjunction (unobservable), 
but arguably even at observable elongations, as Ptolemy apparently looked for a 
parallax when Mercury was visible.31

The astrological Tetrabiblos — Ptolemy’s second book about the heavens — 
was available in Latin; unlike the Almagest, it explicitly placed Mercury ‘next 
above the sphere of the Moon’ (Tetrabiblos 1.4). Consistent with this picture, 
Ptolemy explicitly identified the seven periods of human life with the seven 
planetary ‘spheres’ in the following order: Moon-Mercury-Venus-Sun-Mars- 
Jupiter-Saturn (Tetrabiblos 3.10). In short, this list is not random, but represents 
an ascending order.32

Later, in his Planetary Hypotheses, Ptolemy laid out his nesting hypothe-
sis, discussed planetary order, and computed planetary distances. In doing so, 
he abandoned the restriction on locating the ‘inferior’ planets in the zone of 
observable parallax. He used the mathematical models of the Almagest to com-
pute minimum planetary distances from the Earth, constructed a cosmology of 
nested spheres, and advanced suggestions for building a 3-dimensional model 
of the universe. This construction made Mercury’s perigee equal at minimum 
to the Moon’s apogee, even though Mercury had no detectable parallax and the 
Moon did. He focused his doubts on the place of the Sun in the sequence.33

1.3. After Ptolemy34

Planetary order was debated in late antique Latin astronomy (notably the helio-
centric arrangement of Mercury and Venus in Martianus Capella) and even 
more so in the Carolingian era, when scholars had to cope with the sketchy 

31  Assuming  the  Ptolemaic  order,  Jābir  ibn  Aflaḥ  went  to  the  trouble  of  computing  the 
presumed parallaxes of Venus and Mercury at greatest elongation. At 6′ and 4′, respectively, 
they were more than the 2′51″ Ptolemy had computed for the Sun. This was why Jābir rejected 
the Ptolemaic order and placed Venus and Mercury above the Sun; see Lorch, ‘The Astronomy 
of  Jābir  ibn Aflaḥ’,  p.  97.

32 Robbins, Ptolemy. Tetrabiblos, pp. 39, 443–47. Although Neugebauer (A History of An
cient Mathematical Astronomy, p. 690) warns about the hazards of identifying a list of planets 
in a text with an ordering in space, Ptolemy’s lists — sometimes with, sometimes without the 
luminaries — are consistent (e.g., Tetrabiblos 1.4, 2.8, 3.11, 3.13, 4.9).

33 Indeed, after conceding that his values might merely be minimal ones and making the 
correctness of his distances hypothetical, he inferred that parallaxes should be observable from 
Mercury to Mars; Goldstein, The Arabic Version, pp. 6–7, 9; Neugebauer, A History of Ancient 
Mathematical Astronomy, p. 919; summary in Van Helden, Measuring the Universe, pp. 21–27.

34 See Swerdlow, Ptolemy’s Theory of the Distances, chap. 3; Van Helden, Measuring the 
Universe, ch. 4; Lerner, Le Monde des sphères, vol. I, chap. 4–6.
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reports of multiple arrangements they had inherited.35 By the ninth-tenth cen-
turies in Islamic civilization, however, the assumptions and methods behind 
the nesting hypothesis and planetary sizes in Ptolemy’s Planetary Hypotheses 
had anonymously become almost a commonplace. They undergirded almost all 
later computations of planetary distances, even though their source was known 
to only a few scholars in Hellenistic and Islamic civilization. Authors such as 
Thābit  ibn  Qurra  (d.  901),  al-Farghānī  (d.  870),  and  al-Battānī  (d.  929)  dis-
cussed the order and sizes of the planetary spheres, computing distances from 
the Almagest’s models, without suggesting that they knew of the Planetary 
Hypotheses or ascribing the procedures to Ptolemy.36

When this Arabic material was translated into Latin in the twelfth century, 
scholars likewise adopted (and sometimes modified) the values in it. They did 
so without suspecting that these had originated in Ptolemy’s project of comput-
ing the dimensions of the cosmic system in the Planetary Hypotheses. In this 
way, computations of planetary spheres and cosmic dimensions found a perma-
nent home in Latin astronomical literature, including Campanus of Novara’s 
Theorica planetarum.37

2. Regiomontanus presents the Commentaria on Almagest 9.1
The preceding sketch may serve as the formal textual background for the fif-
teenth-century altercation mentioned above. The fragment discussed in this 
article focuses, despite its length, only on Almagest 9.1. There is no space to 
analyze the responses of George of Trebizond and Regiomontanus to all of 
book 9: the Defensio alone devotes 35 folios (fols 151–86) to George’s treat-
ment of that book. The brevity of Almagest 9.1 makes conspicuous how much 
non-Almagest material George brought to bear in commenting on this passage, 
from Aristotelian cosmological material through the covert legacy of the Plan
etary Hypotheses to thirteenth-century Latin astronomical literature.

35 For example, Eastwood, Ordering the Heavens, ch. 2.3–4, 3.3, passim; for background, 
see Obrist, La cosmologie médiévale, vol. I, pp. 72–76, 231–38, 253–55. Buridan mentions as 
probable an idea that resolves a tension with Averroes, namely that Mercury, Venus, and the 
Sun ‘are fixed in the same sphere, although they have different epicycles and eccentrics within 
it’. Grant, Planets, Stars and Orbs, p. 313.

36  Thābit  describes  the  nesting  hypothesis  and  assigns  figures  to  the  sizes  of  the  orbs  in 
his De his que indigent expositione antequam legatur Almagesti.  Pseudo-Thābit’s De quantitati
bus stellarum  is  derived  from al-Farghānī  and,  like him, presents  the  computation of  planetary 
distances not as Ptolemy’s, but as an extension of Ptolemy’s procedure for the luminaries. See 
Carmody, The Astronomical Works of Thābit b. Qurra, pp. 128–30, 133, 136–37; pp. 145–
48,  esp.  146–47.  Al-Birūnī  was  aware  of  the Planetary Hypotheses; see Nallino’s discussion in 
Al-Battānī sive Albatenii opus astronomicum, vol. I, pp. 287–89; Swerdlow, Ptolemy’s Theory of 
the Distances, pp. 137–62.

37 Van Helden, Measuring the Universe, pp. 29, 31; Benjamin and Toomer, Campanus of 
Novara.
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Regiomontanus’s response illustrates his general approach to George of Tre-
bizond’s commentary throughout the Defensio. First, he typically quotes from 
the Commentaria (at length, in this instance). He then proceeds to attack spe-
cific points in the cited text. For simplicity’s sake, I discuss the views of both 
men only from the material in the Defensio. Indeed, Regiomontanus quotes 
very reliably from George’s commentary. He not only cared about such things, 
but also evidently had a good manuscript of that work.38

2.1. Preliminaries: history and the Sun-heart analogy
Regiomontanus begins by quoting the opening remarks from George’s own 
commentary on Almagest 9.1 (in italics below). To this, he appends his own 
brief remarks (in roman).39 Regiomontanus’s response to this passage typifies 
the tone of the larger controversy as it articulates some of his general objections 
to George’s stance in the commentary:

Plato, he says, places the Moon first, then the Sun; Aristotle also says this, but they 
had followed what the Greek mathematicians thought in their day. For myself, however, 
I will not hesitate to say that, on this issue, we have been sent to Ptolemy by Aristotle 
himself. For the man who in De caelo et mundo enjoins [one] to turn to those devoted 
to such things (since, according to him [Aristotle], the arts and the sciences are increased 
by additions [to them])40 undoubtedly intends that one start with the later teachers of 
these disciplines, who added much to them.41

38 My spot-checks of the Commentaria in Vienna, ÖNB cod. 3106 have matched the De
fensio quotations exactly; on that ms, see Monfasani, Collectanea Trapezuntiana, p. 670.

39 George gave the first chapter of his commentary on book 9 the heading ‘On the order of 
the globes/spheres of the Sun, Moon and other wandering stars’ (De ordine globorum solis, lune 
ceterarumque stellarum erraticarum); Vienna, ÖNB, cod. 3106, 162r.

40 This allusion resonates less with De caelo than with both Aristotle, Metaphysics 12 
(1073b11–17) and Simplicius’s Commentary on Aristotle’s De caelo, which paraphrases the 
Metaphysics passage; see Mueller, Simplicius, pp. 44–45; and Bowen, Simplicius on the Planets, 
pp. 168–69. (I thank Noel Swerdlow and Nick Jacobson, respectively, for pointing out these 
parallels). See also Simplicius’s commentary on De caelo II.10: Bowen, Simplicius on the Planets,  
p. 99, lines 10–13. In addition, Averroes’s commentary on the De caelo explicitly appeals to 
Ptolemy to supplement Aristotle: see the quaesitum quartum in De caelo, book 2. Marcantonio 
Zimara’s metacommentary on the same passage ascribes to Aristotle the view that Venus and 
Mercury are above the Sun, contrasting the approach of the natural philosopher to that of the 
astronomer/astrologer and commenting on the problems that Venus and Mercury present for 
the speed-distance rule; Zimara, Aristotelis opera cum Averrois commentariis vol. V: De caelo…, 
136va-137va.

41 ‘Lunam’, inquit, ‘primum Plato deinde solem collocat. Id Aristoteles etiam dicit; sed 
secuti fuerant quod temporibus suis grecorum mathematici opinabantur. Ipse autem non du-
bitabo dicere ad Ptolemeum nos quantum ad hec pertinet ab ipso Aristotele mitti. Nam qui 
in libris De celo et mundo ad eos ire iubet quibus hec cure erant cum artes atque scientie 
additionibus colligantur secundum ipsum, is profecto posteriores etiam ad disciplinarum pro-
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In this curious passage, George identifies Aristotle’s view with that of Plato, 
characterized only by the contiguity of Moon and Sun. In Timaeus 38C-D, 
Plato had proposed the following ascending order: Moon, Sun, Venus, Mercury, 
omitting the order of the remaining planets. Ever since Macrobius, who asso-
ciated both permutations of Venus and Mercury above the Sun with Plato or 
Platonists, the supra-solar position of the so-called ‘inferior’ planets was named 
that of the ‘Platonists and the Egyptians’.42 More notable is George’s associa-
tion of such a view with Aristotle, since the latter’s genuine books (De caelo, 
Metaphysics, or even Meteorology) do not discuss planetary order explicitly. As 
George’s reference hints, his likely source is the pseudo-Aristotelian De mundo, 
which in Latin translation sometimes circulated with the De caelo. Despite 
skepticism about its authorship in the late Middle Ages, the De mundo in the 
fifteenth century was considered genuine by such leading scholars as Bessar-
ion, Ficino, and the two Picos.43 To this list, George of Trebizond’s name must 
now be added. The De mundo (first century) is familiar with Stoic sources 
and endorses the so-called ‘Platonic/Egyptian’ order of Moon, Sun, Venus,  
Mercury, etc.44

George’s conflation of Aristotle’s planetary order with Plato’s is noteworthy 
because he believes it to be erroneous. In later years, he would express vehe-
ment opposition to Plato and strong partisanship for Aristotle. In 1451, how-
ever, George commends Aristotle for endorsing not a correct view, but a cor-
rect principle about the growth of knowledge in the arts and sciences. George 
implicitly turns the Philosopher’s deference to specialists into an expectation 
of scientific obsolescence: Aristotle anticipated that his views would be revised, 
as indeed they were, notably by Ptolemy’s ‘additions’. Although George does 
not discuss subsequent progress, he evidently saw himself as a participant in it, 
witness his claims later in the commentary.

After quickly turning a compliment against George, Regiomontanus attacks 
the latter’s inconsistency and his representation of early astronomy and its sub-
sequent development:

He nicely reviews as much about Aristotle, who determines the foremost men to be 
consulted in any faculty if something obscure should come up, as about the con-
tinuous additions of the arts and sciences, which discrete items increase every day. 

fessores qui multum eis addiderunt proficisci vult’. George of Trebizond, quoted in Regiomon-
tanus, Defensio, fol. 151v.

42 Stahl, Roman Science, pp. 158–59.
43 Pseudo-Aristotle, On the Cosmos, ed. and transl. in Johan C. Thom (ed.), Cosmic Order, 

pp. 23–26; Burri, ‘The Geography of De mundo’, p. 96; Kraye, ‘Disputes over the Authorship’, 
esp. pp. 182–83.

44 See [Pseudo-Aristotle], De mundo, 392a20–31 (more ambiguously at 399a1–12), transl. 
Thom et al. in Thom, Cosmic Order, pp. 22–25, 46–47; see also Maguire, ‘The Sources of 
Pseudo-Aristotle’s De mundo’, esp. pp. 121–22.
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But this snappish man is utterly unaware of his fickleness. Throughout, he attacks 
Theon harshly as outside the mathematicians’ ranks, often accuses other Greeks 
of ignorance, and does not spare the Arabs, especially the Spaniard Geber, whom 
he falsely accuses of inexperience. But he now thinks that one should start with 
the later professors of these disciplines, who added much to the latter on Aristot-
le’s advice; and he now assails all the more recent ones as basically lazy and com-
pletely mediocre; and finally, he brags that, with himself as the laughable exception, 
no one has [ever] existed from whom Ptolemy has shone forth and who understood  
his teaching.45

Here Regiomontanus ridicules George for his contradictory beliefs about prog-
ress in astronomy. George recommends starting from the masters of astron-
omy even though his commentary has berated leading specialists in the subject 
(Theon, Geber) and dismissed everyone but himself. Regiomontanus goes on to 
list key contributors to astronomy whom George omits:

He certainly disregards or conceals what has been discovered about the extent to 
which the Greeks’ talents were increased by these Chaldean discoveries, and how 
much the Arabs became illustrious in the science of the stars: their intervention in 
all the mathematical sciences has abundantly enriched the Latin world. Is it not the 
case that, in our era, nearly everything that Roman [= Latin] mathematicians have 
usually taught on this subject flows from the Arabs, albeit mediated by poor and 
crude translation? Finally, I cheerfully pass in silence over the Latin men who, very 
illustrious in mathematics and abstaining from almost everything else, brought to 
light so many things from the most profound treasury of nature, lest we, in urging 
praise on our own, seem immodestly to give ourselves credit for them [= their dis-
coveries].46

45 ‘Hec bene quidem recenset tam de Aristotele qui primores in quacumque facultate viros 
consulendos esse arbitratur si quid paulo obscurius occurrat, quam de continuis artium scien-
tiarumque additamentis quibus singule queque dietim coalescunt. Verum suam mordax homo 
haudquaquam persentiscit. Nam qui Theonem non parum mathematicis addentem extreme in-
sectatur, aliosque grecos ignorantie sepenumero accusat, qui que arabibus et presertim Gebro 
hispalensi non parcit, sed imperitiam falso obiectat nunc ad posteros disciplinarum professores 
qui multum eis addiderunt monitu aristotelico proficiscendum censet, nunc contra iuniores 
universos quasi inertes ac prorsus negligendos lacessit et postremo neminem ex quo Ptolemeus 
claruit, se uno dempto, extitisse qui doctrinam eius perceperit ridiculo gloriatur’; Regiomonta-
nus, Defensio, fol. 151r.

46 ‘ignorans utique aut rescire dissimulans quantopere grecorum ingeniis adaucte sint ille 
inventiones chaldaice; quantum que arabes in siderali presertim disciplina claruerint, quorum 
interventu omnibus etiam mathematicis studiis latinitas abunde locupletata est. Nempe quic-
quid ad hec ferme nostra secula romani didicere mathematici, ab arabibus pene totum quamvis 
scabro  et  exili  admodum  interpretamento  profluxit.  Qui  demum  latini  viri  per  quam  clari  in 
mathematicis plerisque omnibus evaserint/evituerint quantasque res penitissimo e thesauro na-
ture rompserint, silentio preterire libet ne gentiles nostros laudaturi/laudando nobisipsis non 
nihil paulo arrogantius/immodestius tribuere videamur’. Defensio, fol. 151r-v.
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In  this  partial  echo  of  his  1464  inaugural  lecture  on  al-Farghānī  at  Padua, 
Regiomontanus approaches astronomy with a consciously historical point of 
view and an implicit notion of progress.47 The members of four peoples — 
we would say ‘cultures’ — have contributed to the enterprise: Chaldeans, 
Greeks, Arabs, and Latins.48 His praise of these predecessors is fulsome but 
mostly  anonymous  (Theon  and  Geber  appear,  but  not  al-Battānī,  whom  he 
greatly admired). Also, he modestly refrains from naming the Latin individu-
als, among whom he surely included Peuerbach, himself, and perhaps (despite 
earlier criticisms) Bianchini (mentioned in the margin).49 In short, the tradition 
is improving thanks to the ‘additions’ to it. By implication, Ptolemy is not the 
final word.

In short, George here has inconsistently diverged from his self-aggrandizing 
program of belittling most of traditional astronomy:

This hopeless manikin indiscriminately tries to disparage, ruin, destroy, and demol-
ish completely so many men of this sort, mocking them as blind and deluded wasters 
of time and labor, so that he might persuade some stupid and idiotic neophytes in 
astronomy that he is the sole commentator of Ptolemy, of whom he has not even 
taken the first bite, although he implies that he has seen into the order of the spheres 
more keenly than Ptolemy himself.50

These opening paragraphs of book 9 illustrate Regiomontanus’s polemical strat-
egy throughout the Defensio. He characterizes George as denigrating post-Ptol-
emaic astronomy and touting not only his own mastery of the Almagest, but 
also his improvement upon it by allegedly demonstrating the planetary order. 
Regiomontanus emphasizes this last point, so that George later will seem to 
fall from an even greater height.

When George finally turns to the content of Almagest 9 itself, he embroi-
ders on Ptolemy’s minimalist discussion of the order of the planetary spheres 

47 ‘Oratio Johannis de Monteregio…’, in Schmeidler, Joannis Regiomontani opera collectanea, 
pp. 43–53. These remarks strongly suggest, as does his Paduan Oration, that Regiomontanus 
did not believe in cycles, but in progress, pace Byrne, ‘A Humanist History of Mathematics’; 
and Špelda, ‘From Closed Cycles to Infinite Progress’, esp. p. 210.

48 Aristotle had referred to Chaldeans in Metaphysics 12.8 and De caelo 2.12, also discussed 
by both Simplicius and Averroes in their commentaries on De caelo. See respectively Bowen, 
Simplicius on the Planets, pp. 121, 225, and Zimara, Aristotelis opera cum Averrois commenta
riis, vol. V, 138vb.

49  In  the  top margin  of  151v, Regiomontanus  has written  the  intriguing  note:  ‘Quando  de 
figura sideris scribes, Blanchini mentionem si videtur facias’.

50 ‘Tot tantosque viros perinde quasi cecos et oleum ut aiunt impensamque ludificatos ho-
muncio futilis passim floccifacere pessundare, obterere ac prorsus abolere conatur ut stolidis 
quibusdam ac stupidis astronomie persuadeat tirunculis sese unicum esse Ptolemei illustra-
torem, cuius ne prima quidem ipse libamenta gustavit; quamvis ordinem spherarum acutius se 
animadvertisse subostentet quam Ptolemeum ipsum’. Defensio, fol. 151v.
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with a long paraphrase that goes far beyond the text. Regiomontanus intro-
duces the quotation with a rebuke:

To protect the truth faithfully and to defend men under attack while we censure the 
expositor’s conceited little [quest for] glory,51 which he now hopes to attain with his 
very loose talk, let his words be broadcast for all to see: Therefore it is necessary, he 
says, that the part/organ of the universe that is proportioned to the heart and is, as it 
were, the seat of its soul also hold the middle position of the same universe. Therefore, 
since the lunar parallax can demonstrate that, of all the stars that, owing to the magni
tude of their distance, have either no parallax or a minimal one, the Moon seems to be 
close to the center and middle of the Earth, two other planets must therefore be sought 
that are more plausibly located below the Sun, so that three are below it, three above it; 
for [the Sun] itself is in the middle of all things.52

Straying from the Almagest’s content, George’s arguments start with contro-
versial natural-philosophical assumptions, which he nevertheless calls necessary. 
The macrocosm-microcosm analogy underlies his assumption of a ‘proportion-
ality’ between the position of the heart — the seat of the (presumably rational) 
soul, implicitly located in the middle of the (presumably human) body — and 
the position of the universe’s heart and soul, implicitly the Sun. The ‘propor-
tionality’ in this analogy allegedly guarantees both the position of the Sun in 
the ‘middle of all’ and the necessity that George attributes to his conclusions. 
Since the Sun is in the middle and three planets are above it, three must there-
fore also be below it. Being unique in having a measurable parallax, the Moon 
is closest to the Earth. Two other planets — Mercury and Venus — therefore 
must join the Moon below the Sun. Only his conclusion clarifies that, by ‘mid-
dle’, George means ‘ordinally intermediate’ (4th of 7).

Since medium can signify ‘middle’, ‘intermediate’, ‘mean’, ‘central’, etc., 
George’s language is ambiguous, and his argument is loose. Yet he evidently 

51 I add ‘quest’ to translate gloriuncula both to capture Regiomontanus’s pejorative inten-
tion and to meet the relative clause’s need for an antecedent with a positive connotation from 
George’s point of view. Pace Edward Rosen, Copernicus clearly did not coin gloriuncula in 
translating Theophylactus Simocatta’s Letter 76 from the Greek: Czartoryski, Nicolaus Coper
nicus. Minor Works, pp. 69–70, with trans. and comm. by Edward Rosen. Jean Gerson was 
already using the word a century earlier; see Yule, The Statistical Study, p. 243.

52  ‘Quo autem  fidelius  veritatem  tueamur  et  lacessitos quoscumque viros defendamus  simul 
que gloriolam expositoris taxemus quam laxiori sermonis filo impresentiarum se adipisci/adep-
turum  sperat,  verba  eius  in medium proferantur: Quare  necesse  est,  inquit,  ut membrum quo-
que mundi quod cordi proportionatur et quasi anime ipsius sedes est medium ipsius mundi 
locum obtineat. Cum igitur lunaris diversitatis aspectu demonstretur lunam omnium stellarum 
que propter distantie magnitudinem diversitatis aspectum vel non habent vel minimum habent, 
proximam terre centro ac medio esse pateat querendi sunt alii duo planete qui verisimilius sub 
sole collocantur, ut tres sub ipso, tres super ipsum; ipse vero in omnium medio sit’. George of 
Trebizond, quoted in Regiomontanus, Defensio, fol. 151v.
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thinks — erroneously, as Regiomontanus will show — that he is rehearsing 
uncontroversial claims. George now takes up the details:

He [= Ptolemy] therefore selected Venus and Mercury, first, since everyone straightfor
wardly locates Saturn, Jupiter, and Mars above the Sun, which cannot be denied since 
it is perceived in their conjunctions; and second, since he thought it more natural to 
place below the Sun [both] Mercury and Venus, which are always carried around near 
the Sun; finally, since he says that the ancients, namely the Chaldeans or the Egyptians, 
also thought thus, although some say that Thales of Miletus also posited this order. 
Thus far Ptolemy.53

George of Trebizond’s argument for treating Mercury and Venus quickly glosses 
over the order of the superior planets. His cryptic reference to their uncontro-
versial order being seen or perceived ‘in their conjunctions’ presumably means 
the periods between the superior planets’ conjunctions with the Sun, i.e., an 
order determined by their speed in the ecliptic (a reasonable interpretation of 
Ptolemy’s truncated discussion).54 As his last three words show, George believes 
he is paraphrasing Ptolemy. Almagest 9.1, however, mentions neither an analogy 
between the Sun and the heart, nor Thales, nor the Chaldeans, nor the Egyp-
tians. Indeed, George’s conflation of Chaldeans and Egyptians is odd, as most 
sources contrast them, claiming that the latter make the Moon and Sun the 
two lowest planets.55

Without naming anyone, Ptolemy had inclined toward an order that he 
associated with ‘older astronomers’ and qualified as ‘more in accordance with 
nature’. This arrangement put the Sun ‘in the middle’ to separate the five plan-
ets by the range of their elongation from the Sun: oppositions for Saturn, Jupi-
ter, and Mars; but no opposition for Venus and Mercury. Ptolemy had nothing 
to say about the heart of the universe.

53 ‘Venerem igitur et Mercurium cepit tum quia omnes simpliciter Saturnum Iovem Mar-
temque super solem locant, nec negari hoc potest cum in coniunctionibus ipsorum perspectum 
sit; tum quia naturalius esse putavit Mercurium et Venerem qui prope solem semper ferun-
tur sub ipso ponere; tum denique quia priscos ita putasse ait Chaldeos forsan aut Egyptios, 
quamvis nonnulli Thaleta quoque Milesium hunc ordinem posuisse dicunt. Hec Ptolemeus’. 
George of Trebizond, quoted in Regiomontanus, Defensio, fol. 151v.

54 Campanus of Novara (on whom George seems to draw; see below) discusses in detail 
correlations between conjunctions with the Sun; Benjamin and Toomer, Campanus of Novara, 
pp. 302–07.

55 The historically fanciful nomenclature of ‘Chaldean’ and ‘Egyptian’ planetary order of-
ten surfaces in the Carolingian tradition, which drew heavily on Pliny, Macrobius, Martianus 
Capella; see Eastwood, Ordering the Heavens, e.g, p. 50. Following Macrobius’s Commentary 
on the Dream of Scipio, Campanus associates Plato and the Egyptians; Benjamin and Toomer, 
Campanus of Novara, pp. 333, 436. Neugebauer cautions against assuming that the order of 
planets in a text corresponds to the author’s understanding of their spatial arrangement: Neu-
gebauer, A History of Ancient Mathematical Astronomy, p. 690.
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Arguing against the Pythagoreans in De caelo 293b5–8, Aristotle had drawn 
an analogy between the center of the universe and the center of the animal, 
emphasizing the difference between their ‘natural’ and geometrical centers. He 
did not explicitly name the heart as the natural center of the animal, but that 
point was thoroughly Aristotelian (see De partibus animalium 3.4, 665 b21–
24). George surely knew this, having translated both works into Latin.56

2.2. ‘Demonstrating’ planetary order and distances in the Sun-Moon interval
In the Commentaria, the heart-Sun analogy precedes George’s lengthy treat-
ment and computation of the sizes of the planetary spheres, which marks yet 
another significant departure from the spare text of the Almagest: ‘We can/
shall, he says, produce a demonstration from the distances taken proportionally 
if we first attain some natural necessity’.57 This demonstrative language prom-
ises precisely what Almagest 9.1 denies: without known parallaxes for the bod-
ies beyond the Moon, planetary order cannot be determined with certainty. 
George’s boast is one of the ‘improvements’ that Regiomontanus mocked as 
seeing ‘into the order of the spheres more keenly than Ptolemy himself ’.

The ‘natural necessity’, by which George presumably means ‘incontrovertible 
facts’ on which to erect his demonstration, evidently includes the absolute dis-
tance of the lunar apogee:

In Book 5, therefore, it has already been demonstrated that the greatest distance of the 
Moon is 64;10 Earth radii [e.r.], whereas the distance of the Sun is approximately 1210 
e.r.; the distance of the Moon he [= Ptolemy] demonstrated from the parallax angle. For 
the Sun, this angle, no matter where it is measured, is not perceived to vary much, and 
therefore he necessarily used a single distance for the entire eccentric of the Sun. For the 
Moon, however, the parallax angle is perceived to vary much, in relation to the distances 
of the Moon itself. He therefore demonstrated the various distances of the Moon by 
means of the variation of this angle. Therefore, he posited a unique solar distance of 
1210 [e.r.]. If from this you subtract 64;10 [e.r.] for the Moon’s apogee, approximately 
1146 e.r. remain between the Sun and the Moon.58

56 Monfasani, Collectanea Trapezuntiana, pp. 703–07. Other possible sources of this analo-
gy are Macrobius and Chalcidius; Grant, Planets, Stars and Orbs, p. 227 n. 28.

57 ‘Nos a distantiis, inquit, proportionaliter captis demonstrationem afferemus si prius na-
turalem quandam necessitatem attingamus’. George of Trebizond, quoted in Regiomontanus, 
Defensio, fol. 151v.

58 ‘In quinto igitur libro iam demonstratum est maximam lune distantiam esse 64 10’ ta-
lium, qualis est unius semidiameter terre. Solis autem distantiam indifferenter captam 1210 
earundem partium; quam distantiam lune demonstravit per angulum diversitatis aspectus. Is 
angulus in sole ubivis capto non multum variatur sensibiliter; et ideo unicam necessario per 
totum eccentricum cepit distantiam solis. In luna vero angulus diversitatis aspectuum multum 
variatur sensibiliter secundum ipsius lune distantias; ideo demonstrate sunt ab ipso diverse dis-
tantie lune per diversitatem huiusmodi anguli; unica ergo solaris distantia ab ipso posita est 
1210: a qua, si auferas 64 10’ maximam lune, relinquentur 1146 proxime inter solem et lunam 
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Starting from Ptolemy’s procedure for calculating the distances of the luminaries 
in Almagest 5, George lays out the standard post-Almagest framework of 
assumptions for computing planetary distances (ultimately rooted in the 
Planetary Hypotheses).59 For the distance between the lunar apogee and the Sun, 
he uses the Almagest’s values. Ptolemy had obtained 64;10 e.r. for the lunar 
apogee by using two ancient Babylonian lunar eclipse observations (Almagest 
5.14). From this figure and his ignorance of annular eclipses (i.e., he made total 
solar eclipses at lunar apogee his limiting case), he computed the distance of the 
Sun to be 1210 e.r.60 As George notes, Ptolemy could detect no solar parallax 
and therefore treated this distance as fixed.61 Indeed, the Almagest’s planetary 
models focus on velocities and positions against the zodiac, not distances from 
the Earth, as its lunar theory’s tolerance for wild variation in distance makes 
abundantly clear.

Significant for George’s argument is that this solar distance derived from 
measurements and calculations is independent of Ptolemy’s models for the 
Sun and Moon (the underlying observations are Babylonian). The difference 
between this (fixed) solar distance and the lunar apogee yields a gap of 1146 
e.r.:

This is why, since everyone concedes from the phenomena that Saturn, Jupiter, and 
Mars are above the Sun, if we did not place Venus and Mercury between the Sun and 
the Moon, that space would be empty. Indeed, because of the magnitude of this space, 
we cannot believe that [its size] could come from the solar and lunar distances being 
approximate rather than precise. If therefore a vacuum is altogether impossible, it is 
necessary that Venus and Mercury be located between the Sun and the Moon.62

partes tales, qualis est unius semidiameter terre’. George of Trebizond, quoted in Regiomon-
tanus, Defensio, fols 151v–152r. For brevity’s sake, I translate maxima distantia and minima 
distantia as ‘apogee’ and ‘perigee’, and diversitas aspectuum as ‘parallax’.

59 Van Helden, Measuring the Universe, p. 31.
60 In the geometry of Ptolemy’s procedure, small angular changes (including errors) in the 

apparent solar diameter translate into large variations in distance. This constraint helps to ex-
plain the great compression of the Almagest’s Earth-Sun distance, which is too small by a fac-
tor of 20; Almagest, 5.14–15; Toomer, Ptolemy’s Almagest, pp. 252–57; Swerdlow, ‘Hipparchus 
on the Distance of the Sun’, esp. p. 294; Neugebauer, A History of Ancient Mathematical As
tronomy, pp. 104–06, 109–10.

61 At Almagest 5.11, Ptolemy doubted that the Sun had a parallax (Toomer, Ptolemy’s Al
magest, p. 244). He effectively treated its apparent diameter as a constant (Neugebauer, A His
tory of Ancient Mathematical Astronomy, pp. 104, 112).

62  ‘Quare  cum  omnes  ex  iis  que  apparent  coacti  concedant  Saturnum,  Iovem,  et  Martem 
sole superiores esse, nisi Venerem et Mercurium inter solem et lunam collocaverimus, erit illud 
spacium vacuum. Non enim possumus propter magnitudinem tanti spacii suspicari quod hoc 
accidat quia distantie solaris atque lunaris proxime non exquisite omnino capte sunt. Si ergo 
impossible omnino est vacuum dari, necesse est inter solem et lunam Mercurii et Veneris situm 
esse’. George of Trebizond, quoted in Regiomontanus, Defensio, fols 151v–152r.
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Without explaining how the planets’ conjunctions with the Sun undergird it, 
George takes the consensus about the order of Saturn, Jupiter, and Mars above 
the Sun to be uncontroversial. The gap of 1146 e.r. between Sun and Moon, 
however, can be neither an error nor empty: the two remaining planets must 
therefore fill it. Recall that in Almagest 9.1, Ptolemy had neither discussed in 
detail the order of the superior planets, nor mentioned the need to fill a gap 
with the ‘inferior’ ones.

We will now consider the very same matter by means of distances, not apparent 
parallax. For, since the parallaxes of Venus and Mercury are effectively imperceptible 
and make an angle much less than perceptible, we cannot easily discover the distances 
by these means.63

Here George distinguishes ambiguously between two different methods of 
computing the Moon-Sun distance, but again digresses from Ptolemy. He 
presents computation ‘by means of distances’ as an alternative to the paral-
lax method (arguably also a ‘distance’ method). Used to calculate the lunar 
distance, the parallax technique should also work theoretically for the planet 
immediately above the Moon, since its perigee is assumed to be contiguous 
to the Moon’s apogee. In fact, none of the other planets, including the Sun, 
exhibits naked-eye parallax. Pace George, Ptolemy in Almagest 9.1 thought 
that imperceptible parallaxes made measurements of distance not difficult, but 
impossible. This was just why he treated the order of the Sun, Mercury, and 
Venus as uncertain.64

The burden of the next section of the Commentaria is therefore to show 
that ‘by means of distances’, as George calls this method, one can obtain a 
solar distance independently of the eclipse measurement. The procedure is sim-
ply to add the sizes of all the intervening spheres, working upward from the 
Moon’s apogee. George here follows in outline the time-honored approach from 
the Planetary Hypotheses  to  al-Battānī  and  beyond. Given  the  lunar  apogee  in 
earth radii and assuming its equality to the perigee of the next closest planet, 
one computes in sequence the absolute distances for the radial range of motion 
of each of these two planets using the perigee-to-apogee ratio in the Almag
est’s relevant planetary model. If these two different approaches–-from parallax 
(and eclipses), and ‘from distances’ computed from the planetary models — 
yield very nearly the same result for the Moon-Sun distance, the converging 

63 ‘Nunc per distantias, non per apparentem diversitatem idipsum consideremus. Nam cum 
aspectus diversitas Veneris et Mercurii pene insensibilis sit, ac angulum multo minus sensi-
bilem faciat, non facile possumus ab ipso distantias invenire’. George of Trebizond, quoted in 
Regiomontanus, Defensio, fol. 152r.

64 Ptolemy changed his mind in the Planetary Hypotheses; see note 35.
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results would seem to indicate that the distances and the assumed order are 
correct.65 But with which of the two planets does one start?

Transposing proportionally from the distances that he [= Ptolemy] demonstrated, 
however, we will demonstrate that Mercury can be located, in immediately ascending 
[order], after the Moon, and Venus after Mercury, and then the Sun. It is therefore 
necessary, lest there be a vacuum, that the apogee of the Moon be the perigee of either 
Venus or Mercury; not Venus, however, therefore Mercury. For Mercury is recorded as 
having passed below Venus, and is faster than Venus. And it is necessary that, in circu
lar motion, the inferior be faster.66

George’s first argument for locating Mercury below Venus is empirical. It 
adduces an undocumented observation of Mercury ‘passing below’ — i.e., 
presumably in front of — Venus. If true, this alleged observation removes all 
ambiguity about the relative orders of Mercury and Venus. This is arguably the 
second item of ‘natural necessity’ to which George has appealed above. George’s 
unnamed source here is perhaps Simplicius’s commentary on the De caelo 
II.10, which reports such an observation (also uncredited, vague, and in simi-
lar language).67 Secondly, George claims that the order Moon-Mercury-Venus is 
also justified by the principle that concludes the paragraph above: ‘in circular 
motion, the inferior must be faster’. Recall that George presents his argument

65 This is no demonstration, of course, but an affirmation of the consequent. The coinci-
dence of apparently consistent results reached by two different procedures also conferred great 
reliability on Ptolemy’s solar distance (erroneously, as it happened). Neugebauer, A History of 
Ancient Mathematical Astronomy, p. 112.

66 ‘sed proportionaliter traducentes a distantiis quas ipse demonstravit, demonstrabimus 
Mercurium post lunam statim ascendendo et Venerem post Mercurium collocari; deinde solem. 
Necesse igitur est, ne vacuum detur, ut maxima distantia lune minima sit aut Veneris aut Mer-
curii. Sed non Veneris, Mercurii ergo. Nam et subiisse Mercurius Venerem scribitur; et velocior 
est quam Venus: necessariumque est ut velociores in circulari motu inferiores sint’. George of 
Trebizond, quoted by Regiomontanus, Defensio, fol. 152r.

67 Bowen, Simplicius on the Planets, p. 105, lines 19–21: ‘observations in which the star of 
Mercury is reported running beneath the [star] of Venus make it clear in fact that Mercury 
is found below  Venus’.  One  Latin  edition  reads:  ‘Quod  autem  Mercurius  sub  Venere  depre-
henditur significant observationes in quibus Mercurii stella subivisse Veneris stellam narratur’. 
Simplicius, Commentaria in quatuor libros de Caelo Aristotelis (Venice: Hieronymus Scotus, 
1555), fol. 72rb, which is close to George’s ‘Nam et subiisse Mercurius Venerem scribitur’. Sim-
plicius’s teachers had been students of Proclus, whose Hypotyposis astronomicarum positionum, 
ed. Manitius, Procli Diadochi hypotyposis, ch. 7.22–23, pp. 222–25, in a passage later used by 
Copernicus, also reports such an observation in vague terms (Venus was observed below Mars, 
just as Mercury was observed below Venus); see Giorgio Valla’s Latin translation of Proclus 
cited in Lerner et al., Nicolas Copernic. De revolutionibus, vol. III, pp. 127–28. Although the 
phrasing makes Simplicius the most likely source, George of Trebizond evidently once had ac-
cess to the Greek Hypotyposis; Monfasani, Collectanea Trapezuntiana, pp. 685–86.



 REGIOMONTANUS VERSUS GEORGE OF TREBIZOND 325

for this planetary order as a demonstration founded on a necessary principle 
and an observation. It is therefore perhaps no coincidence that Simplicius had 
also used demonstrative language for the order of Venus and Mercury: he not 
only adduced the observation, but immediately thereafter claimed (wrongly) 
that the Almagest proved this order from the two planets’ apogees and peri-
gees.68 Even more telling, George phrases his principle of motion in relation to 
the Earth, as Simplicius does (the closer to the Earth is faster), whereas Aris-
totle’s argument was dynamic, starting from the motion of the stellar sphere 
(the outermost sphere is fastest and dominates the other motions, so that the 
planets nearest to it take the longest time to ‘go through their own circles’).69 
In short, Simplicius’s Commentary on De caelo looks suspiciously like one of 
George’s sources.

68 Referring to the observation of Mercury below Venus, Simpicius writes (in Bowen’s 
translation): ‘This fact is proven as well from the account of the distance of their apogees and 
perigees, since the greatest distance of Venus is proven somehow to be the same as the dis-
tance of the Sun (so that Venus is close to the Sun), and the greatest [distance] of Mercury is 
[proven] somehow [to be] near the least [distance] of Venus, and the greatest [distance] of the 
Moon [to be] near the least [distance] of Mercury. Certainly, these facts are proven in Ptole-
my’s Syntaxis if the account of the eccentricity of the planets in transformed into an account of 
their [eccentricity] from the center of the Earth’. Bowen, Simplicius on the Planets, p. 105 [my 
italics; the verb translated by proven  is  δεíκνυμι]. Ptolemy does no  such  thing  in  the Almagest. 
For this and other problems in this passage, see Bowen, Simplicius on the Planets, pp. 211–13.

69 Simplicius writes: ‘the motions are in proportion to their distances because [planets] that 
are nearer the Earth, like the Moon, move faster, whereas those that are farther move more 
slowly in the proportion of their distances’ (Bowen, Simplicius on the Planets, p. 99). For  
Aristotle, however (De caelo 2.10; Bowen translation): ‘Let us theorize on the basis of [works] 
on astronomy about the ordering of the [heavenly bodies] — the way in which each moves in 
that some are prior and others posterior — and how they are related to one another in their 
distances, since it is discussed [in these works] sufficiently. It turns out that the motions of 
each are in proportion to their distances in that some [motions] are faster and some slower. 
That is to say, since it is supposed that the outermost revolution of the heavens is simple and 
the fastest, and that the [motions] of the others are slower and more numerous — for each 
moves in a direction opposite to the heavens along its own circle — it is actually reasonable 
that the [body] nearest the simple and primary revolution goes through its own circle in the lon
gest time, that the one that is farthest away in the least time, and that of the others the nearer 
always [goes through its own circle] in more time and the farther in less time. The reason is 
that the one that is nearest [the outermost revolution] is dominated [by it] most of all whereas 
the one farthest [is dominated] least of all on account of its distance, and the intermediate 
[bodies are] actually [dominated] in the ratio of their distances, just as the astronomers in fact 
prove’ (Bowen, Simplicius on the Planets, p. 97). On this passage, see Pellegrin, ‘The Argument 
for the Sphericity’, esp. 163–64. See also Goldstein, ‘Copernicus and the Origin’, which sees 
Vitruvius and Martianus Capella behind Copernicus’s path to heliocentrism and is pertinent 
to the controversy about ordering discussed here.
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Having settled the problem of relative planetary order to his satisfaction, 
George outlines the framework underlying his computation of the absolute dis-
tances (in earth radii) of Mercury and Venus from the Moon, beginning with 
Mercury:

The maximum distance of the Moon in e. r. is 64;10 from the center of the Earth. 
The body of any planet cannot stick out of its sphere; therefore, to the maximum dis
tance of the Moon, which goes from the center of the ecliptic to the center of its [= the 
Moon’s] body, it is necessary to add the radii of the Moon and Mercury using the same 
units, lest the body of some planet stick out of its orb. But the Moon’s radius is 0;17,32 
(e.r.), as Ptolemy demonstrated. He did not set down [the radius] of Mercury, no more 
than those of the four other planets, as it was not his purpose to investigate the diame
ters, except [those] of the Sun and Moon on account of eclipses. All [of these diameters] 
can easily be measured with instruments, however. We therefore list them as they are 
recorded, for in fact we have not used instruments, nor made any observations, nor do 
we think it worth worrying much about such a small difference.70

As George correctly notes, the Almagest does not discuss the radii of the five 
classical planets. It was in the Planetary Hypotheses that Ptolemy had given 
estimates for them.71 Thanks to the few astronomers in the Hellenistic and 
Islamic worlds with access to that work, Ptolemy’s figures became canonical in 
both Arabic and Latin treatises on cosmic dimensions. George is cavalier about 
the alleged ease of measuring planetary diameters — well-nigh impossible with 
the naked eye. After stating that he has neither used instruments, nor tried to 
measure the planetary diameters, George lists the traditional numbers. He jus-
tifies this move by asserting a negligible difference between the latter and the 
measurements he ‘easily’ could have carried out.72

70 ‘Est autem maxima distantia lune secundum quod semidiameter terre est unius partium 
64 10’ a centro terre; verum quoniam planetarum corpora nulla ex parte possunt spheras suas 
excedere, ad maximam distantiam lune que est a centro orbis signorum ad centrum corporis 
sui semidiametros suam et Mercurii secundum easdem partes addere necesse est, ne corpus 
stelle alicuius orbem excedat suum. Est autem lune semidiameter 0 17’ 32” earundem a Ptole-
meo demonstrata. Mercurii vero sicut et aliarum quatuor stellarum non ponitur ab ipso; non 
enim erat opus ad negocium suum nisi solis et lune, propter eclipses, diametros investigare. 
Capi tamen omnes possunt per instrumenta facile; eas igitur sicut capte instrumentis scribun-
tur sic ponemus. Nam nos quidem nec instrumentis nec ullis observationibus usi sumus, nec 
tamen multum curandum censemus de tam parva differentia’. George of Trebizond, quoted by 
Regiomontanus, Defensio, fol. 152r.

71 Goldstein, The Arabic Version, pp. 8–9; Van Helden, Measuring the Universe, p. 27. He 
adopted the diameter of Venus, and perhaps others, from Hipparchus; Neugebauer, A History 
of Ancient Mathematical Astronomy, pp. 21–22.

72 In the Planetary Hypotheses, the planetary diameters are credited to Hipparchus, suggest-
ing that Ptolemy did not measure them either; Goldstein, The Arabic Version, p. 8. See also 
Bowen, Simplicius on the Planets, pp. 288–89.
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2.3. Computing planetary distances
Next, George carries out a string of computations of planetary distances. 
Assuming that the planetary spheres are contiguous, he works his way upward 
from the lunar apogee using the Almagest’s perigee-to-apogee ratios for each 
planetary model. Since Almagest 9.1 precedes Ptolemy’s detailed discussions of 
these models, George’s commentary is here curiously premature. George’s first 
calculation will illustrate his procedure:

The maximum [distance] of the Moon therefore is 64;10 (e.r.); its radius 0;17, 32 (e.r.). 
Converted to the same units, the radius of Mercury is approximately 0;2,8 (e.r.). It 
is recorded as being approximately 1/28 e.r.73 Adding them together [equals] 64;29,40 
[e.r.], the perigee of Mercury’s center, where the radius of the lunar deferent is 60 parts.74

This procedure builds on assumptions (e.g., no empty spaces) and practices 
standard in Arabic and Latin astronomy.75 The most notable exception is the 
inclusion of planetary radii in the calculations. Behind this move lies a physi-
cal concern: the planets, like the luminaries, are bodies, not points. Theoreti-
cally, therefore, their dimensions matter when computing the thicknesses of the 
planetary spheres that constitute the cosmos. Treating the planets as points, as 
the Almagest and most subsequent astronomers do, is an inappropriate simplifi-
cation that implicitly concedes physical impossibilities such as planets protrud-
ing into adjoining spherical shells and therefore colliding. The radius of each 
physical spherical planetary shell must therefore be larger by the planet’s radius 
than that assumed in the Almagest’s geometrical models.

To the Almagest’s apogee of the Moon’s center, George thus adds one lunar 
radius in order to obtain what might be called the ‘physical’ apogee of its 
sphere, to distinguish it from its ordinary (geometrical) apogee, reckoned from 
the planet’s center. The point of the Moon’s body farthest from the Earth’s 
center thus marks the boundary of its sphere.

73 This figure, like the absolute dimensions of the other planets given here and in the ear-
lier  Latin  literature,  goes  back  to  the  Arabic  tradition  (primarily  via  Thābit  ibn  Qurra  and 
al-Farghānī)  and  indirectly  to  Ptolemy’s  Planetary Hypotheses. Swerdlow, Ptolemy’s Theory of 
the Distances, pp. 137–56; Van Helden, Measuring the Universe, pp. 27, 30–37. As we shall 
see below, one of the likeliest sources of George’s figures is Campanus’s Theorica planetarum: 
Benjamin and Toomer, Campanus of Novara, p. 55.

74 ‘Lune igitur maxima 64 10’; eius semidiameter 0 17’ 32”: Mercurii semidiameter in eas-
dem partes traducta 0 2’ 8” proxime. Vigesima enim et octava proxime pars diametri terre 
conscribitum esse. Simul, 64 29’ 40”, minima distantia centri Mercurii secundum quod semi-
diameter deferentis lunam est 60 partium’. George of Trebizond, quoted by Regiomontanus, 
Defensio, fol. 152r-v.

75 See the summary in Benjamin and Toomer, Campanus of Novara, p. 530.
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Figure 1. The concept behind George of Trebizond’s computation of cosmic dimensions. The 
observer is at O, the grey circles represent the bodies of 2 arbitrary planets f and q. The Al
magestlike models are represented as dashed-line circles: simplified concentric deferents of ra-
dii OC and OB carry the epicycles with centers C and B, respectively, bearing planets with 
radii Rf and Rq. The 2 dotted-line circles concentric to O show boundaries of the spheres de-
termined respectively by the ‘ordinary’ apogee of f and the ‘ordinary’ perigee of q, when the 
planets are treated as dimensionless points.

Circle S represents the contiguous physical boundaries of the two planets’ spheres, with dimen-
sions corrected by adding the planetary radii to obtain, respectively, planet f ’s ‘physical’ apogee, 
and planet q’s ‘physical’ perigee.

The same reasoning applies to the dimensions of the next planet’s sphere 
(Mercury, as George argues). Again, assuming that the spheres are contiguous 
(i.e., no empty spaces or interpenetrations of bodies), the ‘physical’ lunar apogee 
will be equal not to the perigee of Mercury’s center (as in the Almagest model), 
but to the part of Mercury’s body nearest to the Earth — one Mercury radius 
beyond the center of the planet. Adding the radius of Mercury to the Moon’s 
physical apogee now gives the absolute distance of the perigee of the center of 
Mercury’s body. Only after this correction can the Almagest’s values of Mercu-
ry’s relative perigee and apogee properly enter the computations. The Rule of 
Three that gives the absolute distance of a new planet’s apogee (prel:pabs:: arel:aabs, 
where aabs is the unknown) always uses Almagest values for the planet’s center. 
Since the result of the computation gives the new ‘ordinary’ apogee, it must 
always be corrected to obtain the new physical apogee.

Curiously, George of Trebizond shares this unusual procedure with the The
orica planetarum of Campanus of Novara (d. 1296).76 Their computations of 

76 Benjamin and Toomer, Campanus of Novara, p. 56.
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planetary distances have more in common than the usual parameters they draw 
from the Almagest and the Hellenistic and Arabic traditions on cosmic dimen-
sions; they also share near-identical numbers for the distances and sizes of the 
planetary spheres up to, and including, the Sun. The hypothesis that George 
drew on Campanus’s Theorica planetarum for his exposition will grow stronger 
as we proceed.

Since George believes (on unspecified empirical grounds) that Mercury is 
below Venus and necessarily closest to the Moon, he next computes the dimen-
sions of Mercury’s planetary sphere, starting from its perigee. George first gives 
the answer, then the computation:

According as the radius of Mercury’s deferent is 60 parts, its perigee is 33;04. For 57 
parts of this sort is the epicycle center’s perigee that is opposite to the apogee, which 
[57 parts] are decreased by approximately 1;26 in the signs of Gemini and Aquarius. 
Indeed, the epicycle radius is 22;30 parts of this sort. The perigee of Mercury’s center 
therefore is the remainder of 33;04, from which, by translation [= of proportions], we 
find the apogee of the same planet in the following manner.77

This calculation of Mercury’s perigee confirms the oddity of George’s decision 
to treat planetary distances here, since the Almagest so far has discussed only 
the models for the Sun and Moon. Whereas the Moon had already been dis-
cussed in books 4–6, the five classical planets are all discussed after 9.1, even 
though the parameters of their models are needed to compute planetary dis-
tances.

Although the details of the Almagest’s Mercury model do not enter into 
George’s computation, its main feature matters. Ptolemy constructed this model 
to generate the one apogee and the two perigees that he had found.78 For the 
other planets, the apogee and perigee of the epicycle center are 180° apart and 
define the line of apsides. The perigee of Mercury’s epicycle center, however, is 
not on the line from the apogee through the Earth. (In Figure 2, the straight 
vertical line that cuts the model in half, passing through the centers of the def-
erent and the Earth, ‘C mundi’, at the intersection of the 2 lines forming the 
X in the figure). The epicycle center has 2 perigees approximately 120° from 
the apogee on either side of the line of apsides (not shown, but approximately 
at 4 o’clock and 8 o’clock on the inside of the white ring). Ptolemy generates 
this configuration with a ‘crank mechanism’ (the smallest circle, with center

77 ‘secundum autem quod semidiameter ipsius Mercurii est 60, minima eius est 33 04’. Est 
enim 57 partium huiusmodi minima centri epicycli distantia que maxime opponitur; qua mi-
nores fiunt in Geminis et Aquario gradibus 1 26’ proxime. Semidiameter vero epicycli est par-
tium  huiusmodi  22  30’. Quare  relinquitur minima  distantia  centri Mercurii  33  4’,  ex  qua  per 
traductionem maximam distantiam eiusdem stelle invenimus hoc modo’. George of Trebizond, 
quoted by Regiomontanus, Defensio, fol. 152v.

78 The lunar model also generates two perigees, but only the apogee mattered as the start-
ing point for George’s computations of the sizes of the other planetary spheres.
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Figure 2: The Mercury model from Georg Peuerbach’s Theoricae novae planetarum in Ratdolt’s 
first Sphaera mundi compendium (Venice, 1482) and based on Regiomontanus’s first edition. 
Since Mercury is not depicted, the lines inside the epicyclic orb presumably represent the lat-
ter’s 3 components of longitude and latitude. By courtesy of the Department of Special Collec-
tions, Memorial Library, University of Wisconsin-Madison.

‘C parvi circuli’) that carries the center of Mercury’s deferent (‘C def[rentis]’), 
which in turn carries the epicycle center. By moving the epicycle center on the 
deferent’s rim now towards, now away from, the Earth, the device varies the 
apparent size of the epicycle for the observer and generates 2 perigees.79

George’s numbers derive from this model. He begins by giving the perigee’s 
value as 33;04 units (60ths of the deferent radius). Instead of proceeding, he 
generates this number with a retroactive computation. Subtracting the eccen-
tricity of the Earth (3) from the deferent radius (60) equals 57 units. Subtract-
ing the epicycle radius (22;30) from this figure yields 34;30, which would be 
Mercury’s perigee according to a standard Almagest model with apogee and 
perigee on the same diameter. But Mercury has two perigees, which are not on 
the line of apsides. By subtracting 1;26 from 34;30, George gets 33;04, the cor-
rect ‘relative’ perigee of Mercury’s center (in 60ths of the deferent radius). The 
arithmetic works [57- (22;30 + 1;26) = 33;04], but George does not say where 
he got his correction of 1;26, which looks suspiciously like the complement 
needed for the right answer. Oddly, he has neither carried out the requisite full 
computation, nor even computed Mercury’s perigee straightforwardly from the 
values for the epicycle center’s perigee and the epicycle radius in Almagest 9.9.80

79 Hartner, ‘The Mercury Horoscope’, esp. 110–18.
80 In that chapter, Ptolemy had calculated the parameters of the Mercury model and 

obtained 55;34 for the perigee of the epicycle center. Although Ptolemy did not do so him-
self, subtracting the epicycle radius from this figure yields Mercury’s perigee directly (55;34–
22;30 = 33;04). See Neugebauer, A History of Ancient Mathematical Astronomy, p. 164. This 
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Although obscured by George’s terminology, the schema is a simple Rule 
of Three that he will apply repeatedly in series, from the Moon’s apogee in 
e.r. to the sphere of the fixed stars. The problem with computations beyond 
the Moon, however, is precisely that the planetary order is unknown and 
that George claims to be demonstrating it. He thus justifies the placement of 
Mercury next to the Moon with a vague, undocumented claim for a sighting 
of Mercury below Venus. Based on this alleged observation, George treats 
Mercury as necessarily next to the Moon, with Venus immediately thereafter. 
To confirm this order, he will now show that Mercury and Venus, in ascending 
order, fit almost perfectly between the Moon and the Sun, thus vindicating the 
traditional order.

The first [number is] 33;4,30 approximately for the same [= least] distance, where the 
terrestrial radius is one [sic!].81 [The second is 64;29,40 e.r., evidently silently rounded 
up to 64;30]. The third [is] 91;30 for Mercury’s apogee,82 where the radius of its def
erent is 60 parts. Having multiplied the second by the third and divided the result by 
the first, one obtains 178;28 (where the Earth’s radius is one) from the Earth’s center 
to Mercury’s center in its distance ‘simply’, that is, when the epicycle is at the maximum 
of the eccentric and the planet at the maximum of the epicycle.83

George shares this general procedure with many predecessors. The ‘first num-
ber’ (1) is the planet’s perigee in relative terms (60ths of its deferent radius), 
but it is written here with an additional 30″ for which I cannot account. The 
second (2) is the planet’s perigee in absolute terms (e.r.); the third (3) is the 
planet’s apogee in relative terms (in 60ths of the deferent radius). The fourth 
number (4), not named as such, is the sought quantity, the planet’s apogee in 
absolute terms (e.r.). Thus, for a given planet:

is also the operation by which Campanus of Novara obtains the perigee. With the exception 
of 1;26, the other numbers match those of Campanus; Benjamin and Toomer, Campanus of 
Novara, pp. 238–39.

81 In 60ths, not Earth radii. The error may be the result of a confusion of the very similar 
numbers for Mercury’s perigee in 60ths (33;4) and the Moon’s perigee in e.r. (33;33). Regio-
montanus will pounce on this slip (Defensio, fol. 158v).

82 One can visualize this apogee as the result of stretching end-to-end (in a straight line) 
all the elements of Ptolemy’s ‘crank mechanism’. Although not computed in the Almagest, this 
figure is the sum of the epicycle radius (22;30) and the apogee of the epicycle center (69), 
which is in turn the sum of the deferent radius (60), the diameter of the ‘crank’ circle (6), and 
the equant-Earth distance (3); Toomer, Ptolemy’s Almagest, pp. 459–60. The sum also appears 
in Campanus (Benjamin and Toomer, Campanus of Novara, pp. 238–39).

83 ‘Primus 33 4’ 30” proxime eiusdem distantie secundum quod terre semidiameter est 
unius; tertius 91 30’ maxime distantie Mercurii secundum quod semidiameter sui deferentis est 
60 partium; diviso per primum numero producto ex multiplicatione secundi in tertium fiunt 
178 28’ partes secundum quod semidiameter terre est unius a centro terre ad centrum Mercurii 
in distantia eius simpliciter; hoc est quando epicyclus est in maxima eccentrici et stella in ma-
xima epicycli’. George of Trebizond, quoted by Regiomontanus, Defensio, fol. 152v.
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(1) perigee (60ths) (3) apogee (60ths)
––––––––––––––– = –––––––––––––––
(2) perigee (e.r.) (4) apogee (e.r.)

This proportion underlies George’s effective formula:
(4) apogee (e.r.) = (3) apogee (60ths) × (2) perigee (e.r.) / (1) perigee (60ths),

which he repeatedly expresses as ‘having multiplied the second by the third 
and divided the result by the first, one obtains’ the planet’s apogee in e.r. The 
adverb ‘simply’ indicates that it must still be corrected for the size of the planet 
itself.

Walking through the Mercury computation will not only illustrate George’s 
application of this (standard) procedure and his foibles, but also shed some 
light on his sources and aids. The apogee of Mercury’s center in e.r. should be 
the product of the second (not specified in George’s description of the opera-
tion) and third numbers, divided by the first.

Using the numbers George gives in describing the operation and supplying 
the omitted second number, 64;29,40 (his computation of the perigee of Mer-
cury’s center), one obtains:

(64;29,40 × 91;30) / 33;04,30 = 178;25,12

This is not the result he gives. Using the rounded value of 33;04 sixtieths that 
he had given earlier for the denominator, one obtains

(64;29,40 × 91;30) / 33;04 = 178;27,53, still off the mark.

His result comes from yet another (silent) rounding, this time of Mercury’s 
perigee. Thus: (64;30 × 91.30) /33;04 = 178;28. As it happens, both roundings 
and this answer also appear in Campanus’s Theorica planetarum, the beginning 
of a pattern.84

Whether relative or absolute, the perigees and apogees in this proportion are 
the distances from the Earth to the center of the planet. Thus George reminds 
the reader: ‘Lest there be a vacuum, this apogee of Mercury becomes Venus’s peri
gee, having added the radius of each, lest the planet stick out of its sphere’.85

To the apogee of the planet’s center used in the Almagest, one must add the 
planet’s radius. Likewise for Venus, which is also a finite body.

Again, to every apogee in e.r. derived from the Almagest’s proportions, one 
must add the radii of both the planet and the next higher planet. Only this 

84 Benjamin and Toomer, Campanus of Novara, pp. 238–34.
85 ‘Hec Mercurii maxima, ne vacuum detur, minima fit Veneris, semidiametro utriusque 

addita ne stella spheram suam excedat’. George of Trebizond, quoted by Regiomontanus, De
fensio, fol. 152v. Copernicus made a similar move in the Commentariolus; Swerdlow, ‘The De-
rivation and First Draft’, pp. 466–67.
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corrected figure can be set equal to the Almagest’s perigee for the next higher 
planet and used in the Rule of Three to compute the corresponding new apogee.

As we have said, however, Mercury’s radius is 0;2,8; that of Venus, 0;26,40: [added 
all] together, 178;56,48 [e.r.]. This second number is placed in conversion. We convert 
to these parts [= e.r.]; the first is the number of the same distance, where the radius of 
Venus’s deferent is 60, and he [Ptolemy] has demonstrated it to be 15;35 in book 10; the 
third, the apogee of Venus, in 60ths of Venus’s deferent, is 104;25. Having multiplied 
the second by the third, and divided by the first, one obtains 1199;2,18, the distance in 
e.r. of Venus’s center simply.86

George’s figure for Mercury’s diameter is standard, but that for Venus has no 
counterpart in the earliest literature on planetary distances. It matches, however, 
Campanus of Novara’s number, which apparently came from misinterpreting 
the  Latin  translation  of  al-Farghānī’s  figure  for  Venus’s  diameter.87 The sum 
that George gives for Venus’s ‘physical’ perigee is, like his other numbers, 
identical to that in Campanus, since both men take the rare step of including 
planetary radii in the sizes of the planetary spheres. This approach, combined 
with the duplication of the tell-tale error for Venus’s diameter, strongly suggests 
that George of Trebizond relied on Campanus’s Theorica planetarum when 
computing his cosmic dimensions.

Using the same procedure as above:
(4) apogee (e.r.) = (2) perigee (e.r.) × (3) apogee (60ths)/ (1) perigee (60ths)

For the case of Venus:
apogee of Venus = 178;56,48 × 104;25 / 15;35 = 1199;2,18,

George’s figure, which is also identical to Campanus’s.
Adding to these the radii of Venus and the Sun in the same units, one obtains the 
perigee of the Sun’s center. As we have said, however, the radius of Venus measured by 
instruments is 0;26,40, as handed down; that of the Sun is 5;30 of the same parts [e.r.], 
as Ptolemy demonstrated in book 5, for a total of 1204;58,58 [e.r.]. This is the Sun’s 
perigee, from the Earth’s center to its own center, [when] situated in the perigee of its 

86 ‘Est autem semidiameter Mercurii, ut diximus, 0 2’ 8”; Veneris, 0 26’ 40”; simul, 178 
56’48". Hic numerus secundus ponitur in traductione; ad has enim partes traducimus. Primus 
est eiusdem distantie numerus secundum quod semidiameter deferentis Venerem est 60 et est 
15 35’ in decimo libro demonstratus ab ipso; tertius, maxima Veneris secundum easdem partes 
deferentis Venerem distantia est 104 25’; et ab eodem decimo libro colligitur. Multiplicato se-
cundo in tertium et producto partito per primum, haberetur 1199 2’ 18”, maxima distantia 
centri Veneris simpliciter secundum partes de quibus semidiameter terre est unius’. George of 
Trebizond, quoted by Regiomontanus, Defensio, fol. 152v.

87 Benjamin and Toomer, Campanus of Novara, pp. 326–27, 433. The sexagesimal equiva-
lent  of  al-Farghānī’s  value  is  0;18.
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eccentric, where the Earth’s radius is one part, through which [distance] its maximum 
is easily converted into similar units.88

To calculate the ‘physical’ perigee of the Sun (the edge of its body closest to 
the Earth), George of Trebizond, as usual, adds the radii of both Venus and 
the Sun to the apogee of Venus’s center. Again, the computations match those 
of Campanus.89

The first set down is the Sun’s perigee demonstrated in book 3, where the radius of its 
eccentric has 60 parts; and it [= the perigee] is 57;30; the second, the same minimum 
distance in e.r., is 1204;58,58; the third, the maximum in 60ths of the eccentric’s radius 
is 62;30. After multiplication and division, they yield 1309;45,50 — this is the Sun’s 
apogee in e.r.90 And thus, from perigee to apogee, there are approximately 105 parts of 
this sort [e.r.],91 from which it is clear that the Sun’s distance of 1210 similar parts [e.r.] 
(which he computed from the angle that does not vary sensibly and is subtended by the 
body’s diameter) is approximately minimum.92

From these computations, George concludes that Ptolemy’s figure for the solar 
distance, reached using eclipses, was near perigee. He might be paraphrasing 
Campanus, who says as much and whose parameters and computations match 
George’s exactly.93

88 ‘His si addideris semidiametros Veneris et solis secundum easdem partes, habebitur min-
ima distantia centri solis. Est autem semidiameter Veneris, ut diximus, 0 26’ 40” instrumentis 
capta, ut traditur; solis, 5 30’ earundem partium, sicut Ptolemeus in libro quinto demonstravit; 
simul, 1204 58’ 58”. Hec est distantia solis minima a centro terre ad centrum ipsius in minima 
sui eccentrici distantia collocati secundum quod semidiameter terre est partis unius per quam 
maxima eius ad partes similes facile traducitur’. George of Trebizond, quoted by Regiomonta-
nus, Defensio, fols 152v–153r.

89 Benjamin and Toomer, Campanus of Novara, pp. 326–27, 332–33.
90 (1) perigee (60ths) : (2) perigee (e.r.) :: (3) apogee (60ths) : (4) apogee (e.r.)
57;30 : 1204;58,58 :: 62;30: apogee of the Sun. Therefore the Sun’s apogee = 

1204;58,58 × 62;30 / 57;30 = 1309;45,50, which matches George’s figure.
91 1309;45,50–1204;58,58 = 104;46,52, rounded up to 105, as in Campanus; Benjamin 

and Toomer, Campanus of Novara, pp. 332–33.
92 ‘Primus ponitur minima distantia solis demonstrata in libro tertio secundum quod semi-

diameter sui eccentrici habet 60 partes; et est 57 30’. Secundus, eadem minima secundum 
quod semidiameter terre est unius, 1204 58’ 58”; tertius, maxima secundum partes semidiame-
tri eccentrici et est 62 30’. Faciunt post multiplicationem et partitionem 1309 45’ 50”; hec est 
maxima solis distantia secundum partes de quibus semidiameter terre est unius. Et sic a min-
ima ad maximam sunt partes similes 105 proxime. Unde patet solis distantiam 1210 similium 
partium quam collegit ex angulo qui non variatur sensibiliter subtenso a diametro corporis eius 
minimam esse proxime’. George of Trebizond, quoted by Regiomontanus, Defensio, fol. 153r.

93 cf. Campanus: ‘the distance between the center of the Sun’s body and the center of the 
earth stated by Ptolemy [1210 e.r.] … is, strictly speaking, not the distance of the point of 
greatest distance or of the point of least distance, but of a point on the [the Sun’s] eccen-
tric not far removed from the least distance’ (Benjamin and Toomer, Campanus of Novara, 
p. 333). He emphasizes his ‘own very exact calculations’ vs. Ptolemy’s ‘rough’ ones, but notes 
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He [Ptolemy] did not want to inquire by proportions into these various easy matters, 
since he was focused on providing the foundations for all the items from which he 
who understands him [= Ptolemy] could easily infer other things. To this [point], it 
is also clear that the 5 sixtieths of the solar eccentric’s radius (the apogee’s excess over 
the perigee) equal approximately 105 parts in e.r. And thus 1/120th of the eccentric’s 
diameter is found to contain the entire Earth diameter approximately 21 times.94

George is pleased with these results, which he sees as supplying the demons-
tration of planetary order missing in the Almagest:

We have therefore demonstrated that the order of the planets is the one that Ptolemy 
posited. For this reason, those who place Mercury and Venus above the Sun do nothing 
but make a vacuum of the whole space between the lunar apogee and the solar perigee, 
which is approximately 1140;48,58 e.r.95 The distances of Venus and Mercury fill this 
astonishing space to a T, which the demonstrator himself can see from the thickness of 
the globes. For the Moon’s apogee is approximately 64;30 [e.r.],96 which is the perigee 
of Mercury, the apogee of which is approximately 178;56 in the same units [e.r.]. After 
subtraction, the remainder is the thickness of Mercury’s globe, 114;26 in the same 
units [e.r.]. In turn, since Venus’s perigee is 178;56, if you subtract these parts from 
approximately 1204;59[e.r.; the solar perigee], the remainder is the thickness of Venus’s 
globe, approximately 1026;03 in the same units [e.r.]. Together, the two orbs of Mercury 
and Venus therefore make a thickness of approximately 1140;29 of these same parts 
[e.r.], which space we also approximately computed between the Moon’s apogee and the 
Sun’s perigee. Thus, by demonstrations, everything squares everywhere.97

that the difference between them is negligible; Benjamin and Toomer, Campanus of Novara, 
pp. 332–33.

94 ‘Noluit autem hec facilia et varia proportionaliter inquirere quoniam radices solummodo 
ad omnia tradere studuit; quibus qui eum intelligit, facile cetera consequentur. Huic etiam pa-
tet quod quinque partes de 60 semidiametri eccentrici solis quibus maxima distantia minimam 
excedit, faciunt 105 partes proxime(?) de partibus de quibus semidiameter terre est unius. Et 
sic pars una de 120 diametri eccentrici solis invenitur continere totam diametrum terre vicibus 
xxi proxime’. George of Trebizond, quoted by Regiomontanus, Defensio, fol. 153r.

95 This number 1140;48,58 (64;10 subtracted from 1204;58,58) shows that George, despite 
many other numerical identities and conceptual similarities with Campanus, did not uncrit-
ically copy verbatim from him, but recomputed the latter’s figures. For reasons that remain 
unclear (see Benjamin and Toomer, Campanus of Novara, pp. 436–37), Campanus somehow 
got 1138, a number consistently repeated in the entire manuscript tradition of his Theorica 
planetarum. George’s other numbers are those of Campanus, sometimes rounded; Benjamin 
and Toomer, Campanus of Novara, pp. 326–27.

96 This is significantly rounded up from 64;27,32 — the apogee of the lunar body’s center, 
to which one should, on George’s account, add the lunar radius in e.r.

97  ‘Demonstratus  ergo nobis  ordo  erraticarum  stellarum est  qui  a Ptolemeo ponitur. Quare 
qui Mercurium et Venerem supra solem collocant, nihil aliud agunt quam ut totum spacium a 
maxima lune ad minimam solis, quod est 1140 48’ 58” proxime, secundum quod semidiameter 
terre est unius, vacuum sit; quod spacium mirum in modum distantie Veneris atque Mercurii 
ab ipso demonstrante ad unguem replent quod a grossitie globorum perspicuum sit. Nam lune 
maxima est 64 30’ proxime; et eadem est minima Mercurii, cuius maxima est 178 56’ proxime 
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Arguing from the great fit that he sees in his computations, George claims to 
have demonstrated the traditional order of Moon, Mercury, Venus, and Sun, in 
ascending order from the Earth’s center.

2.4. The shadow of Campanus of Novara
Here we must briefly take stock of the parallelisms between Campanus and 
George so far. The identity of many of the fundamental numbers in the two 
works is to be expected, for they come directly (or are one arithmetic ope-
ration away) from those in the Almagest’s models, and the computations are 
straightforward. More unusual are the parallel decisions of both Campanus 
and George to compute the planetary spheres’ size not from the planets’ cen-
ters, but from their bodies’ outermost edges.98 Almost all of George’s results 
and procedures are thus identical to those of Campanus. Even more significant 
is George’s apparent use of Campanus’s error for the diameter of Venus.99 In 
the computations of the interval between the Moon and the Sun, the sole dif-
ference between George of Trebizond’s values and those of Campanus is the 
calculation of the space between lunar apogee and solar perigee. Here, whereas 
the entire Campanus manuscript tradition seems to have propagated a copying 
error, George produced the correct figure, apparently perhaps because he com-
puted or recomputed it.100

The emerging hypothesis of George’s reliance on Campanus of Novara 
gains more plausibility in the following passage, in which George brings up an 
unusual argument for the traditional planetary order:

This is why I cannot stop marveling at this man Ptolemy and proclaim his sagacity and 
discretion; for him in such a matter, the authority of the ancients sufficed who named 
the seven days, by the revolution of which all time endures, for the seven planets. Thus, 
wherever you start, if you assign one hour to [each of ] the individual planets and [if ] 
you do this according to the planetary order, the analogous hour of the following day 
will belong to the planet that names the day. This planet is the one that follows the 

earundem; facta subtractione, remanet grossities globi mercurialis 114 26’ earundem. Rursus 
quia minima Veneris est 178 56’ si has partes subtraxeris a 1204 59’ proxime minima solis, 
remanet grossities globi Veneris 1026 3’ proxime earundem. Duo autem orbes Mercurii atque 
Veneris simul faciunt grossitiem earundem partium 1140 29’ proxime, quod spatium etiam 
proxime colligebamus inter maximam lune et minimam solis. Ita undique omnia demonstra-
tionibus coacta quadrant’. George of Trebizond, quoted by Regiomontanus, Defensio, fol. 153r.

98 Al-ʿUrḍī  (d.  1266)  had  done  so  as  well;  his  discussion  of  planetary  distances  and  sizes  
appears anonymously in Goldstein and Swerdlow, ‘Planetary Distances and Sizes’, esp. ca. 
p. 148. Subsequent evidence suggests that ʿUrḑī  was  the  author:  Saliba,  ‘The  First Non-Ptole-
maic Astronomy’, pp. 571–76; see also Van Helden, Measuring the Universe, pp. 32–33.

99 Benjamin and Toomer, Campanus of Novara, pp. 326–27, 433.
100 George correctly obtained 1140;29 whereas the Campanus manuscript tradition consis-

tently propagated 1138; Benjamin and Toomer, Campanus of Novara, pp. 436–37.
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two intervening ones.101 Thus were the days denominated in the customs of nearly all 
peoples.102

This passage seems to paraphrase a similar argument in Campanus’s Theorica 
planetarum, in which the planetary order ‘assumed by Ptolemy’ (in George’s 
words) is justified by the fact that it underlies the ‘ancient’ system of ‘regent’ 
hours that names the weekdays. Any other planetary order would disrupt that 
universal schema. George congratulates Ptolemy for following the ancients and 
for not needing more than their authority, a point that will provoke Regio-
montanus to outrage.103 This discussion adds another plausibility argument for 
George’s dependence on Campanus: both discuss the weekly sequence after set-
tling the order and distances of the spheres of the Sun and inferior planets.

After this digression, George returns briefly to Almagest 9.1:
It is also said to be most natural to separate with the intermediate Sun the three planets 
that can be any distance from the Sun from the two that cannot, so that three planets 
are above the Sun and three below it. Thus has he referred very secretly to the Sun’s 
being like the heart of the universe and to the reason/explanation of the [planetary] 
speed. Those that are faster than the Sun sometimes follow, sometimes precede. Those 
that are faster in circular motion are lower. These things were sufficient for him [= 
Ptolemy], since he did not doubt that this matter could most certainly be demonstrated 
by means of things that would be demonstrated later. I am therefore surprised that 

101 This astrological schema starts below the primum mobile, descending from Saturn to 
the Moon using the ‘traditional’ 7-planet sequence (here credited to Ptolemy). Following that 
sequence, one assigns a planet to each of the 24 hours of the day, with the first hour both 
‘ruling’ and naming the day. This sequence of hours will generate the weekly sequence that we 
still use, thus — so the argument goes — attesting to the correctness of the planetary order 
underlying the sequence. For example, on Day 1 (‘Satur[n]day’), the 24 hours will run through 
3 complete planetary sequences (3 × 7 = 21 hours) and begin the 4th sequence (with Saturn, 
Jupiter, and Mars naming the last 3 hours of day 1). The first hour of day 2 will be the next 
in the hourly planetary sequence: the Sun will thus name both the next hour and the entire 
next day (Sunday); and so on. A simple rule can generate the weekly sequence of planetary days 
without all the enumeration: to find the name of the next day (and its first hour), skip over 
two planets in the descending ‘Ptolemaic’ sequence: Saturn (day 1 = Saturday) [skip Jupiter 
and Mars], Sun (day 2 = Sunday) [skip Venus and Mercury], Moon (day 3 = Monday) [skip 
Saturn and Jupiter], Mars (day 4), etc.

102 ‘Unde mirari soleo et prudentiam et modestiam hiuis viri Ptolemei dico; suffecit sibi 
ad tantam rem priscorum autoritas qui dies septem quorum revolutione cuncta tempora con-
stant septem planetarum nominibus nominarunt; ita ut undecumque incipias si singulis plane-
tis horam unam attribuas idque ordine dicto planetarum facias erit sequentis diei similis hora 
planete a quo dies denominata est. Is planeta est qui sequitur duobus interiectis. Sic in institu-
tione omnium fere gentium dies denominati fuerunt’. George of Trebizond, quoted by Regio-
montanus, Defensio, fol. 153r-v.

103 Benjamin and Toomer, Campanus of Novara, pp. 332–35, lines 538–48. At Defensio, 
fols 158v–159r, Regiomontanus attacks this imputation of subservience to authority.
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some mathematicians who comment [on the issue] have dared to grunt against a truth 
that is altogether clear.104

Here, George starts from the plausibility argument in Almagest 9.1. The ratio-
nale for planetary order is the Sun’s separation of the three planets visible in 
opposition from the two that never are. Into this criterion, George reads Ptole-
my’s most secret (occultius) endorsement of the analogy of the heart to the Sun 
and the principle of a linkage between a planet’s speed and its distance from 
the center of the universe. Implicitly conceding that Ptolemy did not demon-
strate the planetary order, George suggests that no proof appears at the begin-
ning of Almagest 9.1 for reasons of presentation, not because such a proof is 
impossible. The lacuna is a concession to demonstrative sequence. In George’s 
opinion, the premises required for such demonstration appear only later in the 
Almagest. As George’s concluding sentence shows, this interpretation has crit-
ics, left unidentified.

These final remarks highlight several oddities about George’s opening com-
mentary on book 9. Why does he present here a long and detailed argument 
for planetary order and spacing? Why does he insist on calling it a demonstra-
tion, when commenting on a passage in which Ptolemy states explicitly that 
planetary order must remain uncertain without evidence of parallax? George 
apparently thought that he could improve on the Almagest’s presentation by 
moving into his commentary on book 9 a full discussion and putative demon-
stration of planetary order, both of which Ptolemy had allegedly omitted to 
discuss more pressing matters.

George says neither what, nor where, are the ‘things that would be demon-
strated later’. Most obviously, by Almagest 9.1, the use of relative apogees and 
perigees had been determined only for the two luminaries. The models for the 
five classical planets are all discussed thereafter. The opening of book 9, how-
ever, is Ptolemy’s last word on planetary order in the Almagest. He postponed 
such a discussion to the Planetary Hypotheses, in which he computed the thick-
nesses of the planetary spheres and assigned values to the planets’ diameters. 
The full text of the Planetary Hypotheses had been directly accessible to only 
a few scholars in Islamic civilization and to none in the Latin world.105 Never-

104 ‘Naturalius etiam esse dicitur separare tres stellas que per omnem distantiam possunt 
removeri a sole a duabus que id facere non possunt, per medium solem ut tres super solem 
et tres infra solem planete sunt. Ita occultius quasi cor mundi solem esse et velocitatis ratio-
nem tetigit. Velociores enim sole sunt qui eum modo sequuntur, modo precedunt. Velociores 
vero in circulari motu inferiores sunt. Hec illi suffecerunt quia non dubitavit ab iis que postea 
demonstraturus  erat  posse  rem  istam  certius  demonstrari.  Quare  miror  nonnullos  quos  inter 
mathematicos ennarant grunnire adversus veritatem sic undique apertam fuisse ausos’. George 
of Trebizond, quoted by Regiomontanus, Defensio, fol. 153v.

105 Bessarion owned three partial Greek manuscripts of the work (Venice, Bibilioteca Na-
zionale Marciana, Z314, Z323, and Z324), which Heiberg used for the Teubner edition: Hei-
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theless, the numerical values for planetary size and the strategies for comput-
ing planetary distances in the Planetary Hypotheses diffused widely. Its values 
for  the  planets’  apparent  diameters  turn up  in  the  treatises  of  al-Farghānī’  and 
al-Battānī,  among  others,  but  without  an  attribution  to  Ptolemy.  In  fact,  Pto-
lemy was so far from demonstrating a planetary order in Almagest 9.1 that he 
only alluded to a plausible one without spelling out its details. This reticence 
became the springboard for George’s attempt to ‘demonstrate’ both the tradi-
tional order and sizes of the planetary spheres. Oddly, despite the importance 
George ascribed to the alleged observation of Mercury passing below Venus, he 
did not comment on the difference it would have made to Ptolemy’s discussion.

Strikingly, at the page break at the top of fol. 153v of the Defensio, Regio-
montanus inserted the following marginalium:

the three superiors are linked to the Sun by their epicycle; the three inferiors, not by 
the epicycle, but by the motion in longitude; this can be one rhetorical reason for the 
position and order of the planets. Why did Nature not place the five retrogrades in 
one region? Why did she not notice the rationale of sex?106

This reading note occurs in the middle of the multi-page quotation from 
George, which makes its force ambiguous. Is Regiomontanus talking to him-
self? addressing George? both? The first point — the various linkages between 
the planets and the Sun — is familiar and straightforward. Campanus of 
Novara had made it in his Theorica, as had Johannes de Fundis and Peuerbach 
in their own Theoricae novae planetarum.107 Indeed, Regiomontanus himself 
had  made  this  objection  in  his  copy  of  al-Biṭrūjī’s De motibus celorum.108 His 
first comment here takes the general structure of a near-traditional order for 
granted. He does not, however, take a position on the relative planetary order 
within each category. Saturn, Jupiter, and Mars are linked to the Sun by their 
epicycle (each planet revolves about the center of its epicycle in lock-step with 
the mean Sun). Next comes the Sun itself — in an intermediate position, as 
three bodies remain. Finally, Regiomontanus groups Venus and Mercury (in an 

berg, Claudii Ptolemaei opera, vol. II, pp. viii, xi, clxvi. See also Mioni, Codices graeci, vol. II, 
pp. 27, 43, 46. All three manuscripts end before the cosmological second part of book 1, which 
survives only in Arabic and Hebrew and was mistakenly omitted from Heiberg’s edition; Gold-
stein, The Arabic Version, p. 3.

106 ‘Tres superiores per epicyclum soli colligantur; tres vero inferiores, non per epicyclum 
sed per motum longitudinalem; hec esse potest una ratio rethorica situs planetarum et ordinis. 
Cur non quinque retrogrados in una parte natura locavit? Cur non animadvertit sexus ratio-
nem qualitatem?’ Regiomontanus, Defensio, fol. 153v, top margin.

107 Benjamin and Toomer, Campanus of Novara, pp. 306–07; Pedersen, ‘The Theorica 
planetarum and its Progeny’, esp. pp. 75–77; Peuerbach, Theoricae novae planetarum, [9v] in 
Schmeidler, Joannis Regiomontani opera collectanea, p. 772; Aiton, ‘Peurbach’s Theoricae novae 
planetarum’, p. 23.

108 Nuremberg, Stadtbibliothek, Cent V 53; see Zinner, Leben und Wirken, pp. 61–62.
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unspecified order) with the Moon as the ‘three inferiors’ that share a longitudi-
nal linkage with the Sun. He does not spell out his reasoning, but a solar com-
ponent famously links the deferents of Venus and Mercury (they move with 
the mean Sun), the lunar phases, and the ‘crank mechanism’ of the refined 
lunar model. This rationale for the traditional taxonomy arguably improves on 
Ptolemy’s argument, which lumped the Moon with Venus and Mercury despite 
its unbounded elongation.

After identifying this first argument as ‘rhetorical’, Regiomontanus uses 
questions to propose two equally rhetorical organizational criteria.109 The 
language seems counterfactual, as the negation and the perfect tense suggest: 
why did Nature not do x or notice y? As we shall see, however, Regiomon-
tanus believes that the planetary order is genuinely uncertain. Nature’s ratio-
nale is precisely what must be established. The first alternative groups all the 
planets with retrograde motion together. Although the second argument also 
appears counterfactual, Regiomontanus will later explore it as a possible order 
(i.e., Venus, contiguous to the Moon, followed by the hermaphroditic Mercury, 
and the 4 male planets, from the Sun to Saturn). Despite its ambiguities, the 
marginalium clearly shows that Regiomontanus finds the reasons underlying 
Nature’s choice puzzling, and the standard rationale for the order of Sun, Mer-
cury, and Venus unconvincing.

Returning to the text, George of Trebizond continues:
I am, however, altogether baffled by Theon [of Alexandria], whose exposition of 
Ptolemy’s demonstrations perhaps follows [that of ] others without understanding.  
I do not see — nor does he say — what else, indeed, could lead him to posit the 
order of the spheres according to Plato by ignoring demonstrations? Indeed, if some
one wanted to demonstrate these things by parallax, he should simply use an instru
ment to get the parallax of Mercury at apogee or of Venus at perigee, for it is nearly 
the same; and everything relevant to this matter will be demonstrated since, from 
the first [measurement], one can get the lunar apogee and, from the other, the  
solar perigee.110

In this passage, George categorizes Theon as a follower of Plato’s planetary 
order rather than Ptolemy’s. His reading suggests that the manuscript he used, 
presumably also borrowed from Bessarion,111 belonged to the ‘Byzantine recen-

109 I take una here to be emphatic and enumerative.
110 ‘De Theone autem omnino stupesco qui demonstrationes Ptolemei exponit non intel-

ligens  forsan  aliorum  secutus.  Quid  enim  aliud  inducere  ipsum  potuit  ut  spherarum  ordinem 
secundum Platonem spretis demonstrationibus poneret, nec ipse dicit, nec ego video. Verum si 
quis per diversitatem aspectus demonstrare ista voluerit, studeat habere diversitatem aspectus 
Mercurii instrumento in maxima distantia aut Veneris in minima simpliciter, idem enim pene 
est; et omnia que ad rem pertinent demonstrabuntur, cum hinc maxima lune illinc minima 
solis habeatur’. George of Trebizond, quoted by Regiomontanus, Defensio, fol. 153v.

111 Monfasani, George of Trebizond, p. 74.
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sion’ of Theon’s commentary. Ioanna Skoura’s work shows that the mischief 
comes from a missing privative alpha in the manuscript tradition of book 
9.1:  βέβαιον  vs.  the  correct  ἀβέβαιον).  The  meaning  of  ἀβέβαιον  (‘unsteady’, 
‘unconfirmed’) is consistent with the skepticism that Theon expresses earlier 
about  Plato’s  order  (Venus  and Mercury  above  the  Sun).  Forming  βέβαιον  by 
dropping the alpha, however, turns Theon’s negation into an assertion: the 
word (‘steady’, ‘firm’, ‘confirmed’) seems to signal Theon’s endorsement of 
Plato, contradicting his earlier endorsement of Ptolemy.112

Happy to find fault with Theon by letting the contradiction stand, George 
thus proposes a refutation of the latter’s alleged Platonic order. He encourages 
the reader to make ‘simple’ (!) parallax measurements for Mercury’s apogee or 
Venus’s perigee — not so easy when staring into the Sun.113 From these puta-
tive measurements, which are assumed to converge on one value, one theoret-
ically can get the lunar apogee and the solar perigee (presumably by computa-
tion from the Almagest’s models for Mercury and Venus). In this argument, 
both the order of the two planets and their subsolar location are assumed.

This is surely an odd commentary on Almagest 9.1, in which Ptolemy had 
denied that planetary parallaxes could be detected (he had evidently tried). 
Given this lack of evidence for supralunar parallax, Ptolemy had even warned 
that the subsolar spheres of Venus and Mercury should not be located ‘close 
enough to the Earth that there can result a parallax of any size’.114 Undeterred 
by either sunlight, or Ptolemy’s attempted measurements, or his opposition to 
any planet’s contiguity with the Moon, George was recommending ‘simple’ par-
allax measurements at Mercury’s apogee (therefore away from presumed conti-
guity with the Moon’s sphere).

112  The  two  readings  are  ἀβέβαιον  (only  in  Vatican  City,  Bibl.  Vat.,  Vat.  gr.  1087)  vs. 
βέβαιον  (the  ‘Byzantine  recension’).  I  thank  Ioanna  Skoura  for  this  valuable  information  from 
her research on Theon’s commentary (personal communication). Regiomontanus apparently 
found George’s remarks on Theon’s alleged position puzzling. On 159r, he wrote in the mar-
gin: ‘See about Theon in what way he followed Plato on the order of the planets’. If he ever 
checked, his puzzlement may not have subsided: the version of Theon’s commentary in his 
later possession (Nuremberg, Stadtbibl., Cent V, app. 8) also belongs to the Byzantine recen-
sion. Thanks to Swerdlow for noting that Giovanni Pico della Mirandola’s Disputationes 10.4 
(1496) drew from that same tradition: ‘Verum non modo Ieber acutissimus mathematicus, sed 
et ipse Theon, interpres graecus Ptolemaei, dissentiens a magistro putat [Solem] supra Lunam 
statim collocandum’. See Garin, Giovanni Pico della Mirandola, vol. II, pp. 372–73, which 
translates  as:  ‘not  only  Jābir,  the  acute mathematician,  but  also  Theon  himself,  the  Greek  in-
terpreter of Ptolemy, dissenting from the master, believe the sun is to be placed immediately 
above the moon, which Plato and Aristotle also affirm’. (Appendix to his translation in Swer-
dlow, ‘Copernicus and Astrology’).

113 Regiomontanus makes this very point later in the Defensio (159v).
114 Toomer, Ptolemy’s Almagest, p. 420 (also quoted above); Neugebauer, A History of An

cient Mathematical Astronomy, pp. 148–49. He changed his mind in the Planetary Hypotheses 
(see note 35 above).



342 MICHAEL H. SHANK

2.5. The superior planets
Having thus settled to his own satisfaction the order and sizes of the plane-
tary spheres from the Moon to the Sun, George now turns to the sizes of the 
spheres above the Sun’s. It is to them that he now applies Ptolemy’s proviso 
about a lack of parallax:

If someone wants also to investigate the distances of the superiors in Earth radii, since 
they have no parallax, let him convert proportionally, as we have done for the inferiors, 
having added the [planetary] radii, as stated; and let him take, for the first and the 
second [numbers in the Rule of Three], the perigee of the planet whose distance he seeks 
or [the apogee] of the one below it–it is the same [distance]; for the first, [the perigee] in 
parts of its eccentric’s radius; for the second, [the perigee] in e.r.; for the third, the same 
planet’s apogee in [60th] parts of its eccentric; and let these parts [60ths] be converted 
into those parts [e.r.], as we show in fact. We give here, however, the numbers assumed 
by Ptolemy and the divisions of multiplications, estimated rather than exact, as any
one can easily get the exact ones. For we want to present the procedure and manner of 
understanding these things, not to show them [in detail].115

Strangely, George now professes to forego exact calculation in favor of esti-
mates, placing the burden of precision on the reader. He does not justify this 
unnecessary move, which turns out to be revealing. The ‘numbers assumed by 
Ptolemy’ are obviously the radii of the epicycles and the relative perigees and 
apogees of the epicycle centers in his models (in 60ths of the deferent radius). 
It is from these figures, all summarized in Almagest 11.10, that the absolute 
perigees and apogees of the planets’ centers can be calculated.116 The expression 
‘divisions of multiplications’ designates the Rule of Three for a given planet: 
the product — in his now-familiar terminology — of the second by the third, 
divided by the first.

What George of Trebizond provides, however, are not estimates, but compu-
tations with bizarre results:

We found most exactly that the Sun’s apogee from the Earth’s center, where the Earth’s 
radius is one, is approximately 1309;46. Add 5;30 for the Sun’s radius in the same 
units, as demonstrated in book 5, and 1;10 for the radius of Mars’s body. Together, this 

115  ‘Quod  si  quis  superiorum  etiam  distantias  ad  partes  de  quibus  semidiameter  terre  est 
unius rimari velit, quoniam nulla in illis diversitas est, traducat proportionaliter sicut nos in 
inferioribus fecimus, additis semper semidiametris, ut dictum est; et eius minimam cuius dis-
tantiam querit vel inferioris proximi — idem enim est — capiat pro primo et secundo; pro 
primo, partes semidiametri eccentrici sui; pro secundo, secundum quod semidiameter terre est 
unius; maxima vero eiusdem planete pro tertio secundum partes eccentrici sui, et traducan-
tur partes iste ad partes illas sicut re ipsa ostendimus. Ponemus autem hic numeros sumptos a 
Ptolemeo et partitiones multiplicationum estimative magis quam exacte ut facilius uniusquis-
que possit ad exacta pervenire; modum enim et viam intelligendarum harum rerum dare non 
ostentare nos volumus’. George of Trebizond, quoted by Regiomontanus, Defensio, fol. 153v.

116 Toomer, Ptolemy’s Almagest, p. 546.
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yields 1316;26 for the second number; for the third, let Mars’s apogee demonstrated in 
the tenth [book] be 105;30 in 60ths of the deferent’s radius. Carrying out the approx
imate multiplication of the second and the third, and likewise the division by 14;30 of 
Mars’s perigee simply, the result is 9923, and this is Mars’s apogee ‘simply’ in e.r., from 
its own center to the Earth’s center.117

The language and final result are puzzling. Computing Mars’s absolute apogee 
from George’s numbers yields 9578 e.r., not 9923.118 This is no scribal error. 
The relative values for Mars’s apogee (105;30) and perigee (14;30) are straight-
forwardly Ptolemaic. Regiomontanus evidently copied George’s numbers cor-
rectly for they match those in the Vienna manuscript of George’s commentary 
(ÖNB, cod. 3106). The language of ‘approximate multiplication… and division 
likewise’ is strange, for the ‘exact’ operation (urged on the reader) is easy. More-
over, the result shows no rounding, as expected in a guess or estimate.

A leading clue about this puzzle lies in George’s heavy use of Campanus’s 
Theorica planetarum, which suggests the following hypothesis about his rea-
soning. With Campanus at hand, George may have been confused when, using 
relative numbers consistent with the Almagest’s for Mars’s apogee and perigee, 
his results differed, as they do, from those in the Theorica planetarum. Unchar-
acteristically, Campanus made a half-degree mistake when recording Mars’s 
eccentricity as 6;30 (instead of 6 in Ptolemy). When this error entered into his 
computations, Campanus’s value for Mars’s apogee (106) became too large by 
30′ and the perigee (14) correspondingly too small by the same amount. These 
unexplained deviations from the Ptolemaic values, together with the diver-
gence of George’s own presumed computations from those in Campanus, no 
doubt puzzled him greatly. To this point, George’s results had matched those 
of Campanus. With his erroneous values of Mars’s apogee and perigee in the 
Rule of Three, however, Campanus got 9967;15,36 e.r. for the apogee of Mars’s  
center.119

117 ‘Maxima solis a centro terre distantia prout semidiameter terre est unius inventa nobis 
exactius fuit 1309 46’ proxime; adde 5 30’ semidiametri solis similium partium, ut in libro 
quinto demonstratur, et 1 10’ pro semidiametro corporis Martis; simul, 1316 26’ pro numero 
secundo; pro tertio, ponatur maxima Martis simpliciter demonstrata in decimo partium 105 
30’ de partibus semidiametri sui deferentis 60; facta multiplicatione secundi et tertii estima-
tiva et partitione similiter per 14 30’ minime distantie Martis simpliciter proveniunt 9923 et 
hec est distantia Martis maxima simpliciter a centro terre ad centrum suum secundum quod 
semidiameter terre est unius’. George of Trebizond, quoted by Regiomontanus, Defensio, 
fols 153v–154r.

118 Mars apogee (e.r.) = Mars apogee (60ths) × Mars perigee (e.r.) /Mars perigee (60ths) = 
105;30 × 1316;26 / 14;30 = 9578;11 e.r.

119 Campanus’s computation gives 106 × 1316;25,50 / 14 = 9967;15,35 (rounded up to 36). 
This erroneous eccentricity was picked up in the fourteenth century by Jean de Lignères and 
the author of the Equatorie of the planetis, possibly Chaucer; Benjamin and Toomer, Campanus 
of Novara, pp. 337, 438; de Solla Price, The Equatorie of the Planetis, pp. 69, 126–27.
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Apparently, George neither trusted his own computations, nor tried to find 
the source of the discrepancy with Campanus. Using nearly the same physical 
apogee of the Sun as Campanus (rounded up by 10″) and the Ptolemaic values 
for Mars’s perigee and apogee, George should have got 9578, as noted above. 
The 389 e.r. difference between this number and Campanus’s result dwarfed by 
at least an order of magnitude the sum of all the planetary radii that George, 
like Campanus, so painstakingly had added to the traditional dimensions of 
the planetary spheres. George’s own figure of 9923 usefully decreased his dif-
ference by an order of magnitude, but I see no complimentary explanation of 
his result.120

The preceding hypothesis would explain the odd preamble to his calcula-
tion, with its unnecessary estimates and approximations that erase completely 
the hyper-precision of the added planetary radii. Indeed, George’s qualifications 
and swerves make little sense apart from deference to a standard. It was Cam-
panus of Novara’s unmentioned but omnipresent Theorica planetarum, not the 
Commentaria’s arithmetic, that shaped George’s results and the size of his cos-
mos. Whatever its precise origin, the mysterious figure of 9923 for Mars’s apo-
gee served to compute the dimensions of the remaining spheres:

For Jupiter, likewise. For the first, 45;45 or approximately 46 (it does not matter) 
in 60ths of the deferent radius; for the second, 9928;44, having added to the apogee 
[of Mars, 9923] 1;10 and 4;34 for the radii of the bodies of Mars and Jupiter. Let 
these [parts] be multiplied by the third, that is, 74;15,121 for Jupiter’s apogee simply 
in 60ths of the deferent radius, and having divided [this product] by the first, [the 
operation] yields 16125, Jupiter’s apogee simply, reduced to the aforementioned units  
[e.r.].122

120 There is no matching solution for the eccentricity X in integers and minutes (George 
omits seconds):

9923 =  [(60 + X + 39;30) × 1316;26]/(60 − X − 39;30)
   =  (99;30 × 1316;26) +  (1316;26X)/  (20;30 − X)
Thus
9923  (20;30 − X) =  (99;30 × 1316;26) + 203421;30 − 9923 X
     = 130985;06 + 1316;26X
so that     72436;24 = 11239;26 X
and      X = 6;26
This  eccentricity  yields  values  closest  to  George’s:  (60−6;26)  −  39;30  =  14;04  (perigee) 

and (60 + 6;26) + 39;30 = 105;56 (apogee). The Rule of Three gives a result 10 e.r. short of 
George’s; using the next closest pair, the answer is too high by 3 e.r.

121 The relative proportions and the planets’ sizes also appear in Campanus’s Theorica plan
etarum; Benjamin and Toomer, Campanus of Novara, pp. 243, 333, 339–41.

122 ‘In Iove similiter pro primo 45 45’, aut 46 proxime, nihil enim curamus secundum 
partes semidiametri terre unius additis ad maximam Martis 1 10’ et 4 34’ semidiametrorum 
corporis Martis et Iovis 9928 44’ pro secundo hec in tertium, hoc est in 74 15’, maxime sim-
pliciter Iovis distantie secundum partes semidiametri deferentis 60 multiplicentur factaque par-
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Again, George uses the standard Ptolemaic values for Jupiter’s relative perigee 
and apogee, which should yield 16026 e.r., that is, 99 e.r. short of his result of 
16125.123 Here is an additional odd ‘estimate’ that also compensates for errors 
he was disinclined to track down.

To this [16125], add the radii of Jupiter and of Saturn, that is, 4;34 and 4;30, and you 
will get 16134 for the second; for the third, however, approximately 70 for Saturn’s apo
gee in 60ths of its deferent radius. Having carried out the multiplication [of the second 
by the third] and division by the first, that is, by approximately 50 for Saturn’s peri
gee,124 one gets its apogee] of 22587 e.r.; if you add to this Saturn’s radius of 4;30, there 
will be 22591;30 [e.r.] from the Earth’s center to the concave surface of [the sphere] of 
the fixed [stars].125

Uncharacteristically for the superior planets, the arithmetic for Saturn’s apo-
gee is correct (although it still builds on erroneous values for the two preced-
ing planets). By keeping the minutes of the Ptolemaic values, George would 
have obtained 22523;10′ e.r. By rounding to the nearest unit, George decreased 
the numerator and increased the denominator slightly. After adding Saturn’s 
radius, the Rule of Three gave him 22591;30 e.r. for the distance to the fixed 
stars, a figure that comfortingly approximates Campanus’s 22607;58,16 e.r. for 
Saturn’s apogee.126 The original error of 389 e.r. for Mars should have been 
compounded; miraculously, it has shrunk to 16 upon reaching Saturn.

titione per primum exeunt 16125 maxima Iovis simpliciter ad partes ut dictum est reducta…’ 
George of Trebizond, quoted by Regiomontanus, Defensio, fol. 154r.

123 The Ptolemaic values also appear in Campanus; Benjamin and Toomer, Campanus of 
Novara, p. 339. Using George’s numbers, the computation for Jupiter’s apogee (e.r.) should 
yield (9928;44 × 74;15) /46 = 16026;16. Various roundings fail to generate George’s number 
of 16125.

124 Here George has got his ‘approximate’ values of 50 and 70 for the relative apogee and 
perigee of Saturn by rounding by 5′ (up and down, respectively) the Ptolemaic values, which 
are also those of Campanus; Benjamin and Toomer, Campanus of Novara, p. 341. Without 
rounding the minutes, George would have obtained 22523;10.

125 ‘…cui numero [= 16125], adde Iovis et Saturni semidiametrum, hoc est 4 34’ et 4 30’, et 
habebis 16134 pro secundo; pro tertio, autem, 70 proxime maxime Saturni distantie secundum 
partes semidiametri sui deferentis 60; factaque multiplicatione ac partitione per primum, hoc 
est per 50 proxime, minime Saturni distantie habetur maxima eius prout semidiameter terre 
est unius partium 22587 quibus si addideris semidiametrum Saturni 4 30’ erit a centro terre 
ad concavam superficiem fixarum 22591 30’’. George of Trebizond, quoted by Regiomontanus, 
Defensio, fol. 154r.

126 George seems not to have noticed that this figure — the last one Campanus gives in 
e.r. — should be larger by 4;30 e.r., since Campanus omitted the final step of adding the ra-
dius of Saturn’s body in e.r. to the apogee of Saturn. Immediately after this passage, however, 
Campanus did include this radius when calculating the distance of the sphere of fixed stars in 
miles. Benjamin and Toomer, Campanus of Novara, p. 343.
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And thus it is clear that the distance of the fixed stars contains the Sun’s mean distance 
approximately 18 times.127 From here, it will be easy to find the circumference and the 
area of these same orbs and the circumference of the epicycles and the sizes of individual 
planets reduced to similar parts, that is, insofar as the radius of the Earth is one, by the 
proportion of diameters reduced to cubes. For example, the Earth’s diameter is to that 
of Saturn roughly as 2 to 9, the cubes of each are 8 and 729, and the latter contains 
the former 91;22′ times approximately.128 Likewise, the diameters of the Earth and Sun 
are as 2 to 11, their cubes 8 and 1331, and the latter contains the former 162;22′ times 
approximately. Likewise, the proportion of the diameters of the Earth and Jupiter is as 
2 to 9;8, the cubes of which numbers are 8 and 762 approximately, which is why the 
planet Jupiter contains the Earth 95;15 times;129 likewise for the others. And this is by 
Elements 12.29, for the proportion of a globe to a globe, that is, of a ball to a ball, is the 
proportion of the diameters cubed. This is partly because we can easily go from diam
eters to circumferences and, from both of these, to areas, and thence to globes. Indeed, 
from here, insofar as circles are magnitudes, it is not difficult to find the paths and the 
circumferences and the circles of epicycles and likewise of eccentric deferents.130

Although he does not cite Euclid, Campanus makes comments similar to these 
after his own computations of planetary distances. Here, George also works 
out the Earth-to-Saturn ratio, as he had earlier the Earth-to-Jupiter ratio, while 
noting that the other values can be calculated in the same way.

For since we can get the epicycle diameters in terms of the parts of eccentrics, that is, 
diameters that I might call eccentrical, and the parts of eccentrical diameters [expressed] 
as e.r., here reduced by us, in this investigation of distances, it is laborious to carry out, 

127 22591;30 / 1257 = 18;04 [George’s mean Sun computed from the apogee and perigee 
figures given at 153v].

128 An error, since 729/8 = 91;07,30. This is perhaps a scribal error caused by the eye skip-
ping to the 22 minutes imbedded in similar phraseology two lines below.

129 See Benjamin and Toomer, Campanus of Novara, p. 341, where Campanus’s value is 
equivalent to 95;14,07.

130 ‘Et sic patet quod media distantia solis decies octies proxime continetur a distantia stel-
larum fixarum. Hinc ambitum ac superficiem ipsorum orbium et epicyclorum circuitum et 
planetarum singulorum magnitudines ad partes similes, hoc est prout semidiameter terre est 
unius redactas facile erit invenire partim a proportione diametrorum in cubos redacta. Verbi 
gratia, diameter terre ad Saturni diametrum est sicut 2 ad 9 proxime, cubi utriusque 8 et 729 
et continet hic illum vicibus 91 22’ proxime. Item terre ac solis diametri sunt sicut 2 ad xi cubi 
8 et 1331 et continet hic illum 166 22’ proxime. Item proportio diametrorum terre ac Iovis 
est  sicut  2  ad  9’  8  horum numerorum  cubi  sunt  8  et  762  proxime. Quare  stella  Iovis  continet 
terram 95 15’ vicibus et similiter in ceteris. Idque per 29m duodecimi Elementorum. Propor-
tio enim globi ad globum, hoc est pile ad pilam, est proportio diametrorum triplicata; partim 
quoniam facile a diametris ad circumferentias et ab utrisque ad superficies et tandem ad globos 
solemus pervenire. Ambitus vero et circuitus ac circulos epicyclorum et similiter deferentium 
eccentricorum prout circuli sunt magnitudines, non est difficile hinc invenire’. George of Tre-
bizond, quoted by Regiomontanus, Defensio, fol. 154r-v.
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but easy to understand, first how the epicycle diameters are reduced to e.r., and next 
how the circles are investigated by means of their diameters.131

With this wordy statement, Regiomontanus concludes his very long quotation 
from George of Trebizond’s commentary.

3. Regiomontanus’s criticisms of the Commentaria
Regiomontanus’s response is characteristically detailed and scathing. It is also 
surprising in content. The most general part of his attack on George’s com-
mentary refutes the boast of having demonstrated the order of the planets, 
both superior and inferior. George had argued that an observation and a ‘good 
fit’ justified the traditional order of the inferior planetary spheres. Regiomonta-
nus now undermines this argument by showing that one obtains a better fit by 
inverting their traditional order (i.e., placing Venus next to the Moon and Mer-
cury next to the Sun). While showcasing his dialectical prowess, Regiomonta-
nus will also offer glimpses of fundamental physical assumptions that he shares 
with contemporaries, including George (e.g., the rejection of vacua between the 
spheres). More importantly, he will sharply criticize traditional assumptions, 
notably the project of computing cosmic distances and the principle of uniform 
circular motion.

For now, he proceeds by dismantling George’s claims one by one:
We have transcribed in full the expositor’s more-prolix-than-useful narration so that 
it will be clear to which passages our arguments pertain. We introduce these argu-
ments not to impugn Ptolemy’s attempt at a planetary order, but to show that the 
reasons the expositor deems tough as diamonds are very weak. Indeed the things 
admitted [as premises] by analogy or with other loci, whether dialectical or rhe-
torical, we may quickly judge to be unworthy means of making astronomical laws  
solid.132

Regiomontanus approaches George as if he were in an academic disputa-
tion. Highlighting the opponent’s bad argumentation by any means available 

131 ‘Nam cum habeamus diametros epicyclorum secundum partes eccentricorum, id est, di-
ametrorum — ut sic dicam — eccentricalium, et partes eccentricalium diametrorum ad partes 
prout semidiameter terre est unius hic nobis redactas, in ipsa investigatione distantiarum la-
boriosum quidem factu sed facile intellectu est quomodo primum diametros [read diametri?] 
epicyclorum ad partes prout semidiameter terre est unius reducuntur, deinde a diametris circuli 
investigantur’. George of Trebizond, quoted by Regiomontanus, Defensio, fol. 154v.

132 ‘Hanc expositoris prolixam magis quam utilem narrationem integre transscripsimus ut 
adnotationes rationes nostre quibus locis accommodentur manifestum fiat, quas quidem intro-
ducimus/afferimus non qua planetarum ordinem a Ptolemeo probatum impugnemus, sed qua 
rationes expositoris quas ipse adamantinas putat, infirmas plerumque esse ostendamus. Verum 
que per similitudines quasdam aut alios sive dialecticos sive rhetoricos locos sumuntur cursim 
attingemus tanquam non satis dignas quibus astronomica roborentur decreta’. Regiomontanus, 
Defensio, fol. 154v.
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is sometimes more effective than finding the truth of the matter, a stance 
that sometimes complicates our assessment of Regiomontanus’s conclusions. 
Although the latter certainly undermine George of Trebizond’s claim to have 
demonstrated planetary order, we cannot always be sure that his polemical con-
clusions double as positive theses that Regiomontanus endorses. Nevertheless, 
he minimizes the ambiguity in principle, if not in practice, by professing to 
exclude dialectical and rhetorical arguments from astronomy, in effect every-
thing except demonstrative ones.

3.1. The ‘middle’ in the heart-Sun analogy
For this reason, at the outset, Regiomontanus cannot resist confronting contra-
dictions and ambiguities in George’s analogy between the heart, the Sun, and 
the middle of the universe. He begins by setting up a reductio ad absurdum:

First, he affirms, it is necessary that the organ of the world that is proportioned to 
the heart occupies the middle position in that universe. That fellow does not notice 
the discrepancy lurking in this point. Let it be granted that the Sun has a similarity 
to the heart and is for that reason proportioned to it, that is, that it occupies the 
middle position in the universe. One must now see if the Sun, being in the mid-
dle of the planets, might have a similar location in the celestial region. It is evident, 
however, that if we existed as the whole depth133 of the Plinian/Ptolemaic heavens 
and adapted it, for example, to the height of a human body, the Sun by its loca-
tion occupies the position of the foot rather than the heart. For the thickness of the 
human foot near the heels is close to the twentieth part of the entire human stature. 
And the Sun’s distance from the elementary region where the superior world begins 
is almost 1/20th of the entire celestial height. He who compares the Sun to the heart 
and therefore affirms that the place it now holds in the heavens is rightly assigned to 
it, implies either that the human heart in such a place is located at the feet, or that 
the Sun is to be placed in Jupiter’s sphere so that it might take the middle place in 
the height of the heavens, neither of which Nature surely allows. <margin: examine 
this place more precisely>134

133 In this unusual construction, I take profunditatem to be an accusative of space predicat-
ed on an existential sense of esse.

134 ‘In primis itaque necessarium esse affirmat ut membrum mundi quod cordi propor-
tionatur medium ipsius mundi locum obtineat. Non advertit homo ille latentem in hac re 
discrepantiam. Detur enim solem habere similitudinem cordis idcircoque proportionatum, id 
est medium in mundo locum obtinere. Iam videndum est si sol medius planetarum existens 
similem in regione celesti situm habeat. Constat autem si totam celi profunditatem plinensi 
<margin: ptolemaici> fuerimus et eam proceritati, verbi gratia humani corporis adaptaverim-
us, solem ipsum situ suo pedis locum potius quam cordis occupare. Crassitudo enim/siquidem 
pedis humani iuxta talos a vigesima parte totius proceritatis humane haud milium discrepat. 
Et remotio solis ab elementari regione unde mundus superior initium sumit vigesima ferme 
pars  est  totius  celestis  altitudinis. <margin:  vide  per  calculum> Qui  ergo  solem  cordi  assimilat 
ideoque ei locum quem nunc in celo habet iuste tributum esse affirmat aut cor humanum in 
loco tali vel pedis ponendum, aut solem in sphera Iovis statuendum esse insinuat ut medium 
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To undermine the Sun-heart analogy so central to the microcosm-macrocosm 
parallelism, Regiomontanus examines the relative spatial proportions of its two 
terms. The Sun is about 1000 e.r. from the Earth, and the fixed stars roughly 
20,000 e.r. Transferring this 20:1 ratio to the human body puts the heart near 
the feet.135 Conversely, if the Sun held approximately the middle position in 
the cosmos at some 10,000 e.r., it would be inside Jupiter’s (partial) sphere. But 
Nature allows neither a heart in the feet, nor a Sun in Jupiter’s sphere. Regio-
montanus was perhaps working from memory here: his marginalium suggests 
that he wanted to check the proportions.

Regiomontanus anticipates the rebuttal by examining another possible con-
strual of this ambiguous analogy:

And if someone should say that the Sun has an intermediate place in terms of, not 
continuous spatial equidistance, but rather a discrete [= ordinal] one, such that it has 
three planets below it and three above, why therefore does he exclude the entire mul-
titude of fixed stars that make up the eighth sphere, as if they were not members of 
the celestial body? Yet these [stars] have the greatest power over this inferior world, if 
we believe Ptolemy himself <margin: as Ptolemy himself determined, they pour out 
[the greatest power] on terrestrial bodies>. This is why, if the Sun is to be given the 
middle position among the stars, it surely cannot be below Saturn, lest it have more 
[stars] above than below.136

For the Sun, the alternative ordinal meaning of ‘middle’ makes no more sense 
than the linear or geometrical one, since it arbitrarily omits the fixed stars 
from the count. On Ptolemy’s authority, however, the stars have the greatest 
astrological effects on the lower world (Regiomontanus reinforces the point in 
the margin) and should therefore be counted. Placing the Sun in the middle 
of this ordinal series would have the counterfactual consequence of locating 
the Sun above Saturn. On neither mathematical understanding of ‘middle’, 
then, is George’s (widely shared) analogy tenable. Since Regiomontanus’s target 
is George, he does not mention that his argument also strikes Ptolemy who, 
without mentioning the heart, placed the Sun ‘in the middle’ of a taxonomy of 
celestial bodies that also excluded the fixed stars.

in altitudine celi locum possideat <margin: vide exactius locum hunc>, quorum certe neutrum 
natura permittit’. Regiomontanus, Defensio, fols 154v–155r.

135 Regiomontanus’s figure precisely matches the proportion for the top of the instep to the 
full height (3 units out of 60) in the De statua of Alberti, whom Regiomontanus knew; see 
Aiken, ‘Leon Battista Alberti’, pp. 68–96, esp. 94.

136 ‘At si quis dicat solem possidere medium locum non quidem spaciali et continua sed 
discreta quadam equidistantia quod tres sub se et totidem supra se habeat planetas, cur ergo ex-
cludet tantam stellarum multitudinem que in octava sphera consistunt quasi non sint membra 
celestis  corporis? Que  tamen maximam  vim  in mundum  istum  inferiorem  habent  si  Ptolemeo 
ipsi credimus [margin:  terrenis  corporibus  Ptolemeo  ipso  decernente  infundunt]. Quare  si me-
dius inter stellas soli tribuendus est locus sub Saturno utique esse non poterit ne plures supra 
quam infra habeat’. Regiomontanus, Defensio, fol. 155r.
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After this opening banter, Regiomontanus turns to the more substantive 
issue of the Sun-Moon interval:

But setting aside this lame argumentation, we may attack another argument, in the 
preliminaries of which he relates that, for the Moon, the parallax angles vary much 
and appreciably, and therefore that Ptolemy had demonstrated the diverse distances 
of the Moon via the difference of angles of this sort [= parallax]. We would forgive 
this trivial difficulty as a slip-up if [George] had not shown himself more careful in 
this passage than in others, which one is surely allowed to infer from his more dif-
fuse exposition [elsewhere].137

Characteristically, Regiomontanus also addresses secondary issues if he can 
turn them into evidence of George’s misunderstanding or ignorance:138

Indeed Ptolemy did not investigate the various distances of the Moon from the dif-
ference of angles that are known from the parallaxes. Rather, from the various dis-
tances of the Moon from the Earth, he inferred the various parallaxes and the dif-
ferences of angles pertinent to them, and put them in the parallax table. He found 
a single parallax with the parallactic ruler, from which he derived the Moon’s dis-
tance from the Earth in Earth radii. And since the Moon in that position also had 
a known distance in eccentric radii, having converted (as usual) the proportions into 
the new terms, he also knew, in Earth radii, the remaining distances of the Moon 
from the Earth, which earlier had been known in terms of the eccentric radius; from 
here, then, [the distances] revealed the remaining parallaxes, together with the angles 
associated with them.139

In short, George has misunderstood Ptolemy’s procedure. As Regiomontanus 
states, summarizing Almagest 5.11ff, Ptolemy did not determine the distances 
of the Moon from parallaxes, but the other way around. Ptolemy reported using 

137 ‘Sed dimissa hac fragili argumentatione in aliam aggrediamur in cuius apparatu com-
memorat angulos diversitatis aspectuum in luna multipliciter ac sensibiliter variari atque idcirco 
per diversitatem huiusmodi angulorum a Ptolemeo diversas lune distantias esse demonstratas. 
Hunc levem honum condonaremus errorem nisi in hoc passu circumspectiorem se ostentaret 
quam in aliis locis, quod quidem ex diffusiori narratione sua coniectari datur’. Regiomontanus, 
Defensio, fol. 155r.

138 This approach also appears in his Disputationes; see Pedersen, ‘The Decline and Fall’, 
esp. p. 185.

139 ‘Ptolemeus quidem non per diversitatem angulorum qui ex diversitate aspectus innote-
scunt varias lune investigavit distantias, sed econtra, per varias lune a terra distantias, varias 
diversitates aspectuum et angulorum ad eas attinentium elicuit et in tabula diversitatis aspectus 
collocavit. Unicam enim de aspectibus diversitatem instrumento regularum didicit, unde remo-
tionem lune a terra conclusit respectu semidiametri terrestris; cumque in eo situ luna notam 
quoque respectu semidiametri ecentrici haberet distantiam traductis, ut assolet, proportioni-
bus ad novos terminos reliquas lune a terra distantias que prius ad semidiametrum eccentrici 
note fuerunt, ad semidiametrum quoque terrestrem cognovit; hinc demum reliquas aspectuum 
diversitates una cum angulis se respicientibus latere non poterant’. Regiomontanus, Defensio, 
fol. 155r-v.
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the parallactic ruler for one measurement of the Moon on the meridian. From 
the difference between this measurement and the value predicted by his lunar 
theory (reckoned from the Earth’s center), he calculated the lunar parallax. He 
then used this value to express the relative sizes of the lunar parameters in abso-
lute distances (e.r.).140 Since Regiomontanus was keenly aware that Ptolemy’s  
lunar theory implied nearly a 2:1 variation in distance (hence 4:1 in area) from 
quadrature to syzygy (Epitome 5), he was particularly sensitive to the discrep-
ancy between phenomenon and computation for the Moon in particular.141

Next, during this long argumentation, [George] insinuates that the parallaxes of Mer-
cury and Venus are all but imperceptible. If he means imperceptible, that is, [in the 
sense of] incomprehensible/ungraspable, his statement is tolerable, for only with dif-
ficulty can the parallax be understood for these planets, as their true motions cannot 
be found exactly, since one cannot find the parallax without first knowing the true 
place of the planet [margin: Mercury alone].142 Each of the preceding planets is car-
ried through so many circuits that one might properly suspect that their motions are 
beyond human understanding, especially that of Mercury, which is rarely visible.143

In seeking an acceptable meaning of ‘imperceptible’, Regiomontanus’s first con-
cession to George does not focus on the empirical failure to find parallaxes 
for the inferior planets (imperceptible in the first sense, that of Almagest 9.1). 
Rather, the problem lies in the ‘incomprehensibility’ of the motions of Venus 
and especially Mercury. Although an empirical consideration surfaces briefly in 
the difficulty of seeing Mercury, the passage highlights primarily the inaccura-
cies and complexities of the theories of the inferior planets, and of Mercury in 
particular. Inevitably, Regiomontanus turns next to the unacceptable meaning:

If by ‘imperceptible’, he means that it does not reach 2′ or 3′, as is usually said to be 
the case for the parallax of Mars or Jupiter, we say: this man’s skill is already obvi-

140 Toomer, Ptolemy’s Almagest, pp. 243–44; Pedersen, A Survey of the Almagest, pp. 203–
07; Neugebauer, A History of Ancient Mathematical Astronomy, pp. 100–01.

141  First  noticed  in  the  fourteenth-century  by  Ibn  al-Shāṭir  and  Levi  ben  Gerson,  and 
picked up by Henry of Langenstein and Regiomontanus (see below).

142 This marginal addition looks like a later editorial change (the ink is lighter and the 
hand more cursive than those of the text). The marginalium suggests that the original sen-
tence, which discusses both planets, should pertain to ‘Mercury alone’. The multiplicity of cir-
cuits describes the complex Mercury model better than that of Venus. Regiomontanus returns 
to this point at the end of his critique (159v).

143 ‘Deinde in processu huius longe argumentationis insinuat Mercurii Venerisque diver-
sitatem aspectus pene insensibilem esse. Si quidem insensibilem dicit, hoc est incomprehen-
sibilem, tolerandum est hoc verbum. Difficiliter enim valde in iis stellis comprehendi potest 
aspectus diversitas quarum ne veri quidem motus ad unguem perquiri possunt; quandoquidem 
diversitas aspectus non nisi precognito vero stelle loco inveniri potest. <margin: Mercurius 
solus> Uterque autem predictorum planetarum tantis fertur ambagibus ut suspicari quis haud 
iniuria possit motus eorum humanitus esse incomprehensibiles et presertim Mercurii perraro 
ad visum apparentis’. Regiomontanus, Defensio, fol. 155v.
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ous. [Whether] you suppose that either Mercury or Venus is [immediately] above the 
Moon, its perigee is nearly the lunar apogee. Therefore, when either of these [planets] 
is found in such a perigee, it will necessarily show a parallax like the Moon’s at apo-
gee, which, when it is investigated seriously, can in no way be called imperceptible.144

In this apt criticism of George (who here strays far from the Almagest),145 
Regiomontanus highlights an abiding tension in the nesting hypothesis, with 
its rejection of vacua or useless gaps. Whichever inferior planet is next to the 
Moon must, at perigee, have the same parallax as the Moon at apogee. He 
gives no figure, but the 1;7° derived from Ptolemy’s meridian measurement of 
the Moon in Almagest 5.13 gives the order of magnitude. Equally striking is 
the specification of an order of magnitude for the parallax of Mars or Jupiter. 
For the planet closest to the Moon, therefore, an ‘imperceptible’ parallax can-
not mean ‘too small to be seen’ for the Moon at apogee has a visible parallax.

Regiomontanus is, however, far from seeking to undermine the subsolar 
location of Venus and Mercury, whatever their order may be:

We do not deny that it is reasonable to offer the space inserted between the luminar-
ies to some other planets, particularly to Venus and Mercury, lest the universe have 
either an empty space or an immense celestial structure devoid of all function. Still 
unexplored, however, is which of the preceding planets should be placed immediately 
above the Moon.146

As this important passage shows, Regiomontanus shares key physical principles 
with George and others: the universe has neither a vacuum, nor a useless ple-
num. Venus and Mercury, in a still unspecified order, are thus presumed to fit 
in the large gap between the Sun and the Moon.147 With this physically moti-

144 ‘Si vero insensibilem significat ut que duas aut tres sexagesimas unius gradus non attin-
gat quemadmodum de diversitate aspectus Martis aut Iovis <margin: dici solitum est> quan-
tulacumque sit, dicimus: iam patet hominis peritia. Nam sive Mercurium lune sive Venerem 
supponas,  constat minimam  eius  a  terra  distantiam  esse maximam  lune  proxime. Quando  igi-
tur alter eorum in minima tali distantia reperitur, necessario diversitatem aspectus sortietur 
quantam luna habere potest in maxima sui remotione que cum magnopere operepretium inves-
tigetur insensibilis dici non poterit’. Regiomontanus, Defensio, fol. 155v.

145 Recall that, in the Planetary Hypotheses, Ptolemy dropped the Almagest’s requirement 
that the inferior planets be arranged to conform with the absence of parallax.

146  ‘Quod  igitur  spatium  luminaribus  interiectum  rationabiliter  quibusdam  aliis  vendicetur 
planetis presertim autem Veneri et Mercurio ne aut vacuus in mundo locus aut ingens celestis 
moles omnis officii exors inveniatur, non diffitemur. Uter autem dictorum planetarum statim 
supra lunam poni debeat nondum exploratum est’. Regiomontanus, Defensio, fol. 155v.

147 In Epitome 9.1 (‘Sphere celestes quo ordine habende sint ostendere’ — ‘To show what 
order the celestial spheres should have’), Regiomontanus argues that the space between the 
Moon and the Sun should be full because ‘nature will not allow this space to be empty; 
therefore necessarily some celestial body will occupy it’ (Swerdlow’s translation; original in 
Schmeidler, Joannis Regiomontani opera collectanea, pp. 192–93). Venus and Mercury will fill 
this large space commoditate naturali — ‘by natural fitness/suitability’ [cf. ‘natural proportion’ 
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vated concession, Regiomontanus proceeds to undercut George’s allegation of 
an empirical basis for the traditional order (Moon, Mercury, Venus):

What this fellow implies — that Mercury is recorded as having gone below Venus 
[Defensio 152r] — has the air of a dream, since neither can he name the author of 
this claim, nor can vision adequately detect a lower position owing to the smallness 
of the planet Mercury, which also has its own light.148

Regiomontanus gives two reasons for dismissing the alleged sighting of Mer-
cury below Venus.149 First, it is undocumented. Second, and more fundamen-
tally, Regiomontanus doubts that this alleged phenomenon could have been 
perceived: the planet is not only too small (difficult to see in the best of times), 
but also self-luminous (a point left unsubstantiated). The argument attacks the 
implicit assumption of a partial occultation of Venus by Mercury. If both plan-
ets are self-luminous, however, there can be no occultation, and therefore no way 
of telling which planet is lower (what we call transits would all be impossible  
to see).150

Regiomontanus now considers the speed-distance rule in George’s final 
argument for ‘demonstrating’ a planetary order (key marginal additions are 
italicized):

<Greater> speed of revolution, however, cannot warrant a lower position [for Mer-
cury], as the expositor claims to be necessary, unless we want to place the Sun below 
Venus, along with al-Biṭrūjī, the sole author of this delirious opinion. Indeed, the Sun 
has a longitudinal motion equal to that of Venus; but the circuit of the anomaly, 

in Swerdlow, ‘Copernicus and Astrology’]. Emphasizing the uncertain order of Venus and Mer-
cury, Regiomontanus focuses on Mercury, noting that the most favorable positions for seeing it 
(at ‘mean distances’) are not optimal for parallax observations: ‘But which of these two [Venus 
and Mercury] is located above the other cannot be discovered with certainty. For in most cli-
mates Mercury appears very rarely and, if it appears, it does so when it is near mean distances 
of the epicycle; and although it then has a parallax, the parallax is much smaller than what 
it would have, were it in the perigee of the epicycle. Therefore such a parallax [of Mercury] 
cannot be found exactly since neither in instruments necessary to this matter nor in comput-
ing the motions of Mercury can we obtain complete precision. And the same will be proper 
to hold concerning Venus’. Schmeidler, Joannis Regiomontani opera collectanea, translated by 
Swerdlow, ‘Copernicus and Astrology’.

148 ‘Nam quod ille scribi autumat, Veneri Mercurium successisse/succurrisse, somnii spe-
ciem habet cum neque autorem eius rei nominet, neque subiectio huiuscemodi visu satis com-
prehendi possit propter parvitatem stelle mercurialis, lumen etiam proprium habentis’. Regio-
montanus, Defensio, fol. 155v.

149 Regiomontanus uses ‘scribi’ to paraphrase George, implying a record of some sort (rein-
forced by the past infinitive in the synonyms successisse/succurrisse).

150 Averroes claimed to have seen a double transit when Venus and Mercury were both in 
conjunction with the Sun, whereas Levi ben Gerson used an argument similar to that of Re-
giomontanus against the possibility of observing transits. Goldstein, ‘Some Medieval Reports’, 
esp. pp. 53–54.
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which is measured carefully in the epicycle, is faster. For, in one year, it [= Mercury] 
traverses the zodiac as well as the epicycle more than 3 times whereas Venus covers 
only 5/8ths of its epicycle.151

Early on, George had given allegiance to the quasi-Aristotelian principle that 
‘in circular motion, it is necessary that the inferior be faster’ (152r). Regiomon-
tanus here attacks not the speed-distance rule itself, but the contradiction 
between it and George’s endorsement of the traditional planetary order. A con-
sistent application of the principle yields not the order that George defends, but 
that  of  al-Biṭrūjī  (Venus  above,  and Mercury  below,  the  Sun).

Regiomontanus’s heavy revisions — substitutions in the left margin and 
addenda in the lower margin — show that he went over this passage several 
times. Since they reflect shifts in his thinking, their flow therefore deserves 
examination. Indeed, the marginalium vide diligentius hoc (‘examine this 
very carefully’), now crossed out, suggests additional research. When he first 
composed the main text, Regiomontanus presented the Mercury-Sun-Ve-
nus sequence as an unpalatable consequence of George’s commitment to the 
speed-distance  rule,  without mentioning  al-Biṭrūjī.  In  the  revisions  underlined 
in the quotation above, however, Regiomontanus identified this order with the 
‘delirious  opinion’  of  al-Biṭrūjī.

In the margin at the foot of the page, he also added: ‘See Alpetragius 
who places Venus and Mercury above the Sun. Likewise Abraham Ibn Ezra. 
Likewise Martianus. Likewise Pliny’.152 In this note to himself, he originally 
(and  erroneously)  thought  al-Biṭrūjī  placed  both  Venus  and  Mercury  above 
the Sun. Regiomontanus eventually corrected the lapse, whether momentary 
or not. He most probably crossed out ‘and Mercury’153 after listing the names 

151 ‘Velocitas autem circuitionis inferiorem situm veluti expositor tamquam necessarium au
tumat inferiorem situm prestare non potest nisi Veneri solem subiicere velimus cum Alpetragio 
huius opinionis unico autore delirantis, quippe motum longitudinalem sol habet equalem cum 
Venere, circuitum autem diversitatis qui in epicyclo perpenditur longe celeriorem. In anno 
enim suo tam zodiacum quam epicyclum emetitur ter et amplius semel dum Venus quinque 
solum octavas partes epicycli sui perambulat’. Regiomontanus, Defensio, fols 155v–156r.

152 ‘Vide Alpetragium qui Venerem etiam et Mercurium supra solem sistit. Item Abraham 
avenezre. Item Martianum. Item …um Plinium’. Regiomontanus, Defensio, fol. 155v, lower 
margin. More than 3 dozen manuscripts of Pliny’s astronomical excerpts survive, so that the 
Carolingian tradition associates him with the order of Moon-Mercury-Venus-Sun, against 
the Platonic/Egyptian order (Moon-Sun-Mercury-Venus); Eastwood, Ordering the Heavens, 
pp. 36–43, 250. On the controverted question of Ibn Ezra’s views on Venus and Mercury, 
see Rodríguez-Arribas,  ‘Did  Ibn Ezra Maintain  a Circumsolar Arrangement’,  esp.  pp.  202–12.

153  In  his  manuscript  of  al-Biṭrūjī  (Nuremberg,  Stadtbibl.,  Cent  V  53),  Regiomontanus 
wrote at the very beginning of the work: ‘Geber Mercurium et Venerem supra solem posuit’ 
(74r);  and  later  about  al-Biṭrūjī:  ‘Venus  supra  solem’  (101v) but  also  ‘Quod Venus  et Mercurius 
non obscurant solem non esse sufficiens indicium sue supra solem collocationis’; see also Zin-
ner, Leben und Wirken, pp. 61–62.
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of Ibn Ezra, Martianus Capella, and Pliny (the ink and script are consistent 
with one sitting). All three authors described non-traditional planetary orders, 
and the first two subscribed to a circumsolar arrangement for Venus and Mer-
cury.154 When interpreting Regiomontanus’s note, much hinges on his word 
‘item’. Did he intend merely to check the 3 authors, just as he had done with 
al-Biṭrūjī?  ‘Item’  then  pertains  to  his  examination  (‘vide’). Or was  he  grouping 
the  3  authors  with  al-Biṭrūjī  because  they  placed  at  least  one  of  the  ‘inferior’ 
planets above the Sun, even if temporarily? If so, the ‘item’ pertains to their 
shared non-traditional arrangement. One argument for this last reading is a 
note on the facing page. In the upper margin of 156r (for lack of space on 
155v?), Regiomontanus wrote ‘Cicero in On the Nature of the Gods [= book 
2.20] placed Mercury below Mars; see that [passage]’.155 In short, Regiomon-
tanus was reminding himself to re-read arguments for alternative planetary 
arrangements in the older literature.

The most likely sequence of his revisions thus seems to be the following. He 
first reminded himself to ‘check this out very carefully’. Next came the note 
in the bottom margin (probably continued with the Cicero reference on the 
facing page). After checking his sources, Regiomontanus then crossed out the 
first reminder and added the notes in the left margin (italicized in the quota-
tion above). These remarks are arguably the last because, unlike the bottom 
marginalium,  they  correctly  identify  al-Biṭrūjī’s  planetary  order  with  the  one 
that Regiomontanus’s logic had forced upon George as a consequence of the 
speed-distance  rule.  Strikingly,  the  passage  in  which  al-Biṭrūjī  discusses  plane-
tary order is critical of Ptolemy’s reasoning in Almagest 9.1, notably the matter 
of Venus and Mercury passing before the Sun.156

It  is  exclusively  with  al-Biṭrūjī  that  Regiomontanus’s  addition  identifies  the 
placement  of  Venus  above  the  Sun.  Al-Biṭrūjī  rejected  not  only  eccentrics  and 
epicycles, but also explanations premised on the planets’ ‘contrary’ motions in 
the heavens. On his account, there is only one celestial mover: the daily rota-
tion of the outermost stellar sphere, which is the fastest and the cause of all 
other celestial motions. In relation to this frame and power, the speed of each 
of the seven planets, from Saturn to the Moon, gradually ‘drops back’ (accur
tat) from the daily rate the farther it is from the stellar sphere. The Earth, 
being most distant at the center, is stationary. Greater retardation (decreasing 
speed) — a function of greater distance from the mover — therefore serves as 
an ordering principle. With  this  speed-distance  rule,  al-Biṭrūjī  thus  argues  that 
Venus lags less than Sun, which in turn lags less than Mercury.

154 For a recent overview, see Eastwood, Ordering the Heavens, pp. 103–09 (Pliny), 238–44 
(Martianus Capella).

155 ‘Cicero in De natura deorum sub Marte Mercurium statuit. Vide illic’. Regiomontanus, 
Defensio, fol. 156r.

156 Carmody, Al-Biṭrūjī, pp. 127–29.
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Regiomontanus’s  critique  of  George  translates  al-Biṭrūjī’s  anti-epicyclic 
account into Ptolemaic terms. Whereas their sidereal periods may serve to rank 
the superior planets and the Sun, this criterion does not distinguish the infe-
rior planets from the Sun, which all share the Sun’s mean motion. If the ‘cir-
cuit of the anomaly, measured carefully in the epicycle’ (the synodic period) 
becomes the criterion for the so-called ‘inferior’ planets, their motions spread 
out nicely in descending order: Venus (584 days), Sun (365 days) and Mercury 
below it (just under 116 days),157  as  al-Biṭrūjī  had proposed.

Regiomontanus, however, dismisses this position as absurd without giving 
an argument. One source of absurdity may derive from his allegiance to the 
nesting principle: assuming its contiguity with the lunar sphere, the Mercury 
model alone will not fill the space between Sun and Moon.158 Here, as else-
where in the Defensio,  Regiomontanus  is  harsh  on  al-Biṭrūjī.159 In the Epi
tome, by contrast, he had not only mentioned al-Biṭrūjī’s alternative order with-
out invective, but also explained the rationale for it.160 In sum, George has no 
demonstration of the traditional planetary order, leaving the relative order of 
Venus and Mercury unsettled.161

3.2. Inverting Mercury and Venus
Regiomontanus’s critique now takes a surprising turn:

Since neither of these reasons sufficiently indicates the position of Venus and Mer-
cury, one must find out by trial and error if, by placing Venus immediately above the 

157 Neugebauer, A History of Ancient Mathematical Astronomy, pp. 157, 167.
158 al-ʿUrḍī  also  had  an  alternative  order,  of  which  Regiomontanus  was  evidently  unaware; 

see Goldstein and Swerdlow, ‘Planetary Distances and Sizes’, e.g. p. 148; Van Helden, Measur
ing the Universe, pp. 32–34.

159  Likewise,  in  the  marginalia  of  his  own  manuscript  of  al-Biṭrūjī;  Zinner,  Leben und 
Wirken, pp. 61–62. Later in the Defensio  (159v), Regiomontanus  explains  al-Biṭrūjī’s  reasoning 
as classifying the speeds in relation to the epicyclic motion. This can be seen most clearly if 
one converts the Sun’s eccentric into its equivalent epicyclic model. All three deferents will 
then share the motion of the mean Sun, and the three epicycles will fall into a sequence of 
increasing speeds from Mercury (the fastest) through the Sun to Venus (the slowest). Here is 
an additional reason for Regiomontanus to explore the equivalence of eccentric and epicyclic 
models.

160  ‘However  al-Biṭrūjī,  who  believed  that  the  inequalities  of motions  and  apparent  veloci-
ties of the planets occur through a kind of falling behind (quadam incurtatione), placed under 
Mars Venus, under which the Sun, then Mercury, for Venus falls behind (incurtat) from the 
first motion less than the Sun, as he said, in fact on account of the epicycle, but Mercury more 
than the Sun’. See Swerdlow’s translation of Regiomontanus, Epitome 9.1, as an appendix to his 
review of Robert Westman’s The Copernican Question, in ‘Copernicus and Astrology’.

161 At the end of his diatribe, Regiomontanus will blame George for claiming he has 
demonstrated the planetary order even though he has said nothing about the order of the su-
perior planets; Defensio, fol. 158v.
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Moon and Mercury below the Sun, the thicknesses of the two spheres in this order 
would fill the gap between the luminaries; if this is found to be so, one will boast in 
vain of being able to demonstrate that, in ascending [order], Mercury should hold the 
second place and Venus the third.162

The argument here sets George’s promise of demonstrating the order of Venus 
and Mercury against both the contingency that Regiomontanus emphasizes 
and the need for testing both options. After trying only the traditional order, 
George found a decent fit and ended his search. Regiomontanus now examines 
the second possibility (Venus below Mercury):

To throw the expositor’s javelins back at him, we will use the pattern of his [own] 
computation with ‘superadditions’ of radii that he adopted from somewhere, although 
this cannot serve as a foundation if someone should try to ascend to the heavens’ 
highest peak by a logical sequence of the planets’ distances individually referred back 
to their eccentrics’ radii and then compared, once the proportions have been con-
verted to the Earth’s radius, as is his wont. Indeed, as will be clear below, in this 
journey many orbs are skipped that, by their thickness, add not a little to the height 
of the heavenly space.163

Again, the flavor is that of an academic disputation, in which the strategy is 
to draw untoward consequences from the opponent’s premises and explore con-
tradictions in his conclusions. For polemical purposes, Regiomontanus’s argu-
ment for inverting the order of Venus and Mercury will rest — despite his 
own skepticism — on George’s procedure and numbers. The pejorative phrase 
‘the superadditions he got from somewhere’ seems disingenuous, as Regiomon-
tanus almost surely knew that Campanus had added planetary radii to the tra-
ditional computations of planetary spheres.164 Indeed, and significantly, Regi-
omontanus criticizes George not for being uselessly detailed, but for omitting 

162 ‘Cum itaque neutra harum rationum Mercurii et Veneris situm satis indicet, experiun-
dum est, si Venerem statim immediate supra lunam et Mercurium sub sole posuerimus, cras-
situdo  duarum  spherarum  hoc  ordine  sitarum  intercapedinem  luminarium  expleat.  Quod  si 
ita compertum fuerit, iam deinceps frustra quis se demonstraturum iactitabit quod mercuriale 
sidus secundam inter planetas ascendendo sedem obtineat et Venus tertiam’. Regiomontanus, 
Defensio, fol. 156r.

163 ‘Ut ergo sua in expositorem tela reiaculemur, servabimus formam <margin: de pila(?) 
fac mentionem post calculum> calculi sui cum superadditionibus semidiametrorum quas ipse 
undecumque transsumpsit quamvis ne id quidem sufficiat si quis per consequentes stellarum 
distantias ad semidiametros eccentricorum suorum singulatim relatas et deinde traductis, ut as-
solet, proportionibus ad semidiametrum terrestrem comparatas, summa celorum fastigia scan-
dere conetur. Plurimi enim in hoc transitu orbes pretereuntur qui crassitudine sua non parum 
augent celestis spacii altitudinem quemadmodum inferius aperietur’. Regiomontanus, Defensio, 
fol. 156r.

164 Regiomontanus’s copy of Campanus’s Theorica planetarum is Nuremberg, Stadtbiblio-
thek, Cent V 58; Zinner, Leben und Wirken, p. 73; Benjamin and Toomer, Campanus of No
vara, pp. 114–16.
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known spheres that would add appreciably to his computations of distances, a 
point to which he will return. Assuming Venus is below Mercury, Regiomon-
tanus recomputes the distances:

Thus, the apogee of the Moon from the center of the world, which will be the peri-
gee of Venus, will be, after adding the radii of the Moon and Venus, 64;54,12 e.r.165 
The perigee of Venus in 60ths of the eccentric radius is 15;35, and the apogee in the 
same units is 104;25. Converting the proportion yields an apogee of 434;53,13 e.r., 
to which are added the Venus radius of 0;26,40 and the Mercury radius of 0;2,8, so 
that Mercury’s perigee reaches 435;22 e.r.166 This perigee of Mercury based on an 
eccentric radius of 60 parts is 33;4 and its apogee in the same units is 91;30. This 
number 33;4 is to 91;30 as 435;22 is to 1204;43,12.167 Such would be the apogee 
of Mercury, to which one should add the two radii of Mercury, 0;2,8, and the Sun, 
5;30. And the Sun’s perigee from Earth will come out as 1210;15, which quantity168 
Ptolemy assigns to the Sun indifferently, wherever it may be located.169

The last sentence is particularly important, albeit slightly jarring. Regiomonta-
nus effectively privileges the measurement of 1210 e.r., presented here as fixed 
regardless of longitude, over the variable distance implied from the eccentric 
model. In short, Regiomontanus takes the eccentric model for the Sun to be 
a solution to the problem of variable speed. The variable distance that fol-
lows from it is an awkward consequence that contradicts the fixed measured  
distance.

Regiomontanus completes his computation with the apogee of Mercury, 
which, following George’s procedure, he corrects by adding the radii for the 

165 64;10 + 0;17,32 + 0;26,40 = 64;54,12.
166 (64;54,12 × 104;25) / 15;35 = 434;53,13 // 434;53,13 + 0;26,40 + 0;02,08 = 435;22,01 

(Regiomontanus drops the single second in the text, but silently retains it in his next compu-
tation).

167 33;04 : 91;30 :: 435;22 : x, so that x = (435;22 × 91;30) / 33;04 = 1204;43,09. Regio-
montanus got his slightly larger answer (1204;43,12) by silently retaining the single second in 
Mercury’s perigee instead of using the rounded-down number given in the text.

168 (1204;43,12 + 0;02,08 + 5;30) = 1210;15,20. Regiomontanus carried out this addition 
in the margin.

169 ‘Maxima itaque lune a centro mundano distantia que et minima Veneris erit adiunctis 
lune Venerisque semidiametris habet 64 54’ 12”, ut semidiameter terre est pars una. Minima 
autem Veneris remotio ad semidiametrum eccentrici sui 60 partium relata est 15 35’ et maxima 
eodem respectu 104 25’, factaque traductione proportionis ambos terminos notos habentis pro-
veniet maxima Veneris remotio ad semidiametrum terre collata 434 53’ 13” cui adiungantur 
semidiametri Veneris quidem 0 26’ 40”, Mercurii autem 0 2’ 8”, ut minima distantia Mercurii 
colligitur 435 22’ prout terrestris semidiameter est una; hec autem minima Mercurii distantia 
secundum partes semidiametri eccentrici sui 60, est 33 4’ et maxima eius distantia hoc respec-
tu  91  30’;  est  autem  numerus  ille  33  4’  ad  91  30’  sicut  435  22’  ad  1204  43’  12”. Quare  tanta 
haberetur maxima Mercurii remotio cui superaddantur due semidiametri Mercurii quidem 0 
2’ 8”, solis autem 5 30’. Et emerget minima distantia solis a terra 1210 15’, quantam videlicet 
Ptolemeus soli ubicumque posito indifferenter tribuit’. Regiomontanus, Defensio, fol. 156r-v.
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bodies of Mercury and the Sun. Unlike George’s computed value, which falls 
short of Ptolemy’s solar distance of 1210 e.r., Regiomontanus’s computation 
matches it:

One concludes therefore that the two spheres of Venus and Mercury, in this [ascend-
ing] order, exactly fill the gap between the two luminaries, which is most wonderful, 
since the aforementioned gap is obtained not by a continuous conversion of propor-
tions, but from the angle under which the luminaries are determined, together with 
the lunar parallax and the shadow’s radius, as Ptolemy reports it. The distances of 
Venus and Mercury, however, can be investigated separately in relation to the diame-
ters of their eccentrics as if they had almost nothing in common with the luminaries. 
Since therefore these can square so exactly that they seem established by compact, 
who will dare to bellow in reply that these two planets must not be interposed in 
this order between the luminaries, if we do not blush to change the decrees of our 
elders, who ranked them [= the planets]?170

With this conclusion, Regiomontanus shows that George carelessly overstated 
his case and certainly did not demonstrate the planetary order. It is by dismiss-
ing George’s alleged empirical evidence for the occultation of Venus by Mercury 
that two possible options remained, not one. George’s ‘good fit’ argument is no 
longer a supplemental quantitative confirmation of the one secure arrangement 
determined empirically. Instead, it becomes George’s sole argument for the tra-
ditional order. Having granted for purposes of debate George’s procedure for 
computing planetary order, Regiomontanus effectively treats the latter’s com-
putations as only the first of two options. Turning George’s enthusiasm for the 
persuasive power of a good fit against him, Regiomontanus completes the trial 
by checking the second option. Inverting the traditional order of Mercury and 
Venus yields an even better fit. George’s own criteria thus undercut his argu-
ment and justified in principle Regiomontanus’s departure from the ancients, 
whether or not he put stock in it.

To strengthen his case, Regiomontanus adds a taxonomic rhetorical argu-
ment based on the rank order of the sexes:

Also, extending this further, if there is room for rhetorical arguments, it is very 
appropriate and most natural that the two feminine planets together be inferior to 

170 ‘Constat igitur duas spheras Veneris et Mercurii hoc ordine sitas intercapedinem duo-
rum luminarium ad unguem explere, quod multo maxime admirandum est, cum intercapedo 
memorata non per continuam proportionum traductionem, sed per angulum sub quo lumi-
naria cernuntur, una cum diversitate aspectus lunari, ac semidiametro umbre quemadmodum 
Ptolemeus tradit, elicita sit. Distantie autem Veneris atque Mercurii ad semidiametros eccen-
tricorum suorum relate seorsum quasi nihil ferme cum luminaribus habeant communitatis, 
investigate sint. Cum ergo hec ad amussim ita quadrent ut ex composito instituta videantur, 
quis remugire audebit quin hoc ordine memorati duo planete luminaribus interponi debeant 
si maiorum decreta eos aliter ordinantium immutare non vereamur/erubescimus’. Regiomonta-
nus, Defensio, fol. 156v.
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all the masculine ones and that the changeable and promiscuous Mercury should 
sponge from each sex. For in our earlier inquiry, we rejected the explanation of the 
more rapid circuit [derived] from the order of the planets.171

The criterion of sex is thus consistent with a planetary taxonomy that inverts 
the traditional order of Venus and Mercury. Although it is useless to order the 
4 highest planets, it crudely groups them and also ‘explains’ why the ambig-
uous Mercury, contiguous to both male and female, now replaces the Sun as 
the boundary marker that Ptolemy had identified. Since Regiomontanus had 
disparaged rhetorical arguments in astronomy when dealing with the heart-Sun 
analogy, his labeling of this sex argument as rhetorical identifies the level of 
seriousness with which he treated it. His marginalium on 153v (above) now 
makes sense.

Regiomontanus was needling his opponent while displaying his skills in 
argumentation, but his disputation was not pro forma. Stimulated by the con-
troversy, he was also thinking critically about plausible, implausible, and impos-
sible criteria of planetary order. In the tradition of secundum imaginationem 
arguments that were the stock-in-trade of late-medieval natural philosophy, 
Regiomontanus’s exploration of alternative cosmic arrangements also tested 
propositions for their contingency or necessity, usually forcing a shift from the 
latter category into the former. What is not necessarily true or false, remains 
possible until shown to be otherwise.172

3.3. Concentric spheres with non-uniform motion and the Viennese tradition
Remarkably, the uncertainty of both the planetary order and the sizes of the 
planetary spheres that George had calculated now introduces a radical reassess-
ment of traditional astronomical tools:

It may be possible to save Ptolemy’s demonstrated constant distance of the Sun from 
Earth [= 1210 e.r.] indifferently, in whatever part of its orb the Sun may be. This 
will be the case a fortiori if we can also understand that the Sun is carried on a con-
centric without an epicycle, such that, for example, although it can move non-uni-
formly about the center of the world, yet it is deemed to be carried uniformly about 
some other point. In this way, every apparent anomaly in its motion can nevertheless 

171 ‘Hoc etiam amplius/rursum attento, si rhetoricis locus datur argumentis, quod conve-
nientius est atque naturalius duos quidem planetas femineos masculinis cunctis esse inferiores: 
Mercurium autem versipellem atque promiscuum utrique sexui interparasitari. Nam celerioris 
rationem circuitus ab ordine planetarum explorando antehac reiecimus’. Regiomontanus, De
fensio, fol. 156v.

172 Albert of Saxony’s commentary on De caelo 2.10 lists 4 possible options, but Venus be-
low Mercury is not one of them; Grant, Planets, Stars and Orbs, pp. 310–11. There is sec-
ond-hand evidence that Archimedes had proposed a schema in which Venus was below Mer-
cury, and both below the Sun; Neugebauer, A History of Ancient Mathematical Astronomy, 
pp. 647–50.
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be conveniently saved. Indeed, what they assume [as a justification] for introducing 
eccentrics and epicycles is not necessary, namely, that any celestial body is carried 
uniformly about the center of its proper orb, since Ptolemy himself could not safe-
guard this assumed principle.173

In this shocking passage, Regiomontanus proposes to eliminate a fundamental 
feature of Ptolemaic astronomy: the solar eccentric. The replacement he pro-
poses is clearly not the Almagest’s geometrical equivalent to it (the deferent-ep-
icycle model), since he specifies not only an Earth-centered ‘concentric without 
an epicycle’, but also a concentric that revolves non-uniformly about the Earth. 
The center of its uniform motion must therefore be ‘some other point’, in 
effect a solar equant point. Equally remarkable, this single-concentric proposal 
is a departure from Regiomontanus’s own earlier homocentric theory of the 
Sun sketched in the ‘Letter to Vitéz’ (1460), which combined two uniformly 
revolving concentrics.174 The stated motive for his new proposal is the preser-
vation of ‘Ptolemy’s demonstrated constant distance of the Sun from the Earth 
indifferently’.175 Recall that the point of the solar eccentricity in Ptolemy’s  
model was to account for the Sun’s measurable velocity, not its distance. Con-
veniently, he could treat as negligible the parallax that follows from that eccen-
tricity.176

Regiomontanus’s rationale is sufficient for favoring some kind of concentric 
model, but does not explain why he is abandoning his own two-concentric solar 
model from 1460: all concentric models will preserve equidistance. Better pre-
diction cannot justify the shift either, as the new model offers no improvement 
on the equivalent classic one. Since the old model in the ‘Letter to Vitéz’ was 
not only complex, but also left key mechanical problems unsolved, the motiva-
tion for abandoning it arguably derives from a concern for simplicity, merely 
implied here but stated explicitly below.

173  ‘Quod  autem  distantiam  solis  a  terra  Ptolemeo  demonstratam  indifferenter  in  quacum-
que orbis sui parte sol fuerit servari liceat; hinc maxime declarabitur si solem ipsum in concen-
trico ferri absque epicyclo etiam intelligamus; ita videlicet ut, quamvis inequaliter circa mundi 
centrum moveatur, equaliter tamen circa aliud quoddam punctum circumduci estimetur. Sic 
enim nihilominus omnis diversitas que in motu eius apparet commode salvabitur. Non enim 
quod ad introducendum eccentricos atque epicyclos supponuntur necesse est celeste quodlibet 
corpus equaliter circa centrum orbis proprii circumferri cum ne Ptolemeus quidem illud sump-
tum principium custodire possit’. Regiomontanus, Defensio, fol. 156v.

174 Swerdlow, ‘Regiomontanus’s Concentric-Sphere Models’, esp. pp. 6–11.
175 Regiomontanus’s inclination to treat Ptolemy’s 1210 e.r. as a single, constant solar dis-

tance  may  have  taken  some  comfort  from  al-Battānī’s  recomputation  of  the  minimum  lunar 
diameter as 29′ 30″ (which allowed annular eclipses without changing the apparent solar dia-
meter; see Nallino, Al-Battānī sive Albatenii opus astronomicum, vol. I, pp. 58, 236; Swerdlow, 
‘Al-Battānī’s Determination of  the  Solar Distance’,  esp.  p.  100.

176 Neugebauer, A History of Ancient Mathematical Astronomy, pp. 104, 112.
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What evidently matters most are the empirical basis and the physical char-
acteristics of the model, particularly saving Ptolemy’s fixed solar distance by the 
simplest means possible — the equidistance of a concentric orb that carries the 
Sun. Implicit in this project is the notion that the variable distances of the Sun 
in the Almagest model are inconvenient features of that model. They do not 
describe the world, since no parallax is observed: the solar apogee and perigee 
are theoretical constructs without empirical warrant. They are consequences 
of an eccentric model contrived to save variation in velocity while retaining 
uniform motion about the center of the solar sphere. In effect, this critique 
extends to the Sun an argument analogous to Levi ben Gerson’s critique of the 
unseen 2-fold variation in the apparent lunar diameter predicted by Ptolemy’s 
second lunar model. The price for saving lunar velocity was a 4-fold variation 
in area, unseen though easy to detect in principle. Incidentally, Regiomonta-
nus’s shift in critical focus corresponds to a longstanding pattern of conceptual 
transfers from lunar to other theories that Neugebauer has noted.177

From Regiomontanus’s point of view, assigning a fixed distance to both 
the Moon and the Sun made more sense on observational grounds than did 
accepting the variations in distance implied by Ptolemaic theory.178 For the 
Sun, a single concentric could do the job — if only one was willing to take the 
momentous step of giving up uniform motion.

Alone, however, the goal of preserving a fixed solar distance does not 
explain why Regiomontanus was prepared, even for polemical purposes, to 
abandon uniform circular motion. This was a principle of astronomy so fun-
damental that it was almost universally shared by the astronomers and natural 
philosophers of the Greek, Arabic, Hebrew, and Latin worlds. It had drawn the 
consensus of very different intellectual camps ever since Eudoxus’s homocen-
tric spheres and Aristotle’s De caelo (1.2; 269a3–30) in the fourth century Bc. 
Indeed, it continued to be endorsed even though Hipparchus’s pioneering use 
of epicycles and eccentrics, their flowering in the Almagest, and Ptolemy’s intro-
duction of the equant point were arguably partial violations of the principle’s 
integrity. The  revival of homocentric  schemes  (from al-Biṭrūjī  onward)  and  the 
‘Marāgha  School’s’  critiques  of  the  equant  constituted  deliberate  attempts  to 
reaffirm that integrity. The principle was also endorsed in the critical medieval 
Aristotelian natural philosophy in at least five languages, and the Latin revival 

177 Neugebauer, A History of Ancient Mathematical Astronomy, p. 86.
178 To assign concentric models to both Sun and Moon, Regiomontanus had to ignore, 

disbelieve, or explain away claims about observed annular eclipses in works he knew, nota-
bly Battānī’s Opus astronomicum (Nallino, Al-Battānī sive Albatenii opus astronomicum, vol. I, 
pp. 58, 236–37) and a text that Regiomontanus himself summarized, notably in Epitome 5.21 
(Schmeidler, Joannis Regiomontani opera collectanea, p. 143); see also Shank, ‘The Notes on 
al-Biṭrūjī’,  esp.  pp.  17–19.
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of the Almagest. Regiomontanus himself favored it elsewhere.179 As late as 
1543, Copernicus took this principle as self-evident, expressing it as follows: ‘it 
is impossible for a heavenly body that is simple to move irregularly in a single 
sphere’ (De revolutionibus, 1.4). Soon thereafter, Erasmus Reinhold named its 
positive form ‘the astronomical axiom’ and inscribed it on the title page of his 
copy of Copernicus.180 In short, Regiomontanus’s proposal was going against 
the grains of both a venerable tradition and an overwhelming consensus that 
only Kepler would bring to an end.

Regiomontanus’s proposal was not original. Although he did not say so, he 
had at least two late-fourteenth-century predecessors whose views eventually 
made it to the University of Vienna. Henry of Langenstein (d. 1397), who 
had studied and taught at Paris until 1382, then settled in Vienna after 1383, 
had first proposed a non-uniformly rotating concentric sphere for the Sun in 
his Parisian De reprobatione ecentricorum et epicyclorum (1364). An other-
wise unknown Magister Julmann emulated him in his own De reprobation
ibus epiciclorum et eccentricorum, which cites several observations from 1377 
and knows of Langenstein’s work (the careers of the two men evidently over-
lapped in Paris). Both treatises traveled to Central Europe, including Vienna.181 
Regiomontanus copied Langenstein’s De reprobatione into his Viennese note-
book (Vienna, ÖNB, cod. 5203). Beyond criticizing the anonymous Theorica 
planetarum communis used in the universities, Langenstein took on Ptolemaic 
modeling itself: he sketched a non-uniformly moving concentric alternative to 
the solar eccentric and also a concentric model for the Moon, responding to 
Levi ben Gerson’s criticism of what the crank mechanism did to apparent disk 
size. Langenstein used the natural-philosophical language of the intension and 
remission of forms to discuss this ‘difform’ motion.182 This conceptual frame-
work evidently smoothed the path to his acceptance and advocacy of non-uni-
form circular motion. Langenstein made his peace with this proposal by using 
contemporary natural philosophy: he drew a clever distinction between the 
motion of a sphere, which could be difform, and its mover (i.e., the intelli-

179 e.g., Regiomontanus, Defensio, fols 210v, 211v; see Shank, ‘Regiomontanus on Ptolemy’, 
pp. 193–94, 199.

180 North, Cosmos, pp. 73–77, 92–94, 203–07; Grant, Planets, Stars, and Orbs, pp. 488–
93;  Copernicus:  ‘Quoniam  fieri  nequit,  ut  coeleste  corpus  uno  orbe  inaequaliter  moveatur’, 
in Lerner et al., Copernic. De revolutionibus, vol. II, p. 21; vol. III, p. 85; Gingerich, ‘From 
Copernicus to Kepler’, esp. p. 515.

181 Zinner, Entstehung und Ausbreitung, pp. 82–84. Julmann’s work survives in two man-
uscripts (Munich, BSB, Clm 26667, 109v–116r; and Vienna, ÖNB, cod. 5292, 180r–197v), 
Langenstein’s De reprobatione ecentricorum et epicyclorum survives in at least 8 manuscripts, 
now found in Prague, Vienna, and Melk, among other locations.

182 Kren, ‘Homocentric Astronomy in the Latin West’, esp. pp. 271–74, 278; Zinner, Leben 
und Wirken, pp. 64, 307.
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gence moving it), which could not. The apparent paradox was solved by argu-
ing that the latter could act uniformly relative to a non-central point, such as 
the equant point.183

Consistent with his solar proposal and its inspiration from Langenstein, 
Regiomontanus denies that eccentrics and epicycles are necessary for astronom-
ical theory.184 The rationale for positing these devices in the first place was 
adherence to the principle that, as Regiomontanus phrases it, ‘any celestial 
body is carried uniformly about the center of its proper orb’. But, he argues, 
Ptolemy himself could not follow this principle. Why then should his succes-
sors be bound by it, and especially by the epicycles and eccentrics that were 
contrived to uphold it? Since the principle does not hold, why not simply pos-
tulate (physical) concentric spheres that move non-uniformly? This is roughly 
what one observes for the Sun and Moon.

When noting Ptolemy’s failure to safeguard (custodire) the principle of uni-
form motion, Regiomontanus is alluding to compromises associated with the 
equant point, which the Almagest had introduced as the center about which 
the epicycle center moved uniformly. Invented in simpler times, the principle of 
uniform motion had found an ideal embodiment in Eudoxus’s nonquantitative 
astronomy, in which all combinations of spheres moved both uniformly and 
concentrically about the Earth’s center. In this one point coincided the center 
of the universe, the centers of the spheres, and the centers of their uniform 
motion.

The work of Eudoxus (and Aristotle’s use of it) largely did not use numer-
ical data and did not aspire to quantitative prediction. Beginning with the 
inequality of the seasons, ‘anomalies’ or ‘inequalities’ in the motions of the 
celestial bodies proved incompatible with the concentric model. After making 
contact with Babylonian quantitative astronomy and its program of prediction, 
Hipparchus and others turned to astronomical models using eccentric deferents 
and epicycles. These devices multiplied centers of uniform motion away from 

183 ‘Est etiam ista difformitas tanto maior quanto punctus reducibilis fuerit a centro fue-
rit distantior. Patet ergo quod contingit spheram difformiter uniformiter moveri, scilicet su-
per centro proprio vel super puncto preter eius centrum, quem punctum astronomi centrum 
equantis vocant. Hoc tamen est differenter (read: dupliciter), quoniam uniformitas super cen-
tro proprio est semper tam in velocitate motus quam in [R: + in] velocitate circuitionis. Sed 
uniformitas super punctum preter centrum solum est unius, scilicet circuitionis; et attenditur 
penes descriptionem angulorum equalium in equalibus temporibus. Et igitur credo omnem 
motorem superiorem suum orbem uniformiter movere aliquo dictorum modorum ita quod 
conatus cuiuslibet uniformiter movendi vel est respectu centri proprii orbis quem movet, vel 
respectu cuiusdem puncti a centro distanter; alias enim videretur sequi mutatio voluntatis mo-
vendi in intelligentia, quod non diceret philosophus’. Henry of Langenstein, De reprobatione 
ecentricorum et epicyclorum, Vienna, ÖNB, cod. 5203, 102r.

184 Regiomontanus had made this point earlier in the Defensio (Shank, ‘Regiomontanus on 
Ptolemy’, pp. 198–99) and would return to it in books 12 and 13.
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the center of the universe — the price to be paid for greater compatibility with 
observational records and better predictions. Ptolemy built on the work of his 
predecessors. His models gave predictions in even better tune with observations 
if the epicycle center moved uniformly about a point other than the deferent 
center. In the case of the improved lunar theory, that point was the eccentric 
Earth. In the case of the planetary theories, Ptolemy invented a ‘circle of uni-
form motion’ (sketched in Almagest 9.2), the center of which had no physical 
significance. The Latin translators dubbed these features circulus aequans and 
punctum aequans, respectively, to signify that the line from the equant point to 
the epicycle center sweeps out equal angles in equal times.185

3.4. Ptolemy’s violations of uniform motion
Note that Regiomontanus’s criticism above began by rebuking George of Tre-
bizond’s use of a solar perigee and apogee instead of Ptolemy’s single measured 
fixed distance (Almagest 5.11).186 It continues now by addressing directly con-
tradictions in the Almagest itself, namely that Ptolemy’s theories of the Moon 
and the five planets all violate the principle of uniform motion:

For [1] he who shows the lunar epicycle revolving uniformly about the center of the 
world must admit that the very same epicycle is necessarily carried non-uniformly 
about the eccentric’s center. The rigor of geometry confirms this point, since it is 
impossible for the same body to be carried uniformly about several centers in the 
same plane figure. [2] Next, this is the case for the epicycles of all the retrograde 
planets, in that those that individually are carried uniformly about the centers of 
their equants, move non-uniformly about the centers of their deferent orbs. But 
[3] the same thing necessarily obtains also for the planets themselves; for whenever 
one of them moves [on the epicycle] away from the epicycle’s continually changing 
mean apogee (as they call it), [the planet] necessarily describes unequal angles on 
the center of its epicycle and is therefore carried around unequally about its most  
proper orb.187

185 Neugebauer, A History of Ancient Mathematical Astronomy, pp. 86, 154–55; Benjamin 
and Toomer, Campanus of Novara, pp. 212, 214, passim; and note 3 on p. 404; Pedersen, 
A Survey of the Almagest, pp. 273–83.

186 Toomer, Ptolemy’s Almagest, p. 244.
187  ‘Quippe  qui  lunarem  epicyclum  equaliter  in  centro  mundano  rotari  ostendens,  ipsum 

eundem inequaliter in centro eccentrici circumduci confiteatur necesse est. Id enim geometri-
ca roboratur firmitudine cum sit impossibile idem corpus equaliter ferri circa centra plura in 
eodem plano signato. Hoc denique omnium retrogradorum epicyclis obtingit ut qui equaliter 
in equantium suorum centris singuli ferantur, inequaliter circa centra orbium se deferentium 
moveantur. Sed planetis quoque ipsis idem obtingere necesse est, cum enim equaliter quivis 
eorum ab auge, ut vocant media, epicycli sui que continue mutatur, discedere soleat, necesse est 
ut in centro ipsius epicycli inequales describat angulos atque idcirco in orbe suo propriissimo 
inequaliter circumferatur’. Regiomontanus, Defensio, fols 156v–157r.
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These examples are awkward if one professes adherence to the principle that a 
sphere or circle must rotate uniformly about its ‘proper center’. In argument [1], 
Regiomontanus considers the second lunar model, in which Ptolemy makes the 
center of the Moon’s epicycle move uniformly about the Earth. It therefore nec-
essarily moves non-uniformly about every other point,188 most problematically 
about the center of the deferent sphere that carries the epicycle center. In this 
lunar model, the eccentric Earth is functionally an equant point (for the first 
time in the Almagest): the lunar model dissociates the geometrical center of the 
deferent sphere from the center of its uniform motion (the Earth in this case).189 
What Ptolemy has covertly allowed here for the Moon — the non-uniform 
motion of a (deferent) sphere about its center — is just what Regiomontanus, 
following Langenstein, openly proposes for the Sun.190 Eccentrics and epicycles 
were invented to preserve the principle of uniform motion, yet the Almagest 
violates it often. Why not simplify matters by rejecting the principle outright?

A similar problem [2] also plagues the epicycle centers of the five retrograde 
planets. This is the archetypical illustration of the equant problem. On this 
account, the epicycle center is carried equidistantly but non-uniformly around 
the center of the deferent sphere, whereas it moves uniformly (sweeping out 
equal angles in equal times) about the equant point, while varying its distance 
from the latter. This arrangement is incompatible with the notion of the def-
erent sphere rotating uniformly about its diameter, as the principle of uniform 
motion prescribes.

Regiomontanus’s third example [3] is another corollary of the equant prob-
lem in that the planet’s motion about the epicycle center is uniform with respect 
to a shifting equant-related reference point: the mean apogee — the ‘mean aux, 
as they call it’, says Regiomontanus with little enthusiam. The planet should 
move uniformly around the epicycle center, but Regiomontanus argues that it 
does not. His brief critique builds on Peuerbach’s claim that the motion of the 
planet is ‘irregular about the center of the epicycle’ but ‘irregular according 
to this rule: that the distance of the body of the planet from the point of the 
mean apogee of the epicycle, whatever it may be, follows a regular pattern’.191

188 Peuerbach’s Theoricae novae planetarum [3r] mentions these items in sequence but does 
not emphasize their consequences for the principle of uniform motion; Schmeidler, Joannis 
Regiomontani opera collectanea, p. 759; Aiton, ‘Peurbach’s Theoricae novae planetarum’, esp. 
p. 12.

189 Neugebauer, A History of Ancient Mathematical Astronomy, p. 86; Toomer, Ptolemy’s 
Almagest, pp. 221–22; Pedersen, A Survey of the Almagest, pp. 186–87. Regiomontanus returns 
to this point at Defensio 12 (224v).

190 Copernicus too would later complain about this problem in Ptolemy’s lunar theory in 
De Revolutionibus 4.2–3.

191 Peuerbach, Theoricae novae planetarum, [7r] in Schmeidler, Regiomontani opera collecta
nea, p. 767; Aiton, Peurbach’s Theoricae novae planetarum’, pp. 18–19.
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Figure 3. The true apogee At and mean apogee Am of the epicycle with center C. The Earth/
observer is T, the deferent center D, the equant point E, each separated by the eccentricity e. 
The planet is P. The true apogee Av is the prolongation of TC to the epicycle, the mean apogee 
Am the prolongation of EC to the epicycle. After Pedersen. Compliments of Nick Jacobson.

The mean apogee, from which the planet’s mean epicyclic anomaly is reck-
oned, is the prolongation of line EC to Am on the far side of the epicycle.192 As 
the epicycle center is carried around the deferent, Am oscillates on either side of 
the true apogee At, coinciding with it on the line of apsides. This is why Regio-
montanus qualifies the mean apogee as ‘continually changing’, as does Peuer-
bach, who states explicitly that the epicycle rotates faster through the upper 
half of the deferent, but slower through the lower half.193 But a planet moving 
in this way cannot sweep out equal angles in equal times about the epicycle 
center, the ‘most proper center’ of the planet’s motion — another violation of 
the principle of uniform motion.

Like Regiomontanus’s proposal for a non-uniformly moving solar concentric, 
the first and third criticisms parallel those of Henry of Langenstein’s De repro

192 Pedersen, A Survey of the Almagest, pp. 283–85.
193 Peuerbach, Theoricae novae planetarum, [7r] in Schmeidler, Joannis Regiomontani opera

collectanea, p. 767; Aiton, ‘Peurbach’s Theoricae novae planetarum’, p. 19. See also Malpangot-
to, ‘The Original Motivation’, section 6c.
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batione ecentricorum et epiciclorum, a text that includes ‘a detailed refutation 
of Ptolemy’s theory of planetary distances and sizes’.194 Regiomontanus’s first 
criticism parallels one of Langenstein’s criticisms of the lunar theory,195 whereas 
the third briefly summarizes the reductio ad absurdum with which Langenstein 
argues that the oscillation of the mean apogee makes the motion of the planet 
on the epicycle non-uniform.196 In other words, Copernicus’s three criticisms 
of Ptolemy’s lunar theory in De revolutionibus 4.2 appear in both Langenstein 
and Regiomontanus.197

Returning to the main topic from this radical digression into fundamental 
principles, Regiomontanus cuts short his critique, now restricting his argument 
to the goal of preserving a fixed solar distance:

We discussed these things extensively elsewhere; we recall them now, not so that we 
might destroy the approach of epicycles and eccentrics, but so that we may establish 
the solar distance posited indifferently by Ptolemy [= 1210 e.r.] and then show, with 
the help of our superior computation, the greater suitability <of placing> Mercury 
always below the Sun, if one is allowed to dissent from the ancients, than of placing 
it above the Moon; and, even more, that we may display the lameness of the argu-
ment that the expositor holds up as wonderful and most certain, which from another 
angle can be demonstrated to be sloppy and fragile.198

The seemingly straightforward statement raises a host of intriguing questions, 
even as Regiomontanus’s qualifications leave his own views ambiguous. First, 
Regiomontanus claims that his criticisms are not new: he has treated them at 
length ‘elsewhere’, i.e., not in the Defensio itself, which he usually cross-ref-

194 Kren, ‘A Medieval Objection to Ptolemy’, esp. pp. 379–83; Mancha, ‘Ibn al-Haytham’s 
Homocentric Epicycles’, esp. pp. 73–75.

195 I transcribe the conclusion of Langenstein’s argument from the copy in Regiomonta-
nus’s hand: ‘Ex quibus evidenter sequitur centrum epicycli lune difformiter moveri in ecliptica 
secundum ponentes ecentricos, quoniam ponunt centrum ecentrici lune uniformiter moveri su-
per centro mundi et ipsum declinare a via solis, ut patet in omnibus theoricis eorum. At tamen 
ponunt lineam exeuntem a centro mundi per centrum epicycli esse lineam medii motus lune; 
ergo secundum eos movetur uniformiter in ecliptica; sequitur ergo implicatio contradictionis 
ex isto modo ponendi. Et similiter in aliis planetis quorum eccentrici declinant a via solis’, 
Vienna, ÖNB, cod. 5203, 102r.

196 Kren, ‘A Medieval Objection to Ptolemy’, pp. 379–81; Mancha, ‘Ibn al-Haytham’s Ho-
mocentric Epicycles’, pp. 74–77.

197 This is an unappreciated part of the Latin background of Copernicus; Lerner et al., 
Copernic. De revolutionibus, vol. III, pp. 493–96.

198 ‘Hec alibi diffusius a nobis declarata, commemoramus impresentiarum non quo ianuam 
eccentricorum atque epicyclorum infringamus, sed quo distantiam solarem a Ptolemeo indif-
ferenter sumptam adstruamus ac deinceps calculo nostro superiori attestante ostendamus con-
venientius Mercurium sub sole statim si a priscis dissentire licet quam supra lunam ordinari; 
imo potius ut manifestemus infirmitatem rationis quam expositor pro mirabili atque certissima 
ducit; quam aliunde etiam fluxam atque fragilem esse demonstrari potest’. Regiomontanus, De
fensio, fol. 157r.
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erences. He says more here, however, than he does in his other best known 
discussion of this topic, namely, the letters to Johannes Vitéz (1460) and to 
Giovanni Bianchini (c. 1463–64), which circulated neither much, nor at all, 
respectively. In the ‘Letter to Vitéz’, which sketched homocentric theories for 
the Sun and the Moon, he expressed his interest in eliminating eccentrics and 
epicycles from planetary theory as well.199 But these letters are not much more 
detailed than is this passage of the Defensio. In short, the fulsome critique 
Regiomontanus cross-references apparently refers to another work, perhaps the 
mysterious Problemata Almagesti, most of which has yet to be found.200

Citing a fuller treatment of the problems with eccentrics and epicycles 
elsewhere, Regiomontanus cuts short his discussion here, a distraction from 
the main point — the unique solar distance that Ptolemy determined from 
eclipse observations. This reiterated goal suggests that we should take seriously 
his proposal about the concentric of the Sun, since this is the simplest way of 
accounting for that fixed solar distance.201 Next, Regiomontanus argues that 
the inversion of the traditional order of Venus and Mercury is more likely 
because, using George’s numbers, it fits better in the space between the Sun and 
Moon. Regiomontanus’s final comment in the quotation above relativizes that 
remark, however: his overarching goal is to undermine George of Trebizond’s 
purportedly demonstrative arguments. The perfect fit of the inverted order 
thus displaces George’s computations and, using his own criteria, completely 
undermines his boast of having ‘demonstrated’ the traditional planetary order.

3.4.1. Skepticism about computing cosmic dimensions

The inverted order clearly tells us little about Regiomontanus’s own views. 
Indeed, in the comment that follows, he doubts George’s numbers, which he 
has just used polemically, to compute the ‘better-fitting’ planetary order. The 
first reason for distrusting George’s numbers is that he has undercounted large 
orbs that affect the sizes of the planetary spheres:

Indeed, if it is necessary to assign to each celestial motion its [own] orb (which is 
right and to be assiduously worked out by the philosopher, unless we wish to believe 
that an accident subsists without a subject), one must first add to the Moon an orb 
concentric to the world, which is carried westward uniformly nearly 0;3,11o per day 
around the axis of the zodiac so that, by this motion [= the daily longitudinal ret-

199 Swerdlow, ‘Regiomontanus’s Concentric-Sphere Models’, pp. 6–9.
200 Zinner, Leben und Wirken, pp. 118–20, 324–25; and the updated summary of fragmen-

tary loci in Malpangotto, Regiomontano e il rinnovamento, pp. 205–07.
201 Regiomontanus returns to this point in his concluding remarks, where he criticizes 

George for computing distances using the solar perigee and apogee instead of Ptolemy’s single 
distance, thus gratuitously adding 100 e.r. to the sphere of the Sun; Defensio, fols 159v–160r.
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rogression of the lunar nodes],202 the oblique circles of the luminaries may cut each 
other continuously in points ever farther westward.203

Regiomontanus here restates approvingly the traditional Aristotelian view 
that each motion must have one mover. He also justifies it on technical phil-
osophical grounds: ‘accidents’ (i.e., quantities, qualities, relations) exist not 
independently, but only insofar as they inhere in substances (the only entities 
with independent existence). The motions of the planets are ‘accidents’ in this 
technical sense, with consequences for astronomy. If a planet appears to have 
several motions, several movers must cause them — in this case, one orb for 
each motion.204 The task of assigning these orbs is what ‘is to be assiduously 
worked out by the philosopher’, suggesting that the work is both unfinished 
and difficult.

Regiomontanus thus proceeds to enumerate — beyond the basics of the epi-
cycle, deferent, and crank mechanism — some of the orbs needed to power 
the other lunar motions. His point is that, since George’s planetary distances 
include tiny planetary radii, he should be counting the (non-zero thickness) 
orbs responsible for all motions, not merely those responsible for longitude 
and apogee. First, an additional sphere is therefore necessary to move the lunar 
nodes (i.e., the intersections of the Moon’s inclined path with the ecliptic) in 
their slow retrogression around the ecliptic. The marginalium ‘About thickness’ 
highlights the main theme of the next argument in the text:

Not even the younger students doubt the two orbs that, with an uneven and 
interchanged [= complementary] thickness, surround the lunar eccentric so that the 
entire sphere may remain concentric to the world, filling every vacuum and excluding 
the penetration of bodies. However, some philosophers vociferously affirm, as if it 
were a great novelty, that the lunar globe also is imbedded in some small orb, by the 
rotation of which the spotted face of the Moon always faces our eyes.205

202 Neugebauer, A History of Ancient Mathematical Astronomy, p. 83.
203 ‘Si enim, quod iustum est et a philosopho summopere excogitandum, suum cuique ce-

lesti motui orbem tribui oportet (ne sine subiecto accidens quodpiam subsistere opinemur), 
lune in primis adiungendus est orbis mundo concentricus qui circa axem zodiaci spatio diurno 
trium primarum ac undecim fere secundarum sexagesimarum equaliter ad occasum feratur: ut 
hoc motu obliqui luminarium circuli in aliis continue atque alii se invicem punctis occasum 
versus secent’. Regiomontanus, Defensio, fol. 157r.

204 Grant, Planets, Stars and Orbs, pp. 488–95.
205 ‘<margin: De spissitudine> De orbibus autem duobus qui impari ac permutata crassitu-

dine ecentricum lunarem ambiunt ut tota sphera mundo reddatur concentrica indeque vacuum 
omne impleatur et corporum penetratio excludatur, ne discipuli quidem recentiores ambigere 
solent.  Quod  autem  lunaris  etiam  globus  orbiculo  quodam  implicitus  sit  cuius  contra  epicy-
clum volutione maculosa illa lune effigies oculis nostris semper obvertatur, etsi inusitatum sit 
additamentum, a nonnullis tamen argutie philosophantibus affirmatum’. Regiomontanus, De
fensio, fol. 157r-v.
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These first two orbs are the partial ones that frame the eccentric path of 
the Moon’s epicycle about the center of the Earth, and are familiar from 
the illustrations in Regiomontanus’s edition of Peuerbach’s Theoricae novae
planetarum (c. 1472).206

Figure 4. The lunar model, from Peuerbach’s Theoricae novae planetarum in Ratdolt’s first 
Sphaera mundi compendium (Venice, 1482), based on Regiomontanus’s first edition. Note that 
the partial eccentric orbs have a non-zero thickness at their thinnest point. (By courtesy of 
the Department of Special Collections, Memorial Library, University of Wisconsin-Madison).

Here Regiomontanus explicitly mentions the vacuum-filling role of the 
orbs, about which Peuerbach was silent. Finally, he brings up as controversial 
a point debated by fourteenth-century natural philosophers. If the Moon were 
imbedded in its epicycle, we should see now the face of the Moon, now its 
backside as the epicycle makes a full rotation. But the Moon only shows us one 
face. We must therefore postulate an additional sphere around the Moon that 
counteracts the rotation of the epicycle by rotating at the same rate and in the 
opposite direction.207

How many orbs, then, do you think must be added to Venus as well as Mercury, if you 
correctly consider the 3-fold latitudinal motion of each? At minimum both [planets] 
surely must be surrounded by epicycles, from the variation of which are derived the 

206 Peuerbach, Theoricae novae planetarum [3r–4r], in Schmeidler, Joannis Regiomontani
opera collectanea, pp. 759–61.

207 John Buridan got the principle of the argument right, but not the details. He also con-
sidered dispensing with the additional sphere (as Regiomontanus did not, probably for deliber-
ate polemical reasons) by simply giving the body of the Moon a rotation equal, but opposite, 
to that of the epicycle; Grant, Planets, Stars and Orbs, pp. 299–302.
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twin latitudes of inclinations (inclinationum) and slants (obliquationum)208 in the 
globe of the epicycle and then in the planet itself. To make a celestial structure of 
this sort more perfect, especially if all celestial motions can agreeably be reduced 
to circular uniformity (circularem equalitatem), other [spheres] also will have to 
be superimposed on the aforementioned ones surrounding the epicycle. As to the 
rest, for the third motion in latitude, which they call ‘deviation’ (deviationem), an 
immense orb will have to be adapted to both planets, an orb that can surround 
the other joined orbs of the sphere and represent this latitude of deviation with its 
variable motion.209

The details of the intricate latitude theory for the inferior planets are not 
the issue here (they are discussed in book 13).210 Instead, Regiomontanus’s 
damaging question focuses on George’s failure to include in his computations 
the dimensions of the three orbs that, in combination, produce the inferior 
planets’ motions in latitude.

The first two latitudinal motions that Regiomontanus mentions are the 
inclination (inclinatio) and the slant (obliquatio) of the epicycle with respect to 
the plane of the deferent. 

In the Almagest, Ptolemy analyzes the inferior planets’ changes in latitude 
into three variable components, two for the epicycle (inclination  ι1 and slant  ι2) 
and one for the deferent (deviation  ι3). Measured in the direction the observer’s 
line of sight, the epicycle’s inclination  ι1 has maximum and minimum values 
when the epicycle center is 90o from the line of apsides (at 90o and 270o in 
Figure 5) and is zero when on the line of apsides (with the epicycle center at

208 I take latitudines and geminas to be case errors (for latitudinis and geminae, respective-
ly). Although obliquatio is sometimes translitterated, ‘slant’ typically translates the correspond-
ing term in the Almagest and the Latin synonym of reflectio in Peuerbach’s Theoricae novae 
planetarum. Toomer, Ptolemy’ s Almagest, p. 599 (passim); Aiton, ‘Peurbach’s Theoricae novae 
planetarum’, p. 34. Twice in De revolutionibus 6, Copernicus uses inflexio and inclinatio as 
equivalents to obliquatio; Lerner et al., Copernic, De revolutionibus, vol. II, p. 459, lines 5–6; 
vol. III, p. 435, and the useful chart at vol. III, p. 425. Obliquatio can also signify the obliquity 
of the ecliptic, in the Defensio and elsewhere.

209  ‘Quot  denique  orbes  tam  Veneri  quam Mercurio  adiiciendos  esse  arbitraberis  si  tripli-
cem utriusque latitudines [read latitudinis?] motum rite mediteris? Nempe epicyclis quidem 
binos ad minimum circumplecti oportet, quorum varia mutatione geminas [read geminae?] in-
clinationum atque obliquationum latitudines in epicycli globum et deinceps in stellam ipsam  
<ss: planetam  ipsum> deriventur. Quo autem completior  fiat huiusmodi  celestis  structura, pre-
sertim si universos celi motus ad circularem reducere equalitatem libeat, alii quoque prefatis 
epicyclum ambientibus superimponendi erunt. Ceterum pro tertio latitudinis motui quem vo-
cant deviationem adaptandus erit utrique planete orbis ingens qui reliquos sphere orbes cunctos 
ambiat motuque suo mutabundo hanc deviationis latitudinem effingat’. Regiomontanus, Defen
sio, fol. 157v.

210 Swerdlow, ‘Ptolemy’s Theories of the Latitude’, pp. 41–71, esp. 50–56; see also Pedersen, 
A Survey of the Almagest, ch. 12; Neugebauer, A History of Ancient Mathematical Astronomy, 
pp. 206–26, 1006–16.
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Figure 5. Simplified inner planet latitude theory. The observer is at O, the center of the eclip-
tic and universe, but eccentric to the model, in which M is the center of the deferent. OM 
therefore defines the line of apsides. The deferent has a variable deviation  ι3 from the ecliptic. 
The epicycle is inclined in two ways to the plane of the deferent. The inclination  ι1 is mea-
sured in the direction of sight (i.e., radially from O toward the epicycle center and the mean 
Sun),  shows  maxima  and  minima  (βa,  βb) at 90o and 270o from OM for positions Pa and Pb, 
and is null at 0o and 180o (when the line of sight coincides with the deferent). The slant  ι2 is 
measured orthogonally to the line of sight, reaches maxima and minima along EW at 0o and 
180o and is null at 90o and 270o (when the epicycle diameter orthogonal to the line of sight is 
in  the  deferent  plane).  βa  and βb are the latitudes for planetary positions Pe and Pm (maximum 
elongation) (after Swerdlow, not to scale) Courtesy of Nick Jacobson.

0o and 180o). Inversely, the epicycle’s slant  ι2 displays maximum and minimum 
values perpendicularly to the line of sight, when the epicycle center is on the 
line of apsides (at 0o and 180o).  The  epicycle’s  slant  ι2 is zero when on the 
normal through the Earth to the line of apsides.211 To each of these motions, 
Regiomontanus assigns a sphere (implicitly of non-zero thickness). Peuerbach’s 
discussion in the Theoricae novae is more tentative: ‘on account of these incli-
nations and slants, some assume small orbs holding the epicycles within them-
selves according to the motion of which the same [phenomena] happen’.212

When Regiomontanus mentions the unmet goal of a ‘more perfect struc-
ture’ that fits the criteria of uniform motion, he also states without elaboration 

211 For the geometrical challenge that Ptolemy had to solve, see Riddell, ‘The Latitudes of 
Venus’.

212 ‘Propter dictas epicyclorum inclinationes atque reflectiones orbes parvi epicyclos intra se 
locantes a quibusdam ponuntur ad quorum motum eaedem contingunt’. Peuerbach, Theoricae 
novae planetarum [17r], in Schmeidler, Joannis Regiomontani opera collectanea, p. 787; Aiton, 
‘Peurbach’s Theoricae novae planetarum’, pp. 34–36, esp. p. 36, adding italics and modifying 
the end of Aiton’s translation.
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that the epicycle will need yet more spheres to attain this higher perfection: 
the two spherical shells for inclination and slant enclose the epicyclic sphere for 
longitude theory. This picture beautifully suits his polemic: if the shells for the 
latitude theory are external to the planet, George’s computations of the cosmos 
should add them to the planet’s radius.

Not least is the deviation, the transliterated Latin term for the small vari-
able  pitch  of  the  deferent  in  relation  to  the  ecliptic  (angle  ι3 in Figures 5 and 
6).213 Regiomontanus emphasizes the enormous size of the sphere needed to 
account for that motion: it evidently encompasses both the deferent for lon-
gitude theory and the aforementioned congeries of epicyclic spheres. Again, in 
his computations, George has omitted the huge spheres, implicitly of non-zero 
thickness, that account for the deviations of Mercury and Venus, although he 
included the tiny dimensions of the inferior planets themselves. Here too, the 
Defensio echoes Peuerbach, who treated the deviations of Mercury and Venus 
by assigning to each a large sphere ‘concentric to the world and enclosing all 
those mentioned before’.214

Pushing his case to the limit by moving beyond the Sun-Moon interval, 
Regiomontanus mentions also the orbs needed to explain the motions of the 
Sun and the superior planets:

Finally, for their latitudinal properties, the three superiors also require orbs of this 
sort, albeit fewer. We do not intend — lest we go on at length — to detail them 
precisely, since we have not even reviewed all the inferior [planets’] orbs, having com-
pletely skipped the Sun, which, since the center of its eccentric stands at a significant 
distance from the center of the world, as discerned by the observations of the illustri-
ous  astronomers  Ptolemy  and  al-Battānī,  and  of  other  trustworthy  individuals,  begs 
for other orbs by the motion of which such an accident may be produced.215

Also omitted by George, these additional spheres throw off even more his 
final computations of cosmic dimensions. Although the superior planets have 
no deviation, they nevertheless will each require around the epicycle two addi-
tional latitude spheres for the slant and inclination. Commenting on the Sun, 
Regiomontanus  notes  that  Ptolemy’s  and  al-Battānī’s  observations  point  to  a

213 In the Handy Tables and Planetary Hypotheses, Ptolemy made the deviation constant; 
Swerdlow, ‘Ptolemy’s Theories of the Latitude’, p. 57 and passim.

214 The intersection of the planes of the ecliptic and of the deferent thus produces a fixed 
nodal line that runs through the eccentric Earth and therefore cuts the deferent asymmetrical-
ly; see Pedersen, A Survey of the Almagest, pp. 358–59.

215 ‘Tales demum orbes sed pauciores pro latitudinum qualitate tres quoque superiores 
exposcunt; quos, ne longiores simus, exacte prosequi non est consilium, cum ne inferiorum 
quidem universos orbes recensuerimus; sole penitus/prorsus preterito, qui quoniam centrum ec-
centrici sui multifariam a centro mundano removet quemadmodum observationibus illustrium 
astronomorum Ptolemei et Albategnii atque aliorum fide non carentium dinoscitur, orbes alios 
exposcit quorum motu tale accidens emergat’. Regiomontanus, Defensio, fol. 157v.
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Figure  6.  The  large  sphere,  centered  at M,  that  governs  the  variable  deviation  (ι3) of the def-
erent in the Almagest’s latitude theory of an inferior planet. The earth is at O; the combined 
spheres  that  produce  the  inclination  (ι3)  and  slant  (ι2) are centered on C and carried about M. 
(Not to scale; compliments of Nick Jacobson).

solar eccentric, curiously, since George included the Sun’s perigee and apogee in 
his computations. Most significant is his treatment of the Sun as an unsolved 
problem that demands a multi-spherical solution, a point consistent with his 
‘Letter to Vitéz’, but in clear tension with the non-uniform homocentric sphere 
he had suggested above. The overarching message is clear, however:

We have noted all these things for the following reason: since, whatever their 
thicknesses, orbs of this sort very recently superimposed upon the spheres increase 
[the thickness] of the celestial region, they are effectively laboring in vain who get 
excited about climbing the celestial heights on stairs cut out here and there. Indeed, 
although individual planets may have [known] eccentric and epicyclic radii and 
known eccentricities with their own individual radii, and [although] the Moon’s 
apogee from the center of the universe in e.r. has been discovered, nevertheless the 
conversion of proportions necessary for this work must be kept in check by so many 
orbs of unknown thickness inserted here and there.216

216 ‘Hec itaque pluscula adnotavimus ut, quoniam orbes huiusmodi nuperrime spheris su-
perimpositi crassitudinem quantamcumque habent, celesti regionis augent, operam ludere vide-
antur quincumque celorum culimam scandere gestiunt scalis passim intersectis. Fieri enim 
oportet ut quamvis eccentricorum atque epicyclorum semidiametros ipsasque eccentricitates 
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In this arresting paragraph, Regiomontanus dismisses as a waste of time the 
computation of planetary distances solely from the perigee-to-apogee ratios of 
planetary models. Although the parameters of the models are well established, 
even a hypothetical complete enumeration of all orbs, some very recent,217 
cannot give this project a secure foundation, since the orbs’ thicknesses are 
unknown, a point that returns a folio later.218

Significantly, Regiomontanus juxtaposes his proposal for a non-uniformly 
rotating solar concentric to his critique of George’s discussion of the plane-
tary spheres’ order and sizes. Planetary distances and order do in fact bring 
up notable tensions in the physical implications of Ptolemaic astronomy. Not 
coincidentally, such tensions surface soon after the translation of several Levi 
ben Gerson works into Latin in the early 1340s.219 It is likely through him 
that Latin astronomers became aware of the mismatch between observation 
and Ptolemy’s mature lunar theory. Critiques similar to Levi’s appear in the 
astronomical contexts of mid- and late-fourteenth-century Paris (Langenstein, 
Julmann), and mid-fifteenth-century Vienna (Regiomontanus). Ptolemy’s lunar 
theory worked well enough to track and predict the velocity and position of 
the Moon as a point source. But the ‘crank mechanism’ used to yield these 
results also produced a nearly 2-fold variation in the Moon’s distance from the 
Earth. Irrelevant for a point source, this effect on a body with a half-degree 
apparent diameter should produce a visible 4-fold variation in area.

In addition, the Moon at apogee does exhibit parallax (Almagest 5.11–19). 
Yet, on the nesting hypothesis, the lunar apogee equals the perigee of the next 
contiguous inferior planet, traditionally Mercury. Whether for the sake of 
argument or for more serious reasons, however, Regiomontanus had made a 
hypothetical case for Venus with ‘good fit’ criteria that he knew to be non-
demonstrative.

Not least, there was the problem of the solar distance, to which Regiomon-
tanus kept returning. To account for the variation in solar speed, Ptolemy’s 
theory relies on an eccentric that carries the Sun with a minimum appar-
ent diameter of 0;31,20°. The change in distance computed from this model 
yielded an angular variation in diameter of almost 3′, likewise unobserved. 
Unlike  Ptolemy,  al-Battānī  emphasized  the  nearly  3-minute  difference,  all  the 

cum semidiametris propriis habeant notas singuli planete inventaque sit maxima lune a centro 
mundi remotio ad terre semidiametrum collata, traductio tamen proportionum ad hoc opus 
necessaria prohibeatur tot passim orbibus ignota spissitudine interiectis’. Regiomontanus, De
fensio, fols 157v–158r.

217 I take nuperrime in the previous note to modify superimpositi and to signify more plau-
sibly a contemporary proposal (e.g., Peuerbach’s Theoricae novae) than Regiomontanus’s men-
tion of spheres in his own previous sentence.

218 Defensio, fol. 159v.
219 Mancha, ‘The Latin Translation’.
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more so as he used two of his own eclipse observations (including an annular 
one) to modify Ptolemy’s parameters.220

It should now be clearer why Regiomontanus, a mathematical astronomer 
who also cared about physical data, could, in the ‘Letter to Vitéz’, bother not 
only to elaborate a homocentric hypothesis for the Sun and Moon, but also to 
anticipate extending it to the other planets. It made sense to give the Sun and 
Moon combinations of concentric spheres that used fixed distances to account 
for both the inequalities in their motions and their observed sizes and paral-
laxes (none in the case of the Sun, measurable in the case of the Moon).

For modern critics, homocentric theories are rooted in Aristotelian dogma 
and have as their Achilles’ heel the constant distances of planets and luminar-
ies from the Earth at the center of the universe. But these are not the con-
cerns that we see here. As the arguments of Regiomontanus (and also Henry 
of Langenstein) show, constancy in distance is the very feature that makes a 
homocentric model attractive — on observational rather than dogmatic natural 
philosophical grounds. This is particularly so when thinking critically about 
theories that predict many unseen variations in apparent size: small ones for 
the Sun, large ones (4:1) for the Moon, and even greater ones for Venus (45:1) 
and Mars (52:1), as Regiomontanus had complained in a letter to Bianchini.221 
For astronomers newly attuned to predicted variations in the physical sizes 
of the luminaries and planets, the appeal of concentric models lay partly in 
observation. As further evidence that traditional natural philosophy was not 
the deciding factor, the fundamental principle of uniform circular motion was 
precisely what Langenstein was willing to give up, and Regiomontanus at least 
willing to consider.

Space limitations do not permit a full analysis of the last two folios of this 
discussion, which returns to earlier material. They can be summarized as fol-
lows. Regiomontanus attacks George for conceding that he has made no astro-
nomical observations, and for failing to understand how difficult it is to mea-
sure planetary diameters. Regiomontanus derides his opponent for claiming to 
have demonstrated the planetary order without either addressing the superior 
planets or having shown whether Venus or Mercury is closer to the Moon 
(158r-v). He assails George for praising Ptolemy’s deference to the ancients, 
arguing that Ptolemy did no such thing, but reasoned about the order he pre-
ferred (158v–159r).

Regiomontanus criticizes once again George’s Averroistic heart-Sun trope (he 
mentions the Commentator by name): Nature would never have ‘sunk’ the Sun 

220 Nallino, Al-Battānī sive Albatenii opus astronomicum, vol. I, pp. 58, 236–37; Regiomon-
tanus summarized this material in Epitome 5 (esp. prop. 21) and in the Defensio called it a 
monster (monstrum; 218v–219r).

221 See the translation by Swerdlow, ‘Regiomontanus on the Critical Problems’, esp. 
pp. 173–74.
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to such a lowly ordinal location (with only 3 small ‘stars’ below it and implic-
itly the whole star catalogue above it). He goes on to challenge the consistency 
of George’s speed-distance principle with the sub-solar position for Venus he 
favors, now using al-Biṭrūjī’s  criterion of  synodic period polemically  to put  that 
planet above the Sun (159r).

Finally, he turns to parallax problems. He criticizes George of Trebizond 
for absurdly claiming that one can simply use an instrument to measure the 
parallaxes of Mercury’s apogee or Venus’s perigee: the planets are invisible in 
conjunction with the Sun (159v).222 He accuses George of failing to under-
stand that the planets’ true motions must be computed first, before finding 
their parallaxes: ‘Therefore, whoever investigates parallax while neglecting the 
true position of the planet (stella) is trying in vain to build an unsupported 
roof, suspended in air’.223 Regiomontanus once again emphasizes the greater 
reliability of Ptolemy’s unique measured solar distance (which he takes to be 
constant) while deprecating the attempt by George (and presumably others) to 
obtain it by computing the dimensions of the spheres (160r). Accordingly, he 
then attacks George for ‘insulting’ Ptolemy by treating 1309;46 as the perigee 
of Mars (‘he strays from the truth by 100 e.r.’; Defensio, fol. 160r). Again, he 
effectively rejects the eccentricity of the Sun (a feature of the model, not of 
measurement) and implying that Mars’s perigee should take the (fixed) ‘maxi-
mum solar distance as 1210 e.r.’ (160r), a measurement far more reliable than 
the assumptions George needed for his computations.

4. Conclusion

The Defensio’s attack on George of Trebizond’s Commentaria 9.1 confirms that 
the order of the planetary spheres was hotly contested in the second half of the 
fifteenth century. In his commentary on Almagest 9.1, George chose to dis-
cuss neither the uncertainties that Ptolemy had briefly noted in his treatment 
of celestial order, nor the various post-Ptolemaic alternatives. Instead, he used 
book 9 as the springboard to detailed computations of the dimensions of the 
planetary spheres and the cosmos. He presented his own efforts as empirically 
grounded (the alleged record of Mercury passing below Venus) and as offering 
a demonstration that Ptolemy might have carried out, but omitted. His com-
putations built on, and reinforced, the traditional order that Ptolemy preferred 
despite the uncertainties in it.

As the preceding analysis suggests, George’s Commentaria did not produce 
cosmic dimensions de novo. Instead, I infer that he silently took comfort from 
one work in the tradition of such computations, most likely Campanus of 

222 Regiomontanus makes a similar point in Epitome 9.1; see note 148.
223  ‘Qui  ergo  aspectus  diversitatem  vestigat  vero  loco  stelle  neglecto  tectum  in  aere  pendu-

lum nullo sustentaculo instituere frustra conatur’. Regiomontanus, Defensio, fol. 159v.



 REGIOMONTANUS VERSUS GEORGE OF TREBIZOND 379

Novara’s Theorica planetarum. The two works share several tell-tale idiosyn-
crasies in procedure and emphasis. The most obvious similarities are (1) their 
insistence on adding planetary radii to the radii of the spheres inferred from 
the Almagest’s models, and (2) their justification of the traditional planetary 
order by its ability to generate the proper sequence of weekdays. Less uniquely, 
both marvel at the convergence of independent approaches (eclipses, propor-
tions, days of the week), which they take in the aggregate to confirm their 
planetary order and distances.

The most compelling argument for George’s direct dependence on Cam-
panus, however, rests on errors that are otherwise very hard to explain. George 
behaves strangely in the Commentaria precisely when errors surface in the 
Campanus manuscript tradition. For the superior planets, George suddenly 
introduces, without warrant, talk of approximations when his own results 
diverge from both the numbers he should have got from straightforward com-
putation and the erroneous ones given in Campanus manuscripts. A probable 
explanation of this swerve is the worry of straying too far from the (erroneous) 
answers in Campanus, whom he seemingly trusted more than his own arith-
metic.

For his part, Regiomontanus was following the Almagest itself when he 
insisted that the order of the planetary spheres could not be settled without 
evidence of parallax. Historically, this uncertainty clouded primarily the posi-
tions of Venus and Mercury, exceptions to the rough speed-distance rule that 
failed to undermine its appeal for the remaining planets (arguably including 
the Sun). As the Defensio shows, Regiomontanus’s concise statement of this 
uncertainty at the end of Epitome 9.1224 is merely the tip of Regiomontanus’s 
argumentative iceberg.

In the Defensio, Regiomontanus’s long case for the uncertainty in the order 
and location of Venus and Mercury was primarily destructive. It consisted, 
first, in showing that George’s alleged demonstrations failed. The Commenta
ria’s case for the necessity of the traditional order rested on a supposed obser-
vation of Mercury below Venus, conjoined with a ban on vacua and useless 
space. George thus treated the ‘good fit’ of the computed distances of the 
inferior planets as establishing a necessary truth. Like George, Regiomontanus 
rejected empty space between the Sun and Moon: Venus and Mercury defi-
nitely belonged there. Unlike George, however, Regiomontanus rejected as 
undocumented and unbelievable the reported observation of Mercury below 
Venus. He thereby downgraded George’s ‘good fit’ argument for this order to 
merely the computation of one possible arrangement of the four lowest planets.

224 This passage is contrasted with the Commentariolus’s discussion by Lerner et al., Coper
nic, De revolutionibus, vol. I, pp. 242–44.
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The highpoint of Regiomontanus’s argument was his exploration of the 
other alternative. After hypothetically inverting the received order of Mercury 
and Venus, he computed the sub-solar planetary distances based on George’s 
numbers and assumptions. By showing that his newly postulated order dis-
placed George’s good fit with a better one, Regiomontanus undermined both 
George’s alleged demonstration and his second, weaker line of defense. In short, 
George’s ‘proof ’ of the traditional order of Venus and Mercury was neither nec-
essary nor sufficient.

Regiomontanus’s argumentative approach echoes that of the university dis-
putation, in which masters dissected their opponents’ arguments from every 
angle, ruthlessly searching for contradictory assumptions, fallacious reasoning, 
and any other exploitable weakness. For this polemical reason alone, we cannot 
be sure that Regiomontanus gave more credence to his own hypothesis than to 
George’s. His primary goal was not to defend a planetary order that inverted 
Venus and Mercury, but rather to highlight his opponent’s incompetence by 
showing  that  the  alternative  order  met  George’s  own  criteria  better.  Question 
marks replaced certainty.

Since George almost certainly never saw them, Regiomontanus’s sharp anal-
yses and secundum imaginationem arguments left their main target untouched. 
Conveyed orally, however, their gist may have met another, perhaps more 
important goal, that of undermining George’s bid for patronage at the court 
of Hungary. Their most profound effect was surely on Regiomontanus him-
self. They not only sharpened in detail the unsettled state of key questions 
in astronomy and cosmology (a favorite theme of his), but also stimulated his 
thinking about alternatives and arguments for them. Thus, in the opening 
folios of Defensio 9, Regiomontanus’s discussions of planetary distances and 
order quickly turned to substantive criticisms of contemporary astronomy and 
to hopes for a simpler astronomy. In Regiomontanus’s mind, the uncertainties 
surrounding the received planetary order and distances were intimately tied to 
the complexity of the planetary models themselves, witness his inclusion of lat-
itude theory in cosmic dimensions.

Whatever he believed about the other celestial bodies, Regiomontanus was 
prepared to streamline the physical theory of the Sun, apparently on empir-
ical grounds. Echoing Ptolemy’s remarks on the absence of solar parallax, 
Regiomontanus repeatedly endorsed a fixed solar distance as computed from 
measurements in the Almagest. On this basis, he therefore proposed a single 
concentric sphere for the Sun. Such a picture could make sense only by sever-
ing the age-old necessary connection between uniform motion and spherical 
motion. In driving a wedge between these two properties of celestial spheres, 
Regiomontanus was echoing suggestions found in his own copy of De repro
batione eccentricorum et epicyclorum that Henry of Langenstein brought from 
Paris to Vienna in the late fourteenth century. Regiomontanus’s proposal and 
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its link to Langenstein point to a substantive Viennese thread in late-medieval 
astronomy, one notably critical of fundamental tools in the field.

Regiomontanus concludes his critique of George’s computations of planetary 
distances with remarks that undermine the standard program of calculating 
cosmic dimensions. At the core of his argument, the focus on longitude theory 
vastly oversimplifies the sizes of the spheres by omitting many relevant orbs 
— most notably those responsible for the planets’ motions in latitude. These 
excluded orbs are not abstract entities, but physical bodies with unknown thick-
nesses. When computing cosmic distances, adding only the orbs with ‘known’ 
thicknesses while neglecting the others can yield no reliable information about 
either the sizes or the order of the planetary spheres. Although Regiomontanus 
had little to say here about his own positions, his criticisms challenged many 
a long-held assumption. When Copernicus revisited this territory a generation 
later, he would see in the apparent disarray the seeds of a different order.
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Optimus Malorum: Giovanni Pico della Mirandola’s  
Complex and Highly Interested Use of Ptolemy in the  

Disputationes adversus astrologiam divinatricem (1496), 
A Preliminary Survey

H. Darrel rutkin1

In this essay I will survey a broad range of Giovanni Pico della Mirandola’s 
explicit mentions of Ptolemy in his long, dense and influential attack on astrol-
ogy, the Disputationes adversus astrologiam divinatricem of 1496.2 Searching 
the text, I have found that Pico explicitly mentioned Ptolemy’s name 376 times 
in various contexts. We know fully well, however, that Pico was not always 
explicit or straightforward in how he used Ptolemy, as I have shown elsewhere.3 
Furthermore, Pico’s use of Ptolemy is located at the intersection of two larger 
issues: [1] The full range of Pico’s complex and interested use of authorities 
overall (mainly astrological, philosophical and theological) in the Disputations,4 
and [2] the increasing knowledge of Ptolemy’s Greek text in the Renaissance.

Although Pico was long dead by the time that the brilliant humanist scholar, 
Joachim Camerarius, published the Editio Princeps of the Greek text of Ptole-
my’s Tetrabiblos in 1535, we know that Pico was one of the first scholars to sys-
tematically use the Greek manuscripts that Lorenzo de’ Medici had collected to 
philologically critique the earlier Arabo-Latin translations and their associated 
commentaries.5 In this essay, I will explore Pico’s explicit mentions of Ptolemy 
in the Disputations in relation to the authentic Tetrabiblos and Almagest, and 
the pseudonymous Centiloquium, which Pico thought was authentic. These are 

1 I would like to acknowledge that this article was completed as part of a project that has 
received funding from the European Union’s Horizon 2020 Research and Innovation Pro-
gramme (GA n. 725883 EarlyModernCosmology), as well as support from the University of 
Sydney while I was an Honorary Associate in History of Science at its School of History and 
Philosophy of Science.

2 I use the Latin text that Eugenio Garin edited for the National Edition of Pico’s works: 
Garin, Giovanni Pico. The translation is mine, and will ultimately appear in the I Tatti Renais-
sance Library. My thanks to the organizers of this marvelous and memorable conference, and 
especially to David Juste and Dag Nikolaus Hasse for their very helpful responses to a range of 
queries, and for their valuable comments on the submitted first draft of this essay.

3 Rutkin, ‘The Use and Abuse’.
4 See (e.g.) Caroti, ‘Le fonti medievali’.
5 See Gentile, ‘Pico e la biblioteca’.

Ptolemy’s Science of the Stars in the Middle Ages, ed. by David Juste, Benno van Dalen, Dag Nikolaus Hasse and 
Charles Burnett, PALS 1 (Turnhout, 2020), pp. 387–406
© F  H  G  10.1484/M.PALS-EB.5.120185
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the only three Ptolemaic texts that Pico mentions. These three texts were all 
well known, moreover, and were all, in fact, normal texts of university educa-
tion, as we can see in the detailed 1405 statutes for the University of Bologna.6 
After briefly surveying and categorizing Pico’s explicit mentions, I will discuss 
a few examples in greater depth.

*

Pico was up against tremendous odds in his passionate endeavor to undermine 
and ultimately eradicate astrology, which was still very much ‘normal science’ 
at the time he wrote in the early 1490s.7 Mounting such an attack may seem 
obvious to us from an early twenty-first-century perspective, but from a late 
fifteenth-century Renaissance or Early Modern perspective, it would have been 
a hugely daunting prospect. A resonant analogy would be of someone trying to 
criticize and destroy Newtonian mechanics in either Cambridge in the middle 
of the nineteenth century, with respect to both its overall epistemic authority 
as well as its institutional establishment at the finest universities and learned 
academies. Pico had his work cut out for him!8 

Here is another pointed analogy: Despite his profound respect for Ptolemy’s 
work in astronomy, geography, harmonics and optics, Pico criticizing Ptolemy 
for his astrological writings would be similar to a hypothetical nineteenth-cen-
tury critic of Newton’s respecting him for his work in mathematics, mechanics 
and optics, but objecting to his work in alchemy. The major relevant differ-
ence, however, is that Newton did not publicize his alchemical passions.9 Pico 
was painfully aware of how solidly established and deeply rooted astrology 
was both conceptually and institutionally, at both the universities — includ-
ing those he had attended at Bologna, Padua and Ferrara — and throughout a 
broad spectrum of society, politics and culture.10 Astrology was not marginal in 
any respect. Rather, Pico’s attack itself would have been considered profoundly 
marginal in its time.11

6 See (e.g.) Federici Vescovini, ‘I programmi degli insegnamenti’.
7 See in particular, Boudet, Entre science et nigromance, and in a much shorter compass, 

my ‘Astrology’.
8 I refer here to Cambridge, UK at Cambridge University and in Cambridge, MA at both 

Harvard and MIT.
9 For the most up-to-date information on Newton’s alchemy, see William R. Newman, 

Newton the Alchemist, and his Indiana University website, ‘The Chymistry of Isaac Newton’: 
http://webapp1.dlib.indiana.edu/newton/index.jsp.

10 For a lively recent study offering many examples contemporary with Pico, see Azzolini, 
The Duke and the Stars.

11 Nevertheless, Pico is part of a long ancient, Arabic and medieval Latin tradition of critics 
of astrology, including the well-documented cases of Sextus Empiricus, Moses Maimonides, 
Nicole Oresme and Henry of Langenstein. See most recently Nothaft, ‘Vanitas vanitatum’.
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In this context, Pico wrote the Disputations against Divinatory Astrology at 
the very end of his short but passionate life.12 In it, he tried to undermine, 
destroy and indeed wholly eradicate astrology from the cultural landscape by 
any means necessary — using many different skills and strategies — in a long 
and difficult work that has not yet been fully understood in modern scholar-
ship.13 Towards this end, in my 2002 Indiana University PhD thesis, I focused 
primarily on Pico’s attack on astrology’s natural philosophical foundations in 
Disputations Book III.14 Here I will focus on articulating the contours of Pico’s 
various uses of Ptolemy — astrology’s principle ancient authority — towards 
the very same aim of undermining and destroying astrology.15

The Disputations is thus an extremely ambitious work, one part of Pico’s 
larger unfinished project attacking the seven major enemies of the Church.16 
The only part he certainly wrote (and that still exists) is the Disputations, 
which Pico did not live to complete, leaving behind a fragmentary manuscript 
that no longer exists, despite Robert Westman’s recent statement to the con-
trary.17 In the Disputations, Pico attacked astrology from many different per-
spectives, including its natural philosophical foundations and its foundations 
for practice, inter alia, the doctrines of signs, houses and dignities, all of which 
were considered essential for astrological prediction.18 Here Pico was famously 
followed a century later by Johannes Kepler in his attempts to reform (not 
reject) astrology.19 Signs, houses and dignities were all employed in the four 
canonical types of astrological practice: general astrology or revolutions, nativi-
ties, interrogations and elections.20

Among many other things, Pico was keen to point out that perfectly legit-
imate mathematical devices otherwise useful for astronomical calculation were 

12 See (i.a.) Garin, Giovanni Pico, pp. 3–17. For a splendid evocation of Pico’s life, times 
and works, see Grafton, ‘Giovanni Pico’.

13 For some valuable recent studies, see the essays collected in Bertozzi, Nello specchio del 
cielo.

14 Rutkin, Astrology, Natural Philosophy. I also treat this more fully in volume II of my 
soon-to-be-forthcoming monograph: Rutkin, Sapientia Astrologica, vol. II.

15 This essay draws on and further develops arguments I made in a memorable conference 
on Ptolemy at Caltech in 2007 organized by Alexander Jones: Rutkin, ‘The Use and Abuse’.

16 Garin, Giovanni Pico, p. 3.
17 Garin, Giovanni Pico, in his introduction, informs us of the state of the manuscript, and 

Franco Bacchelli provides further information in the Aragno reprint, ‘Appunti per la storia’. 
On the contrary, see Westman, The Copernican Question, n. 55 (p. 528): ‘Although the pub-
lished value may contain a typographical error, Garin, who made a critical comparison with 
the original manuscript, makes no comment here’. There are many other misprisions in his 
treatment of Pico, who provides the fulcrum for his larger argument.

18 See (e.g.) Book VI.
19 See (e.g.) Simon, Kepler.
20 For a valuable treatment of the range of astrological practices, see Bezza, Arcana Mundi.
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often turned in various ways into astrological predictors, which he character-
ized as arbitrary signifiers with no foundations in nature. These included the 
360 degrees of the zodiac, its twelve 30-degree subdivisions, and their further 
60-minute subdivisions.21 Pico contrasts these arbitrary man-made mathemati-
cal devices (however useful) with actual celestial entities that have real celestial 
influences, which he certainly believed in, but severely delimited in scope.22 For 
Pico, these celestial-efficient causal factors act only by means of motion, light 
and heat, within a well articulated Aristotelian understanding of nature, as 
he discusses in depth in Disputations, Book III. This includes how generation 
works, as we can see, for example, in De generatione et corruptione II.10, and 
especially as developed by Aristotle’s later commentators, including Albertus 
Magnus.23 In Pico’s radical reinterpretation, however, he eliminated the unique 
nature of each planet’s light, and thus its unique influence, as found, for exam-
ple, in the first two chapters of al-Kindi’s deeply influential De radiis stella-
rum, and Albertus Magnus’s commentary on Aristotle’s De caelo, II.3.1 ff.24 
Pico thus attempted to wrench off the by-his-time deeply entrenched astrologi-
cal superstructure from its still-solid Aristotelian foundations.25

*

One of Pico’s main tactics to weaken astrology’s epistemic authority was pre-
cisely to undermine faith in its major authorities, beginning with Ptolemy, 
whom he calls (inter alia) the best of the bad (‘optimus malorum’) and the 
most learned of the astrologers (‘doctissimus astrologorum’).26 One way Pico 
does this is [1] to explicitly, directly and sometimes abusively attack a range of 
Ptolemy’s positive astrological doctrines in the Tetrabiblos and Centiloquium. 
If Pico can fundamentally shake a pro-astrological reader’s faith in Ptolemy, 
that would be a huge step forward for his project, especially in the Renais-
sance. By contrast, [2] where Ptolemy ignores — or himself explicitly criticizes 
or outright rejects — an astrological doctrine, Pico then appropriates his great 
authority, and thus transforms him, paradoxically, into an anti-astrological 

21 See (e.g.) Disputations VI. 4 and 11.
22 See my PhD thesis Astrology, Natural Philosophy, chapter 6, and volume II of my mono-

graph Sapientia Astrologica.
23 Hossfeld, Albertus Magnus; and see my ‘Astrology and Magic’.
24 For the Latin text of al-Kindi, see d’Alverny and Hudry, ‘Al-Kindi, De Radiis’; for a 

partial English translation, see Adamson and Porman, The Philosophical Works, pp. 217–34. 
For Albert’s De caelo, see Hossfeld, Albertus Magnus.

25 I made this argument in chapter 6 of my PhD thesis Astrology, Natural Philosophy. 
I support the claims in this paragraph in much greater depth in volumes I and II of my mono-
graph Sapientia Astrologica.

26 Book I (70, 8 and 6).
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ally.27 Another frequent tactic is [3] to shine a harsh and often ridiculing light 
on the innumerable outright disagreements or conflicting teachings (‘pugnan-
tia’) between the main astrological authorities.28 As by far the most important 
ancient authority, Pico often used Ptolemy in this context by comparing and 
contrasting his views with other astrological authorities, primarily ancient and 
medieval.

In these heated and often sarcastically abusive critical pursuits, Pico regu-
larly deployed his highly developed philological skills to highlight and diagnose 
— among other things — influential misinterpretations of Ptolemy’s doctrines, 
derived from inaccurate and thus misleading translations.29 Sometimes Pico 
refers explicitly to the Greek manuscripts he knew at first hand,30 as well as 
to Latin translations of Ptolemaic texts and commentaries. Sometimes he even 
offers his own corrective translations directly from the Greek. Before turning 
to specific examples, however, I should briefly recall Pico’s significant method-
ological statement in Book II, Chapter 6: if reforming astrology and not sup-
pressing it were his intention, he would have written his book very differently.31 
The primary purpose of Pico’s criticisms, therefore, was to undermine astrol-
ogy in every possible way, but especially by casting doubt on its foundational 
doctrines and authorities. His multifold and highly interested uses of Ptolemy 
played a major role in that process. To their deeper exploration we shall now 
turn. This essay should be considered a preliminary sounding in deep and 
richly complex culture-historical waters.

*

I would now like to analyze some of the ways Pico used Ptolemy by focusing 
on the controversial theme of astrology’s relationship to religion — Pico’s cen-
tral concern in the Disputations — which he treats in some depth, but not sys-
tematically. Here I will build up an admittedly incomplete picture, drawn from 
several disparate chapters, to offer a taste of Pico’s approach to this centrally 
important subject, while focusing on his various uses of Ptolemy. Exploding 
religion’s perceived subordination to astrology was Pico’s greatest concern.

27 For Ptolemy as a critic of earlier astrology, see Grafton, ‘Giovanni Pico’.
28 One (of many) examples is in Disputations, VI.3, in which Pico attacks the astrologers for 

disagreeing among themselves (‘inter se pugnent’) about the doctrine of the terrestrial houses.
29 On Pico as a high-level philologist, in addition to Grafton, ‘Giovanni Pico’, see Gentile, 

‘Pico filologo’.
30 Some of these are described in Gentile, ‘Pico e la biblioteca’.
31 ‘Quod si docere hic potius astrologiam quam confutare instituissem, funderem manum 

ad errata iuniorum profitentium hanc artem; sed non hoc meum consilium. Adnotare tamen 
fortasse aliqua fuerit operae precium, quo magis fiat manifestum non posse eos vera praedicere 
etiam si verissima essent dogmata astrologorum’ (142, 19–24).
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I begin with Book II, Chapter 5, which is entitled: ‘How harmful and nox-
ious astrology is to the Christian religion’.32 Pico mentions Ptolemy himself 
once in this chapter. He begins by strongly stating his overall view of astrolo-
gy’s relationship to religion, and it is not a pretty picture:

Truly, for me reviewing and exploring […] the enemies of the Church, I do not see 
where more supplies and more arms are supplied to all of them equally against the 
truth than from this profession [namely, astrology]. For from this, the fall is easy and 
headlong into impiety, bad religion, heresies, vain superstition, lost morals and irre-
vocable evil. For whence will impiety arm itself against the spears of religion better 
than that divine miracles, by which every religion is primarily confirmed, be referred 
to the heavens?33

This is very much in line with Pico’s statement in the overall Proem that 
astrology is the mother of all superstitions.34

The next passage has the one explicit mention of Ptolemy:
But I have read none of the main writers of astrology who do not subject religion 
and all laws — and likewise the rest of human affairs — to the configurations of the 
stars. In the second book of the Apotelesmaton, Ptolemy understands the fact — that 
in this nation (gens), this god (numen), and in that nation, a different one is wor-
shipped — arose from nowhere else than from the different natures of the stars and 
constellations that rule these peoples and nations.35

The passage in question comes from Tetrabiblos II.3, and here Pico neutrally 
describes Ptolemy’s position. He also mentions Ptolemy’s anonymous Greek 
commentator soon after.

*

32 ‘Quam noxia sit astrologia quamque pestifera christianae religioni’ (126, 11).
33 ‘Sane lustranti mihi undique omnia et ecclesiae hostes exploranti, non video unde omni-

bus pariter plus copiarum, plus armorum, adversus veritatem suppeditetur, quam ex ista profes-
sione. Hinc enim ad impietatem, hinc ad malam religionem, hinc ad haereses, hinc ad vanam 
superstitionem, hinc ad perditos mores irrevocabilemque malitiam praeceps et facillimus lapsus. 
Unde enim se potius adversus tela religionis armabit impietas, quam ut divina miracula, quibus 
omnis potissimum religio confirmatur, ad caelum pertendat esse referenda?’ (126, 13–22).

34 ‘Est autem haec propria labes omnium superstitionum, quarum non alia professio quam 
praecepta tradere insaniendi; sed in primis hunc sibi titulum vendicavit astrologia, sicut et 
inter ipsas superstitiones, quarum mater alumnaque merito existimatur, obtinet principatum’ 
(38, 28–40, 1).

35 ‘Ego vero ex scriptoribus astrologiae praecipuis neminem legi qui religionem et leges 
omnes, ut reliquas res humanas, constellationibus siderum non subiciat. Ptolemaeus, in secun-
do libro Apotelesmaton, quod apud hanc gentem illud numen, apud aliam aliud coleretur, non 
aliunde natum intelligit, quam ex varia siderum imaginumque natura populis illis et gentibus 
imperitante’ (128, 13–19).
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The next passages to be examined are from Book IV, Chapter 10, which is 
entitled: ‘That bad laws, just as good laws also, are not subjected to the heav-
ens’.36 Pico mentions Ptolemy five times in this chapter. The first passage devel-
ops the material just discussed:

But in general, that both good and bad religions do not depend on the heavens, 
experience itself sufficiently demonstrates. For some refer the origins and variety of 
religions to the stars, which rule cities and provinces, as they believe, by their own 
law. Others refer the origins and variety of religions to what they call the Great 
Conjunctions of the superior planets, especially of Saturn and Jupiter. The Arabs 
and Latins follow this opinion, pursuing the tracks of the Arabs. It seems that Ptol-
emy had approached this, who, as we will declare afterwards, never mentioned these 
Great Conjunctions. But in the second book of the Apotelesmaton he says that those 
Asiatics situated to the East and South worship Venus and Saturn, since they are 
under a triplicity of an arid quality, that is, Virgo, Taurus and Capricorn, which he 
thinks Saturn and Venus rule. Again, whoever lives between the South and West has 
Venus and Mars for gods, since they are located under a moist triplicity, which sets 
Mercury and Venus over them along with Mars.37

Here Pico describes more fully what he had just claimed for Ptolemy, namely, 
that places and their celestial rulers determine which gods are worshipped 
where. Once again, Pico neutrally and accurately describes Ptolemy’s position. 
This time, however, he does so to refute it.38

Now Pico directly attacks Ptolemy’s position with an argument from expe-
rience:

Now, that opinion of Ptolemy — in which different stars rule different places and 
peoples in the same manner, so that he would also think that different religious rites 
exist in different places — is strongly refuted by experience itself: the same stars still 
rule those provinces lying between the East and South that ruled them formerly, and 
Venus and Saturn are no longer worshipped there, as they were formerly. Why do 
these gods rule them? As Ptolemy himself writes, it is because the earthly triplicity, 
corresponding to Taurus, Virgo and Capricorn, rules those regions, and Venus and 

36 ‘Malas leges, sicuti nec bonas, caelo non subici’ (486).
37 ‘In universum vero tam bonas quam malas religiones a caelo non dependere, ipsa satis 

experientia demonstratur. Alii enim religionum ortus et varietatem ad sidera referunt, urbibus 
et provinciis suo quodam, ut ipsi credunt, iure dominantia; alii ad magnas quas vocant con-
iunctiones planetarum superiorum, Saturni praesertim atque Iovis; et hanc quidem sententiam 
sequuntur Arabes et Latini, vestigiis Arabum insistentes; illi accessisse videtur Ptolemaeus, qui, 
ut postea declarabimus, de magnis illis coniunctionibus nullam umquam habuit mentionem. 
Sed libro secundo Apotelesmaton eos ait ex Asiaticis, qui ad orientem vergunt et meridiem, 
colere Venerem et Saturnum, quoniam trigono subsint aridae qualitatis, hoc est Virgini, Tauro 
et Capricorno, quibus ipse putat Saturnum Veneremque dominari; rursus qui inter meridiem 
habitant et occasum, Venerem atque Martem habere pro numinibus, quoniam humidae triplici-
tati subiciantur, cui cum Marte, Mercurium et Venerem praeficit’ (486, 7–488, 1).

38 I will discuss the central doctrine of Great Conjunctions below.
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Saturn are in that triplicity. For so he thought. But this partition of the world with 
its regions distributed under different triplicities is perpetual, not temporary. Where-
fore, what existed at some time will always be the same. Why, therefore, O Ptolemy, 
does the same religion not remain also in the same places today? Finally, let us con-
clude this entire chapter by thus inquiring of Ptolemy himself: if different stars were 
worshipped formerly, among different peoples, from a different rulership of the stars, 
by the force and power of what star is it effected that no stars today are worshipped 
in almost any region of the entire world?39

This chapter ends with Pico calling Ptolemy out and ridiculing him in a mildly 
sarcastic manner, another way that Pico used Ptolemy in the Disputations, espe-
cially when Ptolemy promoted a doctrine that Pico rejects.

*

Next I will discuss Book V, Chapter 14, which approaches the subject of reli-
gion differently. It is entitled: ‘That that which is commonly said to be the 
true geniture of Jesus is not, and there is no indication in it that he would 
either die a violent death or be a great prophet’.40 In this chapter, Pico only 
mentions Ptolemy once, and he uses him differently here than before:

What these little diviners (divinaculi) trifle about concerning the geniture of Jesus 
himself is wont to disturb some people. For he was born, they say, while the first 
face of Virgo — thus they call decans — was rising, about which Albumasar writes 
that there is in it a lovely maiden holding two spikes of grain in her hand and nour-
ishing a boy, whom a certain people call Jesus. Thus they think that the miracle 
of the embodied Word is confirmed by the science of astrology, which finds among 
the celestial images the Virgin and Jesus. For my part, I am not especially angry 
with them, since they are accustomed to confirm their religious teachings with such 
testimonies. Therefore, they think that we will willingly accept these things to cor-

39 ‘Iam illam Ptolemaei opinionem, quae perinde atque variis locis et gentibus varia sidera 
dominantur, ita varios etiam ritus religionum in locis existimat, longe magis ab ipsa experientia 
confutatur. Cum et illis provinciis quae inter orientem iacent et meridiem praesint eadem sid-
era quae olim illis praesidebant, nec tamen ut olim ibi Venus Saturnusque coluntur. Cur enim 
haec illis numina dominabantur? Utique, ut ipse scribit Ptolemaeus, quoniam terrena triplici-
tas, quae constat ex Tauro, Virgine et Capricorno, regionibus illis praeest; illi vero triplicitati 
Venus et Saturnus. Ita enim ipse existimavit. At partitio haec mundi et regionum, sub aliis 
atque aliis triplicitatibus distributarum, perpetua est, non temporaria; quare eadem erit sem-
per quae aliquando fuit. Cur non igitur, o Ptolemaee, eadem etiam in eisdem locis hodieque 
religio durat? Denique totam istam disputationem ita concludamus, Ptolemaeum ipsum inter-
rogantes, si a varia siderum praesidentia apud alias gentes olim alia sidera colebantur, cuiusnam 
sideris vi ac potestate efficitur ut nulla sidera hodie aliqua fere totius mundi regione colantur’ 
(488, 21–490, 8).

40 ‘Eam quae vulgo fertur, veram esse Iesu genituram, nec ex ea indicari illum aut violenta 
morte moriturum, aut magnum esse prophetam’ (604, 1–3). For this and other related materi-
al, see Pompeo Faracovi, Gli oroscopi di Cristo.



 OPTIMUS MALORUM 395

roborate our religious teachings. But Christian truth has no need for these fables and 
dreams, among which even the weighty sayings of the philosophers are all but fables.
Who has seen these images while their senses were quiet, which an extremely obscure 
account indicated? Where did either Ptolemy or some ancient ever mention them? 
These are the tidiest bits of nonsense, these figments of the Arabs, although they 
refer them back to the Indians, against which we will dispute more broadly in the 
following book. But Lord Jesus was not born with that virgin ascending, as they say. 
Otherwise, he would have come into the light almost two hours before midnight, 
but we have received from Church tradition that he was born at midnight. Where-
fore, neither the third degree of Libra, as a certain person says, but rather the tenth 
occupied the rising point when the most desired of all people arose.41

Thus, even if the doctrine of decans were sound, according to Pico’s analysis, 
Jesus in fact had ten degrees of Libra rising and not Virgo at all, let alone its 
first ten degrees. This would mean that a different decan altogether would be 
on the ascendant, which would thereby wholly undercut their argument. In 
this way, Pico uses a properly astrological argument to refute the astrologers, 
something he said he would do in Book III.1.42 As he also said, Pico treats 
the decans later in greater detail in Book VI, Chapter 16, and he uses Ptolemy 
there too in the same way, namely, by employing Ptolemy’s silence concern-
ing decans to make his own anti-astrological point. It is noteworthy that the 
counter-argument presupposes some good knowledge of astrology.

*

The last chapter I will discuss concerning Pico’s attempts to decouple religion 
from astrology is the rather long and involved Book V, Chapter 5, in which 

41 ‘Movere autem solent nonnullos quae de genitura ipsius Iesu nugantur isti divinaculi; 
natus enim est, inquiunt, prima facie virginis (sic decanos vocant) ascendente, de qua scribit 
Albumasar, esse in ea virginem formosam duas manu spicas gerentem puerumque nutrientem, 
quae gens quaedam vocat Iesum. Sic confirmari putant miraculum Verbi corporati per scien-
tiam astrologiae, quae inter caeli imagines Virginem Iesumque repperit. Hic eis equidem non 
magnopere irascor quoniam solent ipsi sua dogmata talibus testimoniis confirmare, quia putant 
libenter nos etiam haec recepturos, quibus dogmata nostra corroboremus. Sed non eget his fa-
bulis somniisque veritas christiana, apud quam etiam seria philosophorum paene fabulae sunt. 
Quis has vidit imagines cui, sensu tacente, ratio illas occultior indicavit? Ubi de illis, vel Ptol-
emaeus, vel antiquus aliquis umquam fecit mentionem? Meracissimae nugae sunt Arabumque 
figmenta, quamquam illa referant ad Indos, adversus quas libro sequenti latius disputabimus. 
At neque ista virgine, ut dicunt, ascendente natus est dominus Iesus, alioquin per duas ferme 
horas ante mediam noctem in lucem apparuisset, quem ex ecclesiae traditione media nocte na-
tum accepimus; quare nec tertia, ut quidam dicit, Librae pars, sed decima potius, cum orieba-
tur natorum desideratissimus, horoscopum occupabat’ (604, 4–606, 11).

42 ‘Atque ipsam hanc nostram opinionem non aliis magis, quam quibus utuntur astrologi 
contra nos argumentis, asseveratam probabilemque reddemus’ (178, 19–21).
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Pico directly confronts the central issue of Great Conjunctions.43 Pico men-
tions Ptolemy 16 times in this chapter, whose title is: ‘That the planets joined 
in Great Conjunctions have no more power than when divided, and that these 
Great Conjunctions have been found to be something new, born from a bad 
understanding (“malus intellectus”) of Ptolemy’:44

But even if we grant that planets which have been joined do more than when they 
are separated toward the great transformations (mutationes) of this world — as he 
had just argued — nevertheless, we will not grant that this is to be referred back to 
a conjunction of Jupiter and Saturn, or Mars. We will prove, however — both by 
reason and the authority of the greatest astrologers — that other planets obtain their 
power first in these matters. For none of the ancients ever made their judgments 
on universal transformations of the world via what are called Great Conjunctions. 
[Firmicus] Maternus says nothing about these, although he was certainly the most 
curious investigator of astrology. Paulus [Alexandrinus] says nothing; Hephaestion 
[of Thebes] says nothing; Theophilus says nothing; Astaxarchus says nothing. Ptol-
emy himself says nothing, whose testimony here will suffice, so that we do not use 
witnesses against them who are too little known.45

Here Pico uses Ptolemy along with some other ancients — and as their spokes-
person — to argue against one of contemporary astrology’s major doctrines 
that subordinated religion to astrology. We will now explore how he does so.

First Pico neutrally describes Ptolemy’s relevant doctrine:
In the second book of the Apotelesmaton (II.4), teaching in what way general trans-
formations of the world are foreseen, [Ptolemy] refers them all and only to eclipses 
of the sun and moon. Nothing can be said more rationally [sc. in favour of an astro-
logical doctrine], for universal and great effects ought to be referred to these causes, 
which are the greatest, universal and efficacious. Moreover, it is admitted by everyone 
that among the planets two only are of universal efficient causality (efficientia uni-
versalis), namely, the sun, and the moon, whose light is none other than the sun’s 
light borne to earth as by a mirror. Wherefore, if any celestial power (virtus) ought 

43 For more on the doctrine of Great Conjunctions, see (e.g.) North, ‘Astrology and the 
Fortunes’, and now Hasse, Success and Suppression, pp. 272–89, with a discussion of Pico’s cri-
tique thereof at pp. 277–78.

44 ‘Planetas magnis coniunctionibus iunctos non plus posse quam divisos, magnasque istas 
coniuntiones novum esse inventum de malo Ptolemaei intellectu natum’ (544, 18–20).

45 ‘Quod si iunctos planetas plus facere quam separatos ad magnas istius mundi mutationes 
illis dederimus, non tamen dabimus hoc ad Iovis Saturnique aut Martis coniunctionem refer-
endum, sed obtinere vim primam in istis rebus alia sidera, et ratione et summorum astrologo-
rum auctoritate probabimus. Neque enim umquam aliquis veterum per has, quas isti vocant 
magnas coniunctiones, de universalibus mundi mutationibus iudicarunt, nihil de his Maternus, 
quamquam curiosissimus utique astrologiae investigator, nihil Paulus, nihil Ephestion, nihil 
Theophilus, nihil Astaxarchus, nihil ipse Ptolemaeus, cuius hic nobis testimonium erit satis, 
ne parum eis notis testibus adversus eos utamur’ (546, 22–548, 2).
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to be thought the origin and cause of universal and great effects, none should be 
thought other than these.46

These views can be much more fully developed from Pico’s extensive and pen-
etrating natural philosophical analyses in Disputations, Book III.47

He continues:
But I know what they say about Ptolemy, that this was omitted by him in the Apote-
lesmaton in order not to expose a mystery. For thus Haly, his commentator, writes. 
But in the Centiloquium, many examples of this thing have been given when, in the 
50th verbum, he directs that we should not forget the conjunctions of the planets, in 
which there is great efficacy; and likewise in the 58th verbum. Then, in the 65th, he 
reminds us of these same matters, transmitting the great teachings of these things in 
distinguishing the greatest, median and smallest conjunctions.48

Here Pico sets up a contrast between Ptolemy’s approach in the Tetrabiblos and 
Centiloquium. He also mentions how Haly, Ptolemy’s commentator,49 frames 
the differences as Ptolemy’s deliberate choice in the Tetrabiblos in order to pro-
tect this major doctrine from careless exposure to the ‘hoi polloi’.

Pico now goes on the offensive, setting the tone, as so often, with biting 
sarcasm. This time, however, it is not directed against Ptolemy himself, but at a 
very influential — and extremely pernicious — misinterpretation (as he sees it):

I want nothing more than for them to respond to me that, from here on out, either 
their teachings, whichever seem greater and more admirable, become open to all, or 

46 ‘Is igitur, secundo libro Apotelesmaton, docens qua via generales et mundi mutationes 
praevideantur, eas omnes refert solummodo in Solis Lunaeque defectus; nec potest dici aliquid 
rationabilius, nam debent effectus universales et magni in eas referri causas quae maximae, 
universales et efficaces sint. Est autem confessum apud omnes inter planetas duos esse tan-
tummodo efficientiae universalis, Solem scilicet et Lunam, cuius lumen non aliud quam Solis 
lumen per eam quasi per speculum, ut sic dixerim, ad terram delatum. Quare, si qua debet 
caelestis virtus origo et causa existimari effectum universalium atque magnorum, nulla debet 
potius quam siderum istorum talis existimari’ (548, 2–13).

47 See the analysis in my PhD thesis Astrology, Natural Philosophy, chapter 6, and in vol-
ume II of my monograph Sapientia Astrologica.

48 ‘Sed scio quid dicent de Ptolemaeo, omissum hoc ab eo in libro Apotelesmaton ne myste-
rium proderet. Ita enim scribit Haly eius interpres. Sed in Centiloquio (sic enim vocant) multa 
eius rei dedisse documenta, cum verbo quinquagesimo eius libri iubeat ne planetarum coniunc-
tiones obliviscamur, in quibus magna sit efficacia; et verbo item tum quinquagesimo octavo, 
tum quinto et sexagesimo, earundem rerum nos admonet, magna tradens de his praecepta, co-
niunctionem maximam, mediam minimamque distinguens’ (548, 21–550, 2).

49 The real name of the Centiloquium’s commentator is Abū Jaʿfar Aḥmad ibn Yūsuf, and 
‘Haly’ is just a wrong inference by Plato of Tivoli, which contaminated the entire Latin tra-
dition. See Lemay, ‘Origin and Success’, pp. 103–04. This ‘Haly’ has nothing to do with and 
should not be confused with Haly Abenrudian (ʿAlī ibn Riḍwān), the commentator of the 
Tetrabiblos. See now also Hasse, Success and Suppression, pp. 370–74, for a clarifying discussion 
of all three Halys.
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[to admit] that they have emerged from either vain opinions or a false understanding 
of ancient authors. For what they say — that Ptolemy kept this quiet in the Apoteles-
maton to not bring forth a mystery — I am so far from denying this that I believe he 
also did not bring it forth in the Centiloquium, in which, certainly, he said nothing 
more about these conjunctions than what he also did not say about the death of 
Priam or the Trojan war!50

Pico has now set the sarcastic tone for what follows. As we will see, Ptolemy’s 
doctrine is not the problem here. In fact, Pico fully agrees with it. Rather, the 
problem arises with an extremely influential later misinterpretation of what 
Ptolemy wrote.

Pico then discusses each text from the Centiloquium in turn, beginning 
with verbum 50:

Ptolemy’s 50th verbum is thus among them, that is, in the common edition (in vul-
gata editione): ‘You ought not to forget that there are 120 conjunctions among the 
planets. For in these there is a greater knowledge of things that come to be in this 
world receiving increase and decrease’. In Greek it is thus: ‘We should not overlook 
119 conjunctions. For among them has been placed a conjunction of those things 
which come to be in the world of generation and corruption’.51

Pico here gives the normal translation of this text in Plato of Tivoli’s twelfth- 
century version from the Arabic,52 and then offers his own slightly but signifi-
cantly different translation, directly from the Greek.

Pico now has a basis for his own revisionist analysis:
First of all, the barbarous interpretation attributes more to these conjunctions than 
Ptolemy does[.] […] Let us ascribe the transformations of lower things, above all, 
to the greatest conjunctions. Ptolemy certainly did not say that it is of the superior 
planets, but rather, if what he wrote is both read and understood accurately, it will 

50 ‘Ego vero ab eis responderi nihil potius vellem, ut vel hinc palam omnibus fiat, quaecum-
que eorum dogmata maiora admirabilioraque videntur, ea vel ex vanis opinionibus, vel ex falsa 
veterum auctorum intelligentia pullulasse. Nam quod dicunt tacuisse hoc Ptolemaeum in libro 
Apotelesmaton, ne mysterium proderet, tantum abest ut negem, ut nec in Centiloquio credam 
proditum ab eo, in quo certe tam nihil magis locutus est de istis coniunctionibus, quam nec de 
Priami morte aut bello Troianorum’ (550, 2–11).

51 ‘Est quinquagesimus Ptolemaei verbum ita apud eos, hoc est in vulgata editione: “non 
obliviscaris esse centum viginti coniunctiones, quae sunt in stellis erraticis; in illis enim est 
maior scientia rerum quae fiunt in hoc mundo suscipientia incrementum et decrementum”. 
Graece est ita: ‘Ne praetermittamus centum et decem novem coniunctiones. In his enim posita 
est coniunctio eorum quae fiunt in mundo generationis et corruptionis’ (550, 13–20).

52 The text here is my transcription of Erhard Ratdolt’s 1484 Venice edition, Liber Pthole-
mei. The pages in this edition are not numbered: ‘non oblivisceris esse 120 coniunctiones, quae 
sunt in stellis erraticis; in illis enim est maior scientia eorum quae fiunt in hoc mundo susci-
pienti incrementum et decrementum’. These are the differences from Garin’s text: obliviscaris; 
number written out (centum viginti); rerum for eorum; suscipientia. The status quaestionis on 
the various versions of the Centiloquium is Boudet, ‘Nature et contre-nature’.
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indicate the contrary to us. For he did not say that there are 120 of these conjunc-
tions, as is commonly said, but only 119 because he does not number the conjunction 
of the sun and moon with them, so that it would have peculiar privileges, and a 
singular prerogative, in great and universal transformations. He restores all the rest 
to a disorderly mass of number and order, so that, among them, one would not rule 
another in a particular situation. But the barbarous expositors, not paying attention, 
as if it had been omitted by the fault of the scribes, added the conjunction of the 
sun and moon. They thought that 120 is to be read, not 119, which all the Greek 
codices have, so that, not content with a deviation of the sense, they also corrupted 
our faith in the letter.53

Here Pico makes a philological-critical argument to revise our understanding 
of this crucial passage. He argues that Ptolemy did indeed have one particular 
conjunction in mind, but it was of the sun and moon, not Jupiter and Saturn. 
In fact, the translations from the Arabic all mention 120 conjunctions, and 
those from the Greek — Pico’s, Pontano’s and George of Trebizond’s — all 
have 119.54

Pico further supports this radical reinterpretation with verba 58 and 65, by 
arguing that the Greek term ‘σύνοδος’, when unqualified — as we find it in 
pseudo-Ptolemy’s Greek manuscripts — refers only to conjunctions of the sun 
with the moon (552, 19–554, 20), that is, to the new moon.55 Finally, Pico 

53 ‘Primum plus tribuit istis coniunctionibus barbara interpretatio quam tribuat Ptolemae-
us […]. Sed in quas potissimum maximas quasque rerum inferiorum mutationes referamus su-
periorum esse siderum, Ptolemaeus certe non dixit, sed potius, si eius dicta recte et legantur et 
intelligantur, contrariam nobis sententiam indicabunt. Non enim centum et viginti, ut vulgo 
legitur, has esse dixit coniunctiones, sed solum centum decem et novem, quia his scilicet Solis 
et Lunae coniunctionem non numerat, ut quae privilegia habeat peculiaria praerogativamque 
singularem in magnis universalibusque mutationibus; reliquas omnes acervatim in numerum 
ordinemque redigit, ut inter quas alia aliae singulari nulla conditione praestaret. Quod non 
advertentes barbari expositores, quasi omissum foret vitio librariorum, Solis et Lunae coniunc-
tionem addiderunt, legendumque centum et viginti, non autem centum decem et novem, quod 
graeci omnes codices habent, putaverunt, ut non contenti sensus depravatione, litterae quoque 
fidem adulterarent’ (550, 20–552, 18).

54 My thanks to David Juste for this information on the Centiloquium.
55 On the face of it, this is neither a sound nor a persuasive argument, since ‘σύνοδος’ = 

‘conjunction’ can refer to a conjunction of the sun and moon as well as of the other planets, 
as we find in verbum 50 (‘συνόδους τῶν πλανήτων’), the definition in LSJ II.2. Nevertheless, 
this is, in fact, Ptolemy’s normal usage when ‘σύνοδος’ is unqualified in both the authentic 
Tetrabiblos and Almagest, as well as in the pseudo-Ptolemaic Centiloquium. In the 13 instanc-
es of ‘σύνοδος’ indicated by Hübner in his index nominum to the Tetrabiblos (see Hübner, 
Ἀποτελεσματικά), all of the usages are unqualified and refer to the new moon. This is like-
wise the case in the 50 instances in the Almagest identified by the TLG in which one can 
find three related usages: [1] to the new moon (often along with the full moon); [2] in the 
phrase ‘mean conjunction’, in these cases always referring to the sun and moon; and [3] the 
conjunction of the sun and moon in relation to determining the time of eclipses. My thanks to 
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reinterprets greatest, median and smallest conjunctions to mean, respectively, 
eclipses, the new moon before the sun enters the tropical signs (namely, those 
of the four seasons), and those for every other month (554, 20–558, 11), which 
is truly far-fetched, and has no support in the Tetrabiblos. For Pico, this is Pto-
lemy’s true opinion. Pico attributed the normal view of these conjunctions as 
of Jupiter and Saturn, on the other hand, to a barbarian, that is, Arabic mis-
interpretation of Ptolemy’s text. Here Pico shows off his philological skills to 
shine a critical light on a profoundly influential misinterpretation (as he sees 
it) of Ptolemy’s doctrine in the Centiloquium that had hitherto provided an 
authoritative foundation for Great Conjunctions.

*

In a full treatment of this interesting and important topic, I would character-
ize each of Pico’s 376 explicit mentions of Ptolemy. Some will fall clearly into 
well defined categories, others will not. These are some of the more signifi-
cant categories I have thus far detected: [1] As an example of discord between 
authorities to undermine faith in an astrological doctrine, with Ptolemy’s as 
one of the conflicting teachings. [2] Pico using Ptolemy’s silence or explicit 
criticism as powerful ammunition to help him attack and/or delimit a range of 
astrological doctrines. Ptolemy was himself, of course, a major critic of earlier 
astrology in the Tetrabiblos. [3] Pico also overtly attacks and sometimes ridi-
cules Ptolemy himself for holding a number of astrological doctrines, as well 
as for other positions, including his purported incompetence as a philosopher.56 
In short, with Ptolemy in particular, Pico wanted to play it both ways: to hold 
up Ptolemy as an authority when he supports Pico’s position, and to under-
mine and criticize him when he does not.

Alexander Jones for his timely assistance in this matter. In addition to the several unqualified 
uses of ‘σύνοδος’ in the Centiloquium, the verbal form of ‘σύνοδος’ (‘συνοδεύειν’) is quali-
fied explicitly in verbum 63 as conjoining Saturn and Jupiter (‘ὃτε συνοδεύει ὁ Κρόνος καὶ ὁ 
Ζεύς’). In verbum 65, pseudo-Ptolemy refers to smallest (‘minima’), middle (‘media’) and great-
est (‘maxima’) conjunctions, but he does not further qualify them. Perhaps these two verba in 
close proximity inspired the misinterpretation that Pico is attempting to rectify. Finally, the 
only other usage I could find of a qualified use of ‘σύνοδος’ itself in the Greek of any of these 
three Ptolemaic texts is in verbum 50 in the Greek text of the Centiloquium in Boer, Καρπóς: 
‘Μὴ παραδράμῃς τὰς ριθ συνόδους τῶν πλανήτων’. For whatever reason, though — perhaps 
he was using a different Greek manuscript — Pontano does not reflect this qualified usage in 
his translation: ‘Ne praetermittas centum et decem novem coniunctiones’. I use Boer’s 1952 
Teubner edition of the Greek text of the Centiloquium, and Pontano’s Latin translation in the 
1531 Basel edition. I also use Heiberg’s edition of the Greek and Toomer’s English translation 
of the Almagest, and Hübner’s Greek text of the Tetrabiblos and Robbins’s English translation 
in the Loeb Classical Library, as well as a printout from the Thesaurus Linguae Graecae on the 
various instances of ‘σύνοδος’ in the Almagest.

56 Pico treats this theme at Book I (70, 9 ff.).
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Pico often used philological-critical arguments towards a range of anti-as-
trological ends. They were usually deployed with explicit quotations and their 
often penetrating (if deeply interested) analyses. Sometimes the translations 
were new and revisionary by Pico himself. He also regularly mentioned Ptolemy 
along with one or more of his commentaries and/or commentators, including 
Haly, the anonymous Greek and others, often to highlight their so-called bar-
barous misinterpretations. In this light, given the broad and impressive display 
of his much vaunted philological skills — and even though he several times 
pointed out striking doctrinal differences between the Tetrabiblos and the Cen-
tiloquium (as just above) — it is surprising that he never drew the conclusion 
that one might be spurious.

Furthermore, Pico attacked Ptolemaic doctrine in numerous ways, including 
by arguing that Ptolemy’s own position was misunderstood, which is then not 
a direct attack on Ptolemy himself, but on a particular (sometimes influential) 
interpretation, including by his major commentators. This is a place where, if 
Pico were interested in reform — not rejection — he could have cleared the 
way back to a more pristine Ptolemaic astrology with later distorting accretions 
(including such misinterpretations) removed.57 We can see this intention with 
contemporary medically-oriented humanist scholars, including Nicolò Leoni-
ceno, and Giovanni Mainardi, Leoniceno’s student and one of the editors of 
the Disputations, along with Pico’s nephew Gianfrancesco.58

*

Especially in the Renaissance, neutralizing or diminishing Ptolemy’s stature as 
an astrological authority would have taken Pico a very long way indeed towards 
realizing his quixotic goal of suppressing astrology. Success in rebranding a per-
fectly legitimate and by-his-time well-established scientific astrology as divina-
tory astrology — that is, as the mother of all superstition and thus the preemi-
nent enemy of the Church — would have completed his overly ambitious goal, 
but in this he was profoundly unsuccessful, especially in the short term. His 
ultimate goal, I believe, was to entirely remove astrology from the prophetic 
airwaves, as it were, especially in an age of widely disseminated annual astro-
logical prognostications that were increasingly available and affordable.59 In this 

57 We see such a reforming orientation towards astrology in Girolamo Cardano. See Graf-
ton, Cardano’s Cosmos.

58 For Leoniceno, see (e.g.) Mugnai Carrara, La biblioteca di Nicolò Leoniceno. For Mainar-
di and his role in the complex many-handed process of editing Pico’s Disputationes, see Zam-
belli, ‘Giovanni Mainardi’, and Farmer, Syncretism. Although the evidence Farmer presents is 
intriguing, his conclusions should be treated with caution.

59 For valuable recent scholarship on this important topic, see Green, Printing and Prophe-
cy, and Tur, Hora introitus solis.
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way, the voice of a true divinely-inspired prophet, Girolamo Savonarola, could 
be heard without so much noisy and persuasive competition.60

To characterize astrology as divinatory — as Pico does in the Disputations 
— seems perfectly unobjectionable to us, but would have been taken quite dif-
ferently by most of Pico’s readers. The appropriate context for understanding 
what I mean is an influential and authoritative thirteenth-century text, the 
Summa Theologiae by Thomas Aquinas. In Questions 92 to 95 of the Secunda 
secundae, Thomas sharply distinguished both of what we call astronomy and 
astrology from divination, in discussing legitimate and illegitimate modes of 
knowing and/or predicting the future.61 Although astrology is conjectural and 
not certain — like astronomy is — they are both legitimate modes of knowing 
and predicting because they both rely on causal knowledge. This is decidedly 
not the case with what Thomas explicitly calls divinatory practices — includ-
ing augury and geomancy — which have no causal foundations, and thus rely 
solely on demons.

In the Disputations, then, Pico implicitly responded to and rejected Thom-
as’s influential analysis, collapsing his careful distinctions, and casting astrology 
wholly into the snakepit of divinatory practices, which he would never dignify 
with the term arts. In their famous anti-divinatory papal bulls of 1586 and 
1631, Sixtus V and Urban VIII both followed Pico in this rebranding effort.62 
The equally influential Rule IX of the Index of Prohibited Books (1564, 1596 
and later), however, followed and expanded Thomas’s views, thus setting up a 
conflict — valuable for us — between these two sets of legally binding texts, 
whose debates we can now see fully articulated in recently edited documents 
from the archives of the Roman Congregations of the Holy Office and the 
Index.63 Thomas Aquinas, then, was another major, fundamentally pro-astro-
logical authority for Pico to co-opt, but also a complex one — as we can now 
more easily see — as was Thomas’s distinguished teacher, Albertus Magnus; 
but these are topics for another occasion.64

Despite Pico’s furious efforts at rebranding, then, astrology was still consid-
ered legitimate knowledge, and continued to be taught at the finest early mod-

60 For Savonarola in context, see (e.g.) Weinstein, Savonarola and Florence, and Dall’Aglio, 
Savonarola, and for his relationship to both Giovanni and Gianfrancesco Pico, see Garfagnini, 
‘Savonarola tra Giovanni e Gianfrancesco Pico’, pp. 237–79.

61 I discuss this material in part 2 of volume I of my monograph Sapientia Astrologica, and 
more fully and in a broader context in my ‘Is Astrology a Type of Divination?’.

62 See (i.a.) Ernst, ‘Dalla bolla Coeli et terrae’, pp. 255–79.
63 See Baldini and Spruit, Catholic Church and Modern Science, vol. I, tomes 1–4. Al-

though the texts they publish are extremely valuable, their interpretations should be treated 
with caution.

64 For both Thomas’s and Albert’s views on astrology — including in relation to theology 
— see volume I of my monograph Sapientia Astrologica.
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ern European universities, until well into the seventeenth century, and some-
times beyond.65 Nevertheless, Pico’s Disputations Against Divinatory Astrology 
— with its complex and highly interested uses of Ptolemy — certainly played a 
significant cumulative role in astrology’s eventual removal from the time-hon-
ored and well-established premodern maps of legitimate knowledge and prac-
tice. Further study should make that role more fully understood.
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Longomontanus on Mars: The Last Ptolemaic  
Mathematical Astronomer Creates a Theory

Richard L. kremer

1. Introduction

In his 1630 annual astrological prognostication, the Stettin city physician 
Lorenz Eichstad introduced his readers to the conflicting astronomical calcu-
lations that were buffeting contemporary calendar-makers. Following standard 
practice, Eichstad computed dates and times for the Sun’s entry into the four 
cardinal points, cast horoscopes for those times, and by interpreting those 
charts predicted the weather and other significant events for the four quar-
ters of the coming year. But how should the astronomer calculate planetary 
positions for the horoscopes? From tables in the Astronomia danica (1622), 
authored by Tycho Brahe’s former assistant, Longomontanus, Eichstad deter-
mined the time of the winter solstice and the planetary longitudes for that 
time. But he also extracted these longitudes from the tables of another former 
assistant of Tycho’s, Johannes Kepler, as they had appeared in the recently pub-
lished ephemerides (1630) prepared by Jacob Bartsch. And for good measure, 
Eichstad took positions from the 1616 ephemerides of Giovanni Magini, com-
puted from the Copernican Prutenic Tables.1 As can be seen in Table 1, these 
computed positions could diverge by more than a degree.

Eichstad Longomon. Kepler Magini
Moon 15;31 15;31 15;36 [14;44]a

Mercury 9;39 9;39 9;22 10;53 
Venus 9;36 9;36 9;17 8;44
Mars 15;35 [15;32]b 15;35 15;36c

Jupiter 8;15 8;15 8;17 8;09
Saturn 3;18 3;18 3;00 3;35

Table 1. Eichstad’s predicted planetary longitudes for winter solstice, 11 December 1629, 
12;43 p.m., meridian of Stettin (ignoring zodiacal signs).
a Eichstad did not include a Copernican lunar longitude; I list the value given in Magini’s ephemerides.
b Eichstad’s prognostication does not specify a Mars value for Longomontanus but notes that it ‘nearly 
agrees’ with Magini’s value. Using the Astronomia danica, I compute a Mars longitude of 15;32 for this 
time. My computations for the other planets agree exactly with Eichstad’s.
c Magini’s (Copernican) ephemerides places Mars at 16;56.

1 Eichstadt, Prognosticon astrologicum, sig. A2r-A3v; Longomontanus, Astronomia danica; 
Bartsch, Ephemeridis Ioannis Kepleri; Magini, Ephemerides coelestium motuum.
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Throughout his analysis of these discrepant data, Eichstad wrote only of the 
‘Keplerian calculation’, the ‘Copernican calculation’ and the ‘Longomontanian 
calculation’. Never did he mention heliocentrism, ellipses, spheres or physical 
forces. This calendar maker concerned himself primarily with predictive com-
putation, not geometrical models or cosmological structure. He did wonder, 
however, why the calculations of Tycho’s two assistants diverge, even though 
they rest on the same foundation of Tycho’s observations. Vaguely alluding to 
their differing ‘hypotheses’ that yield variations of ‘some minutes’, greater in 
the inferior than in the superior planets, Eichstad chose to base his horoscope 
on Longomontanus’s results (second and third columns in Table 1). Unlike 
Kepler, Eichstad wrote, Longomontanus had made observations at Hven with 
Tycho for ten years and had continued this work after Tycho’s death. In his 
Progymnasmata (1602), Tycho had praised Longomontanus as ‘ingenious and 
industrious’. For Eichstad, a mathematical astronomy based on hard empirical 
work apparently offered more reliable predictions than did one based on new 
‘hypotheses’.2

Over the next two decades, Eichstad continued publishing not only annual 
calendars but also ephemerides to aid other calendar makers. At first, he took 
the solar and lunar computations from Longomontanus’s Astronomia danica 
(henceforth AD) and the planetary positions from Kepler’s Rudolphine Tables. 
But in later editions, Eichstad’s ephemerides increasingly feature only Longo-
montanus’s computations. Like other seventeenth-century Baltic astronomers, 
Eichstad rejected Kepler’s ‘special hypotheses’ and claimed that Longomonta-
nus’s predictions better matched easily observed planetary phenomena such as 
eclipses or conjunctions of planets and stars. In 1644, Eichstad quoted a letter 
from Longomontanus: Kepler had ‘relied upon physical and too uncommon 
speculations … I could not approve his Rudolphine Tables … In fact, I am cer-
tain that astronomy rests on principles that are much loftier than such physical 
ones’.3

Indeed, Longomontanus’s AD would remain a very influential text over the 
middle third of the seventeenth century. Despite Kepler’s new astronomy of 
forces and ellipses, first presented in the Astronomia nova (1609) (henceforth 
AN), the AD remained widely read across Europe. In Peking, Jesuit and Chi-
nese astronomers even produced Chinese translations.4 Called the ‘Tychonian 
Almagest’ by K. P. Moesgaard, the AD was the last text that sought to offer a 
comprehensive mathematical astronomy in the tradition of Ptolemy. The 550-
page tome includes trigonometric preliminaries (not employing logarithms), 
kinematic geometrical models comprised of circles, epicycles and eccentrics 

2 Eichstadt, Schreibcalender, sig. A2r-A3v.
3 Translated in Omodeo, ‘The Scientific Culture’, p. 140.
4 Hashimoto, ‘Longomontanus’s Astronomia Danica in China’.
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and tables to compute planetary longitudes and latitudes, parameters derived 
from selected observations made by Brahe, Copernicus, al-Battani, Ptolemy and 
Longomontanus himself, eclipse computational tools, and very little about the 
physics of the heavens or about astrology. As N. M. Swerdlow has shown from 
an analysis of his lunar theory, Longomontanus’s geometrical models are the 
most complex and convoluted ever constructed within the 1500-year Ptolemaic 
tradition.5

We cannot, in this paper, provide a full analysis of the AD and its planetary 
theories. Rather, we shall limit our focus to Longomontanus’s work on Mars, 
the planet that would lead Kepler to write his Astronomia nova. We shall trace 
the last Ptolemaic astronomer, practicing his craft following pathways laid 
down in Ptolemy’s Almagest and in the Astronomia nova. And we shall see 
him occasionally leaving those paths, when he rejects equants (like Copernicus) 
and builds some of his astronomical parameters on Euclid’s perfect numbers, 
the first four of which are 6, 28, 496 and 8128 (numbers equal to the sum 
of their factors, including 1). Despite these occasional departures, however, the 
AD belongs to the genre of the Almagest, even if its topics do not always cor-
respond exactly to those of the earlier text.

The son of peasants, Christian Sørensen Longberg (1562–1647), better 
known as Longomontanus, the Latinized name of his birthplace, had stud-
ied at a cathedral school and the University of Copenhagen before entering, 
around 1589, Tycho Brahe’s household on Hven.6 Apparently possessing keen 
eyesight, he observed stellar positions for Tycho’s new star catalog. He soon 
became Tycho’s favorite assistant and was given responsibility for developing 
Tycho’s lunar theory. They worked together until 1597 when Tycho was forced 
to dismantle his observatory and leave Hven. Longomontanus then took up 
traveling, continuing study at the universities in Leipzig and Rostock, earn-
ing in 1598 his Magister at the latter institution. In Breslau, he met the well-
known humanist Jacob Monavius, who introduced him to the sister of Paul 
Wittich (1546–86), another former assistant of Tycho’s whom the latter would 
accuse of plagiarism. Through Longomontanus’s contacts with the family, 
Tycho would attempt to purchase Wittich’s library.7

5 Moesgaard, ‘Tychonian Observations’, p. 84; Swerdlow, ‘The Lunar Theories of Tycho 
Brahe’; Swerdlow, ‘Tycho, Longomontanus, and Kepler’.

6 For a recent summary of the extensive biographical literature, see Christianson, On 
Tycho’s Island, pp. 313–19. For previous studies of Longomontanus’s astronomical work, see 
Moesgaard, ‘How Copernicanism Took Root’; Moesgaard, ‘Tychonian Observations’; Moes-
gaard, ‘Cosmology in the Wake of Tycho’; Swerdlow, ‘The Lunar Theories of Tycho Brahe’, 
pp. 8–10.

7 Brahe to Longomontanus, 24 March 1598, in Dreyer, Tychonis Brahe Dani opera omnia, 
vol. VIII, pp. 34–35. See Gingerich and Westman, ‘The Wittich Connection’.
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In 1600, after Tycho settled in Prague, Longomontanus rejoined his former 
boss and began working on the theory for Mars.8 When Kepler arrived several 
weeks later, however, Tycho gave him Mars, asking Longomontanus to return 
to the lunar theory, which had remained unfinished after an earlier version 
published in 1598 proved to be flawed. By June of 1600, Longomontanus com-
pleted the revised lunar theory (it would be published in 1602 in the Progym-
nasmata) and left Prague. He remained in correspondence with Kepler; accord-
ing to Voelkel, their discussions of the theories for the Moon and Mars would 
eventually shape the rhetorical structure of Kepler’s AN.9

After a stint of teaching at his alma mater, the cathedral school, Longomon-
tanus in 1605 secured a teaching position at the University of Copenhagen, 
where he would remain until his death. Holding the Chair of Mathematics, he 
also taught astronomy and in the 1640s planned and became first director of 
an updated version of Tycho’s observatory, the Round Tower in Copenhagen, 
a building that still stands today in the city’s center. In addition to the AD, 
Longomontanus published several annual calendars with astrological predic-
tions, a treatise on squaring the circle,10 academic disputations on various top-
ics, and in 1639 an introduction to observational astronomy (the telescope is 
not mentioned).11 The only assistant of Tycho’s to ascend to a university posi-
tion, Longomontanus enjoyed a considerable reputation during the first half 
of the seventeenth century as author of the ‘Tychonian Almagest’ (it ‘made 
Longomontanus famous throughout Europe’, writes J. R. Christianson12), even 
if Kepler, eventually, would become Tycho’s best-known assistant. Their respec-
tive works on Mars, as will be argued below, nicely demonstrate the contrast 
between Ptolemaic mathematical astronomy and Keplerian physical astronomy.

2. Longomontanus’s first Mars theory (LM1)

We begin our story with Longomontanus as Tycho’s assistant on the island of 
Hven. By 1589, Tycho had finished his solar theory. The lunar motion, how-
ever, remained intractable; Tycho would continue working on that theory until 
his death in 1600. Both theories, with tables for computing positions, would 
not be published until 1602 when the printing of the posthumous Progymnas-
mata finally was completed. But that volume did not include planetary theories. 
By the early 1590s, Tycho had assembled a large set of planetary observations 

8 For details of Tycho’s extended efforts to woo Longomontanus to return to his service, 
see Thoren, The Lord of Uraniborg, pp. 407–08, 419, and Donahue, Johannes Kepler. Astrono-
mia nova, p. 134.

9 Voelkel, The Composition of Kepler’s Astronomia nova, pp. 153–64.
10 van Maanen, ‘The Refutation of Longomontanus’ Quadrature’.
11 Longomontanus, Introductio in theatrum astronomicum.
12 Christianson, On Tycho’s Island, p. 318.
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and had convinced himself that many of Copernicus’s parameters for the plan-
etary theories were incorrect by small amounts. As Thoren has argued, Tycho 
also realized that Copernican predictions for all the planets differed systemat-
ically from the observations and wondered whether an additional inequality, 
not known to Ptolemy or Copernicus, might affect their motions. Or perhaps 
planetary theories should be referred to the true rather than mean Sun, as Ptol-
emy had done, and the other inequality could be solved by modifying the solar 
eccentricity. Given the similarity of Mars’s orbit to the Sun’s, Tycho suspected 
that the red planet might provide a key for reworking all the planetary theories.13

Tycho would not live to construct these revised planetary theories.14 After 
moving to Prague at the end of 1599, he persuaded his former assistant, Lon-
gomontanus, to join him in that city and to take up the theory of Mars. At 
this point, Kepler, who reached Prague several weeks later, becomes our story 
teller, crafting what would become a classic narrative in the history of Euro-
pean astronomy about the move from a mathematical astronomy of circles to a 
physical astronomy of ellipses.

According to Kepler’s account, presented in the AN, Ch. 7 (‘The circum-
stances under which I happened upon the theory of Mars’), Longomontanus 
had extracted from Tycho’s planetary observations, made between 1580 and 
1600, a set of ten Mars acronychal observations (i.e., at mean opposition, when 
the true planet is in opposition to the mean Sun) and had ‘invented an hypoth-
esis’ [excogitata hypothesis] that could match the observed data to within 2 
arcminutes of longitude. In Ptolemaic astronomy, at mean opposition a supe-
rior planet’s epicycle (i.e., the second anomaly) is essentially eliminated from 
the computation so that one uses observations at those times to test a theory’s 
predictions for the first anomaly (the work of the equant point for Ptolemy). 
In Copernican astronomy, at mean opposition the earth’s orbit is essentially 
eliminated, so that again the first anomaly is being explored, i.e., the theory is 
being tested for its predicted heliocentric longitudes.

13 Thoren, The Lord of Uraniborg, p. 448. For a short overview of LM1, see Swerdlow, 
‘The Lunar Theories of Tycho Brahe’, pp. 8–10.

14 It is difficult to determine how much of LM1 was completed before Tycho’s death. In 
his Astronomiae instauratae mechanica (1598), Tycho wrote that he had done ‘all that I could’ 
for theories of the five planets. ‘… we have assembled … the apogees as well as the eccentrities, 
and further the angular motions and the ratios of their orbits and periods, so that they no lon-
ger contain all the numerous errors of previous investigations’. He found that the apogees are 
subject to ‘another inequality’ and that the annual motion is ‘subject to a variation’. He also 
revised the values of maximum latitudes and the places of their nodes at the ecliptic. Thus, 
‘with regard to all five planets there remains only one thing to do, namely to construct new 
and correct tables expressing by numbers all that has been established by more than 25 years 
of careful celestial observations … thereby demonstrating the inaccuracy of the usual tables’. 
(Quoted from Raeder et al., Tycho Brahe’s Description of His Instruments, pp. 115–16.) See 
Thoren, The Lord of Uraniborg, pp. 448–50.
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In the AN, Kepler did not fully describe the Mars theory as developed by 
Longomontanus and Tycho. He indicated that they had begun with the frame-
work of Copernicus’s Mars theory and the parameters of the Prutenic Tables 
and had:

i) increased Mars’ mean motion by 1½ to 1¾ arcminutes;
ii) decreased the longitude of the apogee by 5;02° for the epoch beginning 

1585;
iii) increased the total amount of precession since the epoch of Christ by 

6½ arcminutes;15

iv) increased Mars’ total eccentricity from 0.1960 to 0.2016;
v) shifted the ratio of the eccentricities, (e1+rʹ)/(e1−rʹ) or the ratio of the 

eccentricity for direction to the eccentricity for distance, from 2/1 to 8/5 
(more on this below, see Figure 1).16

They also had invented a ‘hypothesis and table’ for latitudes that Kepler did 
not describe. With these parameters and hypotheses, Kepler informs us, Lon-
gomontanus/Tycho had computed tables of i) Martian equations at one-degree 
intervals; ii) mean motions for 40 years ‘exactly as was done for the solar and 
lunar motions in Book I of the Progymnasmata’;17 and iii) Martian latitudes.18

Reaching the peroration of his narrative, Kepler claimed that their Mars the-
ory had failed. Longomontanus and Brahe had ‘proclaimed’ that it could match 
the observations at acronychal positions to within 2 arcminutes; but ‘Chris-
tian got stuck’ (Kepler did not specify the size of the errors!) at the acronychal 
latitudes and the parallax of the annual orb, i.e., the second anomaly. ‘This 
result was a problem for him, as he was about to brood over the lunar motions’. 
Mars had outwitted Longomontanus. ‘I therefore’, concluded Kepler in one of 
the more under-stated asides in the history of astronomy, ‘began to investigate 
the certitude of their [Longomontanus’s] operation. What success came out of 
that labor it would be boring and pointless to recount. I shall describe only so 
much of that labor of four years as will pertain to our methodical enquiry’.19

15 Kepler listed the revised value for precession of 28;02,30; I have computed the Prutenic 
value for 1 January 1585, the epoch Kepler assigned to Longomontanus’s revised Mars tables.

16 For details of Copernicus’s models for the superior planets, see Swerdlow and Neuge-
bauer, Mathematical Astronomy, Ch. 5. I use here, and below, the notation of Swerdlow and 
Neugebauer.

17 See Dreyer, Tychonis Brahe Dani opera omnia, vol. II, p. 46 for mean motion tables ex-
tending from 1560–1619 for the Sun; vol. II, pp. 103–06 for the Moon, for the years 1560–
1660.

18 Donahue, Johannes Kepler. Astronomia nova, pp. 134–35. I will not consider latitude 
theory in this chapter.

19 Donahue, Johannes Kepler. Astronomia nova, p. 135.
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To explore LM1, Kepler prepared a horizontal table of 10 columns (stretch-
ing across two pages, cleverly placed on the innermost sheet of the printed quire 
to guarantee registration across the gutter), listing for the ten acronychal dates 
the observed longitudes (reduced to the plane of the ecliptic) and latitudes and 
the mean longitudes, apogees, precessions, and true longitudes of Mars as com-
puted from the revised theory. Kepler did not give a column for the computed 
latitudes. And he did not include a column directly comparing observed and 
computed longitudes, i.e., exploring the claim that the new theory could match 
acronychal observations to ±2 arcminutes of longitude. If we add this compar-
ison (Table 2), using data Kepler presented in Ch. 8 (Tycho’s reductions of the 
raw observations) and in Ch. 10 (Kepler’s reductions), we find that the deviations 
can vary by up to ±9 arcminutes, nearly five times the result claimed by Lon-
gomontanus and Tycho. Did Kepler omit these columns to avoid accusing his 
former employer of exaggeration? In any case, Kepler undoubtedly realized that 
his predecessor’s revised Mars theory performed less well than they had claimed.

Kepler also did not present the Prutenic (PT) longitudes for the times in 
question. My comparison of Prutenic longitudes against those generated by 
LM1 (Table 2, col. 4) shows that Tycho’s and Longomontanus’s tinkering 
could shift the predictions by more than 4 degrees and by so doing could fit 
the observed positions much better than could the PT.

Obser. Obs (AN, Ch. 8) 
– LM1

Obs (AN, Ch. 10) 
– LM1

LM1 – PT 

1 −5 −5 31
2 −5 −5 −107
3 1 1 −142
4 6 4 −133
5 4 1 −105
6 −8 −5 19
7 9 9 264
8 −1 2 93
9 −4 −2 −65

10 −2 −1 −133
Table 2. Tests of LM1 (first anomaly), in arcminutes of longitude

The other columns in Kepler’s table reveal additional details about LM1. The 
computed mean sidereal motions for Mars (col. 6) are advanced by an average 
of about 1½ arcminutes from the Prutenic mean longitudes for the dates in 
question (exactly as Kepler had described the new theory), assuming that Ura-
niburg is 40 minutes of time west of Königsberg, the meridian of the PT.20 

20 Neither the Prutenic Tables nor Tycho’s Progymnasmata include ‘tables of places’, i.e., 
longitudes of various towns and cities of Europe. The AD, however, provides such a table, 
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The computed Martian apogee (col. 7), measured from the first star of Aries, 
is decreased from the Prutenic values by an average of 5;02°, again exactly as 
Kepler had stated. The column for precession (col. 8) Kepler labeled as ‘nostra’ 
and indeed, rather than using the Prutenic precession (variable rate) Longo-
montanus used Tycho’s precession (fixed rate of 51 arcsecs/year); my computa-
tions match those listed by Kepler to ±4 arcsecs.21

Col. 9 lists the Martian true longitudes as generated by LM1. As noted 
above, since at mean opposition, the second anomaly is eliminated, the true 
longitudes give the correction (i.e., the equation of center) for the first anomaly 
for the various dates. In their analysis of Copernican planetary theory, Swerd-
low/Neugebauer label this correction c3. At mean opposition:κ̄ S̄

λ♂ = λ̄∗♂ + Π − c3 (1)

tan c3 =
(e1 + r ′)sin κ̄

R+ (e1 − r ′)cos κ̄
, (2)

κ̄ = λ̄∗ + Π − λa = col7 + col9 − λa. (3)

AH =
√

1+ r 21 + r 22 + 2(r1 − r2)cos κ̄ − 2r1r2cos 2κ̄. (4)

KF = cos (αobs2)− cos (αobs1), and (5)
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=
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Maximal solar contribution at apogee
. (6)

8,080,836
20,000,000

=
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maximal solar contribution
,

excess over minimum = c3 = DB cos 2(12 ̸ BAG). (7)

MA = 630,275+ ε(αSun) + 11
10 · ε(αMars), (8)

ε(α) = 23,500 · cos 2( 12α). (9)

tanH =
sin φ

AH
AM − cos φ

, (10)

φ = |π − λSun + λMars heliocentric| . (11)

λMars = H+ λMars heliocentric. (12)

where Π is precession and the starred value is the sidereal mean Martian longi-
tude. As Swerdlow/Neugebauer show, this correction can be computed as (see 
Figure 1):

κ̄ S̄

λ♂ = λ̄∗♂ + Π − c3 (1)
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R+ (e1 − r ′)cos κ̄
, (2)

κ̄ = λ̄∗ + Π − λa = col7 + col9 − λa. (3)
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√
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KF
DB

=
Observed difference in Earth–Sun distances

Maximal solar contribution at apogee
. (6)

8,080,836
20,000,000

=
895

maximal solar contribution
,

excess over minimum = c3 = DB cos 2(12 ̸ BAG). (7)

MA = 630,275+ ε(αSun) + 11
10 · ε(αMars), (8)
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where, in Copernicus’s model for a superior planet, e1 is the eccentricity, rʹ 
the radius of the small epicycle, R the radius of the eccentric circle, and κ̄ S̄

λ♂ = λ̄∗♂ + Π − c3 (1)

tan c3 =
(e1 + r ′)sin κ̄
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 the 
mean eccentric anomaly.22 For Mars, Copernicus had set e1 = 1460, rʹ = 500, 
values LM1 modifies to 1638 and 378, respectively. That is, LM1 replaces Ptol- 
emy’s bisected eccentricity for Mars, (e1+rʹ)/(e1−rʹ) = 8/4  and Copernicus’s slight 
deviation therefrom (8/3.92), shifting the ratio of the eccentricities to 8/5, a value 
close to that Kepler will derive in AN, Ch. 16, for his vicarious hypothesis.

Kepler offered no hints as to how Tycho and Longomontanus had formu-
lated new values for the eccentricities; his chief concern at this point in the 
AN was not to further tweak these values but to argue that one should use 
true, not mean, oppositions, to study models for the first anomaly. We must 
note, however, that Y. Maeyama has shown, in an anachronistic analysis, that 
the optimum eccentricities for the vicarious hypothesis (i.e., those that allow 
the model to most closely match the ‘correct’ elliptical orbit) result in an 8/5 

showing Uraniburg 40 time minutes west of Königsberg. Presumably this was the value used 
by Tycho and his assistants. The Rudolphine Tables lists the separation as 38 time minutes.

21 The amounts of precession to the dates listed in Kepler’s table, at a fixed rate of 51 arc-
secs/Julian year, suggest an epoch of precession for Tycho and Longomontanus of −395. They 
presumaby copied this epoch from the mean precession in De revolutionibus. See Swerdlow and 
Neugebauer, Mathematical Astronomy, p. 543.

22 For details, see Swerdlow and Neugebauer, Mathematical Astronomy, pp. 297–99.
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ratio! Somehow, Tycho and Longomontanus had found the ‘best’ solution for 
the Copernican model even before Kepler explored the problem with his vicar-
ious hypothesis (see below for more on this issue).23

Using these modified parameters to compute c3 for the times of the ten 
mean oppositions, I can match the Martian true longitudes given in col. 9 to 
±8 arcsecs in seven cases (but only to −108, 79 and −76 arcsecs in the other 
three cases, presumably typographical or computational errors in the produc-
tion of the AN).

Figure 1. De revolutionibus model for superior planets at mean opposition, with the Earth at 
O, true planet at P and mean Sun in the direction of κ̄ S̄
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.

Kepler’s description, although terse, does allow us to realize that Tycho and 
Longomontanus were not using the Martian model from Copernicus’s De 
revolutionibus, with its eccentricity and a single small epicycle. Rather, wrote 
Kepler, their model expressed the ‘maximum eccentricity’ as the sum of ‘the 
semidiameters of the two small circles’, exactly the model Copernicus had used 
in his Commentariolus and had briefly mentioned in De revolutionibus V, 4 
(see Figure 2).24 We know that Tycho, by 1575, had acquired a manuscript 
copy of the Commentariolus and that Longomontanus himself had prepared an 
autograph copy of this text that, upon his departure from Prague in July 1600, 
he gave to his friend Johann Eriksen, another assistant of Tycho’s.25 In the Pro-
gymnasmata, Tycho briefly mentioned how he had acquired the Commentari-

23 Maeyama, ‘Kepler’s Hypothesis Vicaria’, p. 56.
24 Donahue, Johannes Kepler. Astronomia nova, p. 134; see Swerdlow, ‘The Derivation 

and First Draft’, pp. 467–71. This model, of course, is nearly identical to that of the four-
teenth-century Damascene astronomer, Ibn al-Shāṭir.

25 Dreyer, Tycho Brahe, p. 83. Longomontanus’s autograph copy of the Commentariolus is 
now in Vienna, ÖNB, lat. 10530. For the other two known copies, see Dobrzycki, ‘The Ab-
erdeen Copy’.
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olus (from Thaddaeus Hagecius in Regensburg) and described its two-epicycle 
model for Saturn.

Figure 2. Commentariolus model for superior planets at mean opposition, with the Earth at O, 
the true planet at P and the mean Sun in the direction of κ̄ S̄
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.

Double-epicycle models also appear in planetary sketches drawn in 1578 by 
the itinerant mathematician, Paul Wittich, into several of his copies of the 
De revolutionibus. As Gingerich and Westman have shown, Wittich in 1580 
visited Tycho in Hven, undoubtedly with his planetary sketches in tow. After 
Wittich’s death in 1586, Tycho expended considerable effort trying to acquire 
Wittich’s library and his Copernicus books. Gingerich and Westman sug-
gested that Tycho may have been led to his geoheliocentric theory by Wittich’s 
sketches; to protect his claim of originality, Tycho would thus have wanted to 
remove Wittich from the historical record. Be that as it may, Wittich’s sketches 
might also be relevant to the birth of LM1. In 1598, Longomontanus managed 
to see Wittich’s books in Breslau; by the summer of 1600, the books made 
their way to Tycho in Prague.26 Good evidence thus suggests that, by 1600, 
Longomontanus (and of course Tycho) had seen both the Commentariolus (no 
diagrams) and Wittich’s sketches.

Wittich supplied no parameters for his sketches. But his double-epicycle, 
heliocentric superior planet model is identical to Copernicus’s superior planet 
model in the Commentariolus.27 Longomontanus and Tycho had all this infor-
mation in front of them as they created LM1. Surely Kepler knew about this 
potential provenance of LM1. But as far as I know, he discussed this matter 
neither in print nor his surviving correspondence. In any case, Equation 2 
holds for the geometries of both Figure 1 and Figure 2.

26 Gingerich and Westman, The Wittich Connection, pp. 21–22.
27 cf. Swerdlow, ‘The Derivation and First Draft’, p. 481; Gingerich and Westman, The 

Wittich Connection, p. 119.
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In the AN, Kepler then turned to his primary concern, the method of iso-
lating the first anomaly by testing Mars’ model against observations at mean 
opposition. To set the time of mean opposition, Tycho and Longomontanus 
needed to determine the place of the mean Sun and then to work with the 
observational data to get an ‘observed’ true Martian longitude for a time when 
true Mars was opposite the mean Sun. Since such times might occur during 
the day or cloudy evenings, such computation required considerable manipula-
tion of the ‘raw’ observational data (correcting for precession, refraction, solar 
parallax, and shifting times by applying the Martian mean velocity in longi-
tude). Comparing ‘theory’ against ‘observation’ was never straightforward in 
mathematical astronomy.

In the AN, Ch. 8, Kepler listed the mean solar longitudes, for the times of 
opposition, in a separate table alongside a column of the ‘observed’ true Martian 
longitudes taken from the earlier table (both to arcsecs). We might guess that 
Longomontanus/Tycho had used Tycho’s solar theory, published in the Pro-
gymnasmata (1602), for this computation. Indeed my recomputation with that 
theory, for the listed times, shows agreement to ±1 arcsec of mean longitude. 
However, when Kepler then compared these mean solar longitudes against the 
‘observed’ Martian longitudes, he found that only two of the 10 alleged mean 
oppositions were within 30 arcsecs of opposition; one varied by more than 13 
arcminutes, another by more than 9 arcminutes. He concluded, rather laconi-
cally, that ‘the exactness of their hypothesis [he means, of course, the inexact-
ness] did not prevent my seeking another’ [i.e., the launch of Kepler’s war on 
Mars].28 In Kepler’s eyes, Tycho and Longomontanus had not cleanly separated 
the effects of the first from the second anomaly; they had not selected times 
when the observed true longitude of the planet was in exact opposition with 
the mean Sun. Thirteen arcminutes of mean Martian longitude translates into 
more than 10 hours from the time of exact opposition.

Trying one further intervention in LM1 before dropping that project and 
starting his own campaign on Mars, Kepler recomputed ‘from the most recent 
table’ of Tycho/Longomontanus the Martian mean motions for the times of 
mean opposition. Above, we found that LM1 had simply increased the Prute-
nic Mars mean motions by 1½ arcminutes. Kepler now appears to have reduced 
that increase by about ½ arcminutes. In a procedure I have not been able to 
reconstruct, he then recomputed values for c3 and, using Equation 1 above, 
recomputed values for the true Martian longitude, finding that they agreed 
‘tolerably’ with the true longitudes Tycho-Longomontanus had earlier com-
puted. Kepler thus appears to have confirmed his predecessor’s mathematics to 
about ±1 arcminute; he did not confirm their model and its parameters against 

28 Donahue, Johannes Kepler. Astronomia nova, p. 138.
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the observed Martian positions.29 And he did not try to save the model by 
tweaking their parameters or the geometrical arrangement of their Ptolemaic  
circles.

As noted above, Kepler reported that Tycho/Longomontanus thought their 
Mars theory had succeeded for the first anomaly; they admitted that it had 
failed for latitudes at mean oppositions and for longitudes for the second 
anomaly. We know nothing about their latitude theory. But if we assume they 
kept the Prutenic value for the radius of the Earth’s (or Sun’s) orbit in the dou-
ble epicycle model (6577 in contrast with 6580 in De revolutionibus), we can 
evaluate the performance of LM1 for longitudes.30 In Figure 3, I compare the 
predictions of LM1 and the Prutenic Tables against modern longitudes for the 
period spanning the January 1585 and March 1587 oppositions.31 Thin vertical 
lines mark the dates of those oppositions. As noted above in Table 2, LM1 
matches Tycho’s observations at oppositions to about ±10 arcmins (it is known 
that Tycho’s observations match modern positions to ±3 arcmins). So exactly 
at the mean oppositions, LM1 has reduced large Prutenic errors (reaching 2° of 
longitude) to a few minutes. However, at places other than mean oppositions, 
LM1 errors can reach 1½°. Tycho and Longomontanus must have noticed this 
as well, which may have prompted them to abandon work on LM1. Indeed, we 
know of its existence thanks only to Kepler’s prolix writing style in the AN!

3. Longomontanus’s second Mars theory (LM2)

After Tycho’s death, Longomontanus eventually took up the chair for mathe-
matics at the University of Copenhagen. It would take him more than twenty 
years after Tycho’s death to complete the AD, printed in Amsterdam by Wil-
liam Caesius (with a second edition in 1640 printed in Amsterdam by Joan 
and Cornelius Blaeu, whose father, Willem, had worked with Tycho at Urani-
burg in 1595–96).

29 For the results of Kepler’s recomputations, see Donahue, Johannes Kepler. Astronomia 
nova, p. 139, bottom table, rightmost column.

30 For my computation with LM1, I use the Prutenic solar theory and Tycho’s precession 
of 51 arcsecs/year with an epoch of −395, which matches the precessional values in the Tycho/
Longomontanus data for the mean oppositions.

31 Modern longitudes computed from JPL’s on-line HORIZONS ephemeris, which uses the 
DE-431 models and parameters. I must emphasize, however, that graphs such as this one are 
anachronistic. Before the nineteenth-century no astronomer could have produced such com-
parisons over extended timespans; they could only check individual observations against the 
predictions of their models.
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Figure 3. Longitude of Mars, Nov 1584 – Mar 1587 at 10-day intervals, comparing Prutenic 
and LM1 predictions against modern positions. Vertical lines mark dates of mean opposition.

The AD, a large volume in two parts plus an appendix on novae and com-
ets, is a hybrid in genre between the mathematical astronomy of the Almagest 
or De revolutionibus and Tycho’s more eclectic Astronomiae instauratae pro-
gymnasmata (‘preliminary exercises of the restoration of astronomy’). Indeed, 
I can think of no other printed book before 1622 that could have served as 
a model for Longomontanus’s project. The first part, named ‘Prognorismaton 
astronomiae (‘preliminaries of astronomy’) and clearly pointing to Tycho’s ear-
lier title, presents a 41-page introduction to plane and spherical trigonome-
try; a terse 7-page discussion of natural philosophy that reproduces, verbatim, 
Longomontanus’s 1611 Disputatio prima astronomica, de praecognitis;32 and a 
100-page section on the geometry of the astronomical sphere. Longomontanus 
offered mostly Tychonic arguments against an annual motion for the Earth but 
accepted daily rotation. Since his notion of a luminiferous medium, a plenum 
with no boundaries between sub-lunar and celestial regions, denies any special 
role for the Earth, Moesgaard calls Longomontanus’s cosmology ‘Tycho-Coper-
nican’. All bodies have their own gravity and move under divine power with-
out material spheres or axes. Particular geometrical problems are solved, quan-

32 See Moesgaard, ‘How Copernicanism Took Root’, pp. 126–34.



420 RICHARD L. KREMER

titatively, at the end of each chapter (e.g., find the distance, in miles, between 
Copenhagen and Jerusalem, given the longitude and latitude of each city), 
suggesting a pedagogical context for the book. A separately paginated 44-page 
appendix on the natural philosophy of comets and new stars rounds out  
the AD.

Figure 4. Longomontanus’s Astronomica danica, 1622, title page

The second part (344 pages) has separate pagination and its own elaborate title 
page, which describes the content as follows:

The second part of the Danish Astronomy, including theories of the planets restored 
in two books, of which the former, after a description and comparison of the three-
fold hypothesis of the world, viz., the ancient Ptolemaic, the astonishing Copernican, 
the modern of Tycho Brahe, treats the apparent motions of the fixed stars, likewise 
of the Sun and Moon in the same way, re-established and adapted to all ages of the 
world, together with the entire theory of eclipses and besides this a special treatment 
of the Moon; the latter treats the motions of the other five planets, on the basis of 
the three-fold hypothesis, similarly restored to the appearances of the heavens in the 
same way.33

33 Translation from Swerdlow, ‘Tycho, Longomontanus, and Kepler’, p. 172.
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Swerdlow has fully explicated Longomontanus’s historical investigation of ear-
lier solar observations and theory and his construction of new theories of pre-
cession, obliquity of the ecliptic, and solar motion.34 Swerdlow portrays Longo-
montanus as a fierce critic of the ancient observations, eager to correct errors 
he uncovers; an acute analyst of earlier theories and their hidden assumptions; 
a philosopher happy to build his solar parameters not only on observations but 
also on perfect numbers (Longomontanus used the first three of these num-
bers, 6, 28 and 496);35 and as a careless, sometimes rather indifferent calculator 
whose math is filled with many small mistakes. This is the Longomontanus 
who created LM2, the Mars theory presented for the first time in the AD. 
Longomontanus did not tell readers when he had created LM2 or the other 
planetary theories published in the AD; Kepler did not mention LM2 in the 
AN so I shall assume that LM2 was made after Tycho’s death and is thus the 
handiwork solely of Longomontanus.

Figure 5. Longomontanus’s hypothesis for Saturn in the ‘Tychonic form’, at an acronychal op-
position of the true planet (H) and true Sun (A). The Earth is at M. AD, 2:204.

34 Swerdlow, ‘Tycho, Longomontanus, and Kepler’, pp. 171–84; Moesgaard, ‘Tychonian 
Observations’.

35 As far as I know, Longomontanus was the only Ptolemaic astronomer who incorporated 
perfect numbers into his astronomical parameters. The rate of Longomontanus’s anomaly of 
the equinox (used for the periodic portion of precession) is 6 arcmins/year; his solar eccentric-
ity is 1/28; the radius of the small circle around which the pole of the actual ecliptic rotates is 
1/496 of a quadrant. See Moesgaard, ‘Tychonian Observations’.
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Swerdlow did not discuss Longomontanus’s planetary theories. Hence, I will 
briefly describe the model for Saturn and Jupiter before turning, in more 
detail, to Mars. For the superior planets, Longomontanus presented what he 
called the ‘Tychonic form’ of the hypothesis, with the true Sun (A) circling 
the fixed Earth (M) and the mean planets (C) circling the true Sun (see Fig-
ure 5).36 A double epicycle corrects the first anomaly. The parameters of the 
circles for the first anomaly are based on a series of acronychal observations, 
this time however for oppositions with the true rather than the mean Sun, 
just as Kepler had done in the AN. Longomontanus’s parameters for the eccen-
tricities of Saturn and Jupiter vary only slightly from those of Copernicus (see 
Table 3); like Copernicus, he bisects the eccentricities. For the second anomaly, 
Longomontanus computed the Earth-Sun distance from two observations each 
for Jupiter and Saturn, assuming in each case a fixed radius or a circular orbit 
of the Sun around the Earth. For Mars, he would differently treat the second 
anomaly, in a theory that, to the best of my knowledge, had never appeared 
in mathematical astronomy, either before or after Longomontanus. We will 
analyze the components of LM2 in the order in which they are presented in  
the AD.

e1 rʹ r (e1+rʹ)/(e1−rʹ)
♄ De rev 8540 2850 10900 2/1

♄ PT 8540 2850 10911 2/1

♄ LS1 8721 2907 10426 2/1

♃ De rev 6870 2290 19160 2/1

♃ PT 6863 2287 19062 2/1

♃ LJ1 7155 2385 19349 2/1

Table 3. Parameters for the superior planets, in Swerdlow and Neugebauer’s notation (e1 = ra-
dius of the larger epicycle, rʹ = radius of the smaller epicycle, r = radius of the Earth’s or Sun’s 
orbit). Prutenic (PT) values from Savoie, ‘La diffusion du copernicianisme’, pp. 372–73.

First anomaly: To determine the heliocentric equation of center, what Lon-
gomontanus called the ‘eccentric prosthaphaereses [correction]’ or ∠CAH in 
Figure 5, he proceeded similarly as he had done for Saturn and Jupiter. He 
assembled a list of acronychal observations since 1580, adjusted to times of 
opposition with the true Sun (unlike LM1 which used the mean Sun). But 
unlike the observations for Saturn and Jupiter, the Mars data were partly 
borrowed from Kepler’s AN, Ch. 15 (Longomontanus added two final obser-
vations for 1608 and 1610 that do not appear in the AN). His times match 
Kepler’s to ±3 minutes for 11 of the 12 cases (the other differs by 16 minutes), 
his reduced observed longitudes match Kepler’s to within −1 arcminute for 11 

36 Following Kepler in the AN, Ch. 25, Longomontanus wrote of three ‘forms’ for astro-
nomical hypotheses, the Ptolemaic, Copernican, and Tychonic.
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of 12 cases (one differs by 0;10,05).37 Of the five cases where Kepler listed the 
reduced observation to a precision of arcsecs, Longomontanus’s values match 
to the nearest arcsec in four. This strongly suggests that Longomontanus took 
these data directly from Kepler rather than, on his own, completing the labo-
rious reductions with spherical triangles and correcting for atmospheric refrac-
tion and precession of the reference stars.

Figure 6. Longomontanus’s hypothesis for Mars in the ‘Tychonic form’, at acronychal opposi-
tion of the mean planet and true Sun. The true planet is at H, mean planet at C, true Sun at 
A, Earth at M; ∠ECD = ∠EAB; ∠CDH = 2∠ECD. AD, 2:220.

As is well known, Kepler in the AN, Ch. 16 used these acronychal data in 
iterative computations to determine the direction of the line of apsides and the 
radii of the two epicycles (3628 and 14988 units, respectively) for his so-called 
vicarious hypothesis.38 Longomontanus says nothing about his procedures; he 
simply announces that his values for the epicycle radii (he calls them ‘compli-
cata quantitas’39) are 3710 and 14840 units, respectively. Longomontanus has 

37 Longomontanus did include in his table, however, his own 1608 and 1610 Mars acrony-
chal observations, data he must have reduced himself.

38 Gingerich, ‘The Computer Versus Kepler’; Maeyama, ‘Kepler’s Hypothesis Vicaria’; Bark-
er and Goldstein, ‘Distance and Velocity’. For the systematic errors in these data, arising from 
Kepler’s reliance on Tycho’s solar theory, which in turn rested on an overly large value for the 
horizontal parallax of the Sun and an incorrect table of refraction, see Wilson, ‘The Error in 
Kepler’s Acronychal Data’.

39 AD, 2:220.
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slightly changed the ratio, (r1+r2)/(r1−r2), from Kepler’s 8/4.88 to exactly 8/5. Per-
haps he simply wanted a ‘cleaner’ ratio in his Mars theory?

In the AN, Ch. 18, Kepler tested his vicarious hypothesis against the 12 
observed Mars acronychal longitudes, finding all the differences to be less than 
±2 arcminutes.40 Longomontanus’s differences, displayed in a similar table but 
listing different intermediate quantities than had Kepler, are less than ±3 arc-
minutes (see Figure 7, rightmost col.). Although he did not mention Kepler’s 
table, Longomontanus surely must have had Kepler’s table in mind as he 
drafted this presentation of LM2’s treatment of the first anomaly. In any case, 
LM1 had matched the acronychal oppositions (to mean Sun) to about 9 arc-
minutes; LM2 improves the match by a factor of three.

Figure 7. Fourteen acronychal Mars observations, for testing the first anomaly in LM2. AD, 
2:221.

As he had done for the acronychal observations used in LM1, Longomontanus 
in testing LM2 calculated the mean Mars longitudes (col. 7) from the Prute-
nic Tables, increasing each of the sidereal values by 6,25 arcminutes (he did 
not comment on this adjustment). Likewise, the values for precession (col. 9) 
are taken from the table used in LM1 but increased by 1 arcminute (again, 
uncommented). Values for the anomaly (col. 8) Longomontanus constructed by 
taking longitudes of the apogee (λa) directly from the AN, Ch. 18 for the dates 
in question and using other quantities from the table of Figure 7:

40 Donahue, Johannes Kepler. Astronomia nova, pp. 206–07. Interestingly, Kepler, after em-
ploying his iterative computation to the acronychal observations, added 0;03,55 (p. 199) to all 
his mean longitudes that, he says, ‘came from Tycho’ (p. 183), perhaps a reference to LM1. In 
any case, LM2 will increase those mean longitudes by 0;05,04 (see below).
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Using Equation 3, I compute values of the anomaly that match those of Fig-
ure 7 to ±4 arcsecs. Finally, if I use Longomontanus’s values for the anomaly 
(col. 8) and Longomontanus’s stated values for the radii of the two epicycle 
circles and compute the Mars correction as per Equation 2 above, I match val-
ues extracted from Longomontanus’s table by Equation 1 above to about ±30 
arcsecs.41 Hence, Longomontanus’s test of LM2 for the first anomaly, i.e., his 
confirmation of the epicycle radii of 3710 and 14840, combines intermediate 
values taken from the Prutenic Tables and Kepler’s AN. Longomontanus did 
not use the computational parameters and machinery of the finished LM2 to 
generate these tests for the first anomaly of that theory. He created LM2 by 
bootstrapping from previous theories.

Longomontanus nowhere commented on Kepler’s long argument in the AN 
for why the true rather than mean Sun must be used for correcting the first 
anomaly; and he pointedly ignored the observed latitudes, showing that he was 
not persuaded by Kepler’s central claim that a Martian theory must simulta-
neously yield longitudes and latitudes (Ptolemy and Copernicus had presented 
independent theories for longitudes and latitudes, as would Longomontanus). 
In other words, the very content of Longomontanus’s table of acronychal Mars 
observations reveals his continued commitment to Ptolemaic (and Copernican) 
procedures for analyzing the first anomaly.

On the other hand, Longomontanus was quite willing to employ Kepler’s 
vicarious hypothesis for treating the first anomaly of Mars. And he was willing 
to break with the earlier astronomers in treating the division of Mars eccentric-
ity. Ptolemy had bisected the eccentricity for a ratio of 8/4; Copernicus slightly 
tweaked the ratio to 8/3.92; Kepler’s vicarious hypothesis used 8/4.88, a value 
Magini slightly modified to 8/4.86. LM2 sets the ratio exactly to 8/5.42 These are 
not perfect numbers. But I am not convinced that i) the constraints of geome-
try and Kepler’s iterative method for treating the first anomaly, ii) the reduced 
acronychal observations, and iii) the mean motions cobbled together from the 
Prutenic Tables and the AN would have forced Longomontanus to land exactly 
on this ratio. Regardless of how he derived the parameters for the Martian 

41 In the first case, the difference is 115 arcsecs. As can be seen from Fig. 7, Longomonta-
nus’s table shows his Mars theory for the first date exactly matching the longitude extracted 
from Tycho’s observations. This makes me suspect that for this date, Longomontanus fudged 
his ‘computed’ longitude to get a perfect match.

42 cf. Swerdlow and Neugebauer, Mathematical Astronomy, pp. 356, 546; Voelkel and Gin-
gerich, ‘Giovanni Antonio Magini’s “Keplerian” Tables’; Magini, Supplementum ephemeridum, 
pp. 174–76; Donahue, Johannes Kepler. Astronomia nova, pp. 200–01. I used Equation 2 above 
and least squares to extract from Magini’s tabulated equation of center the values of 14948 and 
3653 for the radii of the epicycles.
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eccentricity, the rightmost column of Figure 7 shows Longomontanus’s success; 
LM2 matches the acronychal observations to less than ±3 arcminutes, appar-
ently Longomontanus’s criterion of ‘good enough’ for astronomical theory. And 
his ratio of the eccentricities is ‘cleaner’ than Kepler’s or Magini’s.

Once he had determined the radii of Mars’ two epicycles, Longomontanus 
could compute the table of corrections for the first anomaly (he called them 
the eccentric prostphaphaereses, I shall call them c1 in LM2) using Equation 
2 above. Given the maximal correction of 10;34,20, Longomontanus’s values 
match mine to about ±30 arcsecs, with divergences reaching three times that 
amount in a pair of spikes centered around the argument of 112° (see Figure 8). 
I cannot explain how Longomontanus may have computed these corrections to 
generate this pattern of (small) differences.

Figure 8. Differences between LM2’s ‘eccentric prosthaphaereses’ (equation of center) or c1 (i.e., 
column 1) and my recomputation with eccentricities of 0.1484 and 0.0371. See AD, 2:257–59.

Second anomaly: Longomontanus next treated the second anomaly arising 
from the annual motion of the Sun (Longomontanus usually refers to this sim-
ply as the ‘annual orb’ or the ‘annual orb of Mars’43). LM2 breaks down the 
process of finding a geocentric longitude into three parts: i) compute Mars’ 

43 See, for example, AD, 2:227.
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heliocentric longitude and its distance from the Sun, ii) find the geocentric 
longitude of the Sun and the Earth-Sun distance, and iii) combine these results 
geometrically to obtain Mars’ geocentric longitude. Exactly this technique, as 
noted by Bialas and explored in more detail by Voelkel and Gingerich, had 
been presented in 1614 by the Bolognese professor of astronomy and well-
known table maker Giovanni Antonio Magini. Although no correspondence is 
extant between Magini and Longomontanus, the Italian astronomer had com-
municated with Tycho since 1590.44 Several times they had discussed Mars, 
with Magini begging for Tycho’s acronychal observations of that planet. But 
this correspondence does not elucidate the Mars theory Magini would use in 
his 1614 Supplementum, which implements Kepler’s vicarious hypothesis. I find 
no mention of Magini in the AD and we cannot know, therefore, what Lon-
gomontanus might have known about the Supplementum. But it is clear that 
Magini and Longomontanus took similar computational approachs in their 
treatment of Mars.
Mars-Sun distance: As Voelkel and Gingerich have shown, Magini apparently 
took six computed distances from Kepler’s AN, Ch. 56, based on the ellipse, 
and then filled in the intermediate distances by hand, smoothly but not using 
a rigorous function based on the geometry of the ellipse.45 Longomontanus, on 
the other hand, simply computed the distances trigonometrically within the 
double-epicycle model of Figure 6, comprised only of circles. It can be shown 
that the distance of the planet from the Sun, ‘Distantia a centro’ in Longomon-
tanus’s tables or AH, can be computed as follows, where r1 = CD and r2 = DH:
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KF = cos (αobs2)− cos (αobs1), and (5)

KF
DB

=
Observed difference in Earth–Sun distances

Maximal solar contribution at apogee
. (6)

8,080,836
20,000,000

=
895
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excess over minimum = c3 = DB cos 2(12 ̸ BAG). (7)

MA = 630,275+ ε(αSun) + 11
10 · ε(αMars), (8)

ε(α) = 23,500 · cos 2( 12α). (9)
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sin φ
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AM − cos φ

, (10)

φ = |π − λSun + λMars heliocentric| . (11)

λMars = H+ λMars heliocentric. (12)

With these equations and Longomontanus’s values for the radii of the two epi-
cycles, I can recompute his ‘Distantia a centro’ to ±60 parts out of a mean dis-
tance of 100,000 parts (see Figure 9). The maximal distance is R + r1 – r2, the 
minimal distance is R – r1 + r2. Magini had arranged his distances to emulate 
Kepler’s ellipse; Longomontanus kept with the circles of Ptolemy, Copernicus 
and Tycho. But Longomontanus followed Magini’s Kepler-based innovation of 
introducing distances into tabular computation of planetary longitudes, thereby 
taking into account the eccentric path of the Sun around the Earth (something 
ignored by both Ptolemy and Copernicus who worked with the mean Sun in 
designing planetary models). The ‘Distantia a centro’ are presented in c2, the 
second column in Longomontanus’s table of equations for Mars.

44 Bialas et al., Johannes Kepler. Gesammelte Werke, vol. XI/1, p. 489; Voelkel and Gin-
gerich, ‘Giovanni Antonio Magini’s “Keplerian” Tables’; Favaro, Carteggio inedito di Ticone 
Brahe.

45 Voelkel and Gingerich, ‘Giovanni Antonio Magini’s “Keplerian” Tables’, p. 246.
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Figure 9. Differences between LM2’s Mars-Sun distance (R  =  100,000) or c2 (i.e., column 2) 
and my recomputed values using Equation 4 and eccentricities of 0.1484 and 0.0371. See AD 
2:257–59.

Earth-Sun distance: Copernicus, famously, had referred to the ‘fixed symme-
try’ (certam symmetriam) of his heliocentric planetary models, in which the 
Earth-mean Sun distance provided a common measure for each model.46 Lon-
gomontanus’s challenge was to find the Earth-true Sun distance, i.e. to assume 
an eccentric rather than a circular path for the annual orbit. In the AN,  
Ch.  24, Kepler had solved this problem by selecting a series of Mars obser-
vations separated by intervals equal to the sidereal period of the planet. This 
meant that the location of Mars, relative to the true Sun, remained at the same 
eccentric position (i.e., relative to the Sun) and Kepler could then triangulate 
to find the places of the Earth in its eccentric orbit around the Sun.

Longomontanus cited Kepler, Ch.  24, in a marginal note but used a differ-
ent procedure, selecting Mars observations when the planet was at its apogee or 
perigee.47 His approach, the most complex feature of LM2, requires two steps: 
first, correct the distance between the Earth-mean Sun as a function of the 

46 Copernicus, De Revolutionibus, fol. iiiv.
47 AD, 2:225. For two of these observations, Longomontanus borrowed reductions of the 

raw data to longitudes from Kepler (Donahue, Johannes Kepler. Astronomia nova, pp. 169, 212). 
The raw data for other two observations, on 1 January 1587 and 1 November 1589, can be 
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distance of true Sun from its apogee; second, correct the distance as a function 
of the distance of true Mars from its apogee. As far as I know, no astronomer, 
either before or after Longomontanus, used this method to tweak the geometry 
of the Ptolemaic planetary models. Tycho had added additional circles to Pto-
lemy’s lunar model; Longomontanus, presumably inspired by Kepler’s vicarious 
hypothesis, keeps the Copernicus – al-Shāṭir double epicycle model for Mars 
but corrects linear distances therein.

Figure 10. Longomontanus’s solar epicycle, showing the location of the true Sun at two times 
(G and L) when Mars was at apogee. The Earth is at M, MA is the Earth-mean Sun distance, 
MD the minimum distance, MB the maximum distance.

Longomontanus created one table to use for both corrections, the ‘Tabula ana-
logiam distantiae solis ab apogaeo, in annuo orbe Martis, ad singulos binos 
gradus ostendens’ (Table showing the proportion of the Sun’s distance from 
the apogee in the annual orb of Mars at intervals of two degrees). We will first 
show how he derived this table and then will examine its use in correcting the 
Sun-Earth distance. He presented his derivation with an epicyclic solar model 
(Figure 10). The true Sun is at G, the mean Sun at A. As the true Sun rotates 
around the epicycle, the Earth-true Sun distance, MG, varies as a function of 
the true solar anomaly (∠BAG). Since the radius of the solar epicycle is small 
compared to the dimensions of the Mars model, Longomontanus approximated 
the Earth-true Sun distance by varying the length of the distance through MA 
in harmonic motion between MD and MB. Hence, when the true Sun is at G 
(first observation), the Earth-Sun distance will be approximated by MF; when 
the true Sun is at L (second observation), the Earth-Sun distance will be MK. 

found in Dreyer, Tychonis Brahe Dani opera omnia, vol. XI, pp. 177, 335. AD, 2:225, does not 
provide Longomontanus’s reduction of these data, listing only the final times and longitudes.
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Such approximation also means that the angular position of the Sun, when 
viewed from the earth, will be inexact by an amount equal to ∠AMG. In a 
separate section, Longomontanus showed that, given the distances in his Mars 
model, these angular discrepancies will always be less than 27 arcsecs when the 
planet is at apogee and always less than 81 arcsecs at perigee.48 These small 
angles are ignored in LM2.

A further approximation arises in the derivation. The four observations were 
not set to the exact times of Mars being at apogee or perigee. Using the Mars 
model for the first anomaly, I compute the true anomalies for those times to 
be 0;43, 358;45, 185;46 and 181;19. Nonetheless, Longomontanus’s derivations 
assume that the true anomaly, in each case, is zero or 180 degrees.

To define the parameters of the harmonic motion of the approximated 
Earth-true Sun distance, Longomontanus computed the actual Earth-true 
Sun distance from the Mars observations. Figure 11 shows LM2 for the first 
observation of the planet at apogee. ∠♈MH, the geocentric longitude of Mars, 
is known from observation (119;18). The distance AH (1,112,970) and the 
heliocentric longitude of Mars (∠♈AH = 149;32,59) are known from the pre-
liminary Mars theory (first anomaly) already developed. The true geocentric 
longitude of the Sun (∠♈MA = 356;37) is known from the solar theory (inter-
estingly, Longomontanus used Tycho’s solar theory from the Progymnasmata 
for this computation, not the solar theory of the AD).49 These givens define a 
single location of the Earth (M) in the model and, by using the law in sines in 
triangle AMH, Longomontanus can determine the Earth-Sun distance (MA) 
in units of the Mars theory developed for the first anomaly (AC  =  100,000 
parts). For the case in Figure 11, he finds MA = 66,586 parts at the time of 
the first observation, a value I confirm by recomputation.50  

For the second observation at apogee, he found MA  =  65,691 parts, a differ-
ence of 895 parts resulting from the fact that the Sun was at a difference place 
in its epicycle. In Figure 10, this difference in Earth-Sun distance is represented 
by KF. Hence, Longomontanus could determine, by proportions, the maximal 
shift in earth-Sun distance when Mars is at apogee, i.e., the shift caused by 
the Sun’s eccentric motion. At the first observation, the true solar anomaly (λ) 
was 260;57,55; at the second, it was 195;10,09 (Longomontanus’s values). It can 
easily be shown that:

48 AD, 2:243–44.
49 The results differ here by about 1½ arcminutes.
50 AD, 2:225. ∠AMH  =  λ♂obs  +  360  –  λ☉theor  =  122;41. ∠HAM  =  ‘anomalia orbis’  –  180  = 

λ☉theor  –  λ♂helio  –  180  =  27;05. ∠MHA  =  180  –  ∠AMH  –  ∠HAM  =  30;14. By the law of sines, 
MA  =  AH sin ∠MHA /AH  =  66,586.
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Figure 11. LM2 for 6 March 1600. Mars (H) at apogee, observed at longitude 29;18 ♋; Earth 
at M, true Sun at A.
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For Longomontanus’s values at apogee (he was using a cosine table with a 
radius of 10 million51):
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which yields a maximal solar contribution of 2215 parts. At perigee, using the 
same procedure, he found the maximal solar contribution to be 2415. Aver-
aging the two values gives the maximal solar contribution of 2315 parts. To 
further refine this value, Longomontanus took two Mars observations from 
the AN, Ch. 27. Using Kepler’s computation of the Earth-Sun distances, he 
found a maximal solar contribution of 2375. Roughly splitting the two figures, 
Longomontanus set maximal value for solar contribution to shifting Earth-Sun 
distances to 2350 (DB in Figure 10).52 Crucially, the units for this value are the 
units of the Mars theory where the mean Mars-Sun distance is 100,000.

51 Printed sine tables with 7 significant figures were readily available.
52 Longomontanus then repeated Kepler’s computation using ‘our reduction’ of the raw ob-

servational data, finding the same value of 2350. See AD, 2:226–27.
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With this result, Longomontanus prepared the table that gives the solar con-
tribution to the changing Earth-Sun distance, in units of the Martian theory, 
tabulated as excess over the minimum value, MD, in Figure 10. By solving the 
right triangle GFM in Figure 10 it can be shown that the excess over mini-
mum, or DF in the case of anomaly ∠BAG is:
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With DB = 23,500 parts, Longomontanus computed his table of proportions 
(see Figure 13). Using the Equation 7, I can recompute Longomontanus’s  
table to ±1 part (see Figure 12). In the Progymnasmata, Tycho had included a 
Tabula distancia solis a terra, similarly computed but giving the full distance of 
the Sun from the eccentric Earth, not the excess over the minimal distance.53 
Tycho’s table was intended for determining the magnitude and duration of 
eclipses, not for correcting geocentric longitudes. As far as I know, Longomon-
tanus’s is the only such table ever designed for the latter purpose.

Figure 12. Differences between LM2’s Tabula analogiam … ostendens and my recomputation 
(R = 23,500 parts).

53 Dreyer, Tychonis Brahe Dani opera omnia, vol. II, pp. 82–83.
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Figure 13. LM2’s Tabula analogiam … ostendens, used for the second anomaly. AD, 2:228.

In the AD, Longomontanus presented his derivation of the Tabula analogiam 
… ostendens in the context of variations caused by the eccentric annual path 
of the Sun (or Earth), i.e., as a function of the true solar anomaly. However 
as noted above, the corrected Earth-Sun distance in LM2 is also a function of 
the Mars-Sun distance. As can be seen in Figure 11, as the Mars-Sun distance 
(HA) shifts, with the other angles remaining fixed, the Earth-Sun distance 
(MA) also shifts. To correct for this effect, Longomontanus used the same two 
apogee and two perigee Mars observations and computed the Earth-Sun dis-
tances at apogee and perigee, in units of the Mars theory, for when the Sun 
was at its mean distance from the Earth (i.e., MA in Figure 10). That is, he 
used Equation 6 with the mean solar contribution (2350/2 = 1175) and com-
puted the Earth-Sun distance for that contribution.
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Hence, from Observation 1 (Figure 11, at apogee of Mars) he had found 
an Earth-Sun distance (MA) of 66,586 units, when the true solar anomaly 
was 260;53,32 (∠BAG in Figure 10). Increasing the true solar anomaly to 
270° (for the mean Earth-Sun distance) increases the Earth-Sun distance by  
{cos (260;53,32)  –  cos (270)}  ∙  1175 or 186 units to 66,772 units. From Obser-
vation 2, also at apogee, he had found an Earth-Sun distance of 65,691 units, 
which, when adjusted to the mean Earth-Sun distance, becomes 66,825 units. 
Averaging these two values yields 66,799 units (Longomontanus set this dis-
tance to 66,788 units) when Mars is at apogee. A similar process for the per-
igee observations yields, by my computation, a distance of 64,192 units (Lon-
gomontanus found 64,202 units). Subtracting Longomontanus’s apogee and 
perigee values yields 25,850 units, or the maximal shift in Earth-Sun distance 
resulting from the eccentric motion of Mars around the Sun. For the correc-
tion of the Earth-Sun distance resulting from the eccentric motion of the Sun 
around the Earth, Longomontanus had found a maximal shift of 23,500 units. 
Hence, the ‘Mars correction’ is 11/10 larger than the ‘Sun correction’.

To use the Tabula analogiam … ostendens, which gives the corrections as 
increases over the minimal Earth-Sun distance, Longomontanus had to deter-
mine that minimum distance. For this he used the two perigee observations, 
now adjusting them not to the mean but to the minimal Earth-Sun distance. 
From Observation 3 he found a distance of 63,045 units, from Observation 4, 
a distance of 62,990 units, which yields an average of 63,018 units (Longomon-
tanus found 63,027 units).

Thus, to compute the Earth-Sun distance (MA in Figure 11) in LM2 
requires two entries into the table:
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Maximal solar contribution at apogee
. (6)

8,080,836
20,000,000

=
895

maximal solar contribution
,

excess over minimum = c3 = DB cos 2(12 ̸ BAG). (7)

MA = 630,275+ ε(αSun) + 11
10 · ε(αMars), (8)

ε(α) = 23,500 · cos 2( 12α). (9)

tanH =
sin φ

AH
AM − cos φ

, (10)

φ = |π − λSun + λMars heliocentric| . (11)

λMars = H+ λMars heliocentric. (12)

These two corrections, derived from only four observations of Mars, allow 
LM2 to correct the Earth-Sun distance, a distance that had been fixed in Ptol-
emaic and Copernican astronomy. In his final theory, Kepler had corrected this 
distance with an ellipse; Magini, as shown by Voelkel and Gingerich, corrected 
the distance ‘by hand’, fitting six observations he extracted from the AN.54 We 
will see, below, how well LM2 performs with its novel approach to solving the 
second anomaly.
Mean motions: Longomontanus treated the mean motions last in his presen-
tation of LM2. I find inconsistencies and small computational errors in his 

54 Voelkel and Gingerich, ‘Giovanni Antonio Magini’s “Keplerian” Tables’, pp. 245–46.
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derivations, not unlike those Swerdlow found in Longomontanus’s treatment 
of precession.55 As in his study of precession, Longomontanus used observa-
tions from Ptolemy, corrected by Longomontanus’s own solar theory and the-
ory of precession, plus Tycho’s modern observations (he provides no details of 
his reduction of Tycho’s measurements). He tabulated two mean motions for 
each superior planet, motion in longitude and motion in anomaly (tropical lon-
gitude minus the apogee of the planet). The apogees move at different rates for 
each superior planet. By subtracting his mean longitudes from the mean anom-
alies, we find that Longomontanus gave Saturn’s apogee a rate of 0;01,20,12°/
yr, Jupiter’s 0;00,57,52°/yr and Mars’s 0;01,14,52°/yr. We cannot, therefore, call 
Longomontanus’s apogees sidereal, as was the case in Ptolemaic and Alfonsine 
astronomy.56 Nowhere does he discuss this feature of his mean motions.

To find the rate of change in Mars’s heliocentric anomaly (∠BAC in Fig-
ure 6), Longomontanus computed the shift in its apogee between observations 
widely separated in time. Using three acronychal observations of the opposition 
of Mars and the mean Sun, made in ad 130, 135 and 139, Ptolemy in the 
Almagest X.7 had cleverly found the planet’s apogee to be at 115;30°, employ-
ing his own theory of the Sun.57 Longomontanus recomputed this value, using 
his revised solar theory and the true rather than mean Sun, finding Mars’s apo-
gee to be at 118;15 at the era of Antoninus Pius (which he defined as noon, 31 
December 136). For a recent observation, Longomontanus simply stated that 
for 31 December 1600 ‘we find’ (deprehendimus) Mars’s apogee at 148;42, 
a shift of 30;27 in 1464 years, which yields an annual rate of change, noted 
above, of 0;01,14,52°/yr. Presumably, Longomontanus had found the modern 
apogee by deploying several acronychal Mars observations and the procedures 
of the Almagest X.7; but he did not inform his readers how he had set this 
important long-term parameter for LM2.58

For determining the mean motion in longitude, Longomontanus provided 
more details. Selecting the earliest Mars observation reported in the Almagest, 
an occultation of Mars and a star (β Sco) observed ‘at dawn’ on 18 January 
−271, Longomontanus drew a diagram to represent the arrangement of LM2 
for that date. Taking as givens his solar theory and the radii and distances for 
Mars (the first anomaly) that he had earlier derived, Longomontanus found the 
mean tropical longitude of Mars at this date to be 182;56,30 (in contrast to 
Ptolemy’s 184;12).59 He then shifted this value back to the end of −272, finding  

55 Swerdlow, ‘Tycho, Longomontanus, and Kepler’, pp. 178–79.
56 Pedersen, A Survey of the Almagest, p. 287. The linear portion of Longomontanus’s the-

ory of precession advances at a rate of 0;00,49,45°/yr.
57 For an interesting analysis of how Ptolemy may have determined his mean motions, see 

Jones and Duke, ‘Ptolemy’s Planetary Mean Motions’.
58 AD, 2:231–32.
59 AD, 2:233; Almagest X.9.
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174;11,08. For the end of 1600, he indicated (again offering no observational 
raw data) that the mean tropical longitude was 307;06,32. Hence, Mars’s mean 
longitude had moved 132;55,30 plus 995 revolutions in 1872 years, which 
yields an annual rate of change of 191;17,10,06°/365 days or 0;31,26,39,28,13°/
day. The medieval Alfonsine Tables had set this rate at 0;31,26,38,40,04°/day, 
Kepler’s Rudolphine Tables would use 0;31,26,39,11,41°/day. Over 100 Julian 
years, Longomontanus’s mean Mars would run ahead of the Alfonsine Mars by 
about 5 arcminutes, ahead of Kepler’s Mars by about 3 arcminutes.

Using these rates, Longomontanus prepared a set of mean motion tables for 
the superior planets, listing the increments in mean longitude and mean anom-
aly for intervals of 20, 40 … 100, 200 … 1000, 1100 … 2000, 2500 … 6000, 
6300 years. The tables have two radices, for the Creation of the World (−3963) 
and for the Birth of Christ (1 January 1, noon). Unlike Tycho, who had wor-
ried that his solar and lunar theories were reliable only for several hundred 
years, Longomontanus confidently presented his planetary models as a math-
ematical astronomy for the ages (Kepler’s mean motions run from −4000 to 
+2100 years in the Rudolphine Tables).

Thus, to generate a geocentric longitude for Mars, LM2 computes three cor-
rections:

1. For the correction of the first anomaly (c1(κ) or ∠CAH in Figure 6), 
enter the Table of Eccentric Prostphaphaereses with Mars’ mean anomaly 
which is tabulated in the mean motion tables. This correction yields the 
true heliocentric longitude of Mars.

2. For the correction of the Mars-Sun distance (c2), enter the Table of Dis-
tances from the Center, also with Mars’ mean anomaly.

3. For the correction of the Earth-Sun distance (c3), enter the Table Show-
ing Proportion twice, once with the solar true anomaly, once with Mars’ 
true anomaly, and compute the corrected distance using Equation 8.

With these results, the user must solve the Mars-Sun-Earth triangle (AHM in 
Figure 14) to find Mars’ geocentric longitude. Corrections c2 and c3 yield the 
distances AH and AM, c1 yields Mars’ heliocentric longitude. The angle at H 
can be easily found from the figure with the constructed right triangles:

κ̄ S̄

λ♂ = λ̄∗♂ + Π − c3 (1)

tan c3 =
(e1 + r ′)sin κ̄

R+ (e1 − r ′)cos κ̄
, (2)

κ̄ = λ̄∗ + Π − λa = col7 + col9 − λa. (3)

AH =
√

1+ r 21 + r 22 + 2(r1 − r2)cos κ̄ − 2r1r2cos 2κ̄. (4)

KF = cos (αobs2)− cos (αobs1), and (5)

KF
DB

=
Observed difference in Earth–Sun distances

Maximal solar contribution at apogee
. (6)

8,080,836
20,000,000

=
895

maximal solar contribution
,

excess over minimum = c3 = DB cos 2(12 ̸ BAG). (7)

MA = 630,275+ ε(αSun) + 11
10 · ε(αMars), (8)

ε(α) = 23,500 · cos 2( 12α). (9)

tanH =
sin φ

AH
AM − cos φ

, (10)

φ = |π − λSun + λMars heliocentric| . (11)

λMars = H+ λMars heliocentric. (12)
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√
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=
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10 · ε(αMars), (8)
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It can then easily be seen that:

κ̄ S̄

λ♂ = λ̄∗♂ + Π − c3 (1)

tan c3 =
(e1 + r ′)sin κ̄

R+ (e1 − r ′)cos κ̄
, (2)

κ̄ = λ̄∗ + Π − λa = col7 + col9 − λa. (3)

AH =
√

1+ r 21 + r 22 + 2(r1 − r2)cos κ̄ − 2r1r2cos 2κ̄. (4)

KF = cos (αobs2)− cos (αobs1), and (5)

KF
DB

=
Observed difference in Earth–Sun distances

Maximal solar contribution at apogee
. (6)

8,080,836
20,000,000

=
895

maximal solar contribution
,

excess over minimum = c3 = DB cos 2(12 ̸ BAG). (7)

MA = 630,275+ ε(αSun) + 11
10 · ε(αMars), (8)

ε(α) = 23,500 · cos 2( 12α). (9)

tanH =
sin φ

AH
AM − cos φ

, (10)

φ = |π − λSun + λMars heliocentric| . (11)

λMars = H+ λMars heliocentric. (12)

In his sole worked example, Longomontanus uses Equations 10–12 exactly as 
I have presented them to compute the geocentric longitude of Mars in LM2.60 
His computed longitude differs from mine by 2,37 arcminutes.

Figure 14. Converting Mars’ heliocentric to geocentric longitude. The Sun is at A, Mars at H, 
the Earth at M.

4. Conclusion

Because of the ways they structured their algorithms, it is not easy to compare 
directly the Earth-Sun distances computed via Kepler’s Rudolphine Tables and 
Longomontanus’s LM2. We can, however, compare the final Martian longi-
tudes generated by these tables (see Figure 15). As observers since Kepler have 
noted, Ptolemy’s Mars model (and Copernicus’s) generates predictions that give 
large errors when the planet is in opposition with the Sun, i.e., when the Mars-
Earth distance is at the minimum. These errors at opposition could reach ±2°; 
every 32 years, as the geometry brings Mars even closer to the Earth, the errors 
could reach ±5°, creating the ‘great Martian catastrophe’ in Gingerich’s colorful 
phrase.61 By placing Mars in an elliptical orbit, Kepler reduced the errors at 

60 AD, 2:262–63.
61 Gingerich, ‘The Role of Erasmus Reinhold’, p. 54; Gingerich, ‘Early Copernican Ephe-

merides’, p. 407; Gingerich, ‘The Great Martian Catastrophe’.
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opposition to about ±2 arcminutes (notice that Kepler’s larger errors of about 
±3 arcminutes occur not at opposition but when the Earth approaches Mars 
at octant positions in its orbit). Precisely at the time of opposition, the errors 
in LM2 are roughly equal to Kepler’s errors. But before and after those times, 
Longomontanus’s errors can rise to about ±30 arcminutes. Figure 15 thus 
suggests that, measured by the criterion of accuracy, Longomontanus’s circles 
did not perform as well as did Kepler’s ellipses. I have not explored to what 
extent LM2’s error features, visible in Figure 15, might derive from errors in 
the direction of the apsidal line or the eccentricities, features unrelated, that is, 
to the geometry of the circle.

Figure 15. Longitude of Mars, Jun 1624 – May 1628 at 10-day intervals, comparing Rudol-
phine and LM2 predictions against modern positions. Vertical lines mark dates of true oppo-
sition.

As he introduced LM2 in the AD, Longomontanus noted that the observed 
shifts in Earth-Sun distances were not predicted by Ptolemy’s equations, imply-
ing that precision alone (i.e., predicted positions matching observed positions) 
should govern astronomical theorizing. But he also commented, for the first 
and only time in this large book, on the approach taken by his former col-
league, Kepler:

Whence it happened that Johannes Kepler, wholly ascribing to the eccentric (as also 
seems [to be the case]) this discrepancy in the phenomena of the yearly orbit of Mars, 
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had tried to think up other hypotheses instead of the usual eccentrics, indeed figures 
shy of the circle and oval or emulating ellipses, [figures] in which equal arcs of revo-
lutions will not correspond precisely to equal times, namely with the Sun as director 
of all the motions, putting in motion the planets disposed around itself now more 
intensely, now more remissly. Moved by the weightiest causes, however, we almost 
alone uphold that Copernican axiom — that the perpetual motion of celestial bodies 
is uniform and circular or composed of circular motions — which in astronomy we 
value to the highest degree. Nor can we certainly think otherwise because of such 
anomalies of Mars and other [planets], nor must we [think otherwise] before neces-
sity will have demanded it, until the circular or simple, or especially the complicated 
and compound [figures], by which nearly all curved figures of this sort and even 
straight lines can be described clearly, will have abandoned their role in relation to 
every kind of representation of the celestial phenomena. Why may we not assemble 
these materials? We do not hesitate to affirm that they [=  the materials] are real, 
however, and have a kind of existence, which, armed with the force and power of 
centers, results in their commensurable conversions in equal times, just as these 
things are found more fully discussed by us elsewhere.62

In the margin at this point, Longomontanus referred to his 1611 public dis-
putation, a text he reprinted in the first part of the AD.63 He also cited De 
revolutionibus I.4 (the motions of heavenly bodies ‘are circular or compounded 
of several circles’) and Tycho’s Progymnasmata I, p. 11 (‘All celestial motion 
is essentially regular and uniform, unchanging and circulation, an axiom long 
accepted by all astronomers’).64 Obviously, Longomontanus had decided to 

62 ‘Vnde evenerat quod Iohannes Kepplerus hanc in annui orbis Martis phaenomenis dis-
crepantiam eccentrico (ut etiam videtur) in solidum adscribens, alias revolutionum hypotheses 
pro consuetis eccentricis excogitare conatus fuerit; quippe a circulo deficientes et figuras ovales 
vel ellipticas [reading for eclipticas] aemulantes; in quibus quoque aequales revolutionum arcus  
non prorsus [222/223] aequalibus temporibus respondebunt. Sole scilicet motuum omnium 
directore planetas circum se dispositos nunc intentius, nunc vero remissius ciente. Nos autem 
gravissimis causis moti, Copernicaeum illud, quod motus corporum coelestium sit aequalis et 
circularis perpetuus, vel e circularibus compositus, in astronomia maximi facimus, et quasi 
unice tuemur [in margin: Copernic. lib. I.c. 4. Tycho Brahe axioma astron. vocat lib. I. Pro-
gym. pag. 11.]; nec certe aliter propter tales Martias aut quorundam aliorum anomalias sen-
tire possumus, neque debemus, antequam necessitas id imposuerit, ut circularia sive simplicia, 
sive, ut plurimum, complicata et composita, per quae omnes pene huiusmodi incurvatae fig-
urationes, tum etiam rectae plane lineae describi possunt, officium suum circa omnimodam 
phaenomen𝜔n coelestium repraesentationem deposuerint. Quin potius haec licet materialia 
non constituamus; realia tamen ac eiusmodi esse affirmare non dubitamus, quae centrorum vi 
ac virtute armata, conversiones suas temporibus aequalibus commensurabiles absolvunt; veluti 
haec alibi a nobis fusius disceptata reperiuntur’.

63 Longomontanus, Disputatio prima astronomica; cf. AD 1:42–49. For a brief exposition 
of this treatise, see Moesgaard, ‘How Copernicanism Took Root’, pp. 126–34.

64 ‘Fateri nihilo minus oportet circulares esse motus, vel ex pluribus circulis compositos…’ 
Copernicus, 1543, fol. 2v, translated in Nicolai Copernici Opera omnia, vol. II, p. 11. ‘Motus 
autem omnes coelestes esse per se regulares et aequabiles, constantique lege circulariter ferri, 
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retain the Copernican axiom of circles and circular motion. Yet he also sug-
gested that ‘centers of force’ might be ‘real’; they simply do not belong in math-
ematical astronomy. Longomontanus remained a Ptolemaic astronomer.

This account of the development of LM1 and LM2 shows Longomontanus 
working as a bricoleur (or what Americans might call a ‘Rube Goldberg’), com-
bining existing models, parameters and observations from various sources, not 
worrying especially about consistency65 or about natural philosophy (his dia-
grams flip between heliocentric and geocentric geometries). Yet he did hold to 
several commitments, to the Copernican axiom of circles and circular motion 
and to the ontological significance of perfect numbers. This approach allowed 
him to reduce the Ptolemaic/Copernican errors for Mars by a factor of about 
ten. Longomontanus could not match the precision of the Rudolphine Tables. 
But for many seventeenth-century astronomers, especially those in northern 
Europe like Eichstad in Stettin, Longomontanus’s tables were ‘good enough’; 
and they avoided the philosophical problems created by Kepler’s centers of 
force and non-circular motions.

Finally, we must note that in addition to his bricolage, Longomontanus’s 
solution to the second anomaly was quite original. Kepler in the AN had used 
observations of a sidereally fixed Mars to determine the eccentricity of the 
Earth’s orbit. Longomontanus in the AD used observations at Mars’s apogee 
and perigee to derive parameters for eccentric circles to represent that orbit. 
Tycho’s two assistants each found new ways to extract data from their mas-
ter’s observations. But Longomontanus’s Ptolemaic and Copernican commit-
ments prevented him from accepting the ellipse and a mathematical astronomy 
involving the physics of forces. He was the last astronomer to create a new 
theory in the Ptolemaic tradition.
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15-16, 283-304, 399 n. 55, 400  
n. 55

Pythagoras   262, 265, 279
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142, 143 n. 19, 145, 152-53, 186, 
189, 192
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186
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147, 153, 186, 225
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n. 30
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Gingerich, Owen   416, 427, 434, 437
Gislén, Lars   440
Goldstein, Bernard   305n*
Grant, Edward   263-65, 279 n. 2
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Hogendijk, Jan P.   211
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Hullmeine, Paul      174 n. 35, 177 n. 
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315 n. 40, 341 n. 112, 409, 414, 
421-22, 435, 440

Thorndike, Lynn   263
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Yamamoto, Keiji   7, 97 n. 2, 105
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68, 169 n. 21, 171, 183-84, 185 n. 
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Cracow, Biblioteka Jagiellońska, 590   
229
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Memmingen, Stadtbibliothek, 2° 
2,33   230

Milan, Biblioteca Ambrosiana, L. 99 
sup.   20, 48

Munich, Bayerische Staatsbibliothek, 
Clm 26667   363 n. 181

Naples, Biblioteca Nazionale, VIII.D.4   
285, 288, 296

Nuremberg, Stadtbibliothek, Cent V, 
app. 8   341 n. 112

Nuremberg, Stadtbibliothek, Cent V 
53   339 n. 108, 354 n. 153

Nuremberg, Stadtbibliothek, Cent V 58   
357 n. 164

Oxford, All Souls College, 95   228
Oxford, Bodleian Library, Thurston 3   
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C laudius Ptolemy (c. 100-170 AD) is one of the most influential 

scholars of all time. While he is also the author of treatises on geo -

graphy, optics and harmonics, his fame primarily stems from two works 

on the science of the stars, dealing with mathematical astronomy (the 

Almagest) and astrology (the Tetrabiblos). The Almagest and the Tetrabiblos
remained the fundamental texts on the science of the stars for some 1500 

years. Both were translated several times into Arabic and Latin and were 

heavily commented upon, glossed, discussed, and also criticised and 

improved upon, in the Islamic world and in Christian Europe. Yet, the 

reception of Ptolemy in medieval cultures is still to a large extent a terra 
incognita of the history of science. The Arabic and Latin versions of the 

Almagest and the Tetrabiblos are for the most part unavailable in modern 

editions, their manuscripts remain largely unexplored and, generally 

speaking, their history until the seventeenth century has never been 

systematically investigated.

This volume gathers together 16 contributions dealing with various aspects 

of the reception of Ptolemy’s astronomy and astrology in the Islamic world 

and in Christian Europe up to the seventeenth century. Contributions are 
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