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Editing and Analysing Numerical Tables: Towards a Digital 
Information System for the History of Astral Sciences

Introduction

Matthieu Husson, Clemency Montelle, and Benno van Dalen

Dip into any corpus of scientific texts and you are likely to come across numer-
ical tables. The practice of storing numerical data in compressed form was 
embraced by many cultures of inquiry from the very earliest literate societies,  
and our appetite for tabulating data has not waned even in the digital age. Yet, 
despite the prevalence of numerical tables as a genre in many historical con-
texts, detailed and thorough scrutiny of them has been lacking. Until recent 
decades, historians of science have been largely drawn to proposition-proof, 
analytical forms of technical expression, usually cast in prose, which echo the 
modern disciplinary ideals of mathematics, considering other forms of mathe-
matical activity, such as worked computations, tables, diagrams, instrumenta-
tion and the like to be less worthy of consideration. However, as our purview 
of mathematical practice broadens, so too has our understanding of the impor-
tance and richness of the historical insight that the analysis of numerical data 
and computations can bring.

Indeed, beyond this issue of status, it is true that numerical tables pose par-
ticular challenges to historians. They can be large and unwieldy. Some sources 
contain thousands of data points, each of which, in principle, needs to be 
checked. They can appear monotonous and dull, and can present themselves as 
impenetrable and intractable to even the most persistent analysis. Accompany-
ing text, if any, is usually not helpful in revealing the details of their construc-
tion; the underlying algorithms and parameters often lie buried in the data. 
The conventions and simplifying assumptions made by the human computer 
are almost never made explicit; all decisions of execution and display are bound 
up in the numerical data. And as a textual genre, tabular data are prone to 
particular types of copying errors or even, in some specific contexts, alterations 
at the hands of computer-scribes.

But leaving aside the potential historic minefield, numerical tables are testa-
ment to a rich treasury of practices which are directly relevant to the history of 
science. These data points are the closest the historian can come to the actual 
hand computational practices and priorities of the compilers of historical tables 
and of their users. More broadly, they account for a line of numerate culture 

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 1–16
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2 INTRODUCTION

which is often overlooked by investigations: the development and emergence 
of sophisticated data management practices in computational contexts. As such 
they are of undeniable value and provide substantial illumination into the prac-
tices of historical computers.

Over the last decade, a series of publications have brought the study of 
numerical tables into sharper focus. Recent surveys of historical tabular cul-
tures were carried out in collective volumes edited by Martin Campbell-Kelly 
and colleagues and by Matthieu Husson and Clemency Montelle.1 These initia-
tives have collected specialised contributions on numerical tables from various 
historical contexts ranging from Near Eastern and other pre-modern cultures 
of inquiry, through a variety of Eurasian and north African milieus, right up 
to the present day.

Research dedicated to tables in specific cultures of inquiry is more advanced 
in some areas than in others. Tabular culture in the ancient Near East has 
been well documented thanks to the pioneering efforts of both Assyriologists 
and historians of science. The basic characteristics of Babylonian astronomical 
tables were explained in the foundational work by Otto Neugebauer.2 Many 
further types of tables were analysed and edited by John Britton and Lis 
Brack-Bernsen3 and more recently by John Steele and Mathieu Ossendrijver.4 
In Greek astronomy, Ptolemy’s most important theoretical work, the Almagest, 
was edited around 1900 by Johan Ludvig Heiberg and was later authoritatively 
translated into English by Gerald Toomer.5 A full analysis of the tables in the 
Almagest was provided by Glen Van Brummelen in his doctoral dissertation.6 
The more practical Handy Tables was studied in the doctoral dissertation of 
William Duane Stahlman and is currently being edited, translated and com-
mented upon by Anne Tihon and Raymond Mercier.7 Two Byzantine almanacs 
were edited and analysed by Alexander Jones and Raymond Mercier.8

Important groundwork on Islamic astronomical tables, the corpus of some 
200 known zījes, was carried out in the 1956 survey by Edward S. Kennedy, 

1 Campbell-Kelly et al., The History of Mathematical Tables, and Husson and Montelle, 
The Transmission of Arabic Astronomical Tables.

2 Neugebauer, Astronomical Cuneiform Texts; for an overview, see ‘Book II. Babylonian 
Astronomy’ in Neugebauer, HAMA, vol. I, pp. 345–555.

3 See, for example, Britton, ‘Studies in Babylonian Lunar Theory, Parts I–III’ and 
Brack-Bernsen, Zur Entstehung der Babylonischen Mondtheorie.

4 See Steele, ‘Newly Identified Lunar and Planetary Tables’ and Ossendrijver, Babylonian 
Mathematical Astronomy: Tabular Texts.

5 Halma’s translation from the 1810s was superseded by Heiberg, Syntaxis mathematica. 
Presently, the most commonly used English translation is Toomer, Ptolemy’s Almagest.

6 Van Brummelen, Mathematical Tables in Ptolemy’s Almagest.
7 Stahlman, The Astronomical Tables of Codex Vaticanus Graecus 1291; Tihon, Les Tables 

Faciles 1a, and Mercier, Ptolemy’s Handy Tables 1b.
8 Jones, An Eleventh-Century Manual and Mercier, An Almanac for Trebizond.
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which was consolidated by David A. King and Julio Samsó, and is currently 
being expanded by Benno van Dalen.9 Full editions and studies of some 
important zījes were published early on by Carlo Alfonso Nallino and Hein-
rich Suter; recent studies of tables in zījes were carried out by Carlos Dorce and 
Benno van Dalen.10 Sanskrit astronomical tables have been gaining prominence 
amongst Indological scholarship thanks to David Pingree’s ground-breaking 
inventories and more recently through a detailed study by Clemency Montelle 
and Kim Plofker.11 At the same time, several sets of tables were edited and 
commented upon by Anuj Misra and others.12 The Latin and early-modern 
European tabular culture, including tables in Hebrew, has recently been rein-
vigorated by the monumental edition of the Toledan Tables published by the 
late Fritz S. Pedersen13 and an uninterrupted series of descriptions of works 
with tables by José Chabás and Bernard R. Goldstein, culminating in surveys 
of the contents of these works and of the different sets of tables.14 Work on 
the Alfonsine Tables that will go far beyond the edition of the Parisian tables 
by Emanuel Poulle15 is currently being carried out under the auspices of the 
project ALFA (see below).

Scholarship in western languages on Chinese numerical tables has been 
advanced by Christopher Cullen with his publication of several astronom-
ical systems from the Han dynasty and by Nathan Sivin’s full study of the 
thirteenth-century Season-granting System.16 A particularly interesting case of 

9 Kennedy, ‘A Survey of Islamic Astronomical Tables’ and King and Samsó, ‘Astronomical 
Handbooks and Tables’. Van Dalen’s new survey will appear in the book series Ptolemaeus 
Arabus et Latinus – Studies in the coming years.

10 See Nallino, al-Battānī sive Albatenii opus astronomicum; Suter, Die astronomischen 
Tafeln des Muḥammed ibn Mūsā al-Khwārizmī (with supplementary material and English 
translations in Neugebauer, The Astronomical Tables of al-Khwārizmī); Dorce, El Taŷ al-
azyāŷ de Muḥyī al-Dīn al-Magribī, and van Dalen, Ptolemaic Tradition and Islamic Inno- 
vation.

11 Pingree, Sanskrit Astronomical Tables in the United States; Pingree, Sanskrit Astronomi-
cal Tables in England, and Montelle and Plofker, Sanskrit Astronomical Tables.

12 See, for example, Misra et al., ‘Eclipse Computation Tables’; Misra et al., The Sanskrit 
Astronomical Table Text, and the articles in Keller and Montelle, Special Issue on Numerical 
Tables.

13 Pedersen, The Toledan Tables.
14 Chabás and Goldstein, A Survey of European Astronomical Tables; Chabás, Compu-

tational Astronomy in the Middle Ages. For a selection of reprinted articles, see Chabás and 
Goldstein, Essays on Medieval Computational Astronomy. For descriptions and analyses of two 
specific sets of tables, see Chabás and Goldstein, The Alfonsine Tables of Toledo and Id., The 
Astronomical Tables of Giovanni Bianchini.

15 Poulle, Les Tables Alphonsines.
16 See Cullen, The Foundations of Celestial Reckoning, and Sivin, Granting the Seasons. 

An English overview of Chinese astronomical tables from the Han to the Qing dynasties 
can be found in Yabuuti, ‘Astronomical Tables in China, Han to T’ang’, and Yabuuti, ‘Astro-
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transmission of astronomical tables is the Persian zīj from the Yuan period 
that was translated into Chinese as the ‘Islamic Astronomical System’ (Huihui 
lifa). Most recently, Shi Yunli, Benno van Dalen and Li Liang have studied the 
methods and tables in this work.17 Broadly speaking, then, numerical tables are 
receiving ever more scholarly attention, and researchers are becoming increas-
ingly focused on efficient and novel techniques to explore them.

As part of these efforts, various collective research initiatives have also 
emerged. One example is the long-term collaborative project History of Numeri-
cal Tables led by Dominique Tournès, which organised a series of workshops in 
Paris. HAMSI (History of Astronomical and Mathematical Sciences in India)18 
is an ongoing scholarly project that explores, prioritises and studies Sanskrit 
sources and related vernacular traditions in the exact sciences in second mil-
lennium India. One of the key goals of this project is to document, digitally 
encode, edit and study the overwhelming corpus of numerical tables from this 
period. Various digital tools, such as CATE (Computer Assisted Tables Editor 
(see pp. 166–67), which automates the bulk of the critical editing process, have 
been developed to assist in this aim, but their scope and application need not 
be limited to Sanskrit traditions.

ALFA (Alfonsine Astronomy: Shaping a European Scientific Scene)19 is 
devoted to the history of Alfonsine astronomy, a tradition of mathematical 
astronomy which became dominant in Latin sources between the fourteenth 
and the early sixteenth centuries. The central goal of ALFA is to build a 
detailed and deep understanding of this tradition of mathematical astronomy, 
in which the works of the astronomical ‘scientific revolution’ are rooted. This 
is done by embracing approaches to the sources from the history of manuscript 
cultures, the history of mathematics and the history of astronomy. The Alfon-
sine Tables, in the multiple forms they took during these two and a half cen-
turies, are central to the Alfonsine tradition, and their edition and the analysis 
of the astronomical practices they fostered are essential to the ALFA project.

nomical Tables in China, Wutai to Ch’ing’. Martzloff, Astronomy and Calendars presents an  
overview of the technical contents of Chinese astronomical systems. Besides publications in 
western languages, there is a huge amount of important literature on Chinese astronomical 
systems in publications in Chinese or Japanese.

17 See, for example, Yano and van Dalen, ‘Tables of Planetary Latitude I and II’; Shi Yunli, 
‘The Korean Adaptation’, and Li Liang, ‘Arabic Astronomical Tables in China’.

18 See http://www.hamsi.org.nz. P.I.s Clemency Montelle and Kim Plofker. HAMSI is 
hosted at the University of Canterbury, Christchurch, New Zealand, and is supported by a 
five-year grant from the Royal Society of New Zealand.

19 See http://alfa.hypotheses.org. P.I. Matthieu Husson. ALFA is a project of the European 
Research Council (ERC CoG 723085) and is hosted by the Paris Observatory.



 INTRODUCTION 5

Another long-term endeavour is the ground-breaking scholarly enterprise 
Ptolemaeus Arabus et Latinus (PAL) in Munich.20 PAL’s main objective is to 
produce catalogues of Arabic and Latin Ptolemaic manuscripts as well as criti-
cal editions of all Ptolemaic works on astronomy and astrology and a selection 
of commentaries in Arabic and Latin. This includes full editions of the tables 
in the Almagest in both languages. But another important goal of the project 
is to survey tables and horoscopes in the medieval Ptolemaic tradition and to 
provide electronic tools for their digitisation, critical edition and mathematical 
analysis. For this purpose, PAL has been actively involved in the table-related 
projects carried out under the auspices of ALFA and has undertaken to host 
the present volume in its Studies series.

These very different projects share a common interest in the analysis and 
edition of a large corpus of astronomical tables with digital tools. Indeed, much 
of the tedium and complexity surrounding table analysis can be managed and 
alleviated by appropriate computer-assisted technology, and the momentum in 
this area is growing. Given these new attitudes towards historical numerical 
data, and the growing pool of expertise and digital tools amongst a diversity of 
projects dealing with different cultural areas, the editors of this volume realised 
that it was high time to bring together these efforts and to share and build on 
them collectively.

This cooperation took place under the aegis of the TAMAS project (Tables 
Analysis Method for the history of Astral Sciences).21 Over the course of sev-
eral years, no less than seven small intensive workshops were held, in which 
the same core group of international specialists presented case studies from 
their own domain of inquiry, and shared their views on the practices, features, 
challenges, and aspirations of their numerical tables. From this basis, collective 
discussions were initiated to address both the inner workings and the broader 
aims of database design. Among other relevant topics, issues such as developing 
a common language and encoding practices, metadata standards, and shared 
digital tool development were discussed in detail.

The database DISHAS (Digital Information System for the History of 
Astral Sciences, https://dishas.obspm.fr/) arising from this work is now avail-
able online and its initial datasets were under construction at the time this 

20 See http://ptolemaeus.badw.de. Project leader Dag Nikolaus Hasse, research leaders  
David Juste and Benno van Dalen. PAL is a project of the Bavarian Academy of Sciences and 
Humanities and the University of Würzburg and is funded for a period of 25 years jointly by 
the Federal Republic of Germany and the Free State of Bavaria.

21 See http://tamas.hypotheses.org. P.I. Matthieu Husson. TAMAS was funded by the 
‘Jeunes Chercheurs/nouvelles équipes’ grant from the Université PSL (Paris Sciences et Lettres) 
from 2017 to 2019. LOCOMAT (https://locomat.loria.fr), an earlier and somewhat different 
project for creating a repository of historical numerical tables, was inspirational for this joint 
initiative.
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introduction was written. DISHAS is designed to accommodate the diverse 
tabular layouts that the historical corpus attests to, as well as to handle differ-
ent numerical systems, errors and variants, and to provide a variety of digital 
outputs for the circulation and dissemination of scholarly studies. Various dig-
ital tools, such as CATE (Computer Assisted Tables Editor), DTI (DISHAS  
Tables Interface) or DIPS (DISHAS Interactive Parameter Squeezer) were 
developed in the context of the various projects participating in TAMAS and 
integrated in the common information system. New tools are currently under 
development especially in the direction of opening up DISHAS datasets to 
Machine Learning and Artificial Intelligence applications. DISHAS has the 
potential to transform the way scholars study numerical tables; in fact, the 
intense collective work that was undertaken in shaping DISHAS has already 
given rise to new insights, questions and approaches to astronomical tables. 
From this, the desire naturally arose to bring together these insights and the 
newly gained expertise in a collective volume.

Our aspirations with this volume, then, are to build on this momentum, 
to harness the power of digital tools to edit, process, and analyse the corpus 
of numerical data, focusing on astronomical tables. As the potential of data 
science and automated analysis grows, careful consideration of the development 
of digital tools and their benefits and pitfalls needs to be made, so that we can 
remain sensitive to the nuances and subtleties of data analysis. Digital tools 
offer the potential to customise the editing process to the individual user, but 
must be applied with caution.

The first steps towards this aim involve collecting and considering the issues 
related to numerical data both in the editing process and in the process of 
technical analysis. This preliminary work is crucial for developing robust dig-
ital systems which can shift the focus from painstaking and time-consuming 
manual analysis to automated ones, so that historians can focus on higher level 
questions. In this way editing and analysing may even become dynamic pro-
cesses rather than static ones. Clearly articulating the problems and challenges 
associated with these processes, and offering strategies and solutions to resolve 
them, are important aims of this volume.

The resulting collection of papers testifies to the range and scope of the 
scholars involved and provides a strong coverage of the Eurasian continent and 
North Africa. They include Sanskrit, Chinese, Latin, Hebrew, and Islamicate 
cultures of inquiry in a number of different domains, such as scientific and 
monastic contexts, and astronomical, mathematical, and geographical branches. 
These different sources and contexts, however, are connected in multiple ways. 
First and foremost, they are technically related to the style of mathematical 
astronomy developed in the Hellenistic world, of which Ptolemy is the most 
famous and successful example. Arabic sources and the Latin ones that directly 
depend on them are deeply connected to the Almagest and the Handy Tables. 
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In successive episodes from the thirteenth to the sixteenth centuries, the Ara-
bic/Persian and Latin astronomical traditions were transmitted to India and 
China and began a shared history with already well-developed traditional 
astronomical disciplines in Sanskrit and Chinese. However, long before these 
contacts with Arabic/Persian and Latin sources (no later than the beginning 
of the first millennium of the common era) pre-Ptolemaic Hellenistic astro-
nomical concepts had reached India and from there, in the second half of the 
first millennium, circulated to China through the channel of Buddhist trans-
missions. These connections between the various cultural milieus, beyond the 
methodological interest of joining forces in the study of astronomical tables 
through digital tools, also justify the alliance of our different projects in shap-
ing DISHAS and the collection of studies of tables from each of the areas in 
a single volume. Each of the contributions presented here contains key insights 
that will be useful in determining future directions in the field.

An overview of the contributions

The contributions are organised in four sections. The first group presents state-
of-the-art approaches to table cracking that are used to derive different types of 
historical conclusions. The second group of contributions focuses on the rela-
tions between the critical edition of tables and their analysis. The third group 
shares a common concern with computational practices in relation to astro-
nomical tables. The fourth and last group explores new paths and approaches 
to table analysis.

Classical approaches to table cracking

The first chapter in this group is a survey by Glen Van Brummelen, Mat-
thieu Husson and Clemency Montelle of different techniques that historians 
have used to ‘crack’ numerical tables, and of the historical implications of these 
techniques. Relying on specific cases taken from a range of cultural contexts, 
the authors demonstrate the variety of situations in which table cracking has 
been used successfully, including the recovery of an author’s sources and meth-
ods, the reconstruction of missing entries, the ‘squeezing’ of numerical param-
eters underlying computed tabular values, the determination of dependencies 
between tables, the reconstruction of the computation scenarios of a data set, 
the inference of a table’s purpose or its intended users, and the like. This chap-
ter also explores larger methodological issues arising from table cracking. It 
argues for a reflective approach when applying any of the many analytic tools 
available to historians in order to produce balanced and historically sensitive 
analyses of astral science data.

In the second chapter of this group José Chabás and Bernard Goldstein 
reveal how a close description of explicit features of tabular data along with 



8 INTRODUCTION

some elementary methods of recomputation can provide insight into the origin 
of sets of tables. In this spirit, the authors survey the Almanac of Jacob ben 
Makhir (c. 1236–c. 1305), a Jewish astronomer from southern France. Their 
analysis relies on a detailed description of the table layout, the selection by 
Jacob ben Makhir of astronomical quantities used as arguments and entries, 
and the identification of a few key values in each table. They then associate 
these features with other known sources and underlying theoretical models. In 
this way, the authors are able to establish that the Almanac is computed from 
the Toledan Tables, and that it improves the accuracy of earlier almanacs by 
computing every value to the precision of arcminutes. Their analysis also allows 
them to reflect on how Muslim, Jewish, and Christian scholars contributed to 
the transmission and circulation of this work.

In a further article in this group, Seb Falk highlights how standard mod-
ern mathematical techniques can be adapted in order to reveal underlying 
data structures and dependencies on other historical sources. Falk anal-
yses a small set of tables compiled in the late fourteenth century by John 
Westwyk as he headed from Oxford to a northern monastery of his order 
in Tynemouth. Westwyk relied predominantly on the works of Richard of 
Wallingford, especially his Albion. Because of the change in local circum-
stances, Westwyk had to adapt some of the tables, modifying them for the 
much larger terrestrial latitude. To illuminate this process, Falk focuses on 
Westwyk’s table of oblique ascensions. Using standard statistical techniques, 
he is able to reconstruct the circuitous route of computation scenarios that 
Westwyk followed to recast this table from its original latitude of 51;50° (the 
latitude of Oxford) to 55° (Tynemouth). In this way, he demonstrates how 
modern mathematical algorithms can be used to reveal computational choices 
that are left unstated by the historical table compilers.

The last paper in this group uses the facility of a modern spreadsheet to 
reveal the underlying sets of tables that historical compilers used to construct 
new ones. Kailyn Pritchard investigates a relatively understudied aspect of the 
history of trigonometry in Europe: the computation of tangent tables from sine 
tables. It is almost never made explicit which sine tables these table compil-
ers used, but the numerical signature of a specific sine table can be detected 
in certain tangent values. Pritchard’s methodology relies on an analysis of the 
(for this purpose) most interesting part of the tangent table, namely, values for 
arguments approaching 90°, which, in modern terms, increase without bound. 
The accuracy of these values offers a window into the original sine function. 
Using this observation, Pritchard is able to identify the underlying sine and 
cosine tables for the three earliest important tangent tables in Latin sources: 
those of Giovanni Bianchini, Regiomontanus, and Rheticus. More broadly, her 
study offers important insights into the choice of tables used by historical com-
puters, and into the (lack of) consistency in these choices.
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Editing and analysing analysing astronomical tables

A second group of case studies are based on the mutual consideration of the 
processes of table cracking and table editing. In particular, these studies focus 
on the ways in which table reconstruction techniques can help achieve a sensi-
tively constructed critical edition. These studies thus advance the fundamental 
issues arising from table editing by combining them with the process of table 
cracking.

In the first article in this group Clemency Montelle approaches an Indian 
set of tables via three levels of analysis, culminating in the critical edition of 
the tables: 1) a presentation of the manuscripts, 2) a technical description of 
the algorithms underlying the tables, and 3) the critical edition itself, along 
with a critical apparatus. Montelle uses this approach to produce a critical edi-
tion of a sixteenth-century Sanskrit table text, the Candrārkī of Dinakara, a 
source used by Indian practitioners to produce the annual calendar (pañcāṅga). 
Invoking salient features of a set of manuscripts of this work, she develops a 
comprehensive account of the ways in which Sanskrit numerical table texts can 
vary in layout, style, and content, and offers a variety of editorial resolutions to 
address each of them in a systematic way.

In the second chapter in this set, Anuj Misra explores table dependency 
and proposes some new and innovative ways to detect it, as well as to address 
discrepancies in precision. Misra tackles table dependency in the context of 
a seventeenth-century Sanskrit table text, Nityānanda’s Amṛtalaharī, known 
through a single manuscript witness. His analysis focuses on six elementary 
interrelated trigonometric tables. He advances a mathematical analysis that not 
only aims to recompute the tables in full, but also considers each individual 
difference between the attested and recomputed values with a view to assessing 
whether the source of the discrepancy can be identified as computational or 
scribal. Misra thus connects the mathematical analysis of a table to the genera-
tion of a critical edition in a mutually affirming way.

Computational practices and table cracking

The third group of papers also approaches the processes of table cracking and 
editing as complementary, but adds additional criteria, most notably the priori-
tisation of the procedures of historical computers over modern analytical tools.

The first article in this group reveals how historically sensitive analyses can 
reveal contrasting underlying computational models used to construct tables 
for the same phenomenon. Li Liang considers the case of tables for sunrise 
and sunset in the Chinese astronomical systems of the Yuan and Ming peri-
ods (1271–1644). He discovers that two different types of tables were used to 
compute these times, which ultimately relied on different computational mod-
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els. Using the accuracy of the numerical data, he shows how a more sophisti-
cated and accurate approach was used for the sets of tables covering sunrise 
and sunset times for the capital cities of the two dynasties, and that a cruder 
method was used for other, less prominent locations. This same methodology 
also allowed him to successfully analyse how these sunset and sunrise tables 
were adapted in the Korean kingdom of Joseon (1392–1910).

A similar kind of approach to the editing and analysis of astronomical tables 
is developed by Glen Van Brummelen in the second article in this group. 
Focusing on a highly original set of double-argument tables for planetary lati-
tude from Jamshīd al-Kāshī’s fifteenth-century Khāqānī Zīj, Van Brummelen 
uncovers the underlying planetary latitude models on which these tables are 
based and accounts for the way in which they were transformed by Islamic 
astronomers. This approach allows him to explore the variety of computational 
scenarios that reveal the sensitivity arising from the computational choices the 
historical computers had to make. He analyses these sensitivities, focusing on 
the most computationally and historically significant choices. In this way he is 
able to identify six original features of this set of tables and in turn curates a 
critical edition of the tables.

In the third paper in this group, Sho Hirose investigates how an in-depth 
study of textual tabulated data and attested historical algorithms and the pro-
cess of editing this data can mutually benefit from each other. He relies on a 
close analysis of the planetary equation tables of Parameśvara (c. 1360–1460) 
contained in the work Dṛggaṇita and the relevant algorithms presented there, 
allowing him to reconstruct possible computation scenarios for the tabular val-
ues. What is particularly interesting about these tabular data is that they are 
expressed in verse employing an alphanumeric form of encoding called kaṭapa-
yādi. The analysis of the ways this particular numerical notation system inter-
acts with the tabular values and their variants produces particularly valuable 
results both in table editing and in reconstruction.

The last article in this group addresses this same issue, but with respect to 
Latin astronomical tables. Richard Kremer considers the tables of true syzy-
gies that were compiled around 1340 by the two Parisian astronomers John of 
Murs and Firmin of Beauval, and were included in the work known as Tabulae 
permanentes. In the process of providing an analysis and critical edition of this 
historically important double-argument table, Kremer carefully outlines the 
different steps and choices he makes, and progressively refines his computation 
scenarios through exploratory data analysis. This allows him to reconstruct 
plausible algorithms with confidence, and also to anticipate places where the 
underlying tables behave unexpectedly.

Pushing approaches to table analysis further

The last group of papers pushes further the ambitions of the modern table 
analyser and editor. It explores new approaches and poses new questions that 
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can be addressed thanks to emerging digital tools, and even broadens the pur-
view of the types of sources that are relevant for table analysis.

In the first paper in this group, Matthieu Husson surveys a range of manu-
script witnesses for a single table and probes how the variation between sources 
might affect their performance as computational tools. Husson’s contribution 
focuses on a simple set of solar and lunar velocity and equation tables belong-
ing to the Tabule magne (c. 1325) of the Parisian astronomer John of Lignères. 
These tables formed the basis for the computation of true syzygies. Relying on 
a description for this computation provided by John of Lignères in the can-
ons to the same work and on a mathematical analysis and critical edition of 
the tables, the study then focuses on the variants and their significance. In the 
process of analysing the variants as clues for understanding scribal practices, 
the computational consequences of these variants are simultaneously addressed 
both quantitatively and qualitatively.

A second study in this group embraces the full power of modern mathemat-
ical analysis to assess historical numerical data. Johannes Thomann analyses a 
fragment of an Arabic ephemeris using the standard modern statistical tool for 
parameter analysis, least squares estimation. This method is usually applied to 
complete tables depending on a limited number of parameters after they have 
been conscientiously purged of outliers (scribal or computational) and interpo-
lated values. However, Thomann develops a methodology allowing him to suc-
cessfully apply least squares estimation in a case where the number of param-
eters is higher than usual and the data are partial and messy. His approach is 
first tested on synthetic data, and then relies on an iterative use of least squares 
on carefully selected subsets of the data in the ephemeris in order to establish 
the source on which it was based.

The last article in this group explores methods of table cracking appropri-
ate for non-computational tables. Benno van Dalen considers the geographi-
cal table from a thirteenth-century Arabic astronomical handbook, the Shāmil 
Zīj. In a context where the tabular values were not produced by computation, 
van Dalen’s analysis provides novel insights into purely scribal phenomena in 
the transmission of large numerical texts, and allows corrections to be guided 
in part by a quantitative lens. For this he makes use of the huge database of 
Islamic geographical coordinates published by Edward S. Kennedy in 1987, and 
for each locality establishes the most likely original coordinates in several tradi-
tions. In this way, van Dalen proposes editorial resolutions for norms and met-
rics to measure scribal variants. This holistic approach enables him to resolve 
many ambiguities in the text and understand how they occurred by bringing to 
light their dependence on the larger stemma of manuscript relations.

Overall, the aims of a collection of studies of this nature are to bring together 
experts in numerical tables from various cultures of inquiry, to present a thor-
ough scrutiny of the aspects and features of table editing and analysis related to 
their particular cultural domain, and to document them with recourse to spe-
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cific examples. In this way, the arcane and specialised skills of the human edi-
tor can be paired with the power and efficiency of the computer to deal with 
the overwhelming corpus of tables. Such shared scrutiny and collaboration will 
also add new dimensions to our understanding of the practices and priorities of 
historical scientific cultures in unprecedented and exciting ways.

It is clear that the numerical data in historical tables lend themselves readily 
to digitisation in ways that no other historical sources do. With due caution, 
substantial progress can be made by embracing the synergies between data sci-
entists and historians. Harnessing modern mathematical modelling and data 
science techniques can enable historians to establish dependencies and underly-
ing parameters in a way that would be almost impossible to achieve by manual 
methods. These technologies can help highlight connections and trace cases of 
transmission which may remain largely invisible when the sources are exam-
ined on a small scale. They can uncover patterns of circulation of knowledge 
and reveal the ways in which individual historical compilers experimented and 
modified inherited technical knowledge, and they can provide plausible expla-
nations for these modifications, be they due to the introduction of empirical 
data or to new or simplifying computational techniques. They can also reveal 
the techniques that historical compilers used to mass compute data along with 
interpolation preferences, and highlight issues surrounding granularity, numer-
ical precision and accuracy, bypasses and hacks for improving computation 
speed, and the like. Digital tools offer the potential to add new dimensions to 
our understanding of historical computational culture and substantially widen 
the range of questions we can pose as we investigate the brilliance and virtuos-
ity of these historical scientific milieus.
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Tools of the Table Crackers: Using Quantitative
Methods to Analyze Historical Numerical Tables

Glen V Bl, Matthieu Hsso
and Clemency Moll

1. Introduction: Defining the Issues

The content of numerical tables presents technical and historical challenges
for those who seek to analyse them. However, such endeavors can be reward-
ing to historians. Table values provide a unique insight into the practices of
historical table makers, beyond the usual textual content. As well as illumi-
nating the practices of historical table-makers, tabular entries can also reveal
something of the users of the tables and their priorities.

Tabular manuscripts can reveal new historical information that may not be
explicit in other historical sources. One might be able to retrieve information
about the original numerical methods, algorithms, and hand computations
used to construct the entries. Other historical information might also be re-
stored, including the author’s sources, the abilities of those who compiled
them and their priorities, the intended audience (who used it), the table’s
application (how it was used), the underlying theory (astronomical, physical
or mathematical), transmission both to and from other sources, and depen-
dence on other tables and traditions. In some cases, analyses of tables can
even prompt scholars to propose new chronologies or dating.

Typically, table analysis efforts are directed primarily toward ancient and
early sources, rather than modern. Generally the older the table, the less in-
formation we have surrounding its numerical data. With the passing of time,
historical documents may be destroyed, damaged, separated, or corrupted.
Documentation that surrounds the tables might not survive; tables might be
incomplete. Furthermore, ancient cultures of inquiry may have had different
priorities and incentives from their modern counterparts in presenting and
promulgating scientific results. Often historical table makers were little mo-
tivated to reveal their techniques and methods of construction. All of this
makes recourse to the results of table cracking even more valuable.

To reflect the complexity of the process of seeking the underlying struc-
ture of a table, as well as the epiphany once the content has been unlocked,
table analysis has often been dubbed ‘table cracking’. Table cracking involves
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the manipulation of a table’s entries to retrieve information about the table.
Typically this includes the use of modern quantitative methods, arithmetical
or statistical, to glean underlying features of the numerical data. This line of
inquiry is often far removed from the original historical context in which the
table was constructed. Nonetheless these features can be relevant to a proper
historical understanding of the table and its context.

Despite the new information table cracking offers, many historians remain
skeptical. Some feel uneasy or unqualified to assess the appropriateness of the
sophisticated statistical procedures that are often employed. Others object to
the number or scope of the assumptions that must be made, the apparent
ad hoc nature of the process, or of the occasional imprecision or excessive
precision of the results. Some are wary of the historical interpretations that
have been proposed as a result of table cracking analysis.

We seek here to consider and classify the various processes that have fallen
under the rubric of ‘table cracking’. We will analyze through selected exam-
ples the procedures involved and the results they have generated. We will
outline some of the advantages and pitfalls of this approach, advance some
preliminary general standards for those who want to appreciate table crackers’
results, present guidelines to evaluate them critically, and provide references
to help readers begin to develop their own skills.

1.1. Accounting for Tabular Errors

The manual copying of literary texts invariably introduces errors or discrep-
ancies; textual critics use this principle when they produce a critical edition
of a text and determine the stemmatic relation between manuscripts. Errors
also can be illuminating to table crackers.1 Numerical tables are subject to
the same discrepancies when they are copied. These types of error can help
determine stemmatic relations between various copies of the same table and
other related tables. Moreover, these discrepancies can take on additional sig-
nificance. Indeed, errors in tabular values can be caused by significant factors
other than unintentional copying mistakes.

The most obvious errors in tabulated data are scribal errors. These are ac-
cidental mistakes and alterations that are introduced when a table is copied.
Usually the result of a moment of inattention or carelessness by the scribe,
they can reveal something of the process of copying and other aspects of the
original sources, such as common confusions between various symbolic nota-
tions or poor layouts. Another class of error is computational errors. These
discrepancies can indicate idiosyncratic decisions made at intermediary steps

1 See van Dalen, Ancient and Mediaeval Astronomical Tables, pp. 12-18; Neugebauer, Astro-
nomical Cuneiform Texts, p. 27.
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the manipulation of a table’s entries to retrieve information about the table.
Typically this includes the use of modern quantitative methods, arithmetical
or statistical, to glean underlying features of the numerical data. This line of
inquiry is often far removed from the original historical context in which the
table was constructed. Nonetheless these features can be relevant to a proper
historical understanding of the table and its context.

Despite the new information table cracking offers, many historians remain
skeptical. Some feel uneasy or unqualified to assess the appropriateness of the
sophisticated statistical procedures that are often employed. Others object to
the number or scope of the assumptions that must be made, the apparent
ad hoc nature of the process, or of the occasional imprecision or excessive
precision of the results. Some are wary of the historical interpretations that
have been proposed as a result of table cracking analysis.

We seek here to consider and classify the various processes that have fallen
under the rubric of ‘table cracking’. We will analyze through selected exam-
ples the procedures involved and the results they have generated. We will
outline some of the advantages and pitfalls of this approach, advance some
preliminary general standards for those who want to appreciate table crackers’
results, present guidelines to evaluate them critically, and provide references
to help readers begin to develop their own skills.

1.1. Accounting for Tabular Errors

The manual copying of literary texts invariably introduces errors or discrep-
ancies; textual critics use this principle when they produce a critical edition
of a text and determine the stemmatic relation between manuscripts. Errors
also can be illuminating to table crackers.1 Numerical tables are subject to
the same discrepancies when they are copied. These types of error can help
determine stemmatic relations between various copies of the same table and
other related tables. Moreover, these discrepancies can take on additional sig-
nificance. Indeed, errors in tabular values can be caused by significant factors
other than unintentional copying mistakes.

The most obvious errors in tabulated data are scribal errors. These are ac-
cidental mistakes and alterations that are introduced when a table is copied.
Usually the result of a moment of inattention or carelessness by the scribe,
they can reveal something of the process of copying and other aspects of the
original sources, such as common confusions between various symbolic nota-
tions or poor layouts. Another class of error is computational errors. These
discrepancies can indicate idiosyncratic decisions made at intermediary steps

1 See van Dalen, Ancient and Mediaeval Astronomical Tables, pp. 12-18; Neugebauer, Astro-
nomical Cuneiform Texts, p. 27.
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of computation, simple arithmetic mistakes, rounding conventions, the preci-
sion desired, or even differences in the nature of the function supposed to
have been tabulated. These errors can be evidence of the difference between
the algorithm expressed in the text and its tabular implementation.

Common ways of detecting errors include: comparing a recomputed tabu-
lar value with the original, examining first (or sometimes second) differences,
and plotting the function values on a graph and looking for aberrations or
irregularities. Sometimes one can trace the cause of an error back to some
intermediary computational step, although given the variety of decisions that
are made when implementing an algorithm, this is often very difficult in prac-
tice. Correcting errors can be more contentious; in some situations (especially
where there may be several alternative computational models), it can be un-
clear precisely what the correct value corresponding to a given entry should
be. In fact, computational discrepancies can challenge the notion that there
is an original correct table underlying the existing one. One can then imag-
ine the challenges that might arise in producing a critical edition of such a
table.

2. Table Cracking I: Restoring the author ’ s sources and methods

The term ‘table cracking’ has been interpreted in a variety of ways; almost
the only constant between them is the use of the table’s entries to gain his-
torical information, usually in a quantitative manner. These meanings divide
roughly into two categories. Firstly, one may learn about the means by which
the table was constructed. This includes ascertaining the theoretical models
underlying the table, determining the use of certain historically attested nu-
merical parameters or other underlying tables, and reconstructing the process
of computation. These goals reflect the table’s origins, the scientific activity
and authorial process that resulted in the table’s production. Secondly, ta-
ble crackers attempt to restore information about how the table must have
been used or evaluated after it was constructed. Activities related to autho-
rial process, in particular, tend to share certain methodological features that
deserve close attention. Thus we survey efforts to uncover a table’s mathemat-
ical origins in Section 2.2 and make evaluative methodological observations in
Section 2.3, before proceeding to restoring the table’s applications in Section
2.4.

2.1. Understanding the theoretical models underlying a table

Reconstructing the theoretical model according to which a table was com-
puted is often challenging. The text that accompanies the table, known as
paratext, can offer some evidence about the underlying structure. But the
task can be more difficult in the typical case when the historical sources
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Tabular data First differences
Date sign deg min deg min
1 Jan 9 20 22
2 Jan 9 21 24 1 2
3 Jan 9 22 25 1 1
4 Jan 9 24 27 1 2

...
...

...
...

...
...

1 March 11 20 55
2 March 11 21 55 1 0
3 March 11 22 54 0 59
4 March 11 23 54 1 1

...
...

...
...

...
...

1 July 3 18 26
2 July 3 19 23 0 57
3 July 3 20 20 0 57
4 July 3 21 17 0 57

Table 1: An excerpt from Cortés’ Table of the true place, with first differences

describing the tables give contradictory, vague, or misleading reports. The nu-
merical entries themselves are usually the starting point; they often provide
table crackers with sufficient information to recover the table’s mathemati-
cal framework. We consider in detail an example of a reconstruction of the
model underlying a pair of tables in which the layout of the tables proves to
be misleading.

The Spanish cosmographer Martin Cortés de Albacar’s (1510–1582) Arte
de Navigar  (1551) became one of the most popular navigation manuals by
the beginning of the  seventeenth century. Many aspects of astronomical nav-
igation are detailed in this treatise.  We concentrate here on two tables de-
signed for the computation of the sun’s true  longitude at noon, a necessary
step in the determination of one’s terrestrial latitude. 

In this example, as with most others in this chapter, the author was work-
ing in a  geocentric astronomical system inspired by Ptolemy’s Almagest. In
this tradition, the  standard procedure to determine the true solar longitude
involves two steps. The first  employs a set of tables that give the sun’s mean
longitude. Since it is assumed that the sun  travels along the ecliptic at a con-
stant velocity, the table computes a linear function with  respect to time. The
second step uses a table that computes a correction factor, called the  solar
equation, that adjusts the longitude from mean to true based on the sun’s
position in  its orbit (so that both the argument and the function are mea-
sured in degrees). A  geometric model (see Figure 2 on p. 31) allows the solar
equation to be calculated  trigonometrically for any argument. Did Cortés fol-
low this model of computation in the  Arte de Navigar? 
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stant velocity, the table computes a linear function with  respect to time. The
second step uses a table that computes a correction factor, called the  solar
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Tabular data First differences Tabular data First differences
years deg min deg min years deg min deg min
1545 1 0
1546 0 45 0 −15 1558 0 50 0 −15
1547 0 30 0 −15 1559 0 35 0 −15
1548 0 15 0 −15 1560 0 21 0 −14
1549 1 2 0 +47 1561 1 7 0 +46
1550 0 47 0 −15 1562 0 52 0 −15
1551 0 32 0 −15 1563 0 37 0 −15
1552 0 18 0 −14 1564 0 23 0 −14
1553 1 4 0 +46 1565 1 9 0 +46
1554 0 49 0 −15 1566 0 54 0 −15
1555 0 34 0 −15 1567 0 39 0 −15
1556 0 19 0 −15 1568 0 25 0 −14
1557 1 5 0 +46 1569 1 11 0 +46

Table 2: An excerpt from Cortés’ ‘solar equation’ table, with first differences

The caption of the first table in the Spanish edition is Tabla del verdadero
lugar del sol, which was incompletely translated in the first English edition
(1561) as The table of the true place. Just as in mean motion tables, this table’s
argument is in time units and its entries are in degrees of arc, giving values
for each day of an unspecified year. However, a quick examination of the first
differences of the entries verifies that the tabulated function is not linear (see
Table 1). 

The caption of the second table is Tabla de las equaciones del sol, cor-
rectly translated in the first English edition as Table of the equations of the
sunne. But this table is nothing like a solar equation. Its argument is in cal-
endar years  (running from 1545 to 1688), rather than degrees; and the table’s
entries form a roughly  linear trend rather than trigonometric (see Table 2).
Thus, despite the titles, Cortés does  not follow Ptolemy. 

Cortés instructs his readers how to use the tables using a worked example.
To determine  the sun’s true longitude on 22 February 1568, select the entry
corresponding to 22  February in the first table; then select the entry corre-
sponding to 1568 in the second  table. Add these two entries together, and
the result is the sun’s true longitude. This  method of computation confirms
what we just saw: Cortés is not using Ptolemy’s tabular  approach. However,
this does not imply that the underlying geometrical model is  fundamentally
different. Further exploration is needed. When Cortés’ tables were  compiled,
the Parisian Alfonsine tables were dominant in Europe and would have been
 readily available to Cortés or his sources. The models underlying Alfonsine
astronomy are  well known.2 So we begin by hypothesizing that the tables can

2 See for example Chabás and Goldstein, The Alfonsine Tables of Toledo.
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Tabular data Alfonsine position (1483) Difference
Date sign deg min sign deg min min
1 Jan 9 20 22 9 20 23 1
2 Jan 9 21 24 9 21 24 0
3 Jan 9 22 25 9 22 25 0
4 Jan 9 23 26 9 23 27 1

...
...

...
...

...
...

...
...

1 March 11 20 55 11 20 57 2
2 March 11 21 55 11 21 57 2
3 March 11 22 54 11 22 56 2
4 March 11 23 54 11 23 56 2

...
...

...
...

...
...

...
...

1 July 3 18 26 3 18 27 1
2 July 3 19 23 3 19 24 1
3 July 3 20 20 3 20 21 1
4 July 3 21 17 3 21 18 1

Table 3: Sample of Cortés’ Table of the true place compared with the true position of the sun
computed according to the editio princeps of the Parisian Alfonsine Tables

be reconstructed from  Alfonsine material. If this hypothesis proves correct,
then both the model and parameters  originate in Alfonsine astronomy.

Let us begin with the Table of the true place, which gives the position of
the sun for each  day of a full year. The first differences of the entries in this
table vary, indicating that the  table does not provide mean positions. But it
may provide true solar positions. In fact, it  appears that it does. We recom-
puted the true solar position for each day of the year   1545, the first argu-
ment of the equation table, according to the Parisian Alfonsine Tables  as they
are presented in the 1483 Ratdolt edition (princeps). The difference between
 these recomputations and the values given by Cortés are within 2 arcminutes
(see Table 3).3 More advanced table-cracking techniques may help us analyse
whether the  discrepancies between Cortés’ values and the recomputed ones
show any significant  pattern,4 but this fit is good enough to demonstrate that
the table computes Alfonsine true  solar positions for 1545. 

Turning to the entries of the equation table, we find a clear pattern: each
value is about 15  minutes smaller than the preceding one for a sequence of
three entries; then, at the fourth  entry (a leap year) the value increases by
46 or 47 minutes; and the cycle repeats. So this  table does not represent

3 In this table we have expressed the Alfonsine positions using 30° increments in order to
follow Cortés’ practice and to avoid confusion. The Parisian Alfonsine Tables, however, use
60° increments.

4 For instance, one may notice that all differences are positive. This may be caused by a
different epoch value.
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be reconstructed from  Alfonsine material. If this hypothesis proves correct,
then both the model and parameters  originate in Alfonsine astronomy.

Let us begin with the Table of the true place, which gives the position of
the sun for each  day of a full year. The first differences of the entries in this
table vary, indicating that the  table does not provide mean positions. But it
may provide true solar positions. In fact, it  appears that it does. We recom-
puted the true solar position for each day of the year   1545, the first argu-
ment of the equation table, according to the Parisian Alfonsine Tables  as they
are presented in the 1483 Ratdolt edition (princeps). The difference between
 these recomputations and the values given by Cortés are within 2 arcminutes
(see Table 3).3 More advanced table-cracking techniques may help us analyse
whether the  discrepancies between Cortés’ values and the recomputed ones
show any significant  pattern,4 but this fit is good enough to demonstrate that
the table computes Alfonsine true  solar positions for 1545. 

Turning to the entries of the equation table, we find a clear pattern: each
value is about 15  minutes smaller than the preceding one for a sequence of
three entries; then, at the fourth  entry (a leap year) the value increases by
46 or 47 minutes; and the cycle repeats. So this  table does not represent

3 In this table we have expressed the Alfonsine positions using 30° increments in order to
follow Cortés’ practice and to avoid confusion. The Parisian Alfonsine Tables, however, use
60° increments.

4 For instance, one may notice that all differences are positive. This may be caused by a
different epoch value.
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a solar equation, but rather a quantity that makes an adjustment  every leap
year. It seems likely that the table gives the total displacement of the mean
(or  true) sun on the ecliptic for the year: that is, the difference between the
mean (or true)  sun’s longitude at the beginnings of years n and n + 1. The
numerical effect of the  distinction between mean and true displacement of
the sun is only around 2 arcminutes in  longitude. So, to confirm the link
between Cortés’ tables and those of the Parisian  Alfonsine tradition, we may
chose either hypothesis. Tentatively, we guess mean  displacement. 5

A variety of methods have been developed to derive mean motion pa-
rameters from mean motion tables.6 Here we adopt a simple calculation,
dubbed ‘squeezing’ by  Neugebauer and Kennedy,7 and refer the reader to
the next section for descriptions of  more sophisticated parameter derivation
techniques. Computing the  difference between mean solar positions over the
largest possible range consisting of a multiple of  four years in Cortés’ equa-
tion table (1545 to 1685), we can derive a daily mean motion  parameter
by simply adding this difference to 50,400 (360× 104, i.e., the 140 com-
plete  revolutions of the sun in 140 years) and dividing the result by 51,135
(365;25× 140, i.e., the number  of days in 140 Julian years). This gives us
a parameter value of 0;59,8,19,38 ◦/day. If we assume that  the table values
were rounded to the last place, we obtain lower and upper bounds for  the
solar mean motion parameter of 0;59,8,19,36 ◦/day and 0;59,8,19,40 ◦/day.8

The  parameter used in the Alfonsine tradition of 0;59,8,19,37,19,13,56 ◦/day
lies within this  interval.9 On the other hand, the second plausible historical
parameter, the sidereal motion of 0;59,8,11,28,27 ◦/day used in the Toledan
tradition, does not lie within the interval. The same holds for Ptolemy’s
0;59,8,17,13,12,31 ◦/day and al-Battānī’s 0;59,8,20,47 ◦/day (corresponding to
a solar year of 365;14,26 days). Therefore this rough estimate is enough to
confirm our hypothesis that the equation table depends  on Alfonsine mean
motions. 

Historians often encounter considerably more complex cases. When study-
ing a set of fourteenth-century Latin tables by John Vimond, José Chabás
and Bernard R. Goldstein were  faced with peculiar layouts, headings, and

5 The hypothesis that the equation table gives the true position (rather than the mean) is
less likely because it would make little sense to use a position specific for the first day of the
year as an adjustment for every position of that same year.

6 See, for instance, Mielgo, ‘A Method of Analysis’, and van Dalen, ‘Origin of the Mean
Motion Tables’.

7 See, for example, Kennedy, ’A Survey’, p. 20.
8 These bounds do not constitute a confidence interval as they are not derived from sta-

tistical analysis. However they can be heuristically used in a similar fashion.
9 This number may seem unreasonably precise to us but it actually reflects the actors’

practices.
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entries, and no accompanying instructions.10  These tables includes elements
to compute latitudes and longitudes of the planets and  luminaries, syzygies,
and material on the fixed stars. Using mathematical tools similar to  those
described below (reconstruction of computations, parameter estimation,  com-
parison of results with historically attested sources), Chabás and Goldstein
were able to uncover the underlying theoretical model and parameters. This
analysis revealed that Vimond’s set is the earliest known Parisian tabular ma-
terial related to the Alfonsine tradition. 

In other cases, issues can arise from the number and complexity of the
possible underlying models. For instance, in sixteenth-century Vienna, John
Angelus computed ephemerides on the basis of Peurbach’s planetary tables.
Richard Kremer and Jerzy Dobrzycki analyzed the discrepancies between the
ephemerides and the planetary positions derived from the standard Alfonsine
tradition.11 The differences revealed that Peurbach must have known of some
of the geometrical models developed in Maragha, at least in the form of a
diagram. 

Restoring missing entries in tables
Especially in ancient studies, the historian may be confronted with a numeri-
cal table in a fragmentary state. Cuneiform tables, for instance, are frequently
broken, manuscripts can be torn or crumbling, or the surface of a document
may be damaged by wear, water, or mould, rendering part of the text illegible.
Despite this, table crackers often are able to reconstruct the missing entries.
This is because the table’s numerical content, unlike (say) the text of prose
or poetical works, generally has an underlying theoretical model and compu-
tational algorithm that determines the entries. Thus, in principle, it can take
as little as one entry and its argument (and sometimes partial at that) to
establish the underlying pattern, and consequently restore the missing entries.

The mathematical corpus of Mesopotamia has benefited especially from
such reconstruction efforts. Cuneiform texts from this region were inscribed
on clay tablets, by now several millennia old. When excavated, more often
than not they are broken (sometimes into many pieces), the clay surface is
worn, and the imprinted cuneiform signs are illegible. In the case of numer-
ical tables, reconstruction of the missing content is sometimes a trivial task
(e.g., fragmentary multiplication tables or reciprocal tables); however, in cases
where the underlying mathematical relation is unexpressed or unclear, it can
be difficult or impossible. If the table is the only one of its kind, scholars
usually are able to restore it only after prolonged and painstaking analysis, if
at all.

10 See Chabás and Goldstein, ‘Early Alfonsine Astronomy in Paris’.
11 Dobrzycki and Kremer, ‘Peurbach and Maragha Astronomy?’.
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Figure 1: John Britton reconstructs a table of fourth powers based on a very small fragment.
Reproduced from the Journal of Cuneiform Studies 43–45 (1991–93), p. 75.
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2]3 22 30 52 44 3 45
]36

]18 45 52 44 3 45
]26 29 16 11 44 31 36 17 46 40

]41 0 59 40 24 57 36
1]8 37 59 52 58 6 47 7 59 0 44 26 40
5]8 10 47 45 14 3 45

]37 44 3 45
]35 36 57 36
1]0 13 14 59 53 42 41 10 28 37 25 16 2 57
]2 42 14 14 34 29 52 44 56 29 3 45

]5 45 55 7 56 41 51 21

]30 14 3 45

]16 49 24 21 47 21 33 31 48 59 3

]25 3 21 36

]20 26 44 0 14 3 45

Table 4: A transcription of the extant numbers on BM 55557

One impressive reconstruction was a small fragment of a cuneiform tablet
(BM 55557) dating from some time in the first millennium BCE. The signif-
icance of the numerical entries in this fragment eluded scholars until recently
(see Figure 1 and Table 4). Smoothness on two contiguous edges of the frag-
ment revealed that the extant piece came from the top right hand corner of
the original tablet. Strings of numbers remained on both sides of the tablet,
evidently the tail ends of long entries in sexagesimal numeration. After some
careful number crunching, data matching, failed attempts, and a few key hy-
potheses, assyriologist John Britton discovered a surprising relation between
these strings.12

The key to Britton’s reconstruction was a pattern in the tail ends of the
sexagesimal strings. He noticed that almost all the terminal values were 36,
45, or 40; a significant number of those ending in …45 ended in …44,3,45.
These and other similar observations led him to conclude that the numbers
are ‘regular’; that is, they have only 2, 3, or 5 as prime factors. Regular num-
bers played an important role in Mesopotamian mathematics partly because
their reciprocals have a finite representation in the sexagesimal number sys-
tem. There is much evidence of their properties being explored by ancient

12 Britton, ‘A Table of Fourth Powers’.
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12 Britton, ‘A Table of Fourth Powers’.
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practitioners; for instance, there exist in the cuneiform corpus tables of recip-
rocals of regular numbers, as well as tables of the squares of regular numbers.

Armed with this insight, Britton consulted a massive tabulation of 11-digit
regular sexagesimal numbers N = 2p 3q 5r and their reciprocals compiled by
Gingerich, over 36 pages in length, listed according to various values of the
powers p, q, r.13 For those N that ended in the string …44,3,45, Britton no-
ticed similarities in the corresponding values of p, q, r. In particular, the value
N(0, 16, 40) = . . . 23,22,30,52,44,3,45 matched line 1 of his text. In the same
way, Britton identified the numbers in lines 3 and 9, and from this followed
yet more lines. Once a handful of numbers had been identified, Britton no-
ticed that the values of p, q, r were all divisible by 4. This leads naturally to
the conclusion that the numbers are the tail ends of fourth powers of regu-
lar sexagesimal numbers. At this point it was easy to reconstruct the leading
sexagesimal places (around eight) of the broken entries, and complete entries
that had been broken off of the table altogether. Furthermore, based on the
tablet’s physical dimensions he also proposed that there were three additional
columns that preceded the fourth powers.14 These columns, he argued, in-
cluded a row count, the regular numbers themselves, and their factorisation
details.

Because of the damage to the tablet (only 2 partial edges remained: top
right and far right edge), Britton could only hypothesize where the fourth
powers began and where they ended. Now that the nature of the table was
confirmed, he could compare with tables of similar functions (such as recip-
rocal tables and the so-called ‘double six place’ tables). This led to the surmise
that the original tablet contained fourth powers of regular numbers running
from 1,1,2,6,33,45 to 1,58,31,6,40. Britton noted that while contextual con-
siderations such as these can be helpful, they can also raise more questions
than they solve. BM 55557 is the only fourth power tablet of its kind in the
extant record, and there are no mathematical problems in the entire corpus
that call for the computation of a fourth power or its root. Thus, despite the
reliable reconstruction of the tablet’s numerical content, issues concerning its
purpose still remain outstanding.

Mathieu Ossendrijver recently faced a similar challenge.15 The fragments
he was studying appeared to be without parallel in the primary literature and
exhibited remarkable mathematical virtuosity, seemingly unconnected to any
practical application. Some tablets contained numbers with up to 30 sexages-
imal places, making them the longest numbers appearing in the cuneiform

13 Gingerich, Eleven-Digit Regular Sexagesimals.
14 This was supported by the curvature of the existing fragment, which suggested the over-

all size of the original table. See Britton, ‘A Table of Fourth Powers’, pp. 71–72.
15 Ossendrijver, ‘Powers of 9’.



30 GLEN VAN BRUMMELEN, MATTHIEU HUSSON, CLEMENCY MONTELLE30 GLEN VAN BRUMMELEN, MATTHIEU HUSSON, CLEMENCY MONTELLE

corpus (and possibly antiquity!). Ossendrijver noticed that the final sexages-
imal places in one of these lists of numbers, so-called text A, alternated be-
tween 9 and 21, suggesting a relation to powers of 9 expressed in sexagesimal
form. From this clue, he identified text A as a special sort of factorization ta-
ble for 946, namely sexagesimal representations of 9n

, 0 ≤ n ≤ 46.16 In a like
manner, the final places of a similar text, the so-called text B, alternated be-
tween 12, 36, 48, and 24, which suggested factors of 5. (The factors of 5
had emerged because 12 is the reciprocal of 5 in base 60.) Text B turned out
to be a factorization table for 911 · 12n (n ≥ 39). These tablets reveal a new
sort of mathematical activity in the ancient Near East, hitherto unknown to
modern scholars.

A contrasting technique for reconstructing the contents and circumstances
of cuneiform tabular texts was developed by Neugebauer when he was work-
ing on what would eventually be called the Astronomical Cuneiform Texts
(ACT) in the 1930s. Neugebauer was faced with many fragments of tabular
astronomical ephemerides, some dated, some not. In cases where he had both
a dated fragment and a fragment of the same type but undated, he developed
a method of dating the undated fragment called the ‘Linear Diophant.’17 In a
nutshell, Neugebauer computed the function tabulated on the dated text for-
ward and backward in time until he reached a value (or modulo thereof, for
periodic functions) that corresponded to a value in the undated text. From
this he could calculate the time interval from the dated tablet to the un-
dated one, and thus establish the date of the undated fragment. Of course,
many of the fragments concerned functions that were periodic. These were
typically computed via linear zigzag functions or step functions, so that the
Linear Diophant method would furnish infinitely many possible dates for the
undated fragment. However, almost always only one solution was historically
plausible. Concerning his procedure and its connection to the tasks of the
historian of astronomy, he was quite emphatic:

The method … has nothing to do with astronomy, nor with history. It only fulfills a
task for a certain group of astronomical cuneiform texts which would otherwise fall
on the custodian of a museum [namely, joining tablet fragments] … It is essential
to emphasize that the solution of this task becomes possible here without any hy-
pothesis about the content of the texts, since nothing else is used but the generative
laws of the series of numbers that are empirically derived from the fragments.18

16 Here, Ossendrijver postulates that a table such as this one could have been a way to
double check 946 is correctly computed by repeatedly multiplying it by 6;40, i.e. the reciprocal
of 9, until 1 is reached; this is the sense in which ‘factorisation’ is invoked.

17 For details, see Neugebauer, Astronomical Cuneiform Texts, pp. 35–37.
18 Ossendrijver, ‘Translating Babylonian Mathematical Astronomy’, p. 335.
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2.2. Reconstructing a table’s numerical parameters

Most mathematically computed astronomical tables rely on functions with
built-in numerical parameters. For instance, the solar equation, the difference
between mean solar motion and true solar motion, is found in Ptolemaic
astronomy according to

q(am) = arctan
e sin am

60+ e cos am
, (1)

where the radius of the deferent (the circle on which the sun orbits the earth)
is set equal to 60, the mean anomaly am increases at a constant rate, and e is
the distance from the earth to the center of the deferent (see Figure 2). Dif-
ferent astronomers used different values for e; Ptolemy used 2;29,30, while al-
Battānī used 2;4,45. A common parameter in Islamic tables, related to the Zīj
al-ʿAlāʾ ī, was to choose e so that the maximum solar equation (which occurs
at am ≈ 92◦) has exactly the value 1;59; this occurs when e ≈ 2;4,35,29,51.
However, medieval authors did not often report their parameter values; they
simply presented the completed table. Determining the parameter used by a
certain astronomer from his table of the solar equation would help to place
that astronomer into a tradition of astronomical inquiry.

Van Dalen has developed a pair of statistical tools that allow the scholar to
input a historical table and receive back an estimate of a numerical parameter
embedded within it.19 Briefly, the first method works as follows: take the
180 entries in the solar equation table, substitute them one at a time with

19 van Dalen, ‘A Statistical Method’.
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the appropriate value of am into (1), and solve for e. The resulting values
of e will differ slightly from each other, due to errors caused by rounding
and approximation at various stages of the calculation. Some values will be
more reliable than others; for instance, q(1◦) = 0;2,0 is a small number and
rounding will have a larger relative effect on it than on other entries. Van
Dalen thus computes a weighted average of the estimates, with the weights
chosen corresponding to a measure of the reliability of the estimate. He then
uses a technique related to least squares20 to generate an interval around the
estimator that is 95 % likely to contain the true value of e (provided certain
statistical assumptions are satisfied21).

Van Dalen’s second approach is a maximum likelihood estimator. Sup-
pose that the table has q(1◦) = 0;2,0. Presumably this is the rounded result
of a calculation that produced a number somewhere between 0;1,59,30 and
0;2,0,30. Back calculating from these two values produces an interval of pos-
sible values for e. In a perfect world, intersecting the intervals produced in
this way from every entry in the table provides a very small interval of val-
ues of e that could have led to this table. Unfortunately, due to errors in
computation and rounding, this seldom occurs. Instead one takes an estimate
derived from the values of e that correspond to the largest number of these
intervals. Van Dalen points out that this criterion is most effective for ta-
bles with few errors, and especially for mean motion tables (for which the
underlying function is linear).

Van Dalen has applied these methods to a number of situations with suc-
cess. We report here one case in his original paper, the solar equation ta-
ble in the popular 13th-century Shāmil Zīj. For the solar eccentricity his
weighted estimator yields e = 2;4,35,29,29, with the 95 % confidence interval
(2;4,35,26 , 2;4,35,35). The maximum likelihood estimator yields similar re-
sults, with an interval of (2;4,35,29,29 , 2;4,35,32,56). This clearly rejects both
e values given by Ptolemy and al-Battānī, but confirms strongly the parame-
ter generated by a maximum solar equation of 1;59. Van Dalen has published

20 Other table cracking researchers have used least squares techniques; see for instance
Kremer, ‘Marcus Schinnagel’s Winged Polyptych’ (cf. p. 45). The basic idea is to fit a mathe-
matical model to a set of data, and choose the parameters of the model in order to minimize
the sum of the squares of the deviations of the data from the model’s prediction.

21 The most important of these assumptions is statistical independence of the individual
estimates for e, which can lead to problems. For instance, if a stretch of ten entries was
computed by interpolating linearly between the two ‘node’ entries preceding and following
them, then the estimates of e generated by these ten entries will be related to each other for
two reasons: all ten entries are affected by the errors in the entries at the two nodes, and
the quantity being tabulated is a linear function between the nodes rather than the function
itself. In this situation these estimates would fail the assumption of statistical independence.
Van Dalen is careful to check for the use of interpolation before applying his methods.
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results based on these and similar methods elsewhere,22 and has also recon-
structed several parameters at once from al-Khwārizmī’s table for the equation
of time.23

2.3. Determining dependences between tables

The nature and process of the transmission of knowledge is fundamental to
the study of the history of science. However, transmission of numerical tables
often occurred through means that left no documentary evidence behind: for
instance, an author finds a table of interest to his current project in his per-
sonal library, and uses it to compute a new table for some other purpose. Sel-
dom is the debt to the original table acknowledged in the manuscripts. Such
a transmission might happen within or across cultures, between two different
stages of a single author’s career, or even within a collection of tables. The
latter is the case for the sine and tangent tables in the 13th-century Baghdādī
Zīj, which van Dalen ascribes to Abū l-Wafāʾ.24 As the argument of the tan-
gent function approaches 90◦, its values grow without bound. If the tangent
is calculated the conventional way, according to tan θ = sin θ/ sin(90◦

− θ),
the values for the sine in the denominator become very small, and rounding
produces a large relative error. Through recomputation, van Dalen shows that
the large errors in the tangent table (up to more than eleven units in the
second-last sexagesimal place) are almost completely accounted for by com-
putation from the values in the sine table. This verifies that the tangent table
derived from the sine table.

Usually, however, the errors in table entries are much smaller, and the de-
pendence is not so obvious. One such situation is found in the works of
14th-century Syrian astronomical timekeeper Shams al-Dīn al-Khalīlī, whose
occupation was to use mathematical astronomy to guide the Muslim faithful
to pray at the appointed times of day, in the direction of Mecca (the qibla).
Al-Khalīlī composed one of the most accurate and thorough tables for the
qibla of the medieval period.25 Separately, he constructed a set of auxiliary
tables, which in various combinations allow the reader to solve a variety of
problems in spherical astronomy, including the qibla.26 Al-Khalīlī’s auxiliary
functions were

f (φ, θ) = sin θ
cos φ , g(φ, θ) = sin θ tan φ, and G(x, y) = arccos x

cos y . (2)

22 For examples, see van Dalen, Islamic Astronomical Tables.
23 van Dalen, ‘Al-Khwārizmī’s Astronomical Tables’.
24 van Dalen, ‘Islamic and Chinese Astronomy’, pp. 349–51.
25 King, ‘Al-Khalīlī’s Qibla Table’.
26 King, ‘Al-Khalīlī’s Auxiliary Tables’.
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Figure 3: The dependence of the values in one table on the values of another. Consider the
three vertical number lines aligned so that moving horizontally between them corresponds
to precise computation. The ✸ symbols represent the historical table values; gR is back com-
puted from fH. In this instance gR is much closer to gH than to gC, providing evidence for
dependence.

Van Brummelen27 hypothesized that al-Khalīlī’s table for f was computed from
the entries in the table for g, according to the relation

f (φ, φ̄ ± n) = cos n± g(φ, n).

If this were to be verified, it would effectively demonstrate that Muslim as-
tronomers were sufficiently aware of issues in numerical computation to de-
vote intellectual resources to seeking out mathematical techniques for improv-
ing computational speed: the same sort of thinking that in Europe produced
prosthaphairesis and, eventually, logarithms. Since the relation is mathemati-
cally correct, recomputation of the entries proves nothing — any mathemati-
cally valid method should produce correct function values. Rather, to demon-
strate the hypothesis one must locate traces of the errors in the entries of the
table for g in the entries of the table for f.

A general procedure to test hypotheses such as this was developed by Van
Brummelen.28 Applied to this example, it works as follows. Let g(x) be the
function of the purported underlying table, and let f (g(x)) be the function
of the hypothesized dependent table with argument g(x). For each entry of
g and the conjectured dependent entry in f, define the following quantities:

• fC and gC, the correct values of the functions;

27 Van Brummelen, ‘The Numerical Structure’.
28 Van Brummelen and Butler, ‘Determining the Interdependence’.
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cally correct, recomputation of the entries proves nothing — any mathemati-
cally valid method should produce correct function values. Rather, to demon-
strate the hypothesis one must locate traces of the errors in the entries of the
table for g in the entries of the table for f.

A general procedure to test hypotheses such as this was developed by Van
Brummelen.28 Applied to this example, it works as follows. Let g x be the
function of the purported underlying table, and let f g x be the function
of the hypothesized dependent table with argument g x . For each entry of
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• fH and gH, the values of the entries in the historical tables;
• gR = f −1(fH), a reconstructed value of the underlying g derived from

fH.
The question hinges on whether gR lies closer to gH or to gC (see Figure 3).

• If gR is closer to gH than to gC, a trace of the error in g is present in
f, and we have evidence for dependence.

• If gR is closer to gC than to gH, the dependent entry is more accurate
than one would expect from the use of the underlying entry, and we
have evidence that the dependent table is too accurate to derive from
the underlying table.

For each pair of underlying and dependent entries the quantity | gH − gR| −
| gC − gR| is computed, and the resulting data are tested for a mean differ-
ent from zero. For this purpose Van Brummelen chooses the non-parametric
Wilcoxon signed-rank test; while it is less powerful than the traditional sta-
tistical procedures described elsewhere in this article, it is robust against the
possibility of scribal errors and other disturbances in the data.

Each page of the auxiliary tables gives entries for f and g for a fixed
value of φ and θ = 1◦

, 2◦
, . . . , 90◦, so a separate test was performed for the

columns with φ = 5◦
, 10◦

, . . . , 55◦ (the highest value of φ in the table). The
test for φ = 5◦ gave a p-value of 0.2 % in favor of dependence,29 and for
φ = 45◦ the p-value was 1.4 %; all other p-values were less than 0.05. Thus
Van Brummelen concluded strongly in favor of dependence.

This episode has a surprising epilogue. In 2000, David King discovered an-
other set of tables authored by al-Khalīlī. In a rare instance of statistical meth-
ods verified by later historical sources coming to light, the new manuscript
confirmed that al-Khalīlī had computed his tables according to the method
asserted by the statistical procedure.

2.4. Reconstructing the process of computation

For some tables, it is possible to reconstruct the computational process that
generated the table in more detail than identifying parameters or underly-
ing tables. The possibilities here are endless and depend on the context. They
might include deciding between several possible mathematical paths to the
solution, detecting the use of interpolation, or identifying the use of an ap-
proximate method at a certain moment in the process of computation. Since
most tables represent functions defined mathematically, the errors in the en-
tries are usually the only basis on which to decide these questions, along with

29 A p-value measures the probability of obtaining a result at least as far from the expected
value as the observed result, under the null hypothesis that no effect exists.
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Figure 4: Third and last page of al-Kāshī’s incomplete double-argument table of the latitudes
of Venus. For the first page, see Plate 11; for the second page, see p. 339.  © The British
Library Board, MS India Office 430, fol. 154v. 
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Figure 4: Third and last page of al-Kāshī’s incomplete double-argument table of the latitudes
of Venus. For the first page, see Plate 11; for the second page, see p. 307.  © The British
Library Board, MS India Office 430, fol. 154v. 
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Figure 4: Third and last page of al-Kāshī’s incomplete double-argument table of the latitudes
of Venus. For the first page, see Plate 11; for the second page, see p. 339.  © The British
Library Board, MS India Office 430, fol. 154v. 
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the collection of historically plausible techniques that bear on the problem.
We seldom read of table construction in the primary literature or see a table
partly completed. One nice exception to this (see Figure 4), part of a double-
argument table of latitudes for Venus in Jamshīd al-Kāshī’s early 15th-century
Khāqānī Zīj, illustrates that we may not assume that a computer started with
the first entry and simply worked his way through to the end.30

Since the possibilities for how a table may have been constructed are so
varied, general techniques are not usually available. Usually researchers work
by comparing the results of the various plausible methods of calculation with
the pattern of errors in the table. It is both easy and difficult to measure the
success of a certain method: easy, since one may declare victory by choosing
the method that best fits the entries among the historically plausible alterna-
tives; difficult, because one’s confidence in that assertion cannot be measured
easily in a quantitative way. Fortunately, in many cases the result of the re-
computation is so clear that an unequivocal decision is easy to make.

One simple example of this is the sine table in a manuscript of a Latin
translation of al-Khwārizmī’s zīj. This table uses a base circle radius of R =
150, of Indian origin. But Benno van Dalen has pointed out that almost all
the entries in the table end in 0, 2, 5, or 7.31 This suggests that the table was
generated by multiplying a sine table with the Ptolemaic parameter R = 60 by
2½.32 In this case the generated table is in fact precisely equal to the original
table scaled by a constant. Other instances have been discovered where a new
table was generated from an existing table by means of a scaling factor, but
the results are only approximately correct.33 In these cases, presumably the
table’s author either wanted to save time and effort, or was not capable of
computing the new table directly.

Another example of a clear reconstruction is the sine table in al-Samawʾal’s
12th-century Exposure of the Errors of the Astronomers. Al-Samawʾal criticizes
traditional sine tables for using approximative methods, forced on table mak-
ers by the use of a circle divided into 360 parts, i.e., degrees. Al-Samawʾal’s
table uses 480◦, seemingly bypassing the problem. However, a distinctive er-
ror pattern (every fourth entry correct, and errors bulging in the negative
direction between them) is almost precisely matched by computation of the
table by interpolating between entries in a traditional sine table.34

30 See Van Brummelen, ‘The Tables of Planetary Latitudes’.
31 van Dalen, ‘Al-Khwārizmī’s Astronomical Tables’, p. 206.
32 Hogendijk, ‘Al-Khwārizmī’s Table of the “Sine of the Hours”’, p. 11, reconstructs the sine

table used by al-Khwārizmī to generate his table of the ‘sine of the hours’; this underlying sine
table actually does use R = 150.

33 See for instance Van Brummelen, Mathematical Tables, pp. 176-79, and Dorce, ‘The Tāj
al-azyāj’.

34 Van Brummelen, Mimura and Kerai, ‘Al-Samaw’al’s Curious Approach’.
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of Venus. For the first page, see Plate 11; for the second page, see p. 307.  © The British
Library Board, MS India Office 430, fol. 154v. 
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c g(c) Error
12 0,24 [ −7]
24 2,16 [+12]
36 4,32 [ −6]
48 8,18 [ +7]
60 12,26 [−11]
72 17,44 [ −7]
84 23,24 [−19]
96 29,49 [−10]

108 36,14 [ −9]
120 42,38 [ +1]
132 48,18 [ −1]
144 53,12 [ +2]
156 56,36 [−17]
168 59, 4 [ −8]
180 60, 0 0

Table 5: Excerpt from the Almagest lunar interpolation table. (The full table is given for
arguments in multiples of 6◦ up to c = 90◦, and in multiples of 3◦ thereafter.) Errors, given
in square brackets, are in terms of the last place. Thus, for instance, the correct value of g(c)
is 0,31.

A typical example of a slightly more sophisticated reconstruction comes
from Ptolemy’s Almagest. Most of the Almagest’s tables are difficult to study
for their computational secrets, because the tables’ entries tend to be accurate
to within one or two units in the last place. This is not true of one group of
tables. To determine the longitudes of the moon or one of the planets, the
equation of anomaly p must be tabulated. However, it is a function of two
arguments. To avoid tabulating a gigantic rectangular grid of entries, Ptolemy
devises an approximative process that requires the tabulation of four single-
argument functions. One set of these tables, the interpolation coefficient g(c),
contains unusually large errors in the last place (see Figure 5).

Now, the function g(c) is computed fairly directly from pmax(c), the max-
imum equation of anomaly. For the lunar table, Van Brummelen35 back com-
puted a set of values of pmax(c) from the values of g(c), and discovered a clear
pattern: the third sexagesimal places of these values cluster strongly around 0,
15, 30, and 45 (see Figure 5). Thus Ptolemy used values of pmax(c) rounded to
units of 0;0,15. (Further examination revealed that this step size was caused
by an application of linear interpolation; Ptolemy had directly computed val-
ues of pmax(c) only for multiples of 12◦.) Thus Van Brummelen was able to
reconstruct a small table of pmax(c) for the moon. Similar results were ob-
tained when the same method was applied to the planetary tables.

35 Van Brummelen, ‘Lunar and Planetary Interpolation Tables’.
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35 Van Brummelen, ‘Lunar and Planetary Interpolation Tables’.
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Figure 5: Clustering of the third sexagesimal place of back-computed values of pmax(c).

3. Methodological Considerations

3.1. The moment of decision

Mathematical methods applied to answer questions in the history of science
have been at a minimum controversial, and at worst have been ignored by the
historical community. This is due partly to the technical ‘smoke screen’ that
often makes it very difficult to understand the procedures without months of
training. Skepticism has only increased when some of the conclusions reached
through quantitative methods have been wildly at odds with results achieved
by conventional historical inquiry. It is irrational to reject these methods out-
right simply because one does not understand them; nevertheless, it is incum-
bent on quantitative researchers to make their results, and the strengths and
weaknesses of their conclusions, available to the community. This has seldom
been done, so we provide a road map here.

The general practice of a table cracker usually follows the same path. The
researcher hopes to draw a historical conclusion from a set of historical quan-
titative data (say, the reconstruction of an underlying table of pmax in the
Almagest planetary interpolation tables in the preceding section). This data
is manipulated in some way, often to undo mathematical processing of the
data that had been performed by the historical author (e.g., back computing
from the interpolation table’s values to a set of values for pmax). The trans-
formed data reveals, or does not reveal, a pattern (e.g., clustering of the last
sexagesimal place of the reconstructed pmax values around multiples of 15).
A moment of decision is reached. The researcher concludes that the pattern
is not a coincidence, and must therefore be explained (if it is decided the
pattern isn’t there, the result usually is not published). Finally, the researcher
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asserts a cause for the pattern (e.g., the pmax values originally had multiples
of 15 in the last place), and makes a historical interpretation (e.g., Ptolemy
used the underlying table of pmax).

The moment of decision must be parsed carefully to evaluate the relia-
bility of the researcher’s conclusion. Two distinct stages must be considered.
The first is an evaluation of the assumptions made when concluding that the
pattern is a genuine artifact; the second is a consideration of the integration
of the pattern with the available historical context. The quality of a result
seldom relies on the details of the researcher’s computations: the devil is ei-
ther in the assumptions made prior to the calculations, or in the historical
interpretations when they are done.

Every identification of a pattern involves certain assumptions, implied or
not. Although many of these assumptions are benign, they are not always ob-
vious, and it is difficult to bring them to the surface. In the case of Ptolemy’s
interpolation tables, we assumed that the back calculation of pmax should pro-
duce a uniform distribution of values in the third sexagesimal place. More
subtly, we assumed that each back calculation is an independent witness to
the underlying event. If for some reason the fact that the last sexagesimal
place of the first pmax value is close to a multiple of 15 would imply that the
next one will also be, then we might look at Figure 5 with more skeptical
eyes.

To agree upon a conclusion, the pattern must be sufficiently clear that
the researcher and the reader agree that it must be there. In the case of
general statistical procedures such as van Dalen’s parameter estimation and
Van Brummelen’s table dependence test, the assumptions embedded in the
moment of decision are more explicit — part of the discipline of statistics
— and thus are associated with standard practices of evaluation. Usually they
are the following:

• The data points are statistically independent; that is, the value of any
one data point does not influence the value of another.

• The data points are identically distributed.

• The data set is normally distributed.
The first of these assumptions is the most difficult in practice. For instance,
if a table was computed with the aid of linear interpolation, then most en-
tries might be in error in the same direction, and van Dalen’s parameter
estimation may produce a confidence interval for the parameter that is sys-
tematically too low or too high. Thus, before employing his method, van
Dalen checks for the use of interpolation procedures. The second assumption
is often safer in table cracking than it is in, say, matches of historical data
to physical phenomena, but it must still be considered. For instance, in Van
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Brummelen’s table dependence test, the back calculation from fH to the un-
derlying gR, rather than the more intuitive forward calculation of gH to an fR
value, is done to avoid the potential skewing of distributions that might result
from the computation from g to f. Finally, the normal distribution assump-
tion is not difficult to satisfy due to the Central Limit Theorem; if a data
set contains 40 or more data points, this assumption is almost always benign.
However, if the data set is small, or if scribal errors possibly affect a number
of tabular values, the assumption can be bypassed using non-parametric tests
(such as that used by Van Brummelen with respect to table dependence).

Statistical conclusions come in two varieties, both often misinterpreted. A
95 % confidence interval (such as that produced by van Dalen’s parameter
estimation) gives an interval of values that contains the correct parameter
95 % of the time the procedure is performed, as long as the assumptions are
met. A test (such as Van Brummelen’s table dependence procedure) concludes
with a p-value. This number reflects the probability that a result as unusual
as the observed one would arise by random chance. It is not the probability
that the result is false. In typical scientific practice, a p-value of < 5% is
considered strong enough evidence to reject the random chance hypothesis.

No historical investigation, quantitative or not, is free of assumptions or
doubt. The advantage of quantitative methods is that the reliability of the
assumptions may often be evaluated directly. It is the responsibility of the
researcher to make these assumptions as explicit and verifiable as possible.
Studies of tabular data tend to be the most straightforward in this respect,
since the data have a strict mathematical structure and are not usually subject
to the vagaries of physical phenomena.

The second stage, the historical interpretation of the pattern, depends on
the specific situation being studied, and usually cannot be framed in a quan-
titative analysis. Often the interpretation is obvious. In the case of the pmax
calculations, one may question whether or not Ptolemy actually compiled the
reconstructed pmax values into tabular form, or whether it was Ptolemy him-
self who performed these computations, but there is no further controversy.
Generally, one hopes that the quantitative result is coherent with historical
evidence from other sources. In some cases the result may lean against the
weight of previously-established historical analysis. In these situations, both
the quantitative and the historical assumptions must be examined for a reso-
lution. In some cases the result might be explained by more than one histor-
ical interpretation.36 The more dramatically the quantitative result varies from

36 See, for example, a debate most recently between Chabás/Goldstein, Samsó/Castelló,
and Poulle on the origin of a value for precession of 17;8◦ in the star catalogue in the Libro
de las estrellas de la ochuaua espera, a 13th-century text. Poulle, ‘The Alfonsine Tables’, assigns
the parameter to a pre-Alfonsine theory of precession; Samsó and Castelló, ‘An Hypothesis
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established wisdom, the clearer that result must be; as the aphorism says, ex-
traordinary claims require extraordinary evidence.

3.2. General versus specific techniques

By now the reader may have recognized an important methodological dis-
tinction. Some procedures (Sections 2.2 and 2.3) apply generally to a class of
tables, while others (especially from Sections 2.1 and 2.4) apply to specific
situations. General techniques can be applied uniformly to multiple contexts,
can sometimes be automated, and allow easy comparison between different
sources. Specific techniques have complementary advantages: they are adapt-
able to particular sources and particular historical scenarios.

Each type of procedure has its cautions. While general methods tend to
rely on clearly stated assumptions, a single unstated and flawed assumption
might undermine many conclusions at once. Also, while interpreting results
applied to a spectrum of tables, one runs the risk of assuming (dangerously)
that all the tables were constructed using similar computational norms. Fi-
nally, general procedures have tended to be more cautious and conservative,
less likely to make historically dramatic assertions.

On the other hand, the reliability of ad hoc methods designed to apply
to specific situations can be inherently difficult to evaluate. Assumptions are
not often stated clearly, and the moment of decision must occur through the
instinct of the table cracker rather than the result of a statistical test. Never-
theless, it should be noted that disagreements have seldom arisen in practice
due to this shortcoming; when a specific method has identified a pattern,
respondents usually have agreed that the pattern is in fact there. When con-
troversies arise they are almost always at the stage of historical analysis, in
cases where more than one explanation may be proposed to reconcile the
pattern with the historical narrative.

The choice between the two types of method will always depend on local
conditions (the nature of the table, the question that is being asked). Argu-
ments will be more convincing if they rely on well tested general methods
whenever possible, and use specific ones only when no other option is avail-
able. Regardless of the procedure used, the researcher must make explicit the
underlying assumptions and demonstrate their validity (or at least their in-
significance).

on the Epoch’, p. 118, shows that it might arise from an erroneous dating of Ptolemy’s star
catalogue by the Alfonsine astronomers; while Chabás and Goldstein, The Alfonsine Tables of
Toledo, pp. 234-35, derive it from a Castilian source.
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4. Table Cracking II: Restoring Tabular Context

Coming to terms with a historical numerical table requires the determination
of the processes that led to its creation, but it is also crucial to understand
the role that the completed table played for its author and its users. This in-
formation can be elusive; sometimes all that remains in the manuscript record
is the table itself (or just part of it), with little or no trace of the paratext.
Even when the paratext exists it must be treated with caution. (One exam-
ple is al-Kāshī’s double-argument planetary latitude table, part of which is
shown in Figure 4; the table’s instructions have the arguments reversed.) Fi-
nally, even an intact and correct paratext may not be sufficient to answer
contextual questions: the author may not have felt the need to describe the
users and purpose of the table, or the users may themselves have found their
own new applications.

Secondly, many tables were designed to model or represent some sort of
physical phenomenon, often (but not always) astronomical. The extent of a
table’s predictive success often can provide useful information concerning the
table’s context. What specific phenomenon was the table meant to reproduce?
How concerned would the authors and users have been about successes and
failures in the table’s predictive power? What concerns, other than accuracy,
might have motivated judgments about a table’s quality? This section consid-
ers the activities of table crackers in answering these contextual questions.

4.1. Reconstructing a table’s purpose

Many numerical tables from early sources have come down to us as they are,
with no accompanying information. In these cases, establishing a plausible
interpretation of the tabular data is not always straightforward: sometimes,
numerical patterns may correspond to multiple interpretations. As the fol-
lowing example illustrates, table crackers have had difficulties for centuries.
In the eighteenth century, the Sanskrit astronomer Kevalarāma was commis-
sioned by Jayasiṃha, regent of Jaipur (1699-1743), to translate Philippe de La
Hire’s Tabulae Astronomicae, which had come to the court of Jayasiṃha in
the possession of Portuguese astronomer Pedro da Silva, into Sanskrit.37 The
part of Kevalarāma’s translation (Dṛkpakṣasāriṇī, 1725) on how to compute
true planetary positions with de La Hire’s tables was a disaster. Kevalarāma
failed to understand the proper use of de La Hire’s tables, especially their use
of logarithms. Kevalarāma, unfamiliar with logarithms (and probably poorly
advised by the visiting European scholars), simply ignored the steps that in-
voked them. As a result, his reasoning and procedures became completely

37 See Pingree, ‘Philippe de La Hire’s Planetary Theories’, for an account.
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senseless. Since de La Hire’s tables of logarithms came without any explana-
tion of the rules of how to manipulate them, Kevalarāma’s confusion wasn’t
entirely his own fault.38

More recently, perhaps the most famous mathematical document subjected
to this sort of table cracking is the Old Babylonian tablet Plimpton 322. The
surviving fragment contains four columns of numbers. Neugebauer39 instigated
interest in the tablet by noticing that three of the columns (once the first has
been heavily reconstructed) follow the pattern

d 2

l2 , b, d,

where b and d are Pythagorean numbers (integer solutions to d2
= b2

+ l2).
This was pursued further by Aaboe, Neugebauer, and Sachs, arguing for an

underlying theory of generating functions where the columns were sums and
differences of certain squares (p and q), their selection subject to mathematical
criteria.40 Other scholars, perhaps prompted by a short remark by Neugebauer
and Sachs, argued that Plimpton 322 was in fact a trigonometric table, since
it appears to measure the lengths of sides of right triangles.41

Eleanor Robson has taken these accounts to task for various technical and
historical shortcomings.42 However, before delving into the arguments, she
enumerates six conditions that must be satisfied in any hypothesis that pur-
ports to explain any tabular text: historical sensitivity, cultural consistency,
calculational plausibility, physical reality (respect for the physical dimensions
of the original archaeological artifact), textual completeness (the explanation
should account for the paratext as well as the entries), and tabular order (sen-
sitivity to the logical order of the columns).43 None of these criteria should be
emphasized at the expense of another. These categories reflect a more general
movement in the history of mathematics in recent decades toward a greater
sensitivity to contexts outside of the purely scientific content of the text.

Robson’s interpretation of Plimpton 322 (taking a cue from work by Bru-
ins and Høyrup) considers the context of administrative tabular documents
written in the early second millennium BCE. Readings of the column titles

38 Not long afterward, de La Hire’s work was translated again twice. One of these trans-
lations, Phiraṅgicandracchedyopayogika (1734 or 1735), correctly reported the procedures, pos-
sibly due to the influence of Father Boudier, who was visiting Jayasiṃha’s court at the time.

39 Neugebauer, The Exact Sciences in Antiquity, pp. 36 ff.
40 Aaboe, Episodes, pp. 30–31; Neugebauer and Sachs, Mathematical Cuneiform Texts,

pp. 38–41.
41 See Joyce, ‘Plimpton 322’, and Calinger, A Contextual History.
42 Robson, ‘Neither Sherlock Holmes nor Babylon’; Robson, ‘Words and Pictures’.
43 Robson, ‘Neither Sherlock Holmes nor Babylon’, p. 176.
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turned out to provide significant inspiration in her analysis. She argues that
the numbers in the table relate to reciprocal pairs (numbers whose product
is 60), shows that they apply in procedures of the so-called concrete geom-
etry,44 and concludes that they provide numerical examples to help teachers
generate problems for their students. Robson’s work has been followed by
analyses also inspired by contextual considerations, such as Friberg and Brit-
ton, Proust, and Shnider.45 In the latter, the authors argue that Plimpton 322
is a problem text that includes a complete worked solution. The problem con-
cerns ‘normalized sexagesimal rectangles’ — that is, this tablet was produced
from a desire to generate a series of finite sexagesimal rectangles from a ba-
sic algorithm. Their interpretation is that Plimpton 322 was generated via the
following problem:46 ‘Make a list of all the rectangles with length equal to
1 and width and diagonal equal to finite sexagesimal numbers, and represent
the dimensions in reduced form, without a common sexagesimal factor.’ The
mathematical theory underlying the numbers uses the diagonal rule for rect-
angles (how to find the diagonal of a rectangle in terms of the sides) and
the process of completing the square. Their account is supported by a com-
parison with related non-tabular mathematical documents such as MS 3971,
which describes related procedures based on reciprocal pairs and produces a
sexagesimal rectangle.

In the case of Plimpton 322, since so little information accompanies the
table, questions regarding its purpose arise mostly by examining its numeri-
cal content. In other cases, an abundance of accompanying information can
(paradoxically) lead to even more issues for the table cracker. Such is the case
with the 1489 polyptych47 by Marcus Schinnagel, recently studied by Richard
Kremer.48 Fully opened, the polyptych is more than 3 meters wide; its cen-
tral panel measures 140 by 130 cm (see Plate 1). This polyptych is filled not
with the usual Christian iconography, but rather with calendrical, astronomi-
cal and astrological tables and related material. Such a unique document gives
rise to several questions. What sources participated in its realization? What
could have been the author’s and supporters’ purpose? Was it intended as a
practical astronomical tool?

Kremer begins his study of the polyptych not with table cracking, but with
an analysis of the prose found within it. Other than Schinnagel’s signature in

44 Cut-and-paste geometrical procedures that manipulate geometrical shapes in a concrete
manner.

45 Friberg, A Remarkable Collection, and Britton et al., ‘Plimpton 322: A Review’.
46 Britton et al., ‘Plimpton 322: A Review’, pp. 558–559.
47 A polyptych is a large artistic display, usually a collection of paintings, divided into

panels. Common in early modern central Europe, polyptychs are often found as altarpieces in
cathedrals.

48 Kremer, ‘Marcus Schinnagel’s Winged Polyptych’.
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Latin at the top of the central panel, the entire text is in German; it consti-
tutes a primer for the horoscope-maker or the phlebotomist (a medical spe-
cialist on blood-letting). Next, turning to the tables, Kremer identifies their
layout and a sequence of oddities and inconsistencies, mostly consequences
of graphical constraints in a panel’s layout or of mistakes by the artist. Once
the tables have been identified, Kremer sets about determining the sorts of
computations that can be done with them (along with a geometric instru-
ment also found on the polyptych). He concludes that the polyptych may
be used to determine planetary longitudes (to degrees) from 1489 to 1526,
times of true syzygy (to minutes) from 1475 to 1512, and times and magni-
tudes of eclipses from 1489 to 1551. However, certain parts of the polyptych
are inconsistent with practical use. For instance, without a solar mean motion
table, the solar equation table that appears on the polyptych is useless. Next,
using techniques similar to those outlined in Section 2.2, Kremer identifies
the sources and numerical parameters underlying the tables. He concludes that
the various sources were compiled with little care for mathematical and as-
tronomical coherence. When predictions can be achieved, the polyptych pro-
duces results comparable to the Parisian Alfonsine tables with an accuracy of
degrees rather than minutes. In this respect it matches the accuracies of al-
manachs and ephemerides made in Europe at this time for horoscope making
and medicine.

Next, Kremer turns to the history of art to gauge the cultural meaning of
the polyptych, concluding that the work was commissioned by the von Reis-
chach family to convey a message about the harmony of the cosmos. As for
Schinnagel, his mission was likely one of self-promotion, seeking patronage
as he attempted to establish himself in Swabia.

The two examples of this subsection illustrate that in very different set-
tings, table cracking may be used to understand the role that the table played
among its practitioners, the table’s link to other tables of the period, and the
mathematical practices that would have been needed in its implementation.
Along with insights gained by more familiar historical techniques, this infor-
mation helps the researcher to frame a proper historical interpretation.

4.2. The table’s fit with its associated physical phenomenon

A number of modern studies of early astronomical tables compare the results
produced by the table with actual, physical celestial positions. This is done for
several reasons. The most obvious is to gauge a measure of the table’s predic-
tive success. For instance, one might compare a table of computed eclipse
possibilities with actual eclipses, or compare planetary visibility tables with
the actual planets’ visibilities. Some celestial phenomena are more amenable
to such comparisons (for instance, did an eclipse occur or did it not?), while
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some are more delicate (such as acronychal risings, planetary positions, and
stationary points; these are impossible to observe directly with any precision).
Researchers who seek such comparisons usually recompute estimates of these
quantities using modern scientific theory (taking into account effects such as
gravitational influences, refraction, and so on) and match these, sometimes
value for value, with those given in a historical table. The results allow in-
vestigators to make conclusions regarding the effectiveness of the historical
astronomical models and procedures.

However, caution must be applied when pursuing this sort of inquiry.
Conformity with a physical phenomenon was not always the primary goal.
In some cases the historical scientist might have been attempting to conform
instead with a dominant scientific theory, or even with observational data
generated by themselves or illustrious predecessors. In these cases it is all too
easy to leap to a conclusion of scientific fraud. As in modern times, historical
authors lived and worked in cultures where the interactions between theory,
observation, and authority were more nuanced than the textbook account of
the scientific method would have one believe.

One such case is the planetary theory and related tables of Ibn al-Shāṭir, a
14th-century Syrian astronomer. Ibn al-Shāṭir’s work is part of a lengthy sci-
entific tradition within medieval Islam questioning Ptolemy’s planetary mod-
els. Their critique was not the fit of these models to the planetary data;
rather, astronomers aimed their criticisms at Ptolemy’s violations of Aristote-
lian physics. In particular, to reproduce certain planetary phenomena Ptolemy
had been forced to introduce a new point in his models, called the equant.
The center of the epicycle was asserted to move around its orbit circle (the
deferent) uniformly, not around its own center (as required by Aristotle), but
around the equant point. Ibn al-Shāṭir’s tables instead built upon a geomet-
ric model of his own invention that avoids any such violations. Ibn al-Shāṭir’s
tables were considered an improvement on Ptolemy not because they fit the
observations any better, but because they conformed more closely to the gen-
eral principles of natural philosophy.

In another case, the priority of computability outranked that of fit with
the phenomenon. In the first half of the second century BCE, Hypsicles of
Alexandria composed the Anaphorikos, within which he set out a scheme to
compute a table of all oblique ascensions for a given local latitude (see Fig-
ure 6).49 Hypsicles’ scheme was based on the assumption that rising times can
be computed arithmetically — that is, by a linear sequence of values. The re-
sults produced by such a scheme could not hope to do more than model the
true oblique ascensions qualitatively, but the values would be very easy to

49 For a translation and technical commentary of this work, see Montelle, ‘The Anaphori-
cus of Hypsicles’.
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Figure 6: A transcription of the circular table displaying oblique ascensions for Alexandria
found in MS Vat. gr. 204, f. 135v, from Hypsicles’ Anaphorikos. Reproduced from V. de Falco
and Max Krause, ‘Hypsikles. Die Aufgangszeiten der Gestirne’, Abhandlungen der Akademie der
Wissenschaften in Göttingen, philologisch-historische Klasse, Dritte Folge, Nr. 62 (1966), p. 37.

compute. Using the local latitude of Alexandria, Hypsicles presents a worked
example; for successive zodiacal signs (and applying symmetry for signs 7 to
12), they are:

sign rising time sign
1 21;40 12
2 25 11
3 28;20 10
4 31;40 9
5 35 8
6 38;20 7

Note that the difference between oblique ascensions for successive signs is the
constant value 3;20.

Clearly, this scheme was very rough indeed.50 However, to dismiss it for
this reason is to neglect the elegance of the approach and its primary purpose

50 Several of the factors that contribute to this ‘roughness’ include: i) it is a linear arith-
metical scheme; ii) the value for the obliquity of the ecliptic ε is not made explicit by Hyp-
sicles; and iii) the ratio of 5 : 7 for the shortest to longest day (equivalent to a latitude of
φ ≈ 35;32◦) is too high for Alexandria, which is closer to φ = 30◦. For the purpose of com-
parison, we have recomputed the oblique ascensions using spherical trigonometry, assuming ε
to be Ptolemy’s 23;51◦. For φ = 30◦, there results: 20;59, 24;17, 29;57, 34;35, 35;31, 34;41,
34;41. When φ = 35;32◦, there results: 19;21, 22;54, 29;21, 35;11, 36;54, 36;19, 36;19.
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of computability. Hypsicles and many after him modelled rising times linearly,
and continued to do so even when more accurate spherical approaches be-
came available. Astrologers used it to compute oblique ascensions for their
local circumstances using only a single empirically derivable fact (the ratio of
longest to shortest day). Therefore, rather than rejecting a table or computa-
tional scheme that poorly reproduces a physical phenomenon as scientifically
inferior, the table cracker should evaluate the historical context to consider
the table maker’s goals in the light of the computing tools and empirical data
available, as well as the quantitative abilities of the table’s audience.

As delicate as the matter is, comparing tabular data with physical phenom-
ena has produced important results, especially when comparing two different
historical techniques against each other. For instance, scholars such as Steele
have investigated Babylonian tables used for the prediction of eclipses, to de-
termine whether the later methods improved in their ability to predict the
timing and circumstances of eclipses over the last millennium that they were
astronomically active. Using modern retrodictions, comparisons, and statisti-
cal trends, Steele concluded, surprisingly, that there is no evidence for an im-
provement in accuracy as time progressed.51 Building on Steele’s work, Mon-
telle considers the reckoning of eclipse possibilities in the so-called ‘ACT’
tabular cuneiform sources. Her comparison with actual eclipse possibilities
also suggests that these later ACT methods (which could contain up to 18
columns of intermediary tabulated data) were not able to predict correctly the
timing and circumstances of eclipses.52 In fact these tabulated predictions were
no more accurate than the earlier non-tabular sources, despite being more de-
liberate, taking into account more factors, working to greater precision, being
technically more elaborate, and showing more mathematical reasoning. This
reveals the prodigious difficulty early investigators were facing in producing
schemes that fit actual observed eclipses.

5. Concluding Remarks: Approaching a Table with Due Caution

When used appropriately, table cracking can reliably enhance existing histor-
ical methods and studies. It can help inform historians in their key lines of
inquiry: how tables were computed, how they were read and understood, and
how they were used. In some instances, table cracking is the only recourse we
have when generating historical information about the table’s creation, pur-
pose, and effectiveness. However, table cracking techniques are most powerful
when they are used in tandem with other historical information. Forwarding
a claim based on analytical means alone can lead to unwarranted conclu-
sions. Table crackers may initially produce results in apparent conflict with

51 Steele, Observations and Predictions.
52 Montelle, Chasing Shadows, pp. 94–97 and Appendix B.
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other more traditional inquiries. Through a process of balancing, evaluating,
and re-interpreting these sources of information within a wider context, the
table cracker can form a clearer impression of the contents and use of the
table.

Clearly, reliability of quantitative results will aid the researcher in con-
vincing her colleagues of the validity of her conclusions. General procedures
can accomplish this by using tried and tested statistical techniques. However,
every table is unique. When general methods fail to adapt to the local condi-
tions of the table or to the question asked by the researcher, techniques can
be adjusted to fit the situation.

Beyond the arrays of numbers lies the diligence of a compiler, the assidu-
ousness of a scribe, the expectations of a patron, the industry of a user. The
table embodies a combination of these influences in both direct and nuanced
ways. Traces of these are detectable to table crackers; however, no amount of
quantitative analysis will be able on its own to reconstruct fully the histor-
ical circumstances of a table. Thus table cracking efforts form but a part of
the tools historians can draw upon when investigating a numerical table.

Bibliography

Aaboe, Asger, Episodes from the Early History of Mathematics, Washington, DC: Math-
ematical Association of America, 1964.

Britton, John P., ‘A Table of Fourth Powers and Related Texts from Seleucid Babylon’,
Journal of Cuneiform Studies 43–45 (1991–93), pp. 71–87.

Britton, John P., Christine Proust and Steve Shnider, ‘Plimpton 322: A Review and a
Different Perspective’, Archive for History of Exact Sciences 65 (2011), pp. 519–
566.

Calinger, Ronald, A Contextual History of Mathematics: To Euler, Upper Saddle River,
NJ: Prentice Hall, 1999.

Chabás, José, and Bernard R. Goldstein, The Alfonsine Tables of Toledo, Dordrecht:
Kluwer, 2003.

Chabás, José, and Bernard R. Goldstein, ‘Early Alfonsine Astronomy in Paris: the Ta-
bles of John Vimond (1320)’, Suhayl 4 (2004), pp. 207–294.

Dalen, Benno van, Ancient and Mediaeval Astronomical Tables. Mathematical Structure
and Parameter Values, doctoral dissertation, Utrecht University, 1993.

Dalen, Benno van, ‘A Statistical Method for Recovering Unknown Parameters from
Medieval Astronomical Tables, Centaurus 32 (1989), pp. 85-145.

Dalen, Benno van, ‘Al-Khwārizmī’s Astronomical Tables Revisited: Analysis of the
Equation of Time’, in Josep Casulleras and Julio Samsó (eds), From Baghdad
to Barcelona. Studies in the Islamic Exact Sciences in Honour of Prof. Juan Vernet,
Barcelona: Instituto ‘Millás Vallicrosa’, 1996, pp. 195-252.



 TOOLS OF THE TABLE CRACKERS 5150 GLEN VAN BRUMMELEN, MATTHIEU HUSSON, CLEMENCY MONTELLE

other more traditional inquiries. Through a process of balancing, evaluating,
and re-interpreting these sources of information within a wider context, the
table cracker can form a clearer impression of the contents and use of the
table.

Clearly, reliability of quantitative results will aid the researcher in con-
vincing her colleagues of the validity of her conclusions. General procedures
can accomplish this by using tried and tested statistical techniques. However,
every table is unique. When general methods fail to adapt to the local condi-
tions of the table or to the question asked by the researcher, techniques can
be adjusted to fit the situation.

Beyond the arrays of numbers lies the diligence of a compiler, the assidu-
ousness of a scribe, the expectations of a patron, the industry of a user. The
table embodies a combination of these influences in both direct and nuanced
ways. Traces of these are detectable to table crackers; however, no amount of
quantitative analysis will be able on its own to reconstruct fully the histor-
ical circumstances of a table. Thus table cracking efforts form but a part of
the tools historians can draw upon when investigating a numerical table.

Bibliography

Aaboe, Asger, Episodes from the Early History of Mathematics, Washington, DC: Math-
ematical Association of America, 1964.

Britton, John P., ‘A Table of Fourth Powers and Related Texts from Seleucid Babylon’,
Journal of Cuneiform Studies 43–45 (1991–93), pp. 71–87.

Britton, John P., Christine Proust and Steve Shnider, ‘Plimpton 322: A Review and a
Different Perspective’, Archive for History of Exact Sciences 65 (2011), pp. 519–
566.

Calinger, Ronald, A Contextual History of Mathematics: To Euler, Upper Saddle River,
NJ: Prentice Hall, 1999.

Chabás, José, and Bernard R. Goldstein, The Alfonsine Tables of Toledo, Dordrecht:
Kluwer, 2003.

Chabás, José, and Bernard R. Goldstein, ‘Early Alfonsine Astronomy in Paris: the Ta-
bles of John Vimond (1320)’, Suhayl 4 (2004), pp. 207–294.

Dalen, Benno van, Ancient and Mediaeval Astronomical Tables. Mathematical Structure
and Parameter Values, doctoral dissertation, Utrecht University, 1993.

Dalen, Benno van, ‘A Statistical Method for Recovering Unknown Parameters from
Medieval Astronomical Tables, Centaurus 32 (1989), pp. 85-145.

Dalen, Benno van, ‘Al-Khwārizmī’s Astronomical Tables Revisited: Analysis of the
Equation of Time’, in Josep Casulleras and Julio Samsó (eds), From Baghdad
to Barcelona. Studies in the Islamic Exact Sciences in Honour of Prof. Juan Vernet,
Barcelona: Instituto ‘Millás Vallicrosa’, 1996, pp. 195-252.

TOOLS OF THE TABLE CRACKERS 51

Dalen, Benno van, ‘Origin of the Mean Motion Tables of Jai Singh’, Indian Journal of
History of Science 35 (2000), pp. 41-66.

Dalen, Benno van, ‘Islamic and Chinese Astronomy under the Mongols: A Little-
Known Case of Transmission’, in Yvonne Dold-Samplonius, Joseph W. Dauben,
Menso Folkerts and Benno van Dalen (eds), From China to Paris: 2000 Years
Transmission of Mathematical Ideas, Stuttgart: Steiner, pp. 327–56.

Dalen, Benno van, Islamic Astronomical Tables. Mathematical Analysis and Historical
Investigation, Farnham UK: Ashgate, 2013.

Dobrzycki, Jerzy, and Richard L. Kremer, ‘Peurbach and Maragha Astronomy? The
Ephemerides of Johannes Angelus and their Implications’‚ Journal for the History
of Astronomy 27 (1996), pp. 73–123.

Dorce, Carlos, ‘The Tāj al-azyāj of Muḥyī al-Dīn al-Maghribī (d. 1283): Methods of
Computation’, Suhayl 3 (2002), pp. 193-212.

Friberg, Jöran, A Remarkable Collection of Babylonian Mathematical Texts. Manuscripts
in the Schøyen Collection. Cuneiform Texts I, New York: Springer, 2007.

Gingerich, Owen, Eleven-Digit Regular Sexagesimals and Their Reciprocals, Philadelphia:
American Philosophical Society, 1965. [Transactions, New Series, vol. 55/8.]

Hogendijk, Jan, ‘Al-Khwārizmī’s Table of the ‘Sine of the Hours’ and the Underlying
Sine Table’, Historia Scientiarum 42 (1991), pp. 1-12.

Joyce, David E., ‘Plimpton 322’, available at https://mathcs.clarku.edu/~djoyce/mathhist/
plimpnote.html, Department of Mathematics and Computer Science, Clark
University, 1995.

Kennedy, Edward S., ‘A Survey of Islamic Astronomical Tables’, Transactions of the
American Philosophical Society. New Series 46 (1956), pp. 123-177.

King, David A., ‘Al-Khalīlī’s Auxiliary Tables for Solving Problems of Spherical Astron-
omy’, Journal for the History of Astronomy 4 (1973), pp. 99-110.

King, David A, ‘Al-Khalīlī’s Qibla Table’, Journal of Near Eastern Studies 34 (1975),
pp. 81-122.

Kremer, Richard L., ‘Marcus Schinnagel’s Winged Polyptych of 1489: Astronomical
Computation in a Liturgical Format’, Journal for the History of Astronomy 43
(2012), pp. 321–346.

Mielgo, Honorino, ‘A Method of Analysis for Mean Motion Astronomical Tables’, in
Josep Casulleras and Julio Samsó (eds), From Baghdad to Barcelona: Studies in
the Islamic Exact Sciences in Honour of Prof. Juan Vernet, Barcelona: Instituto
‘Millás Vallicrosa’, 1996, pp. 159–179.

Montelle, Clemency, ‘The Anaphoricus of Hypsicles of Alexandria’, in John M. Steele
(ed.), The Circulation of Astronomical Knowledge in the Ancient World, Leiden:
Brill, 2016, pp. 287–315.

Montelle, Clemency, Chasing Shadows: Mathematics, Astronomy, and the Early History
of Eclipse Reckoning, Baltimore: Johns Hopkins University Press, 2011.

                                                                                       https://mathcs.clarku.edu/~djoyce/mathhist/
plimpnote.html,



52 GLEN VAN BRUMMELEN, MATTHIEU HUSSON, CLEMENCY MONTELLE52 GLEN VAN BRUMMELEN, MATTHIEU HUSSON, CLEMENCY MONTELLE

Neugebauer, Otto, Astronomical Cuneiform Texts, 3 vols, London: Lund Humphries,
1955; 2nd edition, New York: Springer, 1983.

Neugebauer, Otto, The Exact Sciences in Antiquity, 2nd edition, New York: Dover,
1969.

Neugebauer, Otto, and Abraham J. Sachs, Mathematical Cuneiform Texts, New Haven:
American Oriental Society / American Schools of Oriental Research, 1945.

Ossendrijver, Mathieu, ‘Translating Babylonian Mathematical Astronomy: Neugebauer
and Beyond’, in Alexander Jones, Christine Proust and John M. Steele (eds),
A Mathematician’s Journeys. Neugebauer and Modern Transformations of Ancient
Science, Cham: Springer, 2016, pp. 333–42.

Ossendrijver, Mathieu, ‘Powers of 9 and Related Mathematical Tables from Babylon’,
Journal of Cuneiform Studies 66 (2014), pp. 149–165.

Pingree, David, ‘Philippe de La Hire’s Planetary Theories in Sanskrit’, in: Yvonne Dold-
Samplonius, Joseph W. Dauben, Menso Folkerts and Benno van Dalen (eds),
From China to Paris: 2000 Years Transmission of Mathematical Ideas, Stuttgart:
Steiner, 2002, pp. 429–53.

Poulle, Emmanuel, ‘The Alfonsine Tables and Alfonso X of Castille’, Journal for the
History of Astronomy 19 (1988), pp. 97–113.

Robson, Eleanor, ‘Neither Sherlock Holmes nor Babylon: A Reassessment of Plimpton
322’, Historia Mathematica 28 (2001), pp. 167–206.

Robson, Eleanor, ‘Words and Pictures: New Light on Plimpton 322’, American Mathe-
matical Monthly 109 (2002), pp. 105-20.

Samsó, Julio and Francisco Castelló, ‘An Hypothesis on the Epoch of Ptolemy’s Star
Catalogue According to the Authors of the Alfonsine Tables’, Journal for the His-
tory of Astronomy 19 (1899), pp. 115–20.

Steele, John M., Observations and Predictions of Eclipse Times by Early Astronomers,
Dordrecht: Kluwer, 2000.

Van Brummelen, Glen, ‘The Numerical Structure of al-Khalīlī’s Auxiliary Tables, Physis
28 (1991), pp. 667–97.

Van Brummelen, Glen, Mathematical Tables in Ptolemy’s Almagest, Ph.D. dissertation,
Burnaby, Canada: Simon Fraser University, 1993.

Van Brummelen, Glen, ‘Lunar and Planetary Interpolation Tables in Ptolemy’s Almagest’,
Journal for the History of Astronomy 25 (1994), pp. 297–311.

Van Brummelen, Glen, and Kenneth Butler, ‘Determining the Interdependence of His-
torical Astronomical Tables’, Journal of the American Statistical Association 92
(1997), pp. 41–48.

Van Brummelen, Glen, ‘The Tables of Planetary Latitudes in Jamshīd al-Kāshī’s Khāqānī
Zīj’, in this volume.

Van Brummelen, Glen, Taro Mimura and Yousuf Kerai, ‘Al-Samaw’al’s Curious Ap-
proach to Trigonometry’, Suhayl 11 (2013), pp. 9–31.



The Almanac of Jacob ben Makhir 

José cHabás and Bernard R. GolDstein

Jacob ben Makhir Ibn Tibbon (c. 1236 – c. 1305) was a member of the prom-
inent Ibn Tibbon family established in Languedoc, in southern France, well 
known for their many contributions to the transmission of Arabic culture in 
the Iberian Peninsula to a Jewish audience. Its members, most of them physi-
cians, translated into Hebrew scientific texts in Arabic, some of which had pre-
viously been translated from Greek into Arabic. Jacob was also known by his 
vernacular name, Profeit Tibbon, later rendered in Latin as Profatius. Although 
probably born in Marseille, he was active in Montpellier both as an author 
and as a translator. Among his translations, almost exclusively on mathematical 
and astronomical matters, are the Elements by Euclid (Alexandria, third cen-
tury bc), On the Configuration of the World by Ibn al Haytham (Egypt, elev-
enth century), and the Iṣlāḥ al-Majisṭi (Correction of the Almagest) by Jābir ibn 
Aflaḥ (al-Andalus, twelfth century). Jacob is also the author of two original 
works, a text on a new version of an astronomical instrument, called the quad-
rant, and a set of tables entitled Almanac, which is the subject of this paper.

The text on the quadrant, Explanation of the Instrument Called the Quad-
rant of Israel, was completed in 1288 and then revised in 1301.1 It is also 
extant in Latin, translated by Armengaud Blaise, otherwise called Ermengol 
Blasi (Montpellier, c. 1264–1312), under the supervision of Jacob ben Makhir 
himself. In Latin Jacob’s quadrant was usually referred to as quadrans novus, 
in contrast to the quadrans vetus, which was already in use at the time and 
associated with Robertus Anglicus who taught at the University of Montpellier 
(c. 1270).2

The main part of Jacob’s Almanac is devoted to tables for the true positions 
of the celestial bodies at intervals of a few days, from which their true posi-
tions at any time in between can easily be determined, following the pattern 
set in other almanacs such as that ascribed to Azarquiel (al-Andalus, eleventh 
century).3 It also contains a series of tables for computing the circumstances of 
solar and lunar eclipses, and among them are two extensive and unprecedented 
tables that are closely related. The purpose of the first is to provide over a long 
period of time the true anomaly of the Moon and the minutes of proportion 

1 For the Hebrew versions, see Steinschneider, Die hebraeischen Übersetzungen, p. 608.
2 Millás Vallicrosa, Estudios sobre la historia, pp. 65–110.
3 Millás Vallicrosa, Estudios sobre Azarquiel, pp. 72–237. See also Boutelle, ‘The Almanac’.

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 53–78
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t H i s  i s  a n  o p e n  ac c e s s  c H a p t e r  D i s t r i b u t e D  u n D e r  a  c c  b y- n c - n D  4 . 0  i n t e r n at i o n a l  l i c e n s e
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ultimately as a function of the double elongation of the Moon from the Sun, 
whereas the second is a double argument table for the complete equation of 
the Moon (that is, based on Ptolemy’s second lunar model), which in itself is 
an innovative approach in the West, with the characteristic that the entries 
have been displaced vertically to avoid subtractions. These features may help to 
explain the success of these tables.

The associated text, originally written in Hebrew, was mainly diffused in 
Latin. As already noticed by Steinschneider, it was translated into Latin in two 
versions.4 Both have a prologue (a general non-technical introduction) and can-
ons, that is, a set of rules explaining the use of the tables. In the old literal 
version the prologue begins Quamquam multi homines velint astrologie scien-
tiam et eam habere desiderant … (prologue A), and in the paraphrastic version 
it begins Quia omnes homines naturaliter scire desiderant … (prologue B). In 
some manuscripts we find variants of these incipits. The Hebrew prologue is 
significantly different from both versions of the prologue in Latin, as already 
noted by Steinschneider.

The Latin texts say nothing about the translator, but we suggest that the 
translator was also Armengaud, again with the help of Jacob himself, for in 
the Latin version changes were introduced that are unlikely to have been made 
by anyone other than Jacob. These changes include, for example, references to 
the Toledan Tables in prologue B, and entries for year 1300 for some planets. 
Still another change is the inclusion in the incipit of prologue B of an implicit 
reference to the opening sentence of Aristotle’s Metaphysics I.1 (‘All men by 
nature desire to know’), which is not in the Hebrew text. A similar case, where 
a Latin translator of a Hebrew astronomical text benefited from information 
supplied by the author that was not in the original text, involves Peter of Alex-
andria who translated the Astronomy by Levi ben Gerson (Orange, France, 
d. 1344). As Mancha persuasively argued, ‘Levi’s participation in the actual 
translation process is most probable, although it is not possible to be completely 
certain…’.5 Still another example is Juan de Salaya’s translation into Castilian in 
1481 of the astronomical treatise, ha-Ḥibbur ha-gadol (The Great Composition), 
by Abraham Zacut (Salamanca, 1452–1514),6 where the manuscript containing 
the translation explicitly states that it was made from the Hebrew original with 
the help of Zacut himself.7

Our analysis is based on the following manuscripts (we have added ‘h’ or ‘l’ 
to the sigla of the manuscripts in Hebrew and in Latin, respectively):

4 Steinschneider, ‘Prophatii Judaei’.
5 Mancha, ‘The Latin Translation’, p. 34.
6 Chabás and Goldstein, Astronomy in the Iberian Peninsula.
7 Cantera, ‘El judio samantino’, p. 236.
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Mh: Munich, Bayerische Staatsbibliothek, MS Heb. 343, 202b (prologue), 
203a–269a (tables);

Ph: Paris, Bibliothèque nationale de France, MS Heb. 1046, 1b–2a (pro-
logue), 2b–80a (tables);

Vh: Vatican, Biblioteca Apostolica, MS Heb. 393, 9b–99a (tables), 103a–b 
(prologue);

Kl: Bernkastel-Kues, Cusanusstiftsbibliothek, MS 215, 32r–84v and 92v–
94v (tables), 85r–87r (prologue A and canons), 88r–92r (prologue B and 
canons);

Ml: Madrid, Biblioteca Nacional, MS 9288, 15r–88v (tables), 89r–92v (pro-
logue B and canons);

Pl: Paris, Bibliothèque nationale de France, MS lat. 7408A, 2r–v and 74r–
77v (prologue A and canons), 3r–73r (tables).

Additional Hebrew manuscripts:

Cambridge, University Library, MS Add. 1741, 2/7, 99b–107b;8

London, British Library, MS Or. 10725, 7 (Merhav: online catalogue of the 
National Library of Israel);

Parma, Biblioteca Palatina, MS Heb. 2112, 2, formerly de Rossi MS 1181, 
brief extracts only;9

Parma, Biblioteca Palatina, MS Heb. 2113, 1, formerly de Rossi MS 1374;

Parma, Biblioteca Palatina, MS Heb. 2770, formerly de Rossi MS 749;

Oxford, Bodleian Library, MS Marshall Or. 95.10

Among the Latin manuscripts are:

Bergamo, Biblioteca Civica Angelo Mai, MS 388, 113r–120v (planets only);

Brussels, Bibliotèque royale de Belgique, MS 281–83, 77r–96r;

Cambridge, Gonville and Caius College, MS 141/191, 387–533;

Cracow, Biblioteka Jagiellońska, MS 613, 36v–37r, 99v–100v, 138r–154r, 
158r–159r;

Erfurt, Bibliotheca Amploniana, MS 4º 379, 63r–99v (tables), 100r–1011v 
(canons, prologue A);

8 Reif, Hebrew Manuscripts, pp. 336–37.
9 For the three Hebrew manuscripts in Parma, see Richler and Beit-Arié, Hebrew Manu-

scripts, pp. 433, 432, and 429, respectively.
10 Neubauer, Catalogue of the Hebrew Manuscripts, col. 700 (No. 2041).
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Florence, Biblioteca Medicea Laurenziana, MS Plut. 18.1, 2r–61r (prologue 
B, canons, and tables);

Florence, Biblioteca Medicea Laurenziana, MS Plut. 18.2, 115r–119r (pro-
logue B: edited by Boffito and Melzi d’Eril in 1908);

London, British Library, MS Harley 267, 179r–210v;

Munich, Bayerische Staatsbibliothek, MS Clm 83, 22r–45v;

Naples, Biblioteca Nazionale, MS VIII.C. 19, 356r–381r (prologue A);

Oxford, Bodleian Library, MS Bodley 464, 1r–4r (prologue B), 4v–57v 
(tables);

Oxford, Bodleian Library, MS Digby 114/191, 38r–52v (tables);

Oxford, Bodleian Library, MS Laud. misc. 594, 6r–13v (tables, incomplete);

Oxford, University College, MS 41, 47r–51v (prologue B), 52r–73v (tables, 
incomplete);

Paris, Bibliothèque nationale de France, MS 7272, 68r–84v (only prologue 
A);

Paris, Bibliothèque nationale de France, MS 7286B (prologue B, no tables);

Paris, Bibliothèque nationale de France, MS 7300, 1r–55v (tables);

Paris, Bibliothèque nationale de France, MS 10263, 92r–94v (prologue A);

Rennes, Bibliothèque municipale, MS 593, 9r–41r (tables), 41v–42v (canons, 
summary in French);

Vatican, Biblioteca Apostolica, MS Pal. lat. 1387, 8v–40v (tables);

Vatican, Biblioteca Apostolica, MS Pal. lat. 1436, 23v–24r (canons), 24v–
36v (tables, planets only).

Texts

Steinschneider transcribed prologue A and the first half of prologue B, as well 
as the Hebrew prologue, based on four Hebrew manuscripts: Oxford, Munich, 
Parma (MS 2113), and Paris.11 He also included his own Latin translation of 
the Hebrew version of the prologue, headed versio mea. Renan and Neubauer 
treated the works of Jacob extensively, including excerpts of the prologue to 
the Almanac in both Latin versions as well as the prologue in Hebrew in the 
Oxford manuscript.12 In 1908 Boffito and Melzi d’Eril transcribed prologue 

11 Steinschneider, ‘Prophatii Judaei’, pp. 607–14.
12 Renan and Neubauer, Les rabbins français, pp. 616–20. The text was composed by Neu-

bauer and then edited by Renan.
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B in its entirety and the canons, beginning Quando per istud almanach scire 
uolueris loca…13

In prologue B, but not in the corresponding passage in prologue A, there 
are two references to the ‘tables of Toledo’, after mentioning Azarquiel.14 How-
ever, it is not clear whether the author of prologue B meant that the Almanac 
of Azarquiel or what nowadays is known as Toledan Tables served as Jacob’s 
model in compiling his almanac. Prologue B also provides information on the 
coordinates of Montpellier: the longitude is given as 148° from the East and 
32° from the West, and the latitude as 43°.15 These data are not included in 
the Hebrew manuscripts we have consulted or in the printed versions of the 
Hebrew prologue. Next there is a striking remark indicating that the almanac 
is based on one compiled by Ptolemy for his daughter Cleopatra! This remark 
also does not appear in the Hebrew text. This strange statement is probably 
to be linked to the reference earlier in the prologue to a certain Armenius or 
Ammonius, a disciple of ‘King’ Ptolemy, who compiled a similar almanac about 
600 years before Azarquiel (Ph 1b). This Ammonius is probably the same as 
Humeniz, sometimes called the son of Ptolemy.16 It was common in the Mid-
dle Ages to confuse Ptolemy the astronomer with members of the Egyptian 
Ptolemaic dynasty. We are then told that the revolutions of the planets begin 
in year 1300 on March 1, contradicting what is stated at the very beginning of 
the canons in Latin, where we are instructed that, to enter the tables for the 
true positions, one has to subtract 1300 from the year for which the positions 
are sought, clearly indicating that the first tabulated year is 1301 for all plan-
ets. The prologue to the Hebrew only says ‘the beginning of the tables is after 
year 1300 of the Incarnation’ (Ph 1b). However, in the canons for the mean 
motion tables for the outer planets, the Hebrew has ‘Cast off 1300 years of the 
years of the Christians, and enter with the remainder…’ (Ph 21a). Note that 
the columns in the Almanac are headed with the number of years in the cycle 
beginning with 1 (not a year number such as 1301).

On the basis of our analysis of the tables, we can confirm the claim17 that 
Jacob depended on the Toledan Tables for computing the entries in his Alma-
nac.18 It would be surprising that Jacob depended on a source in Latin, since 
he only refers to texts in Hebrew and Arabic. However, the Toledan Tables 
were translated from an Arabic version which is not extant; hence, it is pos-

13 Boffito and Melzi d’Eril, Almanach Dantis Aligherii, pp. 1–8.
14 Boffito and Melzi d’Eril, Almanach Dantis Aligherii, p. 2, lines 18 and 22.
15 See, e.g., Ml 89v, and Boffito and Melzi d’Eril, Almanach Dantis Aligherii, p. 2, lines 

31–32, where we find erroneously 22° instead of 32°.
16 Millás, Estudios sobre Azarquiel, p. 379.
17 Toomer, ‘Prophatius Judaeus’.
18 For the Toledan Tables and their Arabic origin, see Pedersen, The Toledan Tables, 

pp. 11–20. See also Toomer, ‘A Survey of the Toledan Tables’.
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sible that the Arabic version was still available at the time of Jacob. A related 
possibility is that there was a copy of the Arabic version in Hebrew charac-
ters. The existence of a unique copy, dated 1327, of the Tables of Novara (an 
adaptation of the Toledan Tables, compiled in the mid-thirteenth century) in 
Arabic written in Hebrew characters supports the possibility that Jacob may 
have had access to a version of the Toledan Tables.19 On the other hand, there 
is no indication that the Toledan Tables were ever translated into Hebrew. The 
astronomical tables in the zij of al-Battānī (Raqqa, Syria, d. 929) were the main 
representative of the Ptolemaic tradition in al-Andalus and then in other parts 
of Europe, beginning in the twelfth century.20 One relevant text that depended 
on al-Battānī’s zij was the astronomical tables of Abraham Bar Ḥiyya (Barce-
lona, d. 1136); it was the first set of such tables written in Hebrew and widely 
copied in the Middle Ages.21 We refer to one copy of Bar Ḥiyya’s unpublished 
tables: Paris, Bibliothèque nationale de France, MS Heb. 1046.

Tables

The Almanac uses signs of 30° and tropical coordinates, whereas the Toledan 
Tables and its derivative, the Tables of Toulouse, use signs of 30° and sidereal 
coordinates. We agree with previous scholars, in particular Toomer (see note 17,  
above), who identified the source for the computed true planetary longitudes 
as the Toledan Tables, despite the difference in the coordinate system, noted 
above, and we provide additional evidence to support this claim. Jacob’s compu-
tation of true tropical longitudes of the Sun and the five planets for any given 
time began with the computation of their true sidereal longitudes according to 
the Toledan Tables, to which must be added a value for precession, the differ-
ence between a sidereal longitude and a tropical longitude at the given time. 
To compute the appropriate value for precession, he used the tables ascribed to 
Thābit (see note 22, below), where the correction table has entries at 5°-inter-
vals that require interpolation. Small errors (in the seconds) can easily be the 
result of approximation in these interpolations. Note that in these tables the 
year begins on March 1 rather than on January 1; hence, dates in January and 
February in the tables belong to the following year in the usual reckoning.

1. True positions of Saturn (Mh 203a–207b; Ph 2b–7a; Vh 9b–14a; Kl 32r–
34r; Ml 15r–19v; Pl. 3r–7v).

For days 10, 20, and last of each month in a cycle of 59 years, the Almanac 
displays entries given in signs, degrees, and minutes. The first entry in the 

19 Paris, Bibliothèque nationale de France, MS Heb. 1102. See also Goldstein, ‘The Surviv-
al’, pp. 34–35.

20 Nallino, Al-Battānī sive Albatenii.
21 For a partial description, see Mercier, ‘Astronomical Tables’, pp. 165–81. See also Millás, 

La obra Séfer Ḥeshbón, pp. 109–32.
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Hebrew manuscripts, Leo 21;10° (Leo 20;10° in Vh), corresponds to March 10, 
1301, whereas in the Latin manuscripts we have examined it is Leo 7;7°, cor-
responding to March 10, 1300. Indeed, in the Latin copies of this table there 
is an extra column for 1300, and 60 columns altogether. When comparing the 
last column (for 1359) with the column for 1300, it turns out that the posi-
tions of Saturn after a cycle of 59 years result from adding 1;31° to those for 
1300, despite the fact that the canons give the value 1;30°: see Table A, below.

2. True positions of Jupiter (Mh 208a–214b; Ph 7b–14a; Vh 14b–21a; Kl 
34v–37v; Ml 20r–26v; Pl. 8r–14v).

For Jupiter, the cycle lasts 83 years, and the frequency of the entries is the same 
as for Saturn, every ten days. Also, as was the case for Saturn, the Latin man-
uscripts provide data for 1300, so that the first entry in the Latin manuscripts 
we consulted is Ari 23;35° corresponding to March 10, 1300, whereas in the 
Hebrew manuscripts we examined it is Tau 23;0° corresponding to March 
10, 1301. The difference between corresponding entries for 1383 and 1300 is 
–0;30°, in agreement with the canons.

3. True positions of Mars (Mh 215a–221a; Ph 14b–21a; Vh 21b–28a; Kl 38r–
41r; Ml 27r–33v; Pl. 15r–21v).

The cycle of Mars is 79 years, and the entries are given with the same fre-
quency as for Saturn and Jupiter. In Latin the first entry is Psc 11;2° (March 
10, 1300), whereas in Hebrew it is Leo 8;47° (March 10, 1301). Again, com-
parison between entries for 1300 and 1379 show that 1;40° has to be added to 
the true positions after a cycle of 79 years, in agreement with the canons.

4. True positions of Venus (Mh 222a–b; Ph 21b–22b; Vh 28b–29b; Kl 32r–
34r; Ml 34r–35r; Pl. 22r–v).

For Venus the table displays entries for days 5, 10, 15, 20, 25, and last day of 
each month in a period of 8 years. The first entry, Aqr 4;40°, is the same in 
both the Hebrew and Latin manuscripts and corresponds to March 5, 1301, 
indicating that, in contrast to the rest of planets, the Latin manuscripts do not 
begin in 1300, but in 1301. In this case, it is not possible to compare entries 
8 years apart, but the canons indicate that in order to determine the true posi-
tion of the planet after one cycle one has to add 1;30° to the initial position.

5. True positions of Mercury (Mh 223b–231a; Ph 23b–31a; Vh 30b–38a; Kl 
43r–46r; Ml 35v–43r; Pl. 23r–30v).

The cycle of Mercury lasts 46 years, and the entries in the table are displayed 
for days 5, 10, 15, 20, 25, and last day of each month, as was the case for 
Venus. In agreement with the tables for the other planets, except Venus, the
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Planet Cycle
Correction
before 1600

Correction
after 1600

Saturn 59 years +1;30° +0;30°
Jupiter 83 years –0;30° –1;30°
Mars 79 years +1;40° +0;40°
Venus 08 years +1;30° –
Mercury 46 years –2;45° –

Table A: Cycles and corrections to be applied to the true positions after a complete cycle 
(Mh 221b, 223a; Ph 21a, 23a, 30b; Kl 89r–v; Ml 90r–v). 

Latin version has a column for year 1300, not found in the Hebrew version. 
The first entry in Latin manuscripts is Ari 2;33° (March 5, 1300) and that 
in the Hebrew manuscripts, Ari 11;30° (with the Latin manuscripts and Mh; 
Ph: Ari 12;30°) for March 5, year 1 (= 1301). The amount to be added to the 
initial true positions after a cycle of 46 years is –2;45°, as stated in the canons, 
although this does not hold for the differences between entries in the columns 
for 1300 and 1346.

In the Almanac there are more than 12,000 entries for the true positions of 
the five planets, given in signs, degrees, and minutes. Recomputation of a ran-
dom set of these positions with the Toledan Tables produces close agreement 
globally, and the differences between text and computation are generally a few 
minutes. This indicates that Jacob ben Makhir computed the entries with this 
set of tables. Sometimes, however, the differences between text and computa-
tion exceed a degree, which suggests that interpolation was used extensively to 
generate the entries, as is the case for the solar positions (see section 6, below).

The canons also explain that the corrections to be added or subtracted to 
the true positions of the planets are only valid for increasing values of the 
equation of the eighth sphere, and that after aD 1600 (some Latin manuscripts 
read 1690), when the equation begins to decrease, other corrections apply 
(see Table A). To be sure, the maximum value for the equation of the eighth 
sphere in Pseudo-Thābit’s table for trepidation, 10;45°, occurs at about 1600, 
when the equation changes its algebraic sign.22 Although the relevant Latin 
text is ascribed to Thābit Ibn Qurra (d. 901), his authorship is considered  
doubtful.23

22 See Toomer, ‘A Survey of the Toledan Tables’, p. 118. On Pseudo-Thābit’s theory of trep-
idation, see Neugebauer, ‘Thâbit ben Qurra’; Goldstein, ‘On the Theory of Trepidation’. On 
the history of trepidation, see Comes, ‘Accession and Recession’; Goldstein, ‘Historical Perspec-
tives’; Mercier, ‘Accession and Recession’, and Ragep, ‘Al-Battānī, Cosmology’.

23 See Neugebauer, ‘Thâbit ben Qurra’, p. 299; and Ragep, ‘Al-Battānī, Cosmology’, 
pp. 267–68.



 THE ALMANAC OF JACOB BEN MAKHIR 61

It may be worth comparing various key elements in Jacob’s Almanac with 
those in other almanacs, such as the Almanac of Azarquiel and the Almanac 
of 1307.24 The entries are given to degrees in these two almanacs, whereas in 
Jacob’s the precision is to minutes. This in itself is a major improvement. As 
for the frequency of the entries, in both the Almanac of Azarquiel and the 
Almanac of 1307 the entries are computed for exactly one day after those in 
Jacob’s Almanac. In all three almanacs the length of the cycles is the same, but 
the amounts to be added after a cycle differ, except for Venus and Mercury. All 
this suggests that Jacob ben Makhir could have used the Almanac of Azarquiel 
as his model, but did not compute his entries from it.

It is not possible to account for the values for Saturn and Jupiter listed in 
Table A from historical values of their mean motions.25 On the other hand, 
the increment for Mars (+1;40°) is compatible with al-Battānī’s value for its 
mean motion. For the inferior planets, the corresponding increments (+1;30° 
and –2;45°) are compatible with the values of their mean motions in both the 
zij of al-Battānī and the Toledan Tables.
6. True positions of the Sun (Mh 231b–235a; Ph 31b–35a; Vh 38b–44a; Kl 
46v–50r; Ml 43v–47r; Pl. 31v–35r).

There are four subtables with the daily positions of the Sun given to seconds, 
covering a period of 4 years (1301–1304), where the leap year is 1303, which 
means that Feb. 29 was the last day of year 3. The first entry (March 1, 1301) 
is the same in all manuscripts consulted: Psc 17;51,58°. The last entry (Febru-
ary 28, 1305, corresponding to Feb. 28, 1304 in the year that begins in March) 
is Psc 16;51,15°. The entry of the Sun into Aries occurs on March 13, indi-
cating that tropical coordinates were used for the entries (Table 6). However, 
when subtracting the position corresponding to the last entry in the table from 
that of the first, which are separated by 1460 days, the mean motion we obtain 
is 0;59,8,11,23°/d, corresponding to a sidereal mean motion, close to that used 
in the Toledan Tables (0;59,8,11,28,27°/d), and very different from al-Battānī’s 
tropical value (0;59,8,20,46,56,14°/d). This indicates that, in order to compute 
his solar table, Jacob used a parameter underlying the Toledan Tables to which 
he applied a correction for precession. Indeed, our recomputations of Jacob’s 
solar positions demonstrate that he used the tables for precession ascribed to 
Thābit that were associated with the Toledan Tables.

24 On the Almanac of Azarquiel, see Millás, Estudios sobre Azarquiel, pp. 149–237. On the 
Almanac of 1307, see Chabás, ‘El almanaque perpetuo’.

25 Chabás and Goldstein, A Survey of European Astronomical Tables, p. 59.
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_____________________

Day Solar position
 (º)
_____________________

01 Psc 17;51,58 Ph   17;51,57
02  18;51,39
03  19;51,20 Boff: 19;50,20 Pl: 19;50,32 
04  20;51,01
05  21;50,42 Boff: 21;51,42 
06  22;49,46
07  23;48,49 Boff: 23;47,49
08  24;47,53 Boff: 24;46,53
09  25;46,55 Boff: 25;45,55
10  26;45,58 Boff: 26;44,57 Kl: 26;45,57
11  27;44,50 Boff: 27;43,54 Kl: 27;44,54
12  28;43,41 Boff: 28;42,51 Kl: 28;43,51 Pl: 28;43,5  Vh: 27;43,41
13  29;42,32 Boff: 29;41,32
14 Ari  0;41,24 Boff:  0;40,24 Kl:  0;42,24
15   1;40,15 Boff:  1;39,15 Kl:  1;41,15
16   2;39,24 Boff:  2;38,29 Kl:  2;39,29  Mh 2;39,22
17   3;38,32 Boff:  3;37,32
18   4;37,40 Boff:  4;36,40
19   5;36,48 Boff:  5;35,58
20    6;35,57 Boff:  6;34,47 Kl, Pl, Mh: 6;35,47
 ⋮   
_____________________

Table 6: True solar positions beginning in March 1301 (excerpt). The manuscripts con-
sulted contain many copyists’ errors; the most reliable witness seems to be Ml, which 
is the closest to the Hebrew manuscripts and therefore it has been taken as the base 
manuscript.

Inspection of successive entries in Table 6 shows that Jacob computed only 
one out of five entries, and found the intermediate values by interpolation. As 
an example, consider the entries for June 1301 listed in Table 6 and December 
1301 (see Table B). Instead of 1301, the Hebrew reads year 1 (of a four-year 
solar cycle): Ph 32a.

Between two computed entries, marked here in bold type, the author divided 
the difference into five equal parts to determine the intermediate entries. The 
different strategies used when the difference was not a multiple of 5 seconds 
are shown in Table B. The trouble with this system for computing entries 
5 days apart is that a mistake in one computed entry affects nine successive 
entries in the table (four previous and four subsequent entries). Hasty compu-
tation entails high risks.

We have recomputed selected entries in this table for the meridian of Toledo, 
at noon and at two moments of time before noon to account for the difference 
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_______________________________________________________
Day           Solar position           Successive      …          Solar position                     Successive

March                 differences         …          December              differences
(º)                            (º)                                     (º)                             (º)

_______________________________________________________________

01   Psc 17;51,58          Sgr 16;34,52
02     18;51,39   0;59,41      17;36,24   1;1,32
03     19;51,20   0;59,41      18;37,56   1;1,32
04     20;51,01   0;59,41      19;39,28   1;1,32
05     21;50,4221;50,42   0;59,41      20;40,5920;40,59   1;1,31
06     22;49,46   0;59,04      21;42,01   1,1,02
07     23;48,49   0;59,03      22;43,04   1;1,03
08     24;47,53   0;59,04      23;44,07   1;1,03
09     25;46,55   0;59,02      24;45,10   1;1,03
10     26;45,5826;45,58   0;59,03      25;46,1325;46,13   1;1,03
11     27;44,50   0;58,52      26;47,28   1;1,15
12     28;43,41   0;58,51      27;48,43   1;1,15
13     29;42,32   0;58,51      28;49,58   1;1,15
14   Ari  0;41,24   0;58,52      29;51,13   1;1,15
15      1;40,151;40,15   0;58,51    Cap  0;52,290;52,29   1;1,16
16      2;39,24   0;59,09       1;53,44   1;1,15
17      3;38,32   0;59,08       2;54,59   1;1,15
18      4;37,40   0;59,08       3;56,14   1;1,15
19      5;36,48   0;59,08       4;57,29   1;1,15
20      6;35,576;35,57   0;59,09       5;58,435;58,43   1;1,14
 ⋮_______________________________________________________________

Table B: Interpolations for the solar longitude in March and December, 1301.

in longitude between Toledo and Montpellier. Table C shows the recomputa-
tion for various dates evenly spaced in the period 1301–1304. Note the last 
entry in Table C, for February 1, 1305, corresponds to 1304 in the Almanac. 
The value of precession for March 1, 1301 is 9;27,5°, and for Feb. 1, 1305 it is 
9;28,54°.

The agreement between the entries in the text and recomputation is best 
when the distance in longitude between Toledo and Montpellier is taken to 
be 1;15h (= 18;45°), for the magnitude of most of the differences is in seconds, 
except for some entries where the difference reaches a little over a minute. As 
far as we can determine, the value of 1;15h for the distance between Toledo 
and Montpellier is not attested in any medieval text. According to modern 
data, this distance amounts to about 8°, or about 0;32h, corresponding to about 
0;1,20° in solar longitude. In many medieval sources the longitude of Toledo is 
28;0° from the western limit, and in prologue B the longitude of Montpellier 
is 32;0° from the western limit, for a difference of 4;0°, or 0;16h, correspond-
ing to about 0;0,40° in solar longitude. However, in the editio princeps of the
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Date Text Computation T – C

March 1, 1301 Psc   17;51,58º Noon:
–1h:
–1;15h

347;55,10º
347;52,42º
347;52,05º

  –0;03,12º
  –0;00,44º
  –0;00,07º

May 1, 1301 Tau  17;18,27º Noon:
–1h:
–1;15h:

047;21,30º
047;19,06º
047;18,30º

  –0;03,13º
  –0;00,39º
  –0;00,03º

June 1, 1302 Gem 16;40,51º Noon:
–1h:
–1;15h:

076;45,23º
076;43,00º
076;42,24º

  –0;04,34º
  –0;02,09º
  –0;01,33º

August 1, 1302 Leo  14;59,47º Noon:
–1h:
–1;15h:

135;02,50º
135;00,25º
135;59,49º

  –0;03,03º
  –0;00,38º
  –0;00,02º

September 1, 1303 Vir   14;49,43º Noon:
–1h:
–1;15h:

164;53,11º
164;50,45º
164;50,08º

  –0;03,28º
  –0;01,02º
  –0;00,25º

November 1, 1303 Sco  15;34,46º Noon:
–1h:
–1;15h:

225;37,51º
225;35,19º
225;34,41º

  –0;03,05º
  –0;00,33º
+0;00,05º

December 1, 1304 Sgr  16;50,07º Noon:
–1h:
–1;15h:

256;54,02º
256;51,29º
256;50,51º

  –0;03,55º
  –0;01,22º
  –0;00,44º

February 1, 1305 Aqr  19;53,11º Noon:
–1h:
–1;15h:

319;56,45º
319;54,13º
319;53,36º

  –0;03,34º
  –0;01,02º
  –0;00,25º

Table C: Recomputation of the solar longitude.

Parisian Alfonsine Tables, the difference in longitude between Montpellier and 
Toledo is 15° (26;0° – 11;0°), which is equivalent to 1h.26

In a complete set of astronomical tables one expects to find a table for the 
equation of time. However, it is not clear if Jacob included it, for such a table 
is only found in two of the six manuscripts we examined (both in Hebrew): 
Ph 82b–83a which is not in the part of this manuscript that contains Jacob’s 
tables, and Vh 96b–97a. The same table for the equation of time occurs in the 
earlier tables of Abraham Bar Ḥiyya and later in Bonfils’s Tables for 1340.27

26 Ratdolt, Tabule astronomice, m5r; see also Kremer and Dobrzycki, ‘Alfonsine Meridians’. 
The longitude of Montpellier in the Tables of Barcelona is 32;10°. On the Tables of Barcelo-
na (second half of the fourteenth century), see Chabás, ‘Astronomía andalusí’; see also Millás, 
Las tablas astronómicas, p. 238. In the list of coordinates of cities in the Toledan Tables, the 
longitude of Toledo is 11° but Montpellier is not mentioned: see Pedersen, The Toledan Tables, 
pp. 1512–13.

27 On Bonfils’s Tables for 1340, see Goldstein and Chabás, ‘Analysis of the Astronomical 
Tables’, pp. 76–78. On the equation of time, see Chabás and Goldstein, A Survey of European 
Astronomical Tables, pp. 37–41.
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7. Mean motion in lunar longitude in days in a Julian year (Mh 236a–b; Ph 
35b–36b; Vh 46a–47a; Kl 51r–v; Ml 48v–50r; Pl. 36r–v).

This table displays the mean motion in longitude traveled by the Moon in a 
year, where the argument is the month and day. The first entry is for March 
1: 0s 13;10,35°. The last entry is for February 29: 4s 22;32,48°. The underlying 
daily mean motion in lunar longitude can thus be calculated as (13 · 360 +  
4s 22;32,48)/366 = 13;10,34,53,6,53°/d, a value which is close to that underly-
ing the Toledan Tables (13;10,34,52,48,47°/d) and, again, far from al-Battānī’s 
value (13;10,35,2,7,17,10°/d). Indeed, the first 30 entries in this table agree, but 
for scribal errors, with those in the table for the mean motion of the Moon in 
days in the Toledan Tables.28

8. Mean motion in lunar longitude in collected Julian years (Mh 235b; Ph 37a; 
Vh 45b; Kl 50v; Ml 47v–48r; Pl. 35v).

The entries in this table represent the mean motion in longitude for 76 consec-
utive years. Before the entry for year 1 (= 1301) of 11s 11;36,11° (with Ph; Kl 
reads 11s 11;36,44°), there are two other entries (2s 22;51,41° and 7s 2;14,21°), 
corresponding to 1299 and 1300, respectively. While the entry for 1299 is the 
same in all manuscripts, that for 1300 has variants: 7s 2;14,52° in Mh, and  
7s 2;13,23° in all three Latin manuscripts, whereas it should be 7s 2;13,56°, as 
it is in Vh. These two entries are not found in Ph. Comparison of the follow-
ing entries in the different manuscripts reveals many scribal errors.

The canons indicate that, after one cycle of 76 years, the mean positions 
of the Moon have to be increased by 3°.29 To be sure, this value results from 
subtracting the radix for 1300 (7s 2;14,21°) from the entry for year 76 (7s 
5;14,12°). The result is 2;59,51° ≈ 3°. The text adds that this increment is only 
valid when the equation of the eighth sphere is increasing, and that 1° is to be 
applied for decreasing values of the equation (Ph 37a, Mh 235b, and Vh 45b 
agree on the 3° but all three manuscripts have 1;55°, instead of 1°, to be applied 
for decreasing values of the equation).

9. True lunar anomaly (Mh 247b–255a; Ph 37b–66b; Vh 47b–84a; Kl 52r–
75v; Ml 50v–74v; Pl. 37r–61r; see Plate 2).

This table is unprecedented and it is the largest table in this set, for it contains 
more than 8500 entries for the true lunar anomaly on a daily basis for a period 
of about 24 years, from March 1300 to December 1323 (see Table 9). At the 
left of the table in Latin there are successive integers for days, from 1 to 30 or 
29. There are altogether 294 columns, 156 of them with 30 entries and other 
138 columns with 29 entries, totaling 8682 days. Each column represents a 
lunar month (which is not named), and for each day we are given two entries:

28 Pedersen, The Toledan Tables, p. 1155.
29 Boffito and Melzi d’Eril, Almanach Dantis Aligherii, p. 4, lines –9 and –8.
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___________________________________________________________
                             3                                     5                                          6                         …
                          22                                   21                                        20                         …
                   March      min                 April        min                    May        min         …___________________________________________________________

01          5s 04;28           3           6s 08;05             5            6s 25;06             2
02          5s 21;01           9           6s 24;30          17            7s 10;14             6
03          6s 10;48        20           7s 10;20          25            7s 27;49          19

                   ⋮
15          11s 4;39           0           0s 08;17             2            0s 25;16             0

                   ⋮
28          4s 18;15           4           5s 21;47             2            6s 08;48             4
29          5s 04;46           0           6s 08;27             0            6s 25;21             0
30          5s 21;33           1                                                                                                7s 12;04             0

___________________________________________________________

Table 9: True lunar anomaly in degrees and minutes of proportion, beginning on March 22, 1300 
(excerpt).

one for true lunar anomaly, in signs, degrees, and minutes, and another for the 
minutes of proportion. In Ph the columns are numbered consecutively from 1 
to 294. At the head of the column for each such month we are given informa-
tion on the weekday of the first day of the lunar month, the day of the Julian 
month when the lunar month begins, and the name of the month in the Julian 
calendar. For example, for the first column, we find 3 (weekday), 22 (day in 
the Julian month for the beginning of the lunar month), and March (name of 
the Julian month). This is to be understood as the lunar month beginning on 
Tuesday, March 22 (Nisan 1, 5060 aM in the Hebrew calendar, and Rajab 1, 
699 aH in the Hijra calendar). For that specific day, the entry for true anomaly 
is 5s 4;28° and that for the minutes of proportion, 3 min, in all manuscripts.

In the table for the lunar equations in the Toledan Tables there is also a 
column for the minutes of proportion, which serves for interpolation pur-
poses between extremal values. The same column is already found in Ptolemy’s 
Almagest. The entries for the minutes of proportion given by Jacob correspond 
in each case to the equation of center of the Moon associated with the tabu-
lated values of true anomaly.

To recompute the values of the true anomaly, α, first one has to determine 
the mean longitudes of the Sun and the Moon and the mean lunar anomaly, 
ᾱ, and then to compute the equation of center of the Moon, c3(2η), from the 
double elongation of the mean Moon from the mean Sun: α = ᾱ + c3(2η). See 
Table D for computations of selected entries corresponding to the first half of 
the first column (lunar month) in the table for the true lunar anomaly. The 
first entry corresponds to March 22, 1300, that is, Rajab 1, 699 aH in the civil 
calendar but, for astronomical purposes, the day begins at noon, rather than 
at sunset as in the civil Hijra calendar.30 Hence noon on March 22, 1300 cor-

30 Neugebauer, The Astronomical Tables of al-Khwārizmī, pp. 10–11.
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1300 March 22 March 25 March 28 March 31 April 3
Mean anomaly
    Noon: 151;05,37º 190;17,19º 229;28,58º 268;40,42º 307;52,24º
True anomaly
    Noon:
    –1h:
    –1;6h

155;13,38º
154;31,50º
154;27,49º

203;03,25º
202;27,42º
202;24,08º

231;29,14º
231;17,54º
231;16,46º

255;33,22º
254;59,41º
254;56,1º9

302;09,37º
301;27,49º
301;23,38º

Text 5s 4;28ººººº 6s 22;24ºººººº 7s 21;17ºººººº 8s 14;57ººººº º 10s 1;23ºººººº 
Diff. T – C
    Noon:
    –1h:
    –1;6h

–0;46ººº
–0;04ººº
–0;00ººº

–0;36ºººº

–0;04ºººº

–0;00ºººº

–0;12ººº
–0;01ººº
–0;00ººº

–0;36ººº
–0;03ººº
+0;01ººº

–0;47ººº
–0;05ººº
–0;01ººº

Table D: Recomputation of the true lunar anomaly. 

responds to the beginning of Rajab 2, 699 aH according to the astronomical 
convention. All values for the mean motions and the lunar equation of center 
were taken from the Toledan Tables.31

The agreement in Table D is excellent when the distance between Montpel-
lier and Toledo is taken to be 1;6h (= 16;30°). It is indeed an excellent result 
because the Moon, being the swiftest object, is likely to produce the worst 
results. Note, however, that Table 6 for solar longitude seems to have been 
computed for a different, and greater, distance between the two cities. A few 
explanations come to mind, but none is supported in the text.

10. Complete lunar equation (Mh 256a–261b; Ph 67b–73a; Vh 85a–90b; Kl 
76r–81v; Ml 75r–80r; Pl. 61v–67r; see Plate 3).

This is a double argument table, also unprecedented in the West, and directly 
linked to the previous table for the true anomaly of the Moon (Table 9). The 
minutes of proportion at the head of the table are given at intervals of 5 min-
utes from 0 to 60 minutes, and they represent one variable. The other variable, 
at the left of the table in Latin, is the true anomaly, from 0s 1° to 11s 30°, at 
intervals of 1°, a quantity obtained from Table 9. The first entry (for 0 minutes 
of proportion and a true anomaly of 1°) is 7;35°, as shown in Table 10.

In Table 10 only selected entries, based on the Latin manuscripts, have been 
displayed (the variants in the Hebrew manuscripts are minor), but they are suf-
ficient to demonstrate the role of a key entry, 7;40°, corresponding to the rows 
for values of the true anomaly of 5s 30° (= 180°) and 11s 30° (= 360°). It 
also shows that the entries in rows equally distant from the central one (for 
true anomaly 180°) add up to 15;20°, which is twice 7;40°. To understand the 
meaning of this number, we need to recall how the complete lunar equation,

31 Pedersen, The Toledan Tables, pp. 1147–48, 1154–55, 1159–60, and 1253–58.
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0 … 15 … 30 … 45 … 60
(°) (°) (°) (°) (°)

00s 01º 07;35 07;34 07;33 07;33 07;32
⋮

02s 30º 02;40 02;01 01;22 00;43 00;04
03s 01º 02;40 02;01 01;21 00;42 00;03
⋮

03s 05º 02;39 02;00 01;20 00;41 00;01
⋮

03s 08º 02;39 02;00 01;20 00;40 00;00
⋮

05s 30º 07;40 07;40 07;40 07;40 07;40
⋮

08s 22º 12;41 13;20 13;59 14;40 15;20
⋮

08s 25º 12;41 13;20 14;00 14;39 15;19
⋮

08s 30º 12;40 13;19 13;59 14;37 15;17
⋮

11s 29º 07;45 07;46 07;46 07;47 07;48
11s 30º 07;40 07;40 07;40 07;40 07;40

Table 10: Complete lunar equation (excerpt). 

c, to be applied to the mean lunar longitude to obtain its true longitude, is 
computed in Ptolemy’s second lunar model:32

c = c4(α) + c5(α) · c6(2η),
where

α = ᾱ + c3(2η).

The subscripts refer to the number of the column in Ptolemy’s table for the 
lunar equations in Almagest V.8, and the two variables, α and 2η, are the true 
lunar anomaly and the double elongation, respectively. In the expressions above, 
c3(2η) is the equation of center, c4(α) is the equation of anomaly, c5(α) is called 
the increment and represents the effect of bringing the epicycle closer to the 
observer in the second lunar model than in the epicyclic version of the first 
lunar model, and c6(2η) corresponds to the minutes of proportion for purposes 
of interpolation. In Almagest V.8 the maximum values for the equation of cen-
ter, equation of anomaly, and increment are 13;9°, 5;1°, and 2;39°, respectively. 
In the table in the Almagest the argument is given at intervals of 3° and 6°, but 
in his Handy Tables Ptolemy expanded it to intervals of 1°, where the maxi-
mum value of the increment was taken as 2;40°. The latter was the basis for 
the corresponding tables in the zij of al-Battānī and the Toledan Tables.

32 Chabás and Goldstein, A Survey of European Astronomical Tables, pp. 68–70.
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The entries in Jacob’s double argument table represent the complete lunar 
equation for each pair of values of α and 2η, increased by 7;40°, which is the 
maximum resulting from adding corresponding values of the two quantities 
depending on the true anomaly, c4(α) and c5(α). They can be computed by 
means of the expression:

c + 7;40° = c4(α) + c5(α) · c6(2η) + 7;40°.

The inclusion of a vertical shift of +7;40° in all entries ensures that no negative 
numbers are involved or, to say it in a non-anachronistic manner, to avoid the 
cumbersome rules used by medieval astronomers to deal with all possible val-
ues and signs of the equations. This makes Jacob’s table for the lunar equation 
exceptional, for it is the first known example of a double argument table in 
the West with a vertical shift. On displaced tables with vertical and horizontal 
shifts in Arabic, Hebrew, and Latin astronomical tables, see Chabás and Gold-
stein, ‘Displaced Tables in Latin’, and the references there.

To recompute the entries, let us first consider the case where c6(2η) = 0. The 
expression for computing the entries then reduces to c4(α) + 7;40°. For α = 1°, 
the value obtained in the table for the lunar equations in the Toledan Tables is 
–0;4,50° + 7;40° ≈ 7;35°, in agreement with the entry in the table. For α = 180° 
and 360°, the result is 0° + 7;40° = 7;40°. For intermediate values of the true 
anomaly such as 95° and 265°, we find –5;1° + 7;40° = 2;39° and +5;1° + 7;40° =  
12;41°, respectively, both in agreement with the entries in the table.

Consider now the case where c6(2η) = 60. The expression for computing the 
entries then reduces to c4(α) + c5(α) + 7;40°. For α = 1°, the value we obtain 
from the table for the lunar equations in the Toledan Tables is –0;4,50° – 
0;3° + 7;40° ≈ 7;32°, in agreement with the entry in the table. For α = 180° 
and 360°, the result is 0° + 0° + 7;40° = 7;40°. For intermediate values of 
the true anomaly such as 95° and 265°, we find –5;1° – 2;38° + 7;40° = 0;1°, 
and + 5;1° + 2;38° + 7;40° = 15;19°, respectively, both also in agreement with 
the entries in the table.

For intermediate values of the minutes of proportion, consider the case 
where c6(2η) = 30. The expression above becomes c4(α) + ½ · c5(α) + 7;40°. 
With the Toledan Tables, for α = 1° we obtain –0;4,50° – 0;1,30° + 7;40° = 
7;33,40°, rounded to 7;33° in the table. For α = 180° and 360°, the result is 
again 7;40°. For intermediate values of the true anomaly such as 95° and 265°, 
we find –5;1° – 1;19° + 7;40° = 1;20° and + 5;1° + 1;19° + 7;40° = 14;0°, 
respectively, both in agreement with the entries in the table.

It follows that Jacob divided the procedure for computing the key quantities 
associated with the Moon into two phases: the first deals with double elonga-
tion to compute the true lunar anomaly and is presented in the form of a table 
for lunar months (Table 9), whereas the second uses the true lunar anomaly 
to compute the lunar equation and it is presented in the form of an unprece-
dented double argument table with a vertical shift (Table 10). The geometrical 



70 JOSÉ CHABÁS AND BERNARD R. GOLDSTEIN

model and the parameters underlying these two tables are Ptolemy’s, probably 
transmitted via the Toledan Tables or the zij of al-Battānī. In short, this is 
a new and clear example of a typical approach for constructing astronomical 
tables in the Middle Ages: no changes were made in the model or the under-
lying parameters; rather, enhancing ‘user-friendliness’ is attained by means of 
innovation in the presentation. By ‘user-friendliness’, we mean that the com-
piler of the table does more calculations so that the user has to do fewer and 
simpler computations, thus saving time and avoiding possible computational 
mistakes. In this case, the presentation of the table is very ingenious.

This kind of double argument table for the lunar equation is also found in the 
zij of Joseph Ibn Waqār, composed in Arabic in Toledo in 1359/1360 and then 
translated into Hebrew by the author himself. Moreover, Moses Farissol Botarel 
(Avignon, late fifteenth century), whose astronomical tables are in Hebrew, adapted 
this presentation to the Alfonsine Tables, with an equation of lunar anomaly 
reaching a maximum of 4;56°, rather than 5;1° as is the case in Jacob’s Almanac.33

11. Mean and ‘true’ motion of the lunar node in collected Julian years (Mh 
262b; Ph 73b; Vh 91a–b; Ml 81r; Kl 83r; Pl. 67v).

This table displays the mean motion of the lunar ascending node for 93 consec-
utive years. In each case we are given the mean motion and the ‘true’ motion, 
which is taken as the complement in 360° of the mean motion. The entries for 
year 1 in MS Kl are 1s 29;37,45° and 10s 0;22,15°, respectively, which add up 
to 12, as expected. Although it is not stated in the table or the canons, year 1 
corresponds to 1301. In the Latin version there are also values for years 1299 
(0s 20;57,35° and 11s 9;2,25°) and 1300 (1s 10;17,40° and 10s 19;42,20°).

12. Daily mean motion of the lunar node in a Julian year (Mh 263a–b; Ph 
74b–75a; Vh 92a–b; Kl 83v–84r; Ml 81v–82r; Pl. 68r–v).

The entries in this table represent the daily mean motion of the lunar ascend-
ing node, where the argument is the month and the day in a year. The first 
entry is for March 1: 0;3,11°. The last entry is for February 29: 19;23,45°. The 
resulting daily mean motion is 19;23,45/366 = 0;3,10,46,43°/d, which is close 
to that in the Toledan Tables (0;3,10,46,42,33°/d) and, again, far from al-Bat-
tānī’s value (0;3,10,37,19°/d). Indeed, the first 30 entries in this table agree, 
but for scribal errors, with those in the table for the mean motion of the lunar 
node in days in the Toledan Tables.34

13. Lunar latitude (Mh 264a; Ph 75b; Vh 93a; Kl 84r; Ml 87r; Pl. 69v).

The entries in this table are given to minutes for each integer degree of the 
argument, and reach a maximum of 5;0° at 90°. The table in the Almanac is

33 On the tables of Ibn Waqār, see Chabás and Goldstein, ‘Ibn al-Kammād’s Muqtabis zij’, 
p. 607. On the tables of Moses Farissol Botarel, see Goldstein and Chabás, ‘The Astronomical 
Tables of Moses’.

34 Pedersen, The Toledan Tables, p. 1165.
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_________________________________________
Argument of lunar         Digits            Minutes of              Half-

latitude                  of eclipse          immersion            totality
0s / 6s 5s / 11s

(º)     (º)                   (d)                       (ʹ)                         (ʹ)_________________________________________
   11;42         18;18                   0                      00;00                     0;00
   10;58         19;02                   1                      18;22                     0;00
   10;26         19;34                   2                      25;01                     0;00
   09;54         20;06                   3                      30;33                     0;00
                        ⋮
   05;38         24;22                  11                    52;19                     0;00
   05;06         24;54                  12                    53;40                     0;00
   04;34         25;26                  13                    43;15                  12;01
   04;02         25;58                  14                    39;20                  16;18
                        ⋮
   01;22         28;38                  19                    33;43                  25;41
   00;50         29;10                  20                    33;27                  26;18
   00;18         29;42                  21                    33;26                  26;36
   00;00         29;42                  21                    33;30                  26;40 _________________________________________

Table 14: Lunar eclipses in MS Kl, 84v (excerpt).

based on the corresponding table in Almagest V.8, where the entries are also 
given to minutes, but only at intervals of 3°. Later tables for the same purpose, 
such as those in the zij of al-Battānī and the Toledan Tables used the same 
value for the maximum lunar latitude, but displayed entries to seconds and at 
intervals of 1°.

14. Lunar eclipses (Mh 264a; Ph 75b; Kl 84v; Ml 87r; Pl. 69v).

In contrast to most of the sets of tables dealing with eclipses which present 
two separate tables for lunar eclipses, one for greatest and another for least 
distance of the Moon, Jacob’s Almanac has a single table for any lunar dis-
tance (see Table 14). It consists of five columns. The first two columns are for 
the argument of lunar latitude in degrees and minutes, to be added to 0s and 
6s (first column) and to 5s and 11s (second column). For reasons of symme-
try, the corresponding entries in these two columns should add up to 30°. The 
third column, which displays the fraction of the diameter of the eclipsed disk, 
i.e., the digits of eclipse, is the real argument in this table. They are given in 
integer digits from 0 to 21. The fourth and fifth columns display the minutes 
of immersion and the minutes of half-totality of the lunar eclipse. The last 
two columns in this table could have been derived from the table in Ptolemy’s 
Almagest35 by computing the arithmetical mean of the entries in the columns 
for greatest and least distances, which differ by only a few minutes.

35 Toomer, Ptolemy’s Almagest, p. 307.
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15. Hourly velocities of the Moon and the Sun and the Moon, and length of 
half-day light (Mh 268b; Ph 76a; Vh 93b–94a; Kl 84v; Ml 87v; Pl. 69r).

In several manuscripts, both in Hebrew and in Latin, between the columns 
for the lunar velocity and the solar velocity, we find other columns for inter-
polation. In particular, one ranges from 0 to 60 min and another from 0 to 
12, and correspond to columns already found in Ptolemy’s tables, as well as 
in other sets of medieval tables, such as the zij of al-Battānī and the Toledan 
Tables, under the title tabula attacium (see section 19, below).

16. Hourly velocity of the Moon relative to the Sun (Mh 264b–265a; Ph 76b–
77a; Vh 94b–95a; Kl 82r–v; Ml 82v–83r; Pl. 70r–v).

This table consists of 13, 14, or 15 columns, depending on the manuscript, 
labeled 1 to 13, 14, or 15. The first column displays the difference between the 
hourly velocities of the Moon and the Sun, from 0;27,50°/h to 0;33,20°/h (or 
0;33,30°/h) at intervals of 0;0,10°/h, and the rest of the columns display mul-
tiples of the entry in the first column up to 13, 14, or 15 hours. The aim is to 
facilitate calculations when computing the time of true syzygy.

17. Parallax (Mh 265b–267a; Ph 77b–78a; Vh 98a–99a; Kl 92v–93r; Ml 83v–
84v; Pl. 71r–72v).

There is only one table for parallax and it is for geographical latitude 43°, cor-
responding to Montpellier. The title of this table in Ph 77b is ‘Lunar parallax 
for latitude 43° which is the latitude of Montpellier (ha-har), and its hours are 
15;32h as found in the table of ascensions by Ibn Ezra’, but in Ph 78a the title 
is ‘Lunar parallax for 43° derived from the two tables found in the book by 
ha-Nasi’ [i.e., Abraham Bar Ḥiyya] for the fifth and sixth [climates]’. In Mh 
265v it is simply ‘Lunar parallax for latitude 43° and the longest daylight is 
15;32h’. In Vh the title is ‘Table for lunar parallax for the fifth climate, lati-
tude 43° and [longest daylight] 15;18h’. All three Latin manuscripts mention 
the name of the city, Montpellier, and its latitude, 43°. This table is intended 
to be used in computing the circumstances of a solar eclipse; it corrects the 
true position of the Moon to its apparent position for an observer at a given 
geographical latitude. In fact, computations using this type of table were made 
very rarely. Levi ben Gerson was one of a few exceptions to the general pattern, 
for he observed four solar eclipses from 1321 to 1337 and computed their cir-
cumstances.36

Jacob’s table has the same structure as the corresponding tables in Ptolemy’s 
Handy Tables, the zij of al-Battānī and the tables of Abraham Bar Ḥiyya, etc. 

36 Goldstein, ‘Medieval Observations’, pp. 123–30. For discussion of similar tables, see 
Chabás and Goldstein, A Survey of European Astronomical Tables, pp. 127–38.



 THE ALMANAC OF JACOB BEN MAKHIR 73

It consists of 12 subtables, one for each of the zodiacal signs, displaying the 
components of parallax in longitude and latitude, as a function of time. But, 
unlike those tables which give the components of parallax to minutes, Jacob 
gives them to minutes and seconds. This is quite unusual, but this precision 
also occurs in the tables of Levi ben Gerson.37

Each of the six manuscripts examined has a single table for parallax. How-
ever, in the three Latin manuscripts and Vh the maximum time of half-day-
light is 7;39h, implying a longest daylight of 15;18h, whereas in two Hebrew 
manuscripts, Mh and Ph, the corresponding time is 7;46h, which agrees with 
the value of the longest daylight of 15;32h in the title. Because of this dis-
crepancy, we examined another copy of this table in Hebrew (Parma, MS Heb. 
2113, 78b–79b), and we found that it agrees with the three Latin manuscripts 
and Vh. Thus, we encounter two different tables with entirely different entries. 
The formula for computing longest half-daylight is

sin γ = tan ε · tan φ,

where γ is the increment in longest half-daylight (in degrees) over 90°, ε is the 
obliquity of the ecliptic, and φ is the geographical latitude.38 With ε = 23;51° 
and φ = 43°, we find γ = 24;21° = 1;37,24h. Longest half-daylight is then 
6h + 1;37,24h = 7;37,24h, and longest daylight is 15;15h, which is close to the 
value of 15;18h in one version of this table. Lower values for the obliquity of 
the ecliptic produce worse agreement. The other version, however, with longest 
daylight of 15;32h, is not consistent with a geographical latitude of 43°, which 
is that of Montpellier. Moreover, according to the title in Ph, the table was 
derived from two subtables for the fifth and sixth climates due to Abraham 
Bar Ḥiyya, which are the same as those in al-Battānī’s zij, but for minor vari-
ants.39 However, in al-Battānī’s zij the length of daylight for the sixth climate 
is 15;30h, corresponding to a geographical latitude of 45;22° (Bar Ḥiyya, Paris 
1046, 32a: length of daylight 15;30h, latitude 45;0°) which implies that the 
longest daylight in Ph of 15;32h would have to correspond to a latitude even 
greater than 45;22°, a latitude that is much too high for Montpellier. It fol-
lows that the parallax table in Mh and Ph does not correspond to Montpellier, 
whereas that in Vh, Parma 2113, and the Latin manuscripts does. The title for 
this table in Ph 77b (translated above) refers to a table for (oblique) ascensions 
by Abraham Ibn Ezra, but we are not aware of any such table: it is likely that 
this is a mistake introduced by a copyist. Moreover, the reference in the title of 
the parallax table in Ph 78a to the tables for the fifth and sixth climates does

37 Goldstein, The Astronomical Tables of Levi, pp. 184–207.
38 Chabás and Goldstein, A Survey of European Astronomical Tables, pp. 31–32.
39 See Paris, MS Heb. 1046, 31b–32a; Nallino, Al-Battānī sive Albatenii, vol. II, pp. 99–

100.
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___________________________      _________________________

       Greatest distance                   Least distance
Latitude Digits of  Min. of            Latitude Digits of  Min. of
       eclipse     immersion                eclipse     immersion
 (ʹ)     (d)    (ʹ)       (ʹ)    (d)    (ʹ)
___________________________      _________________________
  32;00               00                  00;00                 34;30              00                   0;00
  29;20               01                  12,32                 31;28              01                  12;56
  27;40               02                  17;19                 28;48              02                  17;54
        ⋮
   5;20               10                  30;54                  7;28              10                  32;33
   2;40               11                  31;13                  4;48              11                  33;11
   0;00               12                  31;20                  2;16              12                  33;16
                                                                                0;00              12                  33;20
___________________________      _________________________

Table 18: Solar eclipses in MS Kl 87r (excerpt).

not seem compatible with the entries in Jacob’s table, and it too may have been 
added by a copyist. We conclude that the table with longest daylight 15;18h 
was probably in Jacob’s original Hebrew text, and that an early copyist in the 
Hebrew tradition replaced it with a table for longest daylight of 15;32h, pre-
served in some (but not all) copies in Hebrew. The Latin text was probably 
translated from Hebrew soon after the time of composition and was unaffected 
by the replacement of the parallax table.

18. Solar eclipses (Mh 267b; Ph 78b; Vh 97b; Kl 94v; Ml 87r; Pl. 73r).

There are two subtables, one for greatest distance of the Moon and another for 
least distance. The argument is the lunar latitude in minutes and seconds of 
arc, following the pattern of Ptolemy’s Handy Tables, in contrast to the table 
for lunar eclipses (see section 14) where it is the argument of lunar latitude, as 
is the case in Ptolemy’s Almagest.40 The other two columns are for the digits 
of eclipse and the minutes of immersion (see Table 18). The same table (with 
variants) appears in Bar Ḥiyya’s tables: Paris, MS Heb. 1046, 26b.

19. Table for division (Ph 80a; Vh 44b; Kl 94v; Ml 88r; Pl. 31r).

The three subtables in the Latin manuscripts have the same format and their 
purpose is to divide integer numbers from 1 to 60 by 10, 5, and 6. Only two 
subtables for division, those by 10 and 5, are found in the Hebrew manuscripts.

40 Chabás and Goldstein, A Survey of European Astronomical Tables, p. 167.
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Conclusion

Jacob ben Makhir computed his Almanac with the Toledan Tables, and not 
with any other set of tables available at the time, such as the Almanac of 
Azarchiel or the tables of al-Battānī. In his Almanac, Jacob used tropical coor-
dinates, and thus had to compute precession to adjust the sidereal coordinates 
found in the Toledan Tables or a version of them. Jacob computed the posi-
tions of the planets to minutes, thus increasing the precision found in previ-
ous almanacs and enhancing the user-friendliness of the table. Moreover, Jacob 
adjusted the true positions of the celestial objects to Montpellier, by applying 
a distance from that city to Toledo that we have not found in the previous 
literature. In the Almanac, two unprecedented features are introduced: a table 
for true anomaly, the largest in this set, using both the Julian and the Hebrew 
calendars, and a double argument table for the complete lunar equation, with a 
vertical shift. We also learn about contacts among astronomers in various reli-
gious communities: the Toledan Tables were originally composed in Arabic by 
Muslim scholars; translated into Latin by a Christian scholar; used to compose 
an almanac in Hebrew by a Jewish scholar; and this almanac was then trans-
lated into Latin by a Christian scholar.
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Copying and Computing Tables  
in Late Medieval Monasteries∗

Seb Falk

Richard of Wallingford, abbot of St Albans (1327–36), was perhaps the great-
est astronomer of medieval England.1 His legacy encapsulates a problem facing 
historians of medieval astronomy: how can we analyse technical and mathemat-
ical practices in their proper contexts? Whilst Richard’s most notable works 
were composed at the University of Oxford, he continued to study astronomy 
after moving to St Albans, and devised a complex astronomical clock for his 
abbey church. His contemporaries and successors seem to have been as proud 
of his astronomic achievements as of his devotional writings or work restor-
ing the abbey’s lands; they worked hard to cement the reputation for learning 
he brought to the abbey.2 Richard’s most notable work was his treatise on the 
‘Albion’ instrument he had invented, an astronomical compendium of great 
complexity and ingenuity. At least three of the surviving manuscripts of the 
Tractatus Albionis (1326–27) were produced at St Albans. In addition to the 
usual spiritual benefits arising from the monastic labour of reading, copying 
and correcting, the monks who produced these manuscripts were showing 
respect for their predecessor and demonstrating their own humility, qualities 
that were both central to the Rule of St Benedict.3

It is clear that the motivations for producing and studying astronomical 
works, the techniques required to compute and use them, and the networks of 

* I am grateful to Matthieu Husson, Clemency Montelle, Glen Van Brummelen and Benno  
van Dalen for their advice on earlier drafts of this article. The research underlying it was fund-
ed by the Arts and Humanities Research Council, and supervised by Liba Taub. My arguments 
were refined at a workshop hosted by the TAMAS research project in January 2017, and I 
would like to thank the participants in that workshop for their constructive feedback.

1 This was the judgement of Price, ‘Review of J. D. North’, p. 219.
2 As narrated by Thomas Walsingham (c. 1390); see Riley, Gesta abbatum monasterii Sanc-

ti Albani, vol. II, pp. 182, 201, 207. See also Falk, ‘I Found This Written’, pp. 133–34.
3 Oxford, Bodleian Library, MS Laud Misc. 657, fols 2r–45r; Oxford, Bodleian Library, 

MS Ashmole 1796, fols 118r–159v; Oxford, Corpus Christi College, MS 144 fols 44r–78v. 
Corpus Christi MS 144 is usually identified as a Tynemouth manuscript (see Thomson, A De-
scriptive Catalogue, pp. 72–73), but its tables for latitude 51;50°, the high quality of its parch-
ment, and the fact that its chart of saints’ days (fol. 59v) includes St Alban but not Tyne-
mouth’s patron St Oswine, all point to a southern production. The Rule of St Benedict is 
edited in Fry, RB 1980, chs 5, 7, pp. 29–38.

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 79–105
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scientific communication that made astronomy possible, varied between differ-
ent contexts. Yet it is equally clear that such contexts are hard to define: texts 
circulated widely, and astronomers too could move between different settings. 
However, tables can help historians study these contexts. Where we can iden-
tify the algorithms and sources behind them, they can reveal not only astrono-
mers’ techniques, but also their wider practices and purposes.

Monks certainly had distinctive reasons to study the science: it was essen-
tial for the regulation of the ecclesiastical calendar; it supported monasteries’ 
function as local centres of (astrological) medicine; and it was part of a long-es-
tablished monastic culture of learning that monks worked hard to perpetuate.4 
Nevertheless, it is debatable how far these priorities resulted in distinctive ways 
of practising astronomy.5 Put bluntly: how much did monks really do astron-
omy? In order to answer such questions, a case study approach, paying close 
attention to the individual contexts of production and transmission of its indi-
vidual sources, may be helpful. Tables, whose astronomical content often allows 
them to be dated or geographically located with greater precision than other 
written sources, can be a valuable source for such case studies. Understanding 
whether – and how – a particular set of tables was copied or calculated can 
add some depth to analyses of monastic activity.

A manuscript well suited to this kind of case study is Oxford, Bodleian 
Library, MS Laud Misc. 657. Written almost entirely in a single hand around 
1380, it collates two versions of the Albion treatise, critically copying and add-
ing text and tables. It begins as follows:

It should be known that Master Richard, abbot of the monastery of St Albans, first 
composed this book; and through it he devised and made that marvellous instru-
ment which is called ‘Albion’. But later a certain Simon Tunsted, professor of sacred 
theology, changed certain things not only in the book but also in the instrument, as 
will be clear to scholars in this book. Also, he added certain things.
Master John of Westwyke gave this book to [the priory of] God and the blessed 
Mary and St Oswin, king and martyr, at Tynemouth; and to the monks serving the 
same God there. May the soul of the said John and the souls of all the faithful, 
through the mercy of God, rest in peace. Amen.6

4 The links between astrology and medicine are well established. Evidence that this applied 
in a monastic context as much as elsewhere is provided by the existence of medico-astrological 
books in monastic libraries. See, for example, Cambridge, University Library, MS Gg.6.3; Ox-
ford, Bodleian Library, MS Rawlinson D.238.

5 The contexts of astronomy were particularly blurred because monks were encouraged to 
enhance their learning by studying at universities. See Pantin, ‘The General and Provincial 
Chapters’, pp. 209–10; Pope Benedict XII, ‘Summi magistri’ (1336), edited in Wilkins, Con-
cilia Magnae Britanniae, vol. II, pp. 588–613, here p. 594.

6 ‘Sciendum est quod Dominus Ricardus Abbas monasterii sancti Albani primo composuit 
istum librum; Et per eum excogitavit & fecit instrumentum illud mirificum quod dicitur Al-
beon. Sed postea quidam Symon tounstede sacre theologie professor quedam mutavit tam in 



 COPYING AND COMPUTING TABLES 81

This John was most likely from the manor of Westwick two miles west of 
St Albans, and probably moved to St Albans’s dependent priory of Tynemouth 
around 1380.7 The quality of parchment makes it likely that MS 657 was pro-
duced at the wealthy mother house, but the manuscript was always intended 
for its daughter, an outpost far to the north.8 The clearest evidence of this is 
a table Westwyk added to the treatise, giving the oblique ascensions for 55°, 
the latitude of Tynemouth. Analysis of this and related tables can allow us to 
uncover the methods Westwyk used to produce MS 657; such analysis can sup-
plement study of other features of the manuscript, in order to build a clearer 
picture of the ways – and perhaps the reasons – monks made astronomical 
books.

Westwyk evidently modelled his table for 55° on a table of oblique ascen-
sions for 51;50° (the latitude of Oxford), which was already present in the trea-
tise. This essay begins by evaluating Westwyk’s copying of that earlier table 
and the Tractatus Albionis as a whole, as a way of exploring his scholarly com-
petence and purposes. Following an explanation of the function of oblique 
ascensions, I then analyse the new table of oblique ascensions Westwyk added 
to Oxford, Bodleian Library, MS Laud Misc. 657, separating his processes of 
computation from copying. The Albion text which Westwyk copied hints at 
how this was done, alluding to Ptolemaic techniques, but this cannot be relied 
on as an account of his practices. However, we can – within certain limits 
– reconstruct his practices, and the rest of this essay attempts that reconstruc-
tion. The analysis is supported by some statistical tables, as well as by editions 
of Westwyk’s tables of oblique ascensions for 51;50° and 55°. Neither has previ-
ously been edited. The Albion table for 51;50° has previously been published in 
a complete edition of the writings of Richard of Wallingford (which drew on 
Westwyk’s manuscript among others).9 However, its editor, John North, gave 
a corrected version of the table: an internally consistent table that reproduced 
what North judged as Richard’s intention, with errors removed.10 Since my 
focus is the contextualised practices of historical actors, my tables are correct 

libro quam in instrumento, sicut patet studentibus in libro isto. Quedam eciam superaddidit. 
/ Hunc librum dedit Dompnus Iohannes de Westwyke deo & beate marie & sancto Oswyno 
regi et martiri de tynemuth. Et monachis ibidem deo servientibus. Anima dicti Johannis & 
omnium fidelium anime per dei misericordiam requiescant in pace. Amen’, MS Laud Misc. 
657, fol. 1v.

7 Rand, ‘The Authorship of The Equatorie’, p. 21.
8 Falk, ‘I Found This Written’, pp. 134–36.
9 North, Richard of Wallingford, vol. III, pp. 96–97.
10 North, Richard of Wallingford, vol. II, pp. 238–39, 247–48. North changed thirteen val-

ues where the table was not internally symmetrical (that is, where ρ(λ) ≠ 360 – ρ(360 – λ)).  
He substituted values from the table of oblique ascensions attributed to John Maudith in 
MS Laud Misc. 674, fols 72r–v.
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in a philological sense: reproducing what appears in the manuscripts, including 
any errors and noting differences between six different manuscripts. It is hoped 
that the inclusion of blemishes and vestiges of production improves our under-
standing of such tables, and the contexts in which they were made.

John Westwyk, copying and compilation

In his prefatory remarks (quoted above), John Westwyk highlighted the work 
he had done to collate and compare two versions of the Albion: one apparently 
as written by Richard of Wallingford; the other adapted by Simon Tunsted. 
This was an explicit act of compilatio, not unusual in the later Middle Ages.11 
Throughout his copy of the treatise and accompanying tables Westwyk notes 
differences between the versions of ‘the lord Abbot’ and ‘master Simon’, and 
also compares them with an albion instrument (‘instrumento nostro’) which 
must have been available to him at the monastery.12 The areas where he adds to 
the text reveal something of his interests. Chief among these were the practical 
aspects of instruments. He notes discrepancies between the differing instrument 
dimensions given in his source texts, and the dimensions of his own instru-
ment; furthermore, in his most extended original contribution to the treatise, 
he adds commentary comparing the features of the albion with the saphea of 
al-Zarqālī (Arzachel) and the astrolabe (Wallingford had himself stated that 
his invention provided the functions of those and other instruments, but with-
out giving details).13 By contrast, Westwyk gave less attention to the diagrams 
that accompany part II of the treatise, illustrating the construction of the 
instrument. His diagrams are superficially acceptable, appearing in the same 
places as, and looking fairly similar to, those in other copies of the treatise; but 
closer inspection reveals that they do not accurately represent the instrument 
markings carefully described in the text.14 Given the abilities Westwyk showed 
elsewhere in his compilation, the errors in his diagrams are unlikely to have 
been caused by imperfect understanding; rather, he may have realised that the 
diagrams were simply illustrations for processes that were sufficiently explained 
in Richard of Wallingford’s text, and therefore chose to focus his efforts on 
making the compilation most useful to its readers.

11 Hathaway, ‘Compilatio’, pp. 19–44.
12 ‘dominus abbas … magister Symon’; MS Laud Misc. 657, fols 45r, 22v. For detailed anal-

ysis of Westwyk’s comparisons, see Falk, ‘I Found This Written’, pp. 133–40.
13 MS Laud Misc. 657, fols 10v, 43r–44r; Tractatus Albionis III, in North, Richard of 

Wallingford, vol. I, p. 340.
14 The best copy of the diagrams is in Corpus Christi MS 144. See the comparison in Falk, 

‘I Found This Written’, pp. 137–39. It is just possible that the diagrams were drawn by another 
person, but they were certainly labelled by Westwyk so it seems more likely he drew them too.
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32r ‘True motus of the sphere of Saturn’ (IV.1)
[true centre: the arc at earth between a planet’s aux and epicycle centre]15

32v ‘True motus of the sphere of Jupiter’ (IV.2)

33r ‘True motus of the sphere of Mars’ (IV.3)

33v ‘True motus of the sphere of the Sun and Venus’ (IV.4)

34r ‘True motus of the sphere of Mercury’ (IV.5)

34v ‘True motus of the sphere of the Moon’ (IV.6)

35r–35v ‘True motus of the Moon and of the equation of the argument for the hour of 
conjunction’ (IV.7) [true argument: the arc at the epicycle centre between the Moon 
and the true epicyclic apogee]

36r ‘Table of the equation of iomyn, that is, of the natural day’ (IV.8)
[normed equation of days + longitude]

36v Latitude of the Moon (IV.9) [as a function of longitude measured from the node]
Table of longitude with its twelfth part; table of twelve conjunctions (IV.10) [twelve 
equal steps of 1s 2;30° and 11s 19;17°]

37r Motion of the Moon in one hour at aux, mean distance, and opposite aux (IV.11)

37v Table of fixed stars (IV.12)

38r–38v Mean motus of Mercury (IV.13)

39r–39v Mean motus of the Moon (IV.14)

40r–40v Mean argument of the Moon (IV.15)

41r Right ascensions (starting at Capricorn) (IV.16)

41v Right ascensions (starting at vernal equinox) (IV.16)

42r Oblique ascensions at latitude 51;50° (Oxford) (IV.17)

42v Oblique ascensions at latitude 55° (Tynemouth)

44v–45r Lunar elongations (to be inserted after table of mean motus of the Moon (39v))

Table 1: Tables in Tractatus Albionis, in Oxford, Bodleian Library, MS Laud Misc. 657.

This meant accurately copying, and where necessary updating, the tables in 
part IV of the treatise (see Table 1). Westwyk’s copies of the standard sequence 
of tables of the Tractatus Albionis are exemplary.16 This is demonstrated by 
examination of copies of four tables – IV.12, IV.16 (two versions) and IV.17 

15 These tables, explicitly drafted to aid in the construction of the Albion instrument, are 
standard in copies of the Tractatus Albionis (apart from the one for Tynemouth); their func-
tions are fully explained in North, Richard of Wallingford, vol. II, pp. 237–48.

16 The standard set is edited in North, Richard of Wallingford, vol. III, pp. 76–107. The 
chapter numbers given in brackets are used in some manuscripts (though not MS Laud Misc. 
657) and in North’s edition.
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– in five manuscripts of the Albion, including the three St Albans copies.17 
The fact that tables in these five manuscripts were copied as part of the com-
plete treatise can be established by some consistently occurring errors in the 
table of oblique ascensions for 51;50°, which can be observed by comparison 
with other contemporary tables of the same function.18 Although it is hard to 
know whether unique errors in any one manuscript are the fault of the scribe 
of that manuscript, or arise from faithful copying of a faulty source, it is clear 
from the critical edition in Appendix 1a (see pp. 95–98) that the St Albans 
manuscripts exhibit greater consistency than the others, and have none of the 
obvious mistakes (such as in the degrees column) found elsewhere.19 Two man-
uscripts are identical throughout table IV.17: Oxford, Corpus Christi College, 
MS 144 and Oxford, Bodleian Library, MS Laud Misc. 657. Thus John West-
wyk may have copied MS Laud Misc. 657 in part from the earlier Corpus 
Christi MS 144 (while also using the copy ascribed to Simon Tunsted). The 
copy of the Albion in Corpus Christi MS 144 is ‘by far the best’, according 
to John North; like Laud Misc. 657 it was later to be taken to Tynemouth.20 
Westwyk’s copy contains a diagram, in which the limb of the first face of 
the second disc is divided into 18 days, which is only found in MS 144, and 
Westwyk’s error in naming a star ‘Altayn’ in table IV.12 might be traced to 
the slightly unclear way that the scribe of MS 144 formed the final letters of 
‘Altayir’ (see Plates 4a and 4b).21 All three St Albans manuscripts contain three 
identical discrepancies between the two versions of the table of right ascensions 
(IV.16), which do not appear in the other Albion manuscripts; that is, the val-
ues for right ascension for longitudes 11s22°, 8s12° and 8s25° in the table start-
ing at Capricorn are the same across the three manuscripts, as are the values 
for those longitudes in the table starting at the vernal equinox, but within each 
manuscript the two tables disagree. It is clear, then, that although errors exist 
in the manuscripts, the overall standard of copying was high. Across the four 
tables examined, MS 657 differs from MS 144 in only two values, one in each 
table of right ascensions. One of Westwyk’s values is unique in copies of this 
table, so the error was most likely introduced by Westwyk himself. However, 
the other difference appears at a place where the two tables within MS 144 
do not match; Westwyk’s change makes his two tables match at that point. 
This may be coincidental, but perhaps he had noticed the discrepancy and con-

17 MS Laud Misc. 657, Corpus Christi MS 144 and MS Ashmole 1796, plus London, Brit-
ish Library, Harley MSS 80 and 625.

18 Corpus Christi MS 144, fol. 122r, and MS Laud Misc. 674, fol. 72r, were used for this 
purpose.

19 Such high standards are emphasised by the fact that North’s edition of table IV.17 
(North, Richard of Wallingford, vol. III, pp. 96–97) contains five errors.

20 North, Richard of Wallingford, vol. II, p. 127; Thomson, A Descriptive Catalogue, p. 73.
21 MS Laud Misc. 657, fol. 37v; Corpus Christi College, MS 144, fol. 76v.
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sciously corrected it. Either way, it is safe to conclude that he was a particularly 
accurate copyist.22

Computation

If Westwyk’s copying was impressively accurate, his computation was equally 
so. We see this in the table of oblique ascensions for latitude 55°, a table which 
is not found in contemporary manuscripts and which Westwyk surely com-
puted for this manuscript. The heading of the table, which Westwyk adapted 
from Wallingford’s heading for the table of oblique ascensions for latitude 
51;50°, reads:

Table of ascensions of signs on the oblique circle at latitude 55°. It was calculated 
and composed as explained in the canons in the second book of the Almagest; and 
with it the second circle on the second limb of the second face of the instrument 
should be divided, as is explained in chapter 18 of the second part of this [treatise]. 
// Tynemouth.23

The table gives oblique ascensions as a function of ecliptic longitude. Sec-
tion II.18 of Richard of Wallingford’s treatise explains that the limb (rim) 
of the albion is to be engraved with three scales: the ecliptic, right ascensions 
and, in the innermost circle, the oblique ascensions, calculated for the latitude 
of a place ‘where we intend to stay for a long time and make many observa-
tions’.24 This innermost scale was designed to allow the user to easily find the 
ascendant degree and divide the astrological houses. It was to be marked with 
degrees of ecliptic longitude (‘gradus zodiaci’, the argument of the table) corre-
sponding to degrees of oblique ascension read on the ‘ecliptic’ scale. Thus on

22 We should perhaps note a contrast with the other table Westwyk added to his copy of 
the Tractatus Albionis: a table of lunar elongations (MS Laud Misc. 657, fols 44v–45r) that 
does not appear in other copies of the treatise. The presence in the table of obvious copy-
ing errors indicates that Westwyk did not compute it himself, but transcribed it from another 
source. The large number of these errors (20 in a table with 366 values in signs, degrees and 
minutes) could be deemed a stain on Westwyk’s otherwise impressive copying record, but it 
is quite possible that he made an accurate copy of a corrupt exemplar. The twenty errors do 
include some that are more likely to be computational, such as 20° instead of 19°; the nature 
of these, and the fact that the table does not follow a consistent arithmetical progression, sug-
gest that it was computed by subtracting values for solar mean motion from an existing table 
of lunar mean motions. But that need not have been the table in the Albion; tables of mean 
motions and lunar elongations were sufficiently common to make it most likely that Westwyk 
copied the table, and did so from a source which itself probably had nothing to do with the 
Albion.

23 ‘Tabula ascencionum signorum in circulo obliquo in latitudine .55. gra. calculata est et 
composita sicut docent canones in secundo libro Almagesti; et debet per eam dividi circulus 
secundus in limbo secundo secunde faciei instrumenti sicut docetur capitulo 18o secunde partis 
huius’. ‘tynemuth’ is added as a gloss beneath the heading. MS Laud Misc. 657, fol. 42v.

24 Tractatus Albionis II.18, in North, Richard of Wallingford, vol. I, p. 325.
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Figure 1: Diagram of ascensions on oblique circle, adapted from Almagest II.7. H is the vernal 
equinox and K the north pole of the equator. The table of oblique ascensions gives the arc of 
the equator (HE, ρ) rising at the same time as a given arc of the ecliptic (HL, λ). HE is com-
puted by subtraction of the ascensional difference (EM, γ) from the right ascension (HM, α). 
∠LEM is 90°−φ, where φ is the latitude of the observer.

the instrument longitude was ‘tabulated’ as a function of oblique ascension: the 
reverse of what we find in the tables.25

The table and scale of oblique ascension track the rising and setting of 
points on the celestial equator and ecliptic. Celestial longitude and latitude 
were defined as positions along and above or below the ecliptic, and these coor-
dinates were the most common way of measuring the positions of stars, includ-
ing the Sun, Moon and planets; the ecliptic is the path of the Sun (eclipses 
always take place at 0° latitude), and of course the best-known constellations 
were those of the zodiac, the band around the ecliptic. However, the rising and 
setting of signs on the ecliptic does not occur in equal times; rather, it is the 
equator, set at an angle to the ecliptic, on which points rise and set in equal 
times (see Figure 1). So the facility to read oblique ascensions – to convert 
between the rising of the ecliptic and equator – allowed the albion’s user to 
find the ascendant degree at any given time, as Wallingford explains in Sec-
tion III.18 of the Albion treatise.

The table heading cites Almagest Book II, where Ptolemy provides tables 
of rising times (equivalent to oblique ascensions) for a range of latitudes, as 
defined by the length of the longest day, from 12 hours (0°) to 17 hours (54;1°). 
Ptolemy explains how these may be computed from the right ascensions, by 

25 Owing to complications in the multiple uses of the ecliptic scale, Richard of Wallingford 
also instructed that the ascensions scales be graduated in the opposite direction to the ecliptic 
scale. See North, Richard of Wallingford, vol. II, pp. 177–78, 226–32.
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calculating the ascensional difference (EM in the right spherical triangle ELM, 
in which the angle at E is 90°−φ, where φ is the latitude of the observer). In 
Figure 1, the oblique ascension (ρ) is the arc (HE) of the equator which rises 
in the same time as a given arc (HL) of the ecliptic; to find this, the ascen-
sional difference (EM or γ) can be subtracted from the right ascension (HM or 
α). The right ascensions (rising times at sphaera recta) are explained in Almag-
est I.16, where Ptolemy notes that sphaera recta is a special case in which the 
horizon passes through the poles of the equator; an observer at the equator 
sees the stars ascending at right angles to the horizon. Ptolemy applied the 
spherical theorem he had proved in Almagest I.13 (known as Menelaus’ Theo-
rem, though Ptolemy only mentions Menelaus in the context of observations) 
to find the right ascension.26 His method used the table of chords which he 
had provided in I.11, and is mathematically equivalent to the modern formula:

sin α = tan δ ∙ cot ε, (1)

where δ is the declination (arc LM in Figure 1) and ε is the obliquity of the 
ecliptic.27 In Almagest I.12 he showed how the obliquity can be found by obser-
vation, and stated its extent as one half of approximately 11:83 of a complete 
circle. This matches the maximal value he gives in his table of declinations 
(I.15), which tabulates the length of the arc of a meridian between the equator 
and the ecliptic for longitudes (λ) from 0° to 90°. At λ = 0° the declination is 
0, since that is the vernal equinox, where the equator and ecliptic intersect; its 
maximal value at λ = 90° is equal to the obliquity of the ecliptic, which Ptol-
emy specifies as 23;51,20°. The formula underlying the table of declinations is 
equivalent to:

sin δ = sin λ ∙ sin ε, (2)

Thus obliquity is used twice in the process of computing right ascension, and so 
two different values of ε could, in principle, be used, though this would upset 
the clear symmetry of the right ascensions and prevent the right ascension at 
λ = 90° being equal to 90°, which would be a starkly unacceptable result.

The size of the obliquity also underlies the ascensional difference (γ), for 
which Ptolemy outlines a method equivalent to the modern formula:

sin γ = tan δ ∙ tan φ. (3)

The oblique ascension HE can then be found by a simple subtraction.28

26 Toomer, Ptolemy’s Almagest, ch. VII.3, pp. 336, 338.
27 Pedersen, A Survey of the Almagest, pp. 96–97.
28 Pedersen, A Survey of the Almagest, pp. 110–13. It is possible to compute the oblique 

ascension directly, by a single formula in which λ, φ and ε are the only variables, but such 
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Analysis of tables of oblique ascensions for 51;50° and 55°

I analysed the oblique ascensions tables for 51;50° and 55° in MS Laud Misc. 
657. It was established above that John Westwyk copied the former, perhaps 
from Corpus Christi MS 144, but that the latter involved at least some com-
putation on his part. This analysis allows us to understand the extent of this 
computation, and some of the methods used. John Westwyk’s heading for his 
table repeats Richard of Wallingford’s statement that it has been computed 
with reference to Almagest Book II. This cannot be taken completely at face 
value, but we must start from the assumption that a method like Ptolemy’s, 
which computes the oblique ascension by subtracting the ascensional difference 
from the right ascension, was used.

The first step in our analysis of the table is to check both its overall sym-
metry and that of its presumed underlying functions of right ascension (α) 
and ascensional difference (γ). These two functions have different symmetries: 
the former is symmetrical such that α(180 – λ) = 180 – α(λ), while the latter 
is symmetrical such that γ(180 – λ) = γ(λ). Both α and γ can therefore be 
extracted from oblique ascension ρ by the following formulae:

α(λ) = 90 + ½(ρ(λ) – ρ(180−λ)) (4)

γ(λ) = 90 – ½(ρ(λ) + ρ(180−λ)) (5)

It follows from the above that the entire oblique ascension function is sym-
metrical such that ρ(λ) = 360 – ρ(360 – λ).29 Therefore we begin our analysis 
of Westwyk’s tables by using this overall symmetry to check for large errors in 
the tables. Once any such errors have been isolated, we can then proceed to 
separate the functions of right ascension and ascensional difference in order to 
identify the underlying parameters.

This first check – whether pairs of values on either side of 180° add up to 
360° – revealed 13 asymmetries (occasions where ρ(λ) + ρ(360 – λ) ≠ 360) in 
Westwyk’s 51;50° table, and 18 in his 55° table. All those in the table for 51;50° 
occurred in places where the Albion copies of this table are consistent but do 
not match the one in in the non-Albion MS Laud Misc. 674 (see Appendix 1a);  
the latter manuscript’s values in those places are symmetrical (though it has 
mistakes of its own elsewhere).30 This suggests that these asymmetries arose 
in an early copy of the Albion tables. Of the 18 asymmetries in Westwyk’s 
55° table, 14 were exactly 1ʹ in size, which suggests they may have arisen in 

a formula does not exist in any medieval source. (It would also preclude the combination of 
more than one value for the obliquity, which does occur in medieval tables).

29 van Dalen, Ancient and Mediaeval Astronomical Tables, pp. 67, 185.
30 At λ = 0s19°, 2s8°, 2s29°, 4s18°, 6s2°, 6s18°, 7s3°, 7s6°, 7s29°, 8s0°, 9s12°, 10s29° and 

11s28°.
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the process of calculation, and may be analysed further.31 The remaining four 
discrepancies (noted in Appendix 1b on pp. 99–101) were 1°, 30 ,́ 1° and 10 .́ 
The large size and roundness of these suggests they came about through the 
misplacement of digits (whether in calculation or copying cannot be known), 
and so they may be corrected – made symmetrical – in order to produce an 
idealised (mathematically consistent) table for use in further analyses. Finally 
for this stage, a similar check for symmetry can be made in the table of right 
ascensions, where the values for α(λ) should be symmetrical with three other 
values: those for 180 – λ, 180 + λ and 360 – λ. Comparison of these sets 
of four values revealed seven asymmetries, of which five occurred in the same 
rows (same values of λ) as asymmetries in Westwyk’s 55° table.32 Since in all 
seven cases of asymmetry three of the four values remained in agreement, we 
may correct all seven to obtain a mathematically consistent right ascension 
table. The results of these checks are summarised in the table in Appendix 2 
on pp. 102–05 (columns B to D); in most of the columns of this table results 
are only included where they are significant (i.e. where there are asymmetries).

Next we may derive values for right ascensions from the tables of oblique 
ascensions using formula 4, and compare these with both the manuscript tables 
of right ascensions and values computed using formula 1. First, the oblique 
ascensions table for 51;50° yields values that match the table of right ascen-
sions exactly, except in places where asymmetries have already been noted in 
this oblique ascensions table, and at λ = 15°, where an asymmetry was noted 
in the right ascensions table but none in the oblique ascensions. In all of these 
cases the correction of the asymmetries as indicated above also removes the 
mismatch, thus further supporting the plausibility of the corrections.33 The 
table for 55° yields values that also match the table of right ascensions, except 
in seven places where there are discrepancies of 30 .̋34 Such discrepancies could, 
in principle, arise from the use of a table showing more sexagesimal places – a 
precision to seconds – to calculate the ascensional differences and/or the right 
ascensions; but the consistent use of such a table would have led to 30ʺ dis-
crepancies in around half the extracted values – rather more than the seven 
found. In fact, as Appendix 2 shows, some of these 30ʺ discrepancies (namely 
those for arguments 15 and 85) arise from the asymmetries of 1ʹ in the oblique 
ascensions; others remain unaccounted for (they correspond to 30ʺ discrepan-

31 At λ or 360 – λ = 15°, 20°, 34°, 35°, 50°, 56°, 85°, 87°, 92°, 136°, 137°, 165°, 168° and 
169°. Some of these are apparent confusions of 1/2 and 2/3, which could arise from scribal 
misreading, but others, such as 3/4 and 7/8, are highly unlikely to arise from misreading.

32 Asymmetries in the right ascensions table were found at λ (or equivalents) = 15°, 34°, 35°, 
71°, 85°, 86° and 87°.

33 Discrepancies at λ = 0s15°, 0s19°, 2s8°, 2s29° and 4s18° (the procedure only uses values 
from 0 to 180°).

34 At λ = 0s11°, 0s15°, 1s13°, 1s14°, 1s20°, 2s25° and 2s28°.
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cies in the derived right ascension values in column E). Comparing the cor-
rected mathematically consistent values with values computed using formulas 1 
and 2, using a least-squares fit (the sum of the squares of all differences, so that 
a smaller number indicates a closer match), the following results were obtained 
(Table 2; see also Appendix 2, columns D and E).35 The numbers n in paren-
theses are the number of individual discrepancies.36

ε Σ (51;50°) Σ (55°) Notes

23;33,30° 19 (n=19) 20 (n=20) Value of ε used in Toledan Tables

23;34,45 8 (n=8) 9 (n=9) Value of ε producing lowest Σ
(but not attested in any medieval source)

23;35° 9 (n=9) 10 (n=10) Value of ε attributed to al-Battānī.
23;51° 589 (n=80) 586 (n=80) Value of ε used in Ptolemy’s Handy Tables

23;51,20 611 (n=80) 608 (n=80) Value of ε used in Ptolemy’s Almagest 

Table 2: Least squares fit for obliquities underlying right ascensions tables used to compute 
oblique ascensions.

These results suggest that the tables of oblique ascensions were based on a right 
ascensions table with obliquity 23;35° (the same conclusion applies irrespective 
of whether we use a least-squares fit or the simple number of discrepancies). 
It may be noted that an (insignificantly) closer match with the manuscript 
tables occurs with an obliquity of 24;34,45°, but this is not sufficient grounds 
to claim that that was the parameter used by medieval astronomers. We must 
maintain cautious of the spurious precision offered by the spreadsheet tech-
niques used here. These techniques allow us to compare and choose from a 
limited range of discrete values attested in surviving manuscripts. The match 
will inevitably be imperfect, owing to the vagaries of calculation techniques 
and the imperfections of medieval reference tables. However, even a somewhat 
anachronistic technique, if used consistently, allows the degree of closeness to 
be measured so that different values for the obliquity can be compared. The 
use of squared residuals (Σ) is a fairly crude method of statistical analysis, but 
it is precise enough to allow us to compare a selection of historically attested 
parameters. Whatever the results obtained by such techniques of recomputa-
tion and statistical analysis, they can only ever be an adjunct to the examina-
tion of tangible manuscript evidence.37

35 Values for Σ were rounded to integers. It is, as noted above, theoretically possible to 
use two different values of ε in formulas 1 and 2, but even small differences yield strikingly 
discrepant results.

36 In principle this is to a maximum of 90 comparisons, but in practice four comparisons 
of the 51;50° table were excluded owing to flaws in the manuscripts.

37 On the use of these and more complex statistical techniques in history of astronomy, see van 
Dalen, ‘A Statistical Method’; Van Brummelen and Butler, ‘Determining the Interdependence’.
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Having analysed the right ascensions, we may proceed to derive values for 
the ascensional difference from the corrected oblique ascensions tables, using 
formula 5. These may be compared with values computed using formula 3, 
with the following results (Table 3). As above, the numbers in parentheses are 
the number of individual discrepancies.

ε Σ (51;50°) Σ (55°) Notes

23;32,30 105 (n=51) 56291 (n=90) Value of ε used in the Maghribian zīj of Ibn 
Isḥāq (c. 1300, value not attested in Latin 
sources)

23;33,0° 37 (n=37) 53507 (n=90) Value of ε used in the Mumtaḥan Zīj 
(Baghdad, c. 830), which was also known 
in Muslim Spain (value not attested in 
Latin sources)

23;33,15° 23 (n=23) 52062 (n=90) Value of ε producing lowest Σ for 51;50° 
table (but not attested in any medieval 
source)

23;33,30° 28 (n=28) 50594 (n=90) Value of ε used in Toledan Tables

23;35° 367 (n=83) 42035 (n=89) Value of ε attributed to al-Battānī.
23;50,44° 36850 (n=90) 17 (n=14) Value of ε producing lowest Σ for 55° table 

(but not attested in any medieval source)

23;51° 38210 (n=90) 26 (n=23) Value of ε used in Ptolemy’s Handy Tables

23;51,20 39651 (n=90) 70 (n=64) Value of ε used in Ptolemy’s Almagest 

Table 3: Least squares fit for obliquities underlying ascensional differences used to compute 
oblique ascensions.

In his 1976 edition of Richard of Wallingford’s writings, John North noted 
that the table of oblique ascensions could incorporate two different obliqui-
ties; he remarked that ‘there are too many possibilities for it to be profitable 
to investigate them all’, but did test some values using λ = 45° and suggested 
obliquities of 23;35° and 23;33,30° for the two stages of computing the table 
for latitude 51;50°.38 The extraction of the underlying ascensional difference 
function, greater computing power available nowadays, and the development of 
statistical estimators for these purposes now allow us to state with some con-
fidence that North’s suggestion was correct. Although Richard of Wallingford 
had stated that his table was computed as explained in Book II of the Almag-
est, he clearly did not use Ptolemaic values for the obliquity of the ecliptic.

John Westwyk, on the other hand, updating Richard of Wallingford’s trea-
tise for use at a new latitude, did use a Ptolemaic value: the table above shows 

38 North, Richard of Wallingford, vol. II, pp. 247–48.
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that his oblique ascensions match those computed with an obliquity of around 
23;51°. It may not be possible to be certain that Westwyk used precisely 23;51° 
rather than 23;51,20°. The formula for the ascensional difference (formula 3) 
incorporates a value for the tangent of latitude (tan φ); this would surely have 
been rounded for the purposes of computation. Reverse-engineering the func-
tion will only yield this rounded value of tan 55°, which would produce a value 
of the latitude φ that is not precisely 55°, thus introducing an element of uncer-
tainty into estimates at a precision of sexagesimal seconds. Nevertheless, we can 
certainly be confident that the new table was computed using a fresh set of 
ascensional differences with an obliquity different from that used by Richard 
of Wallingford.

There are two ways John Westwyk could have computed his full table of 
oblique ascensions: either (1) he could have subtracted ascensional differences 
from the existing table of right ascensions right across the table from 0–360°; 
or (2) exploiting the symmetry of the oblique ascensions function, he could 
have carried out the subtraction of ascensional difference only for λ = 0 to 
180°, and then completed the second half of the table by subtracting the first-
half values from 360°. The small asymmetries of Westwyk’s table of oblique 
ascensions suggest that he used the first method; this is supported by the fact 
that the differences between the manuscript and a computed version are not 
symmetrically arranged (unlike the table for 51;50°). This hypothesis can be 
tested by comparing tables computed by both methods, using the manuscript 
right ascensions and an idealised ascensional difference; the two tables will be 
identical from 0 to 180° but slightly different from 180 to 360°.39 Since the 
ascensional difference is itself derived from the table of oblique ascensions, 
this is simply a way of correlating errors in the oblique ascension tables with 
non-symmetric errors in the right ascensions.

As the parameters used for this comparison are merely standardised values 
of those within the tables themselves, it is not surprising that there are few dis-
crepancies (see Appendix 2, columns H and J). However, the values computed 
using the symmetry of the oblique ascension function contained more discrep-
ancies with Westwyk’s 55° table than the one computed by subtracting ascen-
sional differences right across the table (10, as opposed to 6). On the other 
hand, when the same comparison was carried out on the table of oblique ascen-
sions for 51;50°, it was found to be a better match with a table computed using 
the symmetry of the oblique ascension function (4 discrepancies, as opposed 
to 10). These numbers are small in every case, so it is hard to be sure, but the 

39 The idealised ascensional difference was the value that can be most consistently derived 
from the manuscript tables of oblique and right ascensions. Since the ascensional difference 
function is symmetrical such that γ(180 – λ) = γ(λ), tables from 0 to 360° will contain 90 
values of γ, each repeated four times. The manuscript values were always consistent in at least 
3 of the 4 repetitions, so it was easy to identify the idealised ascensional difference.
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evidence suggests that whilst Richard of Wallingford computed the second half 
of his table of oblique ascensions by subtracting the first 180 values from 360°, 
John Westwyk did so by subtracting ascensional differences from the entirety 
of Wallingford’s table of right ascensions.

Conclusion

In 1326–27, in the heading to his table of oblique ascensions for the latitude 
of Oxford, where he was then a scholar, Richard of Wallingford wrote that it 
had been ‘calculated and composed as explained in the canons in the second 
book of the Almagest’. This analysis has shown that statement to be only half-
true, since Richard used parameters significantly different from those of Pto-
lemy. Yet half a century later, when the monk John Westwyk came to adapt 
Richard of Wallingford’s tables for the latitude of Tynemouth, he seems to 
have taken Wallingford’s table heading at face value. It is likely that, for the 
latitude of 55°, he worked through a process starting from his own accurate 
copy of the table of right ascensions (computed using an obliquity of 23;35°), 
adapting them by subtraction right across the table of an ascensional difference 
computed using an ecliptic obliquity of 23;51°.40 This was done with only four 
clear errors. In other words, his claim to be following Ptolemy’s method was 
truer than the source from which he copied that claim. It is hard to be certain 
to what extent either astronomer’s choice of obliquity was a deliberate one, but 
in another (later) manuscript Westwyk used two different obliquities, so it is 
possible that he made a conscious choice to follow Ptolemy’s method faithfully, 
in contrast to Wallingford’s more flexible approach.41

Westwyk was not the only person to adapt the Albion tables to a new 
latitude. In three fifteenth-century copies of the version adapted by John of 
Gmunden in or around 1430, the Oxford table of oblique ascensions is fol-
lowed by one for Nuremberg.42 But we cannot know whether the monks of 
Tynemouth took advantage of Westwyk’s efforts: his table was not annotated, 
and no instrument survives that draws on the table data in the way the Albion 
treatise instructs. On the other hand, it seems that the astrological subject of 
house divisions associated with Westwyk’s table did excite the monks’ inter-
est, as blank pages Westwyk left in the manuscript were filled with tables of 
houses by a near-contemporary hand.43 These tables are apparently unique in 

40 In the one place where John Westwyk’s table of right ascensions starting at the vernal 
equinox does not match the table in Corpus Christi MS 144, Westwyk’s value (which is cor-
rect) matches his table of oblique ascensions.

41 Cambridge, University Library, Peterhouse MS 75.I, fols 63v (23;35°) and 64 (23;33,30°).
42 Vienna, Österreichische Nationalbibliothek, MSS 5412, 5415; Munich, Bayerische 

Staatsbibliothek, Clm. 10662.
43 Falk, Improving Instruments, pp. 34–36.
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combining a layout starting at the tenth house (midheaven) with a time col-
umn enabling the user to adjust the noon values to other times of day.44 But 
the copy is a poor one, and a user with moderate astronomical expertise would 
surely not have been satisfied with its obvious errors and omissions. The val-
ues in these tables accord best with an obliquity of 23;33,30° and latitude of 
51;50°, but of course this does not preclude their having been copied at Tyne-
mouth, since tables for the Oxford latitude were widespread.45

In a quest to understand the monastic context for astronomy, analysis of 
tables can only provide a small part of the picture, but it can make an import-
ant contribution. The mere existence of the collation of Richard of Walling-
ford’s Albion treatise told us that John Westwyk, and the monks who followed 
him, were interested in instruments and astrology. Study of his tables has con-
firmed that this monk, about whose education little is known, was not only a 
painstaking copyist, but a careful and competent calculator, capable of using 
the existing tables available to him to extend his source materials and make 
them useful in new locations. In this way he played his part in venerating his 
predecessor Richard of Wallingford and perpetuating the legacy of monastic 
astronomy, and broader scholarship, which the abbot had left at St Albans and 
its network of daughter houses.
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Appendix 1a: Edition of the table of oblique ascensions for 51;50°

Manuscripts

A = Oxford, Bodleian Library, MS Ashmole 1796, fol. 159r (s. xivmed): Tracta-
tus Albionis (St Albans)
C = Oxford, Corpus Christi College, MS 144, fol. 78v (s. xivmed): Tractatus 
Albionis (St Albans)
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H1 = London, British Library, Harley MS 80, fol. 54r (s. xiv2): Tractatus Albi-
onis
H2 = London, British Library, Harley MS 625, fol. 164r (s. xivex): Tractatus 
Albionis (Merton College, Oxford)
L = Oxford, Bodleian Library, MS Laud Misc. 657, fol. 42r (c. 1380): Tracta-
tus Albionis (St Albans, written by John Westwyk)
M = Oxford, Bodleian Library, MS Laud Misc. 674, fols 72r–v (s. xv): table 
attributed to John Maudith (d. c. 1343)

All but one of these copies of the table are taken from copies of the Tractatus 
Albionis. The last, M, is a near contemporary table of the same function. It was 
used by John North as a source of variant readings in his edition, and has been 
collated here for comparison purposes, especially to highlight the unity among 
the Albion manuscripts.

L has been used as the copy-text for this table. I have preserved the layout 
of the original table as far as possible, but had to split it into two parts (with 
the argument column repeated) due to space limitations.

The St Albans manuscripts (A, C and L) contain fewer errors, and no large 
errors (mistakes in the degree column or multiple adjacent cells), in contrast 
with the other copies (H1, H2 and M). All the Albion manuscripts give degrees 
up to 30, noting the signs where they change (M gives degrees to 360, which 
should be borne in mind when examining the variant readings below the table). 
Most signs start with 0°, which allowed scribes to write the number of signs 
in the column usually used for degrees. These sign numbers are highlighted in 
various ways: A, C and H1 write the number larger and usually in a different 
colour; L (John Westwyk) draws a red box around the number. Where there 
is an additional 1° at the start of a new sign (4, 7 and 9 signs), C and H1 note 
this by writing the 1 alongside the sign number; A, H2 and L do not.

Gloss
[Hec tabula que intitulatur] tabula ascensionum signorum in circulo obliquo, 
ubi videlicet est elevatio poli 51 gra. et 50 mi. cuiusmodi est latitudo civita-
tis Oxonie, calculata est et composita sicut docent canones in 2o libro Almag-
esti; et debet per eam dividi circulus 3us in limbo secundo secunde faciei huius 
instrumenti, sicut docetur capitulo 18o secunde partis huius. [Et hec est forma 
tabule.]
Gloss: Hec tabula que intitulatur] om. L   signorum] om. CH1H2   est lati-
tudo] altitudo est H1   circulus 3us] primus circulus H1 secundus circulus H2 
circulus C   secundo] primo CH1H2   huius1] om. CH1H2   Et hec est forma 
tabule] om. L
The gloss is not present in A or M.
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Tabula [ascensionum] signorum in circulo obliquo in latitudine 51 g et 50 m (first half )

0 1 2 3 4 5

g m g m g m g m g m g m

1  0 25 13 19 1[,0] 30 27 25    5 37   18 31
2  0 49 13 48    1 13 28 31    7  0   19 58
3  1 14 14 17    1 56 29 39    8 24   21 24
4  1 38 14 46    2 40 2[,0] 47    9 49   22 50
5  2  3 15 16    3 24    1 56   11 14   24 17
6  2 27 15 46    4  9    3  7   12 38   25 42

7  2 52 16 16    4 55    4 17   14  3   27  9
8  3 16 16 46    5 45    5 28   15 29   28 35
9  3 42 17 17    6 30    6 40   16 54 5[,0]  1

10  4  6 17 48    7 19    7 52   18 20    1 26
11  4 31 18 20    8 8    9  6   19 46    2 53
12  4 56 18 52    8 58   10 20   21 12    4 19
13  5 22 19 24    9 48   11 35   22 38    5 45
14  5 47 19 56   10 39   12 51   24  4    7 11
15  6 12 20 29   11 32   14  8   25 29    8 36
16  6 37 21  4   12 25   15 25   26 56   10  3
17  7  3 21 38   13 19   16 42   28 22   11 28
18  7 29 22 12   14 14   18  0   29 38   12 54
19  7 59 22 48   15 10   19 18 4[,1] 14   14 19
20  8 20 23 22   16  6   20 37    2 40   15 44
21  8 47 23 58   17  4   21 56    4  7   17 10
22  9 13 24 35   18  2   23 17    5 34   18 36
23  9 39 25 11   19  1   24 37    7  0   20  2
24 10  6 25 50   20  1   25 59    8 26   21 27
25 10 33 26 28   21  2   27 20    9 52   22 53
26 11  0 27  7   22  3   28 42   11 18   24 18
27 11 28 27 46   23 5 3[,0]  4   12 45   25 44
28 11 56 28 26   24  9    1 27   14 12   27  9
29 12 23 29  7   25 14    2 50   15 39   28 35
30 12 51 29 48   26 18    4 14   17  5 6[,0]  0

Title adds Maudith M   ascensionum] ascensionis L  in latitudine 15 g et 50 m] om. CAH1 
oxonie cuius latitude est 51 g et 50 m verificata oxonia anno domini 1310 M

0,4 1;38] 1;28 H1   0,19 7;59] 7;55 M   0,25 10;33] 10;31 H1   0,27 11;28] 11;18 H1   2,8 
5;45] 35;43 M   2,27 23;5] 23;11 H1   2,29 25;14] 55;13 M   4,1 5;37] 5;27 H1   4,17 28;22] 
119;22 M   4,18 29;38] 119;48 M   4,25 9;52] 7;52 H2   4,27 12;45] 12;25 H1   4,29 15;39] 
15;30 H1   5,20 15;44] 15;24 H1   5,28 27;9] 27;0 H1
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Tabula [ascensionum] signorum in circulo obliquo in latitudine 51 g et 50 m (second half )

6 7 8 9 10 11

g m g m g m g m g m g m

1    1 25   14 21          27 10            4 47  0 53           17 37
2    2 21   15 48          28 33            5 51  1 34           18  4
3    4 16   17 18          29 56            6 55  2 14           18 32
4    5 42   18 42           9[,1] 18            7 57  2 53           19  0
5    7  7   20  8            2 40            8 58  3 32           19 27
6    8 33   21 32            4  1            9 59  4 10           19 54
7    9 58   23  0            5 23           10 59  4 49           20 21
8   11 24   24 26            6 43           11 58  5 25           20 47
9   12 50   25 53            8  4           12 56  6  2           21 13

10   14 16   27 20            9 23           13 54  6 38           21 40
11   15 41   28 46           10 42           14 50  7 12           22  5
12   17  6 8[,0] 12           12 0           15 44  7 48           22 31
13   18 32    1 38           13 18           16 41  8 22           22 57
14   19 57    3  4           14 35           17 35  8 56           23 23
15   21 24    4 31           15 52           18 28  9 31           23 48
16   22 49    5 56           17  9           19 21 10  4           24 13
17   24 15    7 22           18 25           20 12 10 36           24 38
18   25 51    8 48           19 40           21  2 11  8           25  4
19   27  7   10 14           20 54           21 52 11 40           25 29
20   28 34   11 40           22  8           22 41 12 12           25 54
21   29 59   13  6           23 20           23 30 12 43           26 18
22 7[,1] 25   14 31           24 32           24 17 13 14           26 44
23    2 51   15 57           25 43           25  5 13 44           27  8
24    4 18   17 22           26 53           25 51 14 14           27 33
25    5 43   18 46           28  4           26 36 14 44           27 57
26    7 10   20 11           29 13           27 20 15 14           28 22
27    8 36   21 36 10[,0] 21           28  4 15 43           28 46
28   10  2   23  0          1 29           28 47 16 12           29  2
29   11 29   24 22          2 35           29 30 16 42           29 35
30   12 55   25  4          3 42 11[,0] 12 17 9 12[,0]  0

Title adds Maudith M   ascensionum] ascensionis L  in latitudine 15 g et 50 m] om. CAH1 
oxonie cuius latitude est 51 g et 50 m verificata oxonia anno domini 1310 M

6,2 2;21] 2;31 H1 182;51 M   6,6 8;33] 8;23 H1   6,18 25;51] 205;41 M   6,22 1;25] 1;27 
H1   6,29  11;29] 11;19 H1   6,30 12;55] 22;55 (should be 222;55) M   7,3 17;18] 227;15 M   
7,6 21;32] 231;34 M   7,18 8;48] 8;58 H2 7,21 13;6] 13;8 H1   7,29 24;22] 264;23 M   7,30 
25;4] 25;46 H1 265;46 M   8,4 9,…18] 9,…58 H2   8,28 1;29] 1;39 H1   9,12 15,44] 315;46 M   
9,14 17;35] 318;35 M   9,15 18;28] 319;28 M   9,16 19;21] 320;21 M   9,17 20;12] 321;12 M   
10,5 3;32] 3;22 H1   10,7 4;49] 4;40 H1   10,12 7;48] 7;44 H1   10,13 8;22] 8;28 H1   10,18 
11;8] 11;12 H1   10,29 16;42] 16;43 H1 346;41 M   10,30 17;9] 17;0 H1   11,1 17;37] 13;37 
H1   11,6 19;54] 20;54 H1   11,13 22;57] om. 57 H1   11,12 22;31] 22;21 A   11;15 23;48] 
23;28 H1   11.19 25;29] 25;20 H1   11,22 26;44] om. 44 H1 11,28 29;2] 359;11 M 29;4 H2
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Appendix 1b : Edition of the table of oblique ascensions for 55°

Manuscript

L = Oxford, Bodleian Library, MS Laud Misc. 657, fol. 42v (c. 1380): Tracta-
tus Albionis, written by John Westwyk. See Plate 5.

This table is unique to L. I have preserved the layout of the original table 
as far as possible (see Plate 5), but had to split it into two parts (with the argu-
ment column repeated) due to space limitations.

As with the table for 51;50°, John Westwyk gives degrees up to 30, noting 
the signs where they change. Most signs start with 0°, so that Westwyk could 
write the new number of signs in the degrees column. He highlighted these 
sign numbers with a red box around the number. However, in some cases the 
new sign does not start with 0° (in other words, the oblique ascension jumps 
from 29;…° to 31;…°). Where this occurs (at the start of 3, 4, 7 and 10 signs), 
Westwyk did not note the additional 1°. So, for example, 2,0;6° and 3,1;24° are 
written as 2 6 and 3 24.

Gloss
Tabula ascencionum signorum in circulo obliquo in latitudine .55. gra. calcu-
lata est et composita sicut docent canones in secundo libro Almagesti; et debet 
per eam dividi circulus secundus in limbo secundo secunde faciei instrumenti 
sicut docetur capitulo 18o secunde partis huius.

// tynemuth
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Tabula ascensionum signorum in circulo obliquo in latitudo .55. gra. (first half )

0 1 2 3 4 5

g m g m g m g m g m g m

1  0 20 11  8   26 10   21 58 3[,1] 24   16 29
2  0 41 11 33   26 49   23  5    2 52   17 59
3  1  1 11 57   27 28   24 13    4 21   19 30
4  1 22 12 23   28 8   25 21    5 49   21  1
5  1 42 12 48   28 49   26 32    7 18   22 32
6  2  2 13 13   29 30   27 42    8 47   24  1
7  2 23 13 39 1[,0] 13   28 54   10 17   25 33
8  2 43 14  4    1 57 2[,0]  6   11 46   27  3
9  3  4 14 31    1 41    1 20   13 16   28 33

10  3 25 14 58    2 26    2 34   14 46 5[,0]  3
11  3 45 15 25    3 12    3 50   16 15    1 33
12  4  6 15 53    3 59    5  6   17 46    3  4
13  4 27 16 20    4 46    6 23   19 16    4 34
14  4 48 16 48    5 35    7 42   20 48    6  4
15  5  8 17 17    6 25    9  1   22 17    7 33
16  5 30 17 48    7 16   10 21   23 47    9  4
17  5 52 18 16    8  7   11 40   25 17   10 33
18  6 14 18 46    9  0   13  1   26 49   12  4
19  6 35 19 17    9 54   14 22   28 19   13 34
20  6 57 19 47   10 48   15 44   29 50   15  3
21  7 19 20 20   11 44   17  7 4[,1] 21   16 32
22  7 41 20 52   12 40   18 31    2 52   18  3
23  8  3 21 25   13 38   19 55    4 23   19 33
24  8 25 21 59   14 36   21 20    5 53   21  2
25  8 48 22 32   15 37   22 45    7 24   22 32
26  9 11 23  7   16 37   24 10    8 55   24  2
27  9 34 23 43   17 39   25 36   10 25   25 31
28  9 57 24 18   18 42   27  3   11 57   27  1
29 10 21 24 54   19 46   28 30   13 28   28 30
30 10 45 25 31   20 51   29 57   14 59 6[,0]  0

Errors noted (with suggested correction based on the internal symmetry of the oblique ascen-
sion function)

2,8 1;57] 0;57 
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Tabula ascensionum signorum in circulo obliquo in latitudo .55. gra. (second half )

6 7 8 9 10 11

g m g m g m g m g m g m

1    1 30   16 32            1 30           10 14  5  6 19 39
2    2 59   18  3            2 57           11 18  5 42 20  3
3    4 29   19 35            4 24           12 20  6 17 20 26
4    5 58   21  5            5 50           13 23  6 54 20 49
5    7 28   22 36            7 15           14 24  7 28 21 12
6    8 58   24  7            8 40           15 24  8  1 21 35
7   10 27   25 37           10  5           16 22  8 35 21 57
8   11 57   27  8           11 29           17 20  9  8 22 19
9   13 28   28 39           12 53           18 16  9 40 22 41

10   14 57 8[,0] 10           14 16           19 12 10 12 23  2
11   16 27    1 41           15 38           20  6 10 43 23 25
12   17 55    3 11           16 59           20  0 11 14 23 46
13   19 27    4 42           18 20           21 53 11 44 24  8
14   20 56    6 12           19 39           22 44 12 12 24 30
15   22 26    7 43           20 59           23 35 12 43 24 51
16   23 56    9 12           22 18           24 25 13 12 25 12
17   25 26   10 44           23 37           25 14 13 40 25 33
18   26 56   12 14           24 54           26  1 14 17 25 54
19   28 27   13 45           26 10           26 48 14 35 26 15
20   29 57   15 14           27 26           27 34 15  2 26 35
21 7[,1] 27   16 44           28 40           28 19 15 29 26 56
22    2 57   18 14           29 54           29  3 15 56 27 17
23    4 27   19 43 10[,1]  6           29 47 16 21 27 37
24    5 59   21 13            2 18 11[,0] 30 16 47 27 58
25    7 28   22 42            3 28            1 11 17 13 28 18
26    8 59   24 11            4 39            1 52 17 38 28 38
27   10  0   25 39            5 47            2 32 18  3 28 59
28   12  1   27  8            6 56            3 11 18 27 29 19
29   13 31   28 36            8  2            3 50 18 52 29 40
30   15  1 9[,0]  3            9  9            4 29 19 15 12  0

Errors noted (with suggested correction based on the internal symmetry of the oblique ascen-
sion function)

6,27 10;0] 10;30   9,12 20;0] 21;0   10,18 14;17] 14;07
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Appendix 2

Comparison of values in John Westwyk’s table of oblique ascensions for 55° 
(Oxford, Bodleian Library, MS Laud Misc. 657, fol. 42v) and related tables, 
showing significant results and deviations from symmetry

Columns

A:  Longitude (λ), 0–360°.

B:  Manuscript values of oblique ascension (ρ) as a function of λ, and as a 
function of 360°−λ.

C:  Deviation from symmetry (in minutes): where columns B and C do not 
add up to 360°.

D:  Manuscript values of right ascension (α) as a function of λ, of 180°−λ 
of, 180°+λ, and of 360°−λ. Values in columns D2 to D4 only supplied 
where these are not symmetrical with D1.

E:  Right ascensions derived from symmetrically arranged values from John 
Westwyk’s oblique ascensions table (see formula 4 above). Values sup-
plied where these do not match D1.

F:  Ascensional difference (γ) derived by subtracting the manuscript values 
of oblique ascension from manuscript values of right ascension (α – ρ; 
D1 – B1).

G:  Ascensional difference derived from symmetrically arranged values from 
John Westwyk’s oblique ascensions table (see formula 5 above). Values 
supplied where these do not match F.

H:  Idealised manuscript oblique ascensions 360–180°, computed by sub-
tracting most consistent value of derived ascensional difference from 
manuscript right ascension for λ = 180–360°. Values only supplied 
where these do not match column B2.

J:  Idealised manuscript oblique ascensions 360–180°, computed by sub-
tracting most consistent value of derived ascensional difference from 
manuscript right ascension for λ = 0–180° and subtracting the result 
from 360°. Values only supplied where these do not match column B2.
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A B1 B2 C D1 D2 D3 D4 E F G H J

λ ρλ ρ360−λ αλ α180−λ α180+λ α360−λ αderived γ1 γ2 ρ1 ρ2

1 0;20 359;40 0;55 0;35
2 0;41 359;19 1;50 1;  9
3 1;  1 358;59 2;45 1;44
4 1;22 358;38 3;40 2;18
5 1;42 358;18 4;35 2;53
6 2;02 357;58 5;30 3;28
7 2;23 357;37 6;25 4;  2
8 2;43 357;17 7;20 4;37
9 3;  4 356;56 8;16 5;12

10 3;25 356;35 9;11 5;46
11 3;45 356;15 10;  6 10;5½ 6;21 6;20½
12 4;  6 355;54 11;  1 6;55
13 4;27 355;33 11;57 7;30
14 4;48 355;12 12;52 8;  4
15 5;  8 354;51 −1 13;47 166;12 193;48 346;12 13;47½ 8;39 8;39½ 354;52
16 5;30 354;30 14;43 9;13
17 5;52 354;08 15;39 9;47
18 6;14 353;46 16;35 10;21
19 6;35 353;25 17;31 10;56
20 6;57 353;02 −1 18;27 11;30 353;  3 353;  3
21 7;19 352;41 19;23 12;  4
22 7;41 352;19 20;19 12;38
23 8;  3 351;57 21;15 13;12
24 8;25 351;35 22;12 13;47
25 8;48 351;12 23;  8 14;20
26 9;11 350;49 24;  5 14;54
27 9;34 350;26 25;  2 15;28
28 9;57 350;03 25;59 16;  2
29 10;21 349;39 26;56 16;35
30 10;45 349;15 27;53 17;  8
31 11;  8 348;52 28;50 17;42
32 11;33 348;27 29;48 18;15
33 11;57 348;03 30;46 18;49
34 12;23 347;38 1 31;44 328;17 19;21 347;37
35 12;48 347;13 1 32;42 327;19 19;54 347;12
36 13;13 346;47 33;40 20;27
37 13;39 346;21 34;38 20;59
38 14;  4 345;56 35;36 21;32
39 14;31 345;29 36;35 22;  4
40 14;58 345;02 37;34 22;36
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A B1 B2 C D1 D2 D3 D4 E F G H J

λ ρλ ρ360−λ αλ α180−λ α180+λ α360−λ αderived γ1 γ2 ρ1 ρ2

41 15;25 344;35 38;33 23;  8
42 15;53 344;17 10 39;32 23;39
43 16;20 343;40 40;31 40;31½ 24;11 24;11½
44 16;48 343;12 41;30 41;30½ 24;42 24;42½
45 17;17 342;43 42;30 25;13 342;42
46 17;48 342;12 43;30 25;42
47 18;16 341;44 44;30 26;14
48 18;46 341;14 45;30 26;44
49 19;17 340;43 46;31 27;14
50 19;47 340;12 −1 47;31 47;30½ 27;44 27;43½
51 20;20 339;40 48;32 28;12
52 20;52 339;  8 49;33 28;41
53 21;25 338;35 50;34 29;  9
54 21;59 338;  1 51;36 29;37
55 22;32 337;28 52;37 30; 5
56 23;  7 336;54 1 53;39 30;32 336;53 336;53
57 23;43 336;17 54;41 30;58
58 24;18 335;42 55;43 31;25
59 24;54 335; 6 56;45 31;51
60 25;31 334;29 57;47 32;16
61 26;10 333;50 58;50 32;40
62 26;49 333;11 59;53 33; 4
63 27;28 332;32 60;56 33;28
64 28;  8 331;52 61;59 33;51
65 28;49 331;11 63; 2 34;13
66 29;30 330;30 64; 5 34;35
67 30;13 329;47 65; 9 34;56
68 31;57 329;03 60 66;13 35;16
69 31;41 328;19 67;17 35;36
70 32;26 327;34 68;21 35;55
71 33;12 326;48 69;25 249;24 36;13
72 33;59 326;01 70;29 36;30
73 34;46 325;14 71;33 36;47
74 35;35 324;25 72;37 37;02
75 36;25 323;35 73;42 37;17
76 37;16 322;44 74;47 37;31
77 38;  7 321;53 75;52 37;45
78 39; 0 320; 0 −60 76;57 37;57
79 39;54 320;  6 78; 2 38; 8
80 40;48 319;12 79; 7 38;19
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A B1 B2 C D1 D2 D3 D4 E F G H J

λ ρλ ρ360−λ αλ α180−λ α180+λ α360−λ αderived γ1 γ2 ρ1 ρ2

81 41;44 318;16 80;12 38;28
82 42;40 317;20 81;17 38;37
83 43;38 316;22 82;22 38;44
84 44;36 315;24 83;27 38;51
85 45;37 314;24 1 84;33 95;28 264;32 275;28 84;32½ 38;56 38;55½ 314;23
86 46;37 313;23 85;38 274;21 39; 1 313;22
87 47;39 312;20 −1 86;43 273;16 39; 4 312;21
88 48;42 311;18 87;49 87;48½ 39; 7 39; 6½
89 49;46 310;14 88;54 39; 8
90 50;51 309; 9 90;00 39; 9
91 51;58 308; 2
92 53; 5 306;56 1
93 54;13 305;47
94 55;21 304;39
⋮

108 73; 1 286;59
109 74;22 285;38 249;24 285;37
110 75;44 284;16
⋮

135 112;17 247;43
136 113;47 246;12 −1
137 115;17 244;42 −1
138 116;49 243;11
⋮

152 137;59 222; 1
153 139;30 220; 0 −30
154 141; 1 218;59
⋮

164 156; 4 203;56
165 157;33 202;26 −1 13;47 166;12 193;48 346;12 202;27 202;27
166 159; 4 200;56
167 160;33 199;27
168 162; 4 197;55 −1 197;56 197;56
169 163;34 196;27 1
170 165; 3 194;57
⋮

179 178; 30 181;30
180 180; 0
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Determining the Sine Tables
Underlying Early European Tangent Tables

Kailyn Pritchard

Introduction

Trigonometry originated in ancient Greece, when Hipparchus of Rhodes be-
gan using a method which related the length of an arc in a circle to the
length of the chord it subtends to predict the motions of the celestial bod-
ies.1 Later, Indian astronomers based their trigonometry on the Sine,2 or half-
Chord, a tradition that was transmitted into Arabic astronomy. The history
of the Tangent function is more complicated. The first known manifestations
of tables containing a function resembling the modern Tangent were known
as ‘shadow tables’, and appeared within the context of sundial theory in early
Arabic zījes (astronomical handbooks) around the 9th century.3 Shadow ta-
bles appeared in separate sections of astronomical handbooks, and did not
form part of trigonometry in the way that Sines and Cosines did.

Shadow tables were transmitted from Arabic scholars into Europe through
Muslim Spain, in the form of works such as the 11th century Toledan Tables,
but remained firmly within the realm of sundial theory. Though Arabic as-
tronomers integrated the shadow function into their trigonometry as early as
the 10th century, the function we now know as the Tangent didn’t appear in
European astronomy until the 15th century. Manuscripts by Levi ben Gerson
(1288–1344) demonstrate significant influence from Arabic sources, as well
as from the works of Ptolemy, al-Battānī, and Jābir ibn Aflaḥ. Though the
shadow function had made its way into eastern Arabic trigonometry by this
time, the same was not true in Europe. Levi ben Gerson’s work was based
on Sines and Versed Sines, notably omitting the shadow function. When Levi
might have made use of this function in his work, he resorted instead to a
more complex procedure based on Sines.4

1 Van Brummelen, The Mathematics of the Heavens, pp. 37–46.
2 Capitalized functions, such as Sine, indicate the use of a base circle of radius R ̸= 1,

distinguishing them from modern sines.
3 Van Brummelen, The Mathematics of the Heavens, pp. 149–55.
4 Van Brummelen, The Mathematics of the Heavens, p. 231.
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Unfortunately, whatever method they chose, the astronomers computing
Tangent tables were in trouble, and many of them knew it. Both of these
methods are problematic for arguments near 90 . For these arcs, the Cosine
values are small. A minor deviation in these values is magnified significantly
by the division process.9 The Tangent table in the Opus palatinum by Rheti-
cus, for example, contains large errors that are symptomatic of this numerical
sensitivity. Less than a year after having obtained a copy of these tables, as-
tronomer Adrianus Romanus (1561–1615) noticed that they were in error
in the last 3, 4, 5 or more places. He argued (correctly) that the use of the
first method, in conjunction with Sines and Cosines accurate to only as many
places as the Tangents, was the source of the ‘inexcusable’ errors in Rheticus’
table.10

This paper examines four of the earliest Tangent tables to appear in Eu-
rope in order to determine how they were computed. We begin by examining
the ‘tabulae magistralis quarta’, found in Giovanni Bianchini’s Tabulae primi
mobilis.11 We then examine Regiomontanus’ ‘tabula fecunda’, published a few
decades later in his Tabulae directionum. The structure of Regiomontanus’
Tabulae directionum, including this new auxiliary table, was found recently
to copy that of Bianchini’s Tabulae primi mobilis.12 Finally, we examine two
sets of trigonometric tables by Georg Rheticus in his Canon doctrinae trian-
gulorum and Opus palatinum. The tables found in the Opus palatinum are
perhaps the most significant set of trigonometric tables in European history.
A corrected version of these tables was the best available in Europe for over
300 years, replaced only in the early 20th century.

Historians of mathematics have developed some understanding of how
Sines and Cosines were computed in several different cultures. In contrast,
historical practices for computing the Tangent function have been explored
very little. This paper addresses this gap, by establishing how one can deter-
mine the method by which a given historical Tangent table was computed,
as well as the radius used by the underlying Sine and Cosine table. After de-
termining the radii of the Sine and Cosine tables underlying each Tangent
table, we will reconstruct the Sine and Cosine values that the historical au-
thors must have used to compute the Tangent values found in their tables.
We will compare those reconstructed tables to known Sine and Cosine tables

9 For a discussion on how errors found in underlying Sine and Cosine tables can impact
Tangent values computed from them, see the Appendix of van Dalen, ‘Islamic and Chinese
Astronomy’.

10 Bockstaele, ‘Adrianus Romanus’.
11 Specifically, we refer to the manuscript Cracow, Biblioteca Jagiellonska, MS 556, referred

to as Tabulae primi mobilis B in Van Brummelen, ‘Before the End of an Error’.
12 Van Brummelen, ‘The End of an Error’, pp. 560–62.
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Tables resembling those of the shadow function, separate from sundial the-
ory, first appeared in Europe in the 15th century. The earliest such table ap-
peared as an auxiliary table in Giovanni Bianchini’s Tabulae primi mobilis.5
Auxiliary functions first appeared in Arabic astronomy. These functions con-
tain no astronomical meaning on their own, but appear frequently as units
in solutions to a variety of astronomical problems. This particular unit ap-
peared in Bianchini’s solution of the problem of converting stellar positions
from ecliptic to equatorial coordinates. This function, now known as the Tan-
gent, took a while to become a trigonometric function.6 This is illustrated by
its omission from Regiomontanus’ De triangulis omnimodis, a comprehensive
overview of both planar and spherical trigonometry that uses only the Sine
and Versed Sine. Regiomontanus did, however, include a Tangent table in
his Tabulae directionum (an idea borrowed from Bianchini) which spread to
his successors. By the end of the 16th century, the Tangent function was an
integral part of trigonometry.

In contrast with Arabic astronomy, which mostly used a circle with base
radius R = 60, European tables used a variety of different R values, such as
10000, 60000, and 100000. The use of very large R values allowed European
astronomers to give their Sine values as integers, whereas the Arabic Sine
tables with R = 60 always had fractional sexagesimal digits.

Tangents can be computed in two different ways. The first simply divides
the Sine by the Cosine and multiplies the result by R:7

Tan θ =
Sin θ
Cos θ

·R.

The second method uses a variant of the Pythagorean Theorem, which was
well known by astronomers and mathematicians in this time period:8

Tan2 θ +R2
= Sec2 θ.

While the secant was not conceived of as a trigonometric function until the

1550s, the identity can also be expressed as Tan θ =

√

(
R2

Cos θ )
2
−R2 and thus

provides another way to compute the Tangent.

5 Van Brummelen, ‘The End of an Error’, pp. 553, 558.
6 Van Brummelen, The Mathematics of the Heavens, pp. 261–63.
7 Note that the R in this formula is not necessarily the R of the base circle for the Sine

and Cosine values. It is the length of the gnomon in sundial theory, and the length of the
radius of the base circle of the Tangent when doing trigonometry.

8 The first secant tables to be published (other than those included in Georg Rheticus’
six-function conception of trigonometry) were in Francesco Maurolico’s Theodosii sphaerico-
rum elementorum in 1558. For more information, see Van Brummelen and Byrne, ‘Maurolico,
Rheticus’.
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from ecliptic to equatorial coordinates. This function, now known as the Tan-
gent, took a while to become a trigonometric function.6 This is illustrated by
its omission from Regiomontanus’ De triangulis omnimodis, a comprehensive
overview of both planar and spherical trigonometry that uses only the Sine
and Versed Sine. Regiomontanus did, however, include a Tangent table in
his Tabulae directionum (an idea borrowed from Bianchini) which spread to
his successors. By the end of the 16th century, the Tangent function was an
integral part of trigonometry.

In contrast with Arabic astronomy, which mostly used a circle with base
radius R 60, European tables used a variety of different R values, such as
10000, 60000, and 100000. The use of very large R values allowed European
astronomers to give their Sine values as integers, whereas the Arabic Sine
tables with R 60 always had fractional sexagesimal digits.

Tangents can be computed in two different ways. The first simply divides
the Sine by the Cosine and multiplies the result by R:7

Tan θ
Sin θ
Cos θ

R

The second method uses a variant of the Pythagorean Theorem, which was
well known by astronomers and mathematicians in this time period:8

Tan2 θ R2 Sec2 θ

While the secant was not conceived of as a trigonometric function until the

1550s, the identity can also be expressed as Tan θ R2

Cos θ
2 R2 and thus

provides another way to compute the Tangent.

5 Van Brummelen, ‘The End of an Error’, pp. 553, 558.
6 Van Brummelen, The Mathematics of the Heavens, pp. 261–63.
7 Note that the R in this formula is not necessarily the R of the base circle for the Sine

and Cosine values. It is the length of the gnomon in sundial theory, and the length of the
radius of the base circle of the Tangent when doing trigonometry.

8 The first secant tables to be published (other than those included in Georg Rheticus’
six-function conception of trigonometry) were in Francesco Maurolico’s Theodosii sphaerico-
rum elementorum in 1558. For more information, see Van Brummelen and Byrne, ‘Maurolico,
Rheticus’.



110 KAILYN PRITCHARD DETERMINING THE SINE TABLES 111

refers to that determined by this method to have been used to compute the
historical Tangent value, and ‘historical value’ refers to a Co/Sine printed in
a known, published Co/Sine table.

In order to illustrate our method for analyzing the tables studied in this
paper, we take as a case study the Tangent table contained in Regiomontanus’
Tabulae directionum, which uses an R value of 100000. In Regiomontanus’
table, Tan 87 1908217, as opposed to the correct value, 1908114. The
Sine and Cosine tables underlying Regiomontanus’ Tangent table can rea-
sonably be assumed to have used an R value similar to either the Tangent
table itself, or to Regiomontanus’ known Sine tables (60000, 6000000, and
10000000). Recall that both the Sine tables and Tangent tables contained
only whole number values. The underlying Sine and Cosine values can be as-
sumed to be within two units of the accurate values for whichever radius is
used, since Regiomontanus’ published Sine tables are at least this accurate.15

This provides narrow constraints for Regiomontanus’ possible computations.
Next, we generate a variety of fictional underlying tables, compute Tangents

from them, and compare the resulting values to those found in Regiomon-
tanus’ Tangent table. While a single match of a recomputed value to a his-
torical value could be coincidental, consistent preference of one R value over
the others being examined would suggest Regiomontanus used that R value.
For each given table, we examined only the Tangents with the largest argu-
ments,16 as both methods become unstable in this section of the table. They
require division by Cosine values, which are relatively small for arguments
near 90 . Slight inaccuracies in those Cosine values can therefore create sig-
nificant differences in the Tangent values resultant from those computations,
making this area of the tables the most fruitful for our study.17 The usefulness
of this method is limited to examining only the latter, more unstable portion
of the tables, and cannot confirm whether the method used in those sections
was used throughout the table with certainty. The underlying Co/Sine values
could not be reliably reconstructed in the more stable sections of the table
using this method. It is, however, highly likely that the table compiler would
have used the same method to compute the entirety of the table and a hy-
pothesis of a different method for the early part of the table would require
some strong evidence that is not there by current analysis.

15 Regiomontanus, Tabulae directionum.
16 We examined the arguments for the 10 interval between 80 and 90 for all tables

except for that found in Rheticus, Opus palatinum, for which we examined the 1 interval
between 89 and 90 .

17 For more details on the numerical sensitivity involved when computing Tangents, see
the earlier discussion in the Introduction.
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by the same authors, allowing us to better understand how the astronomers
interacted with their Co/Sine tables as they constructed these early Tangent
tables. Very little direct evidence is available regarding how historical authors
completed their computations behind the scenes. The results of this project
provide us with unique insight into the working practises of these historical
mathematicians.

Methods

Both methods for computing Tangents rely on Sines and Cosines taken from
another table. Our objective is to determine the method by which the Tan-
gent tables were computed, the radii of the underlying tables, and the Sine
and Cosine values that were used. Given either of the two possible methods
for computing a Tangent, each entry depends on at most three choices: a
choice of R, a choice of Sin θ, and a choice of Cos θ. This means that there
are a limited number of recomputational possibilities for the historical table.

Existing methods for determining the interdependence of historical ta-
bles are insufficient for answering the relevant questions of this project. The
method developed by Glen Van Brummelen and Kenneth Butler determines
whether a given table (of Tangents, for example) is likely to have been com-
puted from another particular table containing potential underlying values
(Co/Sines). It is only effective in cases where a method is assumed, and
there is a single value upon which the Tangent value relies.13 As the first
method of computing the Tangent requires two underlying values (Sine and
Cosine), this technique cannot be used. When using it to examine the sec-
ond method, the results were inconclusive. Another method, developed by
Benno van Dalen, uses statistics to perform a parameter estimation.14 In this
case, the parameter that we seek is R, which is easily found without statistics.
Statistical methods like this are more useful when analyzing complex compu-
tations. Our situation is so computationally simple that direct recomputation
is preferable to statistical analysis. The objective at hand is to determine the
mathematical procedures which produced the values in the historical Tan-
gent tables we are examining, rather than verifying a specific interdependence
relationship or estimating a particular parameter. Thus, a method which re-
produces the methods used by historical mathematicians when creating their
tables is better suited to the purpose.

In the following work, ‘correct value’ or ‘accurate value’ refers to the value
obtained by modern computation, ‘reconstructed value’ or ‘underlying value’

13 Van Brummelen and Butler, ‘Determining the Interdependence’, p. 43.
14 van Dalen, ‘A Statistical Method’.
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except for that found in Rheticus, Opus palatinum, for which we examined the 1◦ interval
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17 For more details on the numerical sensitivity involved when computing Tangents, see
the earlier discussion in the Introduction.
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13 Van Brummelen and Butler, ‘Determining the Interdependence’, p. 43.
14 van Dalen, ‘A Statistical Method’.
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Considering Regiomontanus’ Tangent table, we posit R = 60000.18 We se-
lect five possible Sines and five possible Cosines: the mathematically correct
value for R = 60000, rounded to a whole number, as well as the two values
greater and the two values less than that value. In the case of Tan(87◦), we
choose the Sines 59916, 59917, 59918, 59919, and 59920, and the Cosines
3138, 3139, 3140, 3141, and 3142.

We examine the first method by calculating the 25 values of Tan(87◦)
generated by all of the possible combinations of these Sines and Cosines
and compare the results with the author’s entry Tan(87◦) = 1908217. The
twenty-five entries generated in such tables will later be referred to the entries
generated by the best-fit Co/Sine tables.

59916 59917 59918 59919 59920
3138 1909369 1909401 1909433 1909465 1909496
3139 1908761 1908793 1908824 1908856 1908888
3140 1908153 1908185 1908217 1908248 1908280
3141 1907545 1907577 1907609 1907641 1907673
3142 1906938 1906970 1907002 1907034 1907066

Table 1: 25 possible Tangent values, generated from combinations of five possible Co/Sine
values.

We examine the second method by calculating the five values of Tan(87◦)
generated by using these Cosines and compare the results with the author’s
entry Tan(87◦) = 1908217.

3138 3139 3140 3141 3142
1909429 1908819 1908210 1907600 1906992

Table 2: Five possible Tangent values, generated from five possible Cosine values.

Using the first method, the historical value of Tan(87◦) = 1908217 is gen-
erated when Sin(87◦) = 59918, and Cos(87◦) = 3140 (Table 1). The closest
that the second method is able to get to this value is 1908210: 7 units less.
While this alone might just be a fortuitous match, if the same method and
value of R produces mostly ‘fortuitous’ matches while other methods and val-
ues of R produce hardly any matches, we will have found with near certainty
both the historical value of R and the Sine and Cosine values that were used.
Once we have reconstructed the Sine and Cosine tables that must have been
used to compute the historical Tangent values, we can compare those tables
to known Co/Sine tables by the same author and based on the same R value

18 We repeat the analysis for all possible attested and plausible R values, examining eight
possibilities for each author.
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to determine whether or not it is likely that those exact tables were used.
The method itself does not directly make use of any known Co/Sine tables;
it simply compares the reconstructed tables to known tables in order to es-
tablish a possible source.

To compare the results obtained by using each of these different R values
and different methods, we examine the mean error: the sum of the differences
between the most accurate of the 25 generated entries and the historical en-
try for each argument, divided by the total number of entries examined. This
metric was selected from the many available because of its ability to quickly
and simply give perspective on the magnitude of the errors created by select-
ing the various R values considered. Other options achieved this less effec-
tively and elegantly. We also record the number of exact matches: the number
of times that the generated entry closest to the entry found in the histori-
cal table is in fact identical to the historical entry. While these two metrics
are not guaranteed to agree, since every exact match correlates with a zero
in the sum contributing to the mean, a larger number of exact matches often
correlates with a lower mean error.

For each of the Tangent tables discussed in this paper, our examination of
these metrics conclusively determined that the second method was not used.
This is unsurprising, given that the second method involves computations that
are significantly more complex than the first, without resolving the issues of
instability created by having a Cosine in the denominator of the relevant
fraction. In every case, however, the R values correlating with the least mean
errors and greatest number of exact matches were the same when using both
the first and second methods. The second method will not be discussed in
any of the analysis sections following. Tables containing the mean errors and
exact matches for each Tangent table using the second method can be found
at www.kailynpritchard.com.

Giovanni Bianchini

Astronomer Giovanni Bianchini (c. 1410–1469) was a Venetian merchant un-
til 1427, when he began three decades of work as an administrator for the
ruling d’Este family. Bianchini is also known to have taught at the Univer-
sity of Ferrara. He corresponded with Regiomontanus in 1463 and 1464,
discussing mostly astronomical and mathematical problems.19 It was recently
discovered that the structure of Regiomontanus’ Tabulae directionum directly
copies that of Bianchini’s Tabulae primi mobilis.20 It is unknown whether the
two ever met in person.

19 Chabás and Goldstein, The Astronomical Tables, pp. 13–14, 19–20.
20 cf. the reference in footnote 11.

112 KAILYN PRITCHARD

Considering Regiomontanus’ Tangent table, we posit R 60000.18 We se-
lect five possible Sines and five possible Cosines: the mathematically correct
value for R 60000, rounded to a whole number, as well as the two values
greater and the two values less than that value. In the case of Tan 87 , we
choose the Sines 59916, 59917, 59918, 59919, and 59920, and the Cosines
3138, 3139, 3140, 3141, and 3142.

We examine the first method by calculating the 25 values of Tan 87
generated by all of the possible combinations of these Sines and Cosines
and compare the results with the author’s entry Tan 87 1908217. The
twenty-five entries generated in such tables will later be referred to the entries
generated by the best-fit Co/Sine tables.

59916 59917 59918 59919 59920
3138 1909369 1909401 1909433 1909465 1909496
3139 1908761 1908793 1908824 1908856 1908888
3140 1908153 1908185 1908217 1908248 1908280
3141 1907545 1907577 1907609 1907641 1907673
3142 1906938 1906970 1907002 1907034 1907066

Table 1: 25 possible Tangent values, generated from combinations of five possible Co/Sine
values.

We examine the second method by calculating the five values of Tan 87
generated by using these Cosines and compare the results with the author’s
entry Tan 87 1908217.

3138 3139 3140 3141 3142
1909429 1908819 1908210 1907600 1906992

Table 2: Five possible Tangent values, generated from five possible Cosine values.

Using the first method, the historical value of Tan 87 1908217 is gen-
erated when Sin 87 59918, and Cos 87 3140 (Table 1). The closest
that the second method is able to get to this value is 1908210: 7 units less.
While this alone might just be a fortuitous match, if the same method and
value of R produces mostly ‘fortuitous’ matches while other methods and val-
ues of R produce hardly any matches, we will have found with near certainty
both the historical value of R and the Sine and Cosine values that were used.
Once we have reconstructed the Sine and Cosine tables that must have been
used to compute the historical Tangent values, we can compare those tables
to known Co/Sine tables by the same author and based on the same R value

18 We repeat the analysis for all possible attested and plausible R values, examining eight
possibilities for each author.
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Bianchini’s scientific works were produced between 1440 and 1460. His
master work is his Flores Almagesti. The Flores Almagesti is the theoretical
backbone of most of Bianchini’s works. The first three treatises of this work
(which contains 8 to 10 treatises, depending on the manuscript tradition)
provide a mathematical introduction. The remainder of the work deals with
astronomical matters directly, following Ptolemy’s Almagest up to Book VI.21

Other titles include his Tabulae astronomae, a series of tables, and instructions
for their use,22 and his eclipse tables Tabulae de eclypsibus.

Tabulae primi mobilis: Background

Giovanni Bianchini’s Tabulae primi mobilis is believed to have been written
towards the end of his academic career, perhaps between 1455 and 1460.23 It
consists of approximately 40 pages of canons, which contain instructions for
solving problems in spherical astronomy and mathematical astrology, and 100
pages of astronomical tables.24 One of its tables, entitled ‘tabula magistralis
quarta’, is the first appearance of what would come to be known as a Tan-
gent table. An excerpt may be found in Appendix 1a. In Bianchini’s work, it
is represented and used as an auxiliary function, to aid in the computations
necessary to solve the problem of the conversion of stellar coordinates. It is
also found in a collection of auxiliary functions, Bianchini’s Tabulae magis-
tralis.

Tabulae primi mobilis: Analysis

The Tangent table in the Tabulae primi mobilis,25 with radius R = 10000, is
amenable to the analysis described in the previous section. We consider the
last 60 entries of the table, associated with the arguments for each 10′ of arc
between 80◦ and 90◦. Many of these values are erroneous, to some extent.

Exact reconstructions of 24 of these printed entries were generated by us-
ing the most accurate possible Sine and Cosine values with R = 60000. Using
this radius, we generate a perfect match for another 25 entries with one ac-
curate Co/Sine and the other in error by one in the last place. The number
of matches achieved by using various Co/Sine tables with different R values
is summarized below.

The greatest argument for which we were able to obtain an exact match
was 89◦30′. Table 4 depicts the differences between each of the 25 Tangent

21 Chabás and Goldstein, The Astronomical Tables, p. 19.
22 Chabás and Goldstein, The Astronomical Tables, p. 14.
23 Chabás and Goldstein, The Astronomical Tables, p. 19. Note that the Tabulae primi

mobilis is referred to as Canones tabularum super primo mobile in this text.
24 Van Brummelen, ‘The End of an Error’, p. 547.
25 Cracow, BJ, MS 556, f. 52r-52v.
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Radius (R) Exact matches
6000 2
10000 5
60000 49
100000 27
600000 19

1000000 14
6000000 6
10000000 4

Table 3: Exact matches obtained using best-fit Co/Sine tables to recompute the last 60 entries
from the Tangent table in Bianchini’s Tabulae primi mobilis.

values generated by our method, and the Tangent value printed by Bianchini
in his table. The column headers are the Sines, divided by the Cosines la-
belling each row. Note that the zero in the fourth column from the left, and
fourth row down signifies that the exact Tangent value printed by Bianchini
was obtained by dividing 59998 by 524, and multiplying by 10000.

59996 59997 59998 59999 60000
522 4349 4368 4387 4406 4425
523 2151 2170 2189 2208 2228
524 −38 −19 0 19 38
525 −2219 −2200 −2181 −2162 −2143
526 −4392 −4373 −4354 −4335 −4316

Table 4: The differences between the 25 Tangent values generated by our method and Bian-
chini’s printed Tangent value for argument 89◦30′.

The mean error achieved using Co/Sine tables for all of the different candi-
date R values is summarized in Table 5.

Radius (R) Mean error
6000 388.2
10000 292.2
60000 0.8
100000 31.8
600000 18.1

1000000 24.7
6000000 40
10000000 41.8

Table 5: Mean error obtained when using best-fit Co/Sine tables to recompute the Tangent
table in Bianchini’s Tabulae primi mobilis. Note that the error associated with the entry for
argument 89◦50′ was removed, as it could not be reliably reconstructed.
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Bianchini’s scientific works were produced between 1440 and 1460. His
master work is his Flores Almagesti. The Flores Almagesti is the theoretical
backbone of most of Bianchini’s works. The first three treatises of this work
(which contains 8 to 10 treatises, depending on the manuscript tradition)
provide a mathematical introduction. The remainder of the work deals with
astronomical matters directly, following Ptolemy’s Almagest up to Book VI.21

Other titles include his Tabulae astronomae, a series of tables, and instructions
for their use,22 and his eclipse tables Tabulae de eclypsibus.

Tabulae primi mobilis: Background

Giovanni Bianchini’s Tabulae primi mobilis is believed to have been written
towards the end of his academic career, perhaps between 1455 and 1460.23 It
consists of approximately 40 pages of canons, which contain instructions for
solving problems in spherical astronomy and mathematical astrology, and 100
pages of astronomical tables.24 One of its tables, entitled ‘tabula magistralis
quarta’, is the first appearance of what would come to be known as a Tan-
gent table. An excerpt may be found in Appendix 1a. In Bianchini’s work, it
is represented and used as an auxiliary function, to aid in the computations
necessary to solve the problem of the conversion of stellar coordinates. It is
also found in a collection of auxiliary functions, Bianchini’s Tabulae magis-
tralis.

Tabulae primi mobilis: Analysis

The Tangent table in the Tabulae primi mobilis,25 with radius R 10000, is
amenable to the analysis described in the previous section. We consider the
last 60 entries of the table, associated with the arguments for each 10 of arc
between 80 and 90 . Many of these values are erroneous, to some extent.

Exact reconstructions of 24 of these printed entries were generated by us-
ing the most accurate possible Sine and Cosine values with R 60000. Using
this radius, we generate a perfect match for another 25 entries with one ac-
curate Co/Sine and the other in error by one in the last place. The number
of matches achieved by using various Co/Sine tables with different R values
is summarized below.

The greatest argument for which we were able to obtain an exact match
was 89 30 . Table 4 depicts the differences between each of the 25 Tangent

21 Chabás and Goldstein, The Astronomical Tables, p. 19.
22 Chabás and Goldstein, The Astronomical Tables, p. 14.
23 Chabás and Goldstein, The Astronomical Tables, p. 19. Note that the Tabulae primi

mobilis is referred to as Canones tabularum super primo mobile in this text.
24 Van Brummelen, ‘The End of an Error’, p. 547.
25 Cracow, BJ, MS 556, f. 52r-52v.
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Based on these results, we conclude that Giovanni Bianchini used Tan θ =
Sin θ
Cos θ ·10000 in conjunction with a Sine table with a radius of R = 60000 in
order to generate his Tangent values.

Of the 60 Tangent values examined, only one entry (for argument 89◦50′)
could not be reliably reconstructed. The least error for that entry ranged
from 3738 to 86407, depending on the method and value of R. The error
for this entry is two orders of magnitude greater than any other entry, and
no change of a single digit creates a value that can be reliably reconstructed
using this method. For these reasons, we believe this entry to be the result
of a computational error.

A comparison of the trios of Sine values in the reconstruction tables (Ap-
pendix 1b) presents the following results:

• The correct values (according to modern recomputation) exactly match
both the reconstructed value and the value printed by Bianchini in his
tables in 41 of the 59 reliably reconstructed entries.

• Of the remaining 18 entries, in 11 cases the reconstructed value matches
the value printed by Bianchini in his Sine tables, but not the correct
value.

• For 5 of the 7 remaining entries, Bianchini’s printed values match the
correct values, but the reconstructed value is different.

• For the final 2 entries, the correct value, the reconstructed value, and
the value printed in Bianchini’s table are all different.

These results suggest that the underlying table is an old version of Bianchini’s
Sine table, which the printed table improves upon. Whether or not this is
the case, the reconstructed table is a variant of the Sine table that Bianchini
published in his Tabulae primi mobilis.

We turn next to the Cosine table (Appendix 1c).
• The three columns match each other for 42 out of 59 reliably recon-

structed entries.26

• For 14 of the remaining 17 entries, the reconstructed value matches
the value printed by Bianchini in his Cosine table, but not the correct
value.

• For 2 of the 3 remaining entries, the reconstruction matches the com-
puted values, but not the values printed in Bianchini’s Cosine table.

• For the final entry, the computed value matches the value printed in
Bianchini’s table, but it does not match the reconstruction.

26 As before, the entry for argument 89◦50′ reveals a significant computational error.
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This evidence suggests that the reconstructed Cosine table is an improved
version of the printed table, but not strongly enough to reach a firm conclu-
sion. The reconstructed table is clearly a variant of the published version, but
not identical to it.

The reconstructed underlying Sine table matches Bianchini’s published Sine
table with R = 60000 for 52 of the 60 entries, and the reconstructed under-
lying Cosine table matches Bianchini’s printed Cosine table with the same
radius for 56 of 60 entries. As only 41 and 42 of these entries, respectively,
are correct, this suggests that Bianchini’s Tangent tables were computed based
on a version of his Sine table with R = 60000.

Of the 10 entries that are reliable reconstructions and do not match, for 6
entries the value printed by Bianchini is more accurate than the reconstruc-
tion, for 2 entries the reconstruction is more accurate than Bianchini’s printed
values, and for 2 entries neither the printed values nor the reconstruction are
more accurate. We therefore cannot conclude whether or not the Co/Sine ta-
bles Bianchini used to compute his Tangents were a revised version of those
seen in his Tabulae primi mobilis. One could reasonably conclude that they
were either, given that Bianchini would not have known which entries were
more accurate when he computed them.

Regiomontanus
Born Johannes Müller (1436–1476), the astronomer and mathematician bet-
ter known as Regiomontanus was, and remains, easily the most recognized
European astronomer of the 15th century.27 Much of his career was spent
at the University of Vienna, studying trigonometry and astronomy under his
mentor Georg Peurbach.28 Though his life and career were both very short,
Regiomontanus’ work went on to influence scientists like Copernicus for over
a century.29

Regiomontanus’ most significant books included the Epytoma in Almages-
tum Ptolemei, Tabulae primi mobilis, Tabulae directionum and De triangulis
omnimodis. The Epytoma in Almagestum Ptolemei, completing Georg Peur-
bach’s work, provided a streamlined commentary on the mathematics con-
tained in the Almagest. His Tabulae primi mobilis, reflecting Arabic astronom-
ical works on auxiliary functions, contains a table that could solve a variety
of problems encountered in spherical astronomy. De triangulis omnimodis is

27 For additional information on Regiomontanus, see Hughes, Regiomontanus and Zin-
ner, Regiomontanus. For discussion on Regiomontanus’ trigonometry, see Van Brummelen, The
Mathematics of the Heavens, pp. 251–263.

28 Zinner, Regiomontanus, p. 17–30.
29 Van Brummelen, The Mathematics of the Heavens, pp. 251 and 261; Zinner, ‘Regiomon-

tanus’, p. 93.
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Based on these results, we conclude that Giovanni Bianchini used Tan θ
Sin θ
Cos θ 10000 in conjunction with a Sine table with a radius of R 60000 in
order to generate his Tangent values.

Of the 60 Tangent values examined, only one entry (for argument 89 50 )
could not be reliably reconstructed. The least error for that entry ranged
from 3738 to 86407, depending on the method and value of R. The error
for this entry is two orders of magnitude greater than any other entry, and
no change of a single digit creates a value that can be reliably reconstructed
using this method. For these reasons, we believe this entry to be the result
of a computational error.

A comparison of the trios of Sine values in the reconstruction tables (Ap-
pendix 1b) presents the following results:

The correct values (according to modern recomputation) exactly match
both the reconstructed value and the value printed by Bianchini in his
tables in 41 of the 59 reliably reconstructed entries.
Of the remaining 18 entries, in 11 cases the reconstructed value matches
the value printed by Bianchini in his Sine tables, but not the correct
value.
For 5 of the 7 remaining entries, Bianchini’s printed values match the
correct values, but the reconstructed value is different.
For the final 2 entries, the correct value, the reconstructed value, and
the value printed in Bianchini’s table are all different.

These results suggest that the underlying table is an old version of Bianchini’s
Sine table, which the printed table improves upon. Whether or not this is
the case, the reconstructed table is a variant of the Sine table that Bianchini
published in his Tabulae primi mobilis.

We turn next to the Cosine table (Appendix 1c).
The three columns match each other for 42 out of 59 reliably recon-
structed entries.26

For 14 of the remaining 17 entries, the reconstructed value matches
the value printed by Bianchini in his Cosine table, but not the correct
value.
For 2 of the 3 remaining entries, the reconstruction matches the com-
puted values, but not the values printed in Bianchini’s Cosine table.
For the final entry, the computed value matches the value printed in
Bianchini’s table, but it does not match the reconstruction.

26 As before, the entry for argument 89 50 reveals a significant computational error.
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a comprehensive treatment of both plane and spherical triangles, modeled on
the style of reasoning in Euclid’s Elements. Though Regiomontanus already
may have begun working with the Tangent function in an astronomical con-
text, the Tangent is notably absent from De triangulis omnimodis.30

Tabulae directionum: Background

One of Regiomontanus’ most famous books, and undoubtedly his most pop-
ular set of astronomical tables, is his Tabulae directionum. It was written in
1467, though it remained unpublished until 1490, 14 years after his death.31

As has been mentioned above, it has been demonstrated recently that the
structure of Regiomontanus’ tables in the Tabulae directionum was taken di-
rectly from the structure of Bianchini’s Tabulae primi mobilis. In the Tabulae
directionum we find a table called the ‘tabula fecunda’, or ‘fruitful table’. It is
believed to be the second Tangent table to appear in Europe, after the table
by Bianchini that we treated in the previous section.32 Regiomontanus’ table
is more precise than Bianchini’s, using a radius of R = 100000 rather than
R = 10000, but it contains far fewer entries, giving the Tangent for every
degree of arc, as opposed to Bianchini’s every 10′ of arc.

Tabulae directionum: Analysis

For the Tangent table in the Tabulae directionum, we apply our analysis to the
entries for 80◦, 81◦, …, 89◦. Exact reconstructions of eight of these printed
entries were generated by using the most accurate possible Sine and Co-
sine values with R = 60000. Table 6 displays the number of exact matches
achieved by using best-fit Co/Sine tables of all the historically plausible R
values we examined.

The greatest argument for which we were able to obtain an exact match
was 88◦. Table 7 depicts the differences between each of the 25 Tangent val-
ues generated by our method, and the Tangent value printed by Regiomon-
tanus in his table for this argument. The column labels are the Sines, divided
by the Cosines labelling each row. Note that the zero in the fourth column
from the left, and fourth row down signifies that the exact Tangent value
printed by Regiomontanus was obtained by dividing 59963 by 2094, and
multiplying by 100000.

30 Van Brummelen, The Mathematics of the Heavens, pp. 261.
31 Van Brummelen, The Mathematics of the Heavens, pp. 251, 261 and 263.
32 Rosińska, ‘Tables trigonométriques’, p. 49. Rosińska incorrectly identifies the radius of

Bianchini’s table as 1000, rather than 10000.
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Radius (R) Exact matches
6000 0
10000 0
60000 8
100000 2
600000 3

1000000 1
6000000 1
10000000 0

Table 6: Exact matches obtained using best-fit Co/Sine tables to recompute the last ten entries
from the Tangent table in Regiomontanus’ Tabulae directionum. Note: 600000 is 10 times
as large as 60000. Thus, supposing that R = 60000 was used with method 1, one should
expect an occasional accidental match when using R = 600000: namely, when the underlying
Sine/Cosine value happens to end in 0.

59961 59962 59963 59964 59965
2092 2642 2689 2737 2785 2833
2093 1272 1320 1368 1415 1463
2094 −96 −48 0 47 95
2095 −1463 −1415 −1367 −1320 −1272
2096 −2828 −2781 −2733 −2685 −2637

Table 7: The differences between the 25 Tangent values generated by our method and Re-
giomontanus’ printed Tangent value for argument 88◦.

Table 8 gives the mean error achieved by best-fit Co/Sine tables of all the
historically plausible R values we examined.

Radius (R) Mean error
6000 2044.5
10000 1718.5
60000 0.9
100000 15.3
600000 18

1000000 27.9
6000000 114.5
10000000 123.5

Table 8: Mean error obtained when using best-fit Co/Sine tables to recompute Regiomontanus’
Tangent table in the Tabulae directionum.

The fit for R = 60000 is well over an order of magnitude better than any
other R value. We conclude that Regiomontanus used Tan θ = Sin θ

Cos θ ·100000
in conjunction with Co/Sine values with a radius of R = 60000 in order
to generate his Tangent values. The only entries for which calculations based
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a comprehensive treatment of both plane and spherical triangles, modeled on
the style of reasoning in Euclid’s Elements. Though Regiomontanus already
may have begun working with the Tangent function in an astronomical con-
text, the Tangent is notably absent from De triangulis omnimodis.30

Tabulae directionum: Background

One of Regiomontanus’ most famous books, and undoubtedly his most pop-
ular set of astronomical tables, is his Tabulae directionum. It was written in
1467, though it remained unpublished until 1490, 14 years after his death.31

As has been mentioned above, it has been demonstrated recently that the
structure of Regiomontanus’ tables in the Tabulae directionum was taken di-
rectly from the structure of Bianchini’s Tabulae primi mobilis. In the Tabulae
directionum we find a table called the ‘tabula fecunda’, or ‘fruitful table’. It is
believed to be the second Tangent table to appear in Europe, after the table
by Bianchini that we treated in the previous section.32 Regiomontanus’ table
is more precise than Bianchini’s, using a radius of R 100000 rather than
R 10000, but it contains far fewer entries, giving the Tangent for every
degree of arc, as opposed to Bianchini’s every 10 of arc.

Tabulae directionum: Analysis

For the Tangent table in the Tabulae directionum, we apply our analysis to the
entries for 80 , 81 , …, 89 . Exact reconstructions of eight of these printed
entries were generated by using the most accurate possible Sine and Co-
sine values with R 60000. Table 6 displays the number of exact matches
achieved by using best-fit Co/Sine tables of all the historically plausible R
values we examined.

The greatest argument for which we were able to obtain an exact match
was 88 . Table 7 depicts the differences between each of the 25 Tangent val-
ues generated by our method, and the Tangent value printed by Regiomon-
tanus in his table for this argument. The column labels are the Sines, divided
by the Cosines labelling each row. Note that the zero in the fourth column
from the left, and fourth row down signifies that the exact Tangent value
printed by Regiomontanus was obtained by dividing 59963 by 2094, and
multiplying by 100000.

30 Van Brummelen, The Mathematics of the Heavens, pp. 261.
31 Van Brummelen, The Mathematics of the Heavens, pp. 251, 261 and 263.
32 Rosińska, ‘Tables trigonométriques’, p. 49. Rosińska incorrectly identifies the radius of

Bianchini’s table as 1000, rather than 10000.
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Argument Calculated Reconstruction Regiomontanus Bianchini
80◦ 59088 59088 59088 59088
81◦ 59261 59261 59261* 59261
82◦ 59416 59416 59416 59416
83◦ 59553 59553 59552 59554
84◦ 59671 59671 59671 59671
85◦ 59772 59774* 59771 59772
86◦ 59854 59854 59853 59854
87◦ 59918 59918 59917 59918
88◦ 59963 59963 59963 59964
89◦ 59991 59991 59990 59990

Table 9: Reconstruction of the Sine table used to compute Regiomontanus’ Tangent table,
found in his Tabulae directionum. Asterisks denote entries for which the reconstruction is un-
reliable. Note: The entry denoted with an asterisk was published as 59161 in Regiomontanus,
Tabula directionum (1504), due to a typographical error, and we have corrected it here.

Argument Calculated Reconstruction Regiomontanus Bianchini
80◦ 10419 10419 10418 10419
81◦ 9386 9386 9386 9386
82◦ 8350 8350 8350 8350
83◦ 7312 7312 7312 7312
84◦ 6272 6272 6271 6272
85◦ 5229 5229* 5229 5229
86◦ 4185 4185 4185 4185
87◦ 3140 3140 3140 3140
88◦ 2094 2094 2093 2094
89◦ 1047 1047 1047 1048

Table 10: Reconstruction of the Cosine table used to compute Regiomontanus’ Tangent table,
found in his Tabulae directionum. Regiomontanus’ Cosine values were obtained by reading the
values for Sin(90◦−θ) (Sine of the complement) from his Sine table. Asterisks denote entries
for which the reconstruction is unreliable.

on Sine and Cosine tables using R = 60000 do not match exactly those
found in the Tangent table are those for θ = 85◦ and 89◦. But even for
these arguments, using the first method with R = 60000 produces a much
better fit to Regiomontanus’ Tangent value than any other choice of method
and R.

Our reconstruction of the Sine and Cosine tables underlying Regiomon-
tanus’ printed Tangent tables is found in Tables 9 and 10, respectively. Since
the structure of Regiomontanus’ Tabulae directionum, including this table, was
taken directly from the structure of Bianchini’s Tabulae primi mobilis, we
shall consider the possibility that Regiomontanus’ Tangent table may depend
on one of Bianchini’s Sine tables, rather than his own. Thus, we will com-



 DETERMING THE SINE TABLES 121DETERMINING THE SINE TABLES 121

pare the reconstructed Co/Sine table to both Regiomontanus’ and Bianchini’s
Co/Sine tables of the appropriate R value. The last two columns are therefore
Regiomontanus and Bianchini’s published Sine tables that use R = 60000.

The reconstructed table does not match perfectly either Regiomontanus’
nor Bianchini’s Sine tables.

• Comparing the reconstructed Sine values to both Regiomontanus’ and
Bianchini’s Sine tables, we find a fit with Regiomontanus in 5 of 9
entries and with Bianchini in 6 of 9 entries.33

• All 4 of the remaining entries in the case of Regiomontanus, and all 3
in the case of Bianchini, are exactly correct at the level of precision of
the table. This suggests that the Sine table underlying Regiomontanus’
Tangent table is an improved version of either Regiomontanus’ or Bian-
chini’s Sine table.

We turn next to the Cosine table.
• Comparing the reconstructed Cosine values to both Regiomontanus’

and Bianchini’s Cosine tables, we find a fit with Regiomontanus in 7
of 10 entries and with Bianchini in 9 of 10 entries.33

• All 3 of the remaining entries in the case of Regiomontanus, and the
final entry in the case of Bianchini, are exactly correct at the level of
precision of the table.

This suggests that the Sine and Cosine tables underlying Regiomontanus’
Tangent table is an improved version of either Regiomontanus’ or Bianchi-
ni’s Sine and Cosine tables. As Bianchini’s Co/Sine table is slightly better
than Regiomontanus’ table, it is difficult to determine whether the under-
lying Co/Sine table is a slightly improved version of Bianchini’s table, or a
significantly improved version of Regiomontanus’ table.

Georg Rheticus
Georg Rheticus (1514–1574) is most famous for his work under Nicolaus
Copernicus (1473–1543). Despite initial resistance, Rheticus eventually re-
ceived permission from Copernicus to publish the Narratio prima, an an-
nouncement of the heliocentric theory, within a year of his arrival in 1539.
Over the next four years, Rheticus also convinced Copernicus to publish his
De revolutionibus orbium coelestium.34

After Copernicus’ death, Rheticus began producing his own astronomical
work, primarily on trigonometry, as a scholar at the University of Leipzig.

33 The entry associated with 85◦ has been excluded, since it was not possible to reconstruct
it reliably.

34 Rosen, ‘Rheticus’, p. 396.
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Argument Calculated Reconstruction Regiomontanus Bianchini
80 59088 59088 59088 59088
81 59261 59261 59261* 59261
82 59416 59416 59416 59416
83 59553 59553 59552 59554
84 59671 59671 59671 59671
85 59772 59774* 59771 59772
86 59854 59854 59853 59854
87 59918 59918 59917 59918
88 59963 59963 59963 59964
89 59991 59991 59990 59990

Table 9: Reconstruction of the Sine table used to compute Regiomontanus’ Tangent table,
found in his Tabulae directionum. Asterisks denote entries for which the reconstruction is un-
reliable. Note: The entry denoted with an asterisk was published as 59161 in Regiomontanus,
Tabula directionum (1504), due to a typographical error, and we have corrected it here.

Argument Calculated Reconstruction Regiomontanus Bianchini
80 10419 10419 10418 10419
81 9386 9386 9386 9386
82 8350 8350 8350 8350
83 7312 7312 7312 7312
84 6272 6272 6271 6272
85 5229 5229* 5229 5229
86 4185 4185 4185 4185
87 3140 3140 3140 3140
88 2094 2094 2093 2094
89 1047 1047 1047 1048

Table 10: Reconstruction of the Cosine table used to compute Regiomontanus’ Tangent table,
found in his Tabulae directionum. Regiomontanus’ Cosine values were obtained by reading the
values for Sin 90 θ (Sine of the complement) from his Sine table. Asterisks denote entries
for which the reconstruction is unreliable.

on Sine and Cosine tables using R 60000 do not match exactly those
found in the Tangent table are those for θ 85 and 89 . But even for
these arguments, using the first method with R 60000 produces a much
better fit to Regiomontanus’ Tangent value than any other choice of method
and R.

Our reconstruction of the Sine and Cosine tables underlying Regiomon-
tanus’ printed Tangent tables is found in Tables 9 and 10, respectively. Since
the structure of Regiomontanus’ Tabulae directionum, including this table, was
taken directly from the structure of Bianchini’s Tabulae primi mobilis, we
shall consider the possibility that Regiomontanus’ Tangent table may depend
on one of Bianchini’s Sine tables, rather than his own. Thus, we will com-
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In 1551 he published his first set of astronomical tables, the Canon doctri-
nae triangulorum, introducing Europe to a revolutionary new perspective on
trigonometry. However, this work had little impact since it was banned by
the Catholic church. Rheticus spent the better part of his remaining years
practicing medicine in Cracow, and developing his masterwork, the Opus
palatinum. This comprehensive work is over 1400 pages long, and contains
extremely large tables with the same structure as the Canon doctrinae triangu-
lorum. It was finally completed and published in 1596 by his student Lucius
Valentin Otho.35

Rheticus’ conception of trigonometry relied on the definition of three dif-
ferent ‘species’ of triangles. Each of these species is defined by setting one
side length (the base, perpendicular or hypotenuse) equal to R; with this
construct, each of the remaining six side lengths defines a trigonometric func-
tion.36 Rheticus used his own unique terminology, eschewing even the word
‘Sine’. Instead, he referred to each of his trigonometric functions as the base,
perpendicular, or hypotenuse of one of his species of triangles.

Each of the six functions can be paired with another, such that the column
containing one function read forwards from 0◦ to 90◦ is the same as the
column containing another function read backwards from 90◦ to 0◦. Rheticus
exploits this symmetry in order to avoid redundancy in his tables by including
arguments only up to 45◦.

Canon doctrinae triangulorum: Background

Rheticus’ Canon doctrinae triangulorum (1551) is a 24-page pamphlet, con-
sisting of a 17-page trigonometric table containing all six trigonometric func-
tions and concluding with a short dialogue extolling the virtues of Rheticus’
new trigonometric system.37 This extraordinary table presents Rheticus’ rev-
olutionary reformulation of trigonometry in Europe for the first time.38 It
contains entries for every 10′ of arc, spanning the entire width of each pair
of pages, using a radius of R = 10000000. The Tangents in this table are
therefore significantly more precise than Regiomontanus’ or Bianchini’s, con-
taining 2 and 3 more significant figures respectively.

Canon doctrinae triangulorum: Analysis

For the Tangent table in the Canon doctrinae triangulorum, we apply our
analysis to the sixty entries for every 10′ of arc between 80◦ and 90◦. For

35 Van Brummelen, The Mathematics of the Heavens, pp. 273–75.
36 Van Brummelen, The Mathematics of the Heavens, p. 275.
37 Rheticus, Canon doctrinae triangulorum and Archibald, ‘Canon Doctrinae Triangvlorvm’,

p. 131.
38 Van Brummelen, The Mathematics of the Heavens, p. 273.
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28 of the 60 printed values, a perfect match with the table’s value is gen-
erated by using accurate Sine and Cosine values with R = 10000000. Using
this same radius, another 15 matches were obtained by using Co/Sines in
error by at most one in the last place. Table 11 displays the number of ex-
act matches achieved by best-fit Sine tables of all the historically plausible R
values examined.

Radius (R) Exact matches
60000 0
100000 0
600000 0

1000000 1
6000000 1
10000000 43
60000000 0
100000000 9

Table 11: Exact matches obtained using best-fit Sine tables to recompute Georg Rheticus’
Tangent table in the Canon doctrinae triangulorum. Note: 100000000 is 10 times as large as
10000000. Thus, supposing that R = 10000000 was used, one should expect an occasional
accidental match when using R = 100000000: namely, when the underlying Sine/Cosine value
happens to end in 0.

We were able to obtain an exact match for the value associated with the
greatest argument in this table: 89◦50′. The following table depicts the dif-
ferences between each of the 25 Tangent values generated by our method,
and the Tangent value printed by Rheticus in his table for this argument.
The column labels are the Sines, divided by the Cosines labelling each row.
Note that the zero in the third column from the left, and third row down
signifies that the exact Tangent value printed by Rheticus was obtained by
dividing 9999957 by 29088, and multiplying by 10000000.

9999956 9999957 9999958 9999959 9999960
29087 117847 118191 118535 118878 119222
29088 −344 0 343 687 1031
29089 −118527 −118183 −117840 −117496 −117152
29090 −236702 −236358 −236015 −235671 −235327
29091 −354869 −354525 −354182 −353838 −353494

Table 12: The differences between the 25 Tangent values generated by our method and Rheti-
cus’ printed Tangent value for argument 89◦50′.

Table 13 gives the mean error achieved by best-fit Sine tables for all the
historically plausible R values we examined. The fit for R = 10000000 is
approximately two orders of magnitude better than any other R value. We
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In 1551 he published his first set of astronomical tables, the Canon doctri-
nae triangulorum, introducing Europe to a revolutionary new perspective on
trigonometry. However, this work had little impact since it was banned by
the Catholic church. Rheticus spent the better part of his remaining years
practicing medicine in Cracow, and developing his masterwork, the Opus
palatinum. This comprehensive work is over 1400 pages long, and contains
extremely large tables with the same structure as the Canon doctrinae triangu-
lorum. It was finally completed and published in 1596 by his student Lucius
Valentin Otho.35

Rheticus’ conception of trigonometry relied on the definition of three dif-
ferent ‘species’ of triangles. Each of these species is defined by setting one
side length (the base, perpendicular or hypotenuse) equal to R; with this
construct, each of the remaining six side lengths defines a trigonometric func-
tion.36 Rheticus used his own unique terminology, eschewing even the word
‘Sine’. Instead, he referred to each of his trigonometric functions as the base,
perpendicular, or hypotenuse of one of his species of triangles.

Each of the six functions can be paired with another, such that the column
containing one function read forwards from 0 to 90 is the same as the
column containing another function read backwards from 90 to 0 . Rheticus
exploits this symmetry in order to avoid redundancy in his tables by including
arguments only up to 45 .

Canon doctrinae triangulorum: Background

Rheticus’ Canon doctrinae triangulorum (1551) is a 24-page pamphlet, con-
sisting of a 17-page trigonometric table containing all six trigonometric func-
tions and concluding with a short dialogue extolling the virtues of Rheticus’
new trigonometric system.37 This extraordinary table presents Rheticus’ rev-
olutionary reformulation of trigonometry in Europe for the first time.38 It
contains entries for every 10 of arc, spanning the entire width of each pair
of pages, using a radius of R 10000000. The Tangents in this table are
therefore significantly more precise than Regiomontanus’ or Bianchini’s, con-
taining 2 and 3 more significant figures respectively.

Canon doctrinae triangulorum: Analysis

For the Tangent table in the Canon doctrinae triangulorum, we apply our
analysis to the sixty entries for every 10 of arc between 80 and 90 . For

35 Van Brummelen, The Mathematics of the Heavens, pp. 273–75.
36 Van Brummelen, The Mathematics of the Heavens, p. 275.
37 Rheticus, Canon doctrinae triangulorum and Archibald, ‘Canon Doctrinae Triangvlorvm’,

p. 131.
38 Van Brummelen, The Mathematics of the Heavens, p. 273.
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Radius (R) Mean error
60000 185352.6
100000 53708.2
600000 14335.1

1000000 7295
6000000 985.8
10000000 4.1
60000000 1013.6
100000000 1336.4

Table 13: Mean error achieved by using best-fit Co/Sine tables to recompute the Tangent
table found in Georg Rheticus’ Canon doctrinae triangulorum. The error associated with the
entry for argument 81◦30′ was removed, since it could not be reliably reconstructed using
any historically plausible R value examined.

conclude that Georg Rheticus used Tan θ = Sin θ
Cos θ · 10000000 in conjunction

with Co/Sine values with a radius of R = 10000000. Our reconstructions of
the Sine and Cosine tables underlying Rheticus’ printed Tangent table appear
in Appendices 3b and 3c, respectively.

A comparison of the trios of Sine values in the reconstructed table presents
the following results:

• The accurate values (rounded to the nearest whole number) match both
the reconstructed value and the historical value exactly in 39 of the 58
reliably reconstructed entries.39

• Of the remaining 19 entries, in 13 cases the reconstructed value matches
the value printed by Rheticus in his Sine table, but not the accurate
value.

• For 3 of the remaining 6 arguments, reconstruction matches the com-
puted values, they do not match the values printed in Rheticus’ Sine
table.

• For the other three the opposite is true: Rheticus’ printed values match
the accurate values, but the reconstructed value is different.

Therefore, the underlying table is not clearly either an old version of Rheticus’
Sine table or an improvement on the printed version.

We turn now to the reconstructed Cosine table.
• The computed values match both the reconstruction and Rheticus’

printed Cosine values for 45 out of the 58 reliably reconstructed en-
tries.40

39 The entries for arguments 81◦30′ and 86◦20′ could not be reconstructed reliably.
40 As before, the entries for arguments 81◦30′ and 86◦20′ reveal significant computational

errors, making reconstruction unreliable.
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• For 11 of the remaining 13 entries, the reconstructed value matches
the value printed by Rheticus in his Cosine table, but not the accurate
value.

• For the two remaining entries, the reconstruction matches the computed
values, but not the values printed in Rheticus’ Cosine table.

This suggests that the reconstructed Cosine table is an improved version of
the printed table, but the evidence is not strong enough to reach a firm
conclusion.

For 52 of the 58 entries the reconstructed underlying Sine table is identical
to Rheticus’ printed Sine table with R = 10000000, and for 56 of 58 entries
the reconstructed underlying Cosine table is identical to Rheticus’ printed
Cosine table with the same radius. As only 39 and 45 of these entries, re-
spectively, are correct, this suggests that Rheticus’ Tangent tables were com-
puted based on a version of his Sine table with R = 10000000, which also
appears in the Canon doctrinae triangulorum.

Opus palatinum: Background

The Opus palatinum comprehensively covers every topic in trigonometry. It
is divided approximately evenly between text and tables, with the text di-
vided into four parts. The first three sections, written by Rheticus, describe
(i) the methods used to compute the tables, (ii) trigonometry with plane
triangles, and (iii) trigonometry with right spherical triangles. The fourth sec-
tion, written by Otho, discusses oblique spherical triangles.41 The content of
this material awaits scholarly analysis.

In these tables, Rheticus again employs his unique conception of trigonom-
etry.42 This set of tables, however, is far larger than the Canon doctri-
nae triangulorum. The entries are given for every 10′′ of arc, using radius
R = 10000000000, and span the entire width of each pair of open pages.
The Tangents found in this table are by far the most precise43 of any we
have encountered in this paper, containing 5 and 6 more significant digits
than Regiomontanus’ and Bianchini’s tables, respectively.

While the entries in the Opus palatinum table are extremely precise, they
are also inaccurate.44 In the last few entries of this table, up to 9 of the
15 places are in error. These flaws were first noticed by Adrianus Romanus

41 Van Brummelen, The Mathematics of the Heavens, pp. 273–75.
42 Van Brummelen, The Mathematics of the Heavens, p. 273.
43 Precision is evaluated based on the number of significant digits given.
44 Accuracy is evaluated by the number of significant digits that are incorrect, compared

to the number of significant digits given.
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Radius (R) Mean error
60000 185352.6
100000 53708.2
600000 14335.1

1000000 7295
6000000 985.8
10000000 4.1
60000000 1013.6
100000000 1336.4

Table 13: Mean error achieved by using best-fit Co/Sine tables to recompute the Tangent
table found in Georg Rheticus’ Canon doctrinae triangulorum. The error associated with the
entry for argument 81 30 was removed, since it could not be reliably reconstructed using
any historically plausible R value examined.

conclude that Georg Rheticus used Tan θ Sin θ
Cos θ 10000000 in conjunction

with Co/Sine values with a radius of R 10000000. Our reconstructions of
the Sine and Cosine tables underlying Rheticus’ printed Tangent table appear
in Appendices 3b and 3c, respectively.

A comparison of the trios of Sine values in the reconstructed table presents
the following results:

The accurate values (rounded to the nearest whole number) match both
the reconstructed value and the historical value exactly in 39 of the 58
reliably reconstructed entries.39

Of the remaining 19 entries, in 13 cases the reconstructed value matches
the value printed by Rheticus in his Sine table, but not the accurate
value.
For 3 of the remaining 6 arguments, reconstruction matches the com-
puted values, they do not match the values printed in Rheticus’ Sine
table.
For the other three the opposite is true: Rheticus’ printed values match
the accurate values, but the reconstructed value is different.

Therefore, the underlying table is not clearly either an old version of Rheticus’
Sine table or an improvement on the printed version.

We turn now to the reconstructed Cosine table.
The computed values match both the reconstruction and Rheticus’
printed Cosine values for 45 out of the 58 reliably reconstructed en-
tries.40

39 The entries for arguments 81 30 and 86 20 could not be reconstructed reliably.
40 As before, the entries for arguments 81 30 and 86 20 reveal significant computational

errors, making reconstruction unreliable.
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(1561–1615), who used the identity

sec θ + tan θ = tan
[

θ +
1
2
(90◦

− θ)
]

to check the accuracy of the entries.45 The tables were later corrected by
Bartholomeus Pitiscus, and these revised versions went on to provide compu-
tational foundations for a variety of scientific fields until the early 1900s.46

Opus palatinum: Analysis

For the Tangent table in the Opus palatinum, we analyze the 360 entries
for arguments between 89◦ and 90◦. Exact reconstructions (±1) of 287 of
these printed entries were generated by using accurate Sine and Cosine values
(rounded to the degree of precision of the table) with R = 10000000000.
Using this same radius, another 71 matches were obtained by using Co/Sines
in error by at most one in the last place. Table 14 displays the number of
exact matches and almost exact matches (exact ±1) achieved by using best-fit
Co/Sine tables for all the historically plausible R values examined.

Radius (R) Exact
matches

Almost exact
matches (±1)

6× 108 1 0
109 3 1

6× 109 6 8
1010 188 170

6× 1010 128 110
1011 48 41

6× 1011 0 2
1012 0 0

Table 14: Exact matches and almost exact matches (exact ±1) obtained using best-fit tables
to recompute Rheticus’ Tangent table in the Opus palatinum.48

45 For more information, see Bockstaele, ‘Adrianus Romanus’.
46 Van Brummelen, The Mathematics of the Heavens, pp. 280–82; Archibald, ‘Rheticus’,

p. 588, and Andoyer, Nouvelles tables trigonométriques.
48 For each argument, when R = 6× 1010, there is a 5 in 6 probability that one of the

Sines (or Cosines) will be a multiple of 6. There is therefore a 25/36 probability that one
of the best possible Sines and one of the best possible Cosines will both be multiples of
6. As the Co/Sines used to produce the exact, or near-exact error matches when R = 1010

were never in error by more than one in the last place, it is highly likely that these values,
multiplied by 6, will be very accurate Co/Sines for R = 6× 1010. Thus, it makes sense that
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We were able to obtain an exact match for the value associated with the
greatest argument in this table: 89◦59′50′′. Table 15 depicts the differences
between each of the 25 Tangent values generated by our method, and the
Tangent value printed by Rheticus in his table for this argument. The column
labels are the Sines, divided by the Cosines labelling each row. Note that
the zero in the fourth column from the left, and fourth row down signifies
that the exact Tangent value printed by Rheticus was obtained by dividing
9999999988 by 484814, and multiplying by 10000000000.

9999999986 9999999987 9999999988 9999999989 9999999990
484812 850864543 850885169 850905796 850926422 850947049
484813 425410767 425431394 425452020 425472647 425493273
484814 −41253 −20626 0 20626 41253
484815 −425491518 −425470892 −425450265 −425429639 −425409012
484816 −850940028 −850919402 −850898775 −850878149 −850857523

Table 15: The differences between the 25 Tangent values generated by our method and Rheti-
cus’ printed Tangent value for argument 89◦50′.

Table 16 gives the mean error achieved by best-fit Sine tables for all the
historically plausible R values examined.

Radius (R) Mean error
6× 108 7290212.3

109 6729995.4
6× 109 1080471.6

1010 0.875
6× 1010 4012.1

1011 213854.7
6× 1011 496032.4

1012 534242.9

Table 16: Mean error achieved by using best-fit Sine tables to recompute the Tangent table
found in Georg Rheticus’ Opus palatinum.

The fit for R = 10000000000 is well over three orders of magnitude better
than any other R value. We conclude that Rheticus computed his Tangents by
using Tan θ = Sin θ

Cos θ · 10000000000 in conjunction with Co/Sine values with

we see so many error matches for this value of R, even though we can determine from the
additional evidence that it is not the value that Rheticus used.

1011 is 10 times as large as 1010. Thus, supposing that R = 10000000000 was used, one
should expect an occasional accidental match when using R = 100000000000: namely, when
the underlying Sine/Cosine value happens to end in 0.
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sec θ tan θ tan θ
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to check the accuracy of the entries.45 The tables were later corrected by
Bartholomeus Pitiscus, and these revised versions went on to provide compu-
tational foundations for a variety of scientific fields until the early 1900s.46

Opus palatinum: Analysis

For the Tangent table in the Opus palatinum, we analyze the 360 entries
for arguments between 89 and 90 . Exact reconstructions ( 1) of 287 of
these printed entries were generated by using accurate Sine and Cosine values
(rounded to the degree of precision of the table) with R 10000000000.
Using this same radius, another 71 matches were obtained by using Co/Sines
in error by at most one in the last place. Table 14 displays the number of
exact matches and almost exact matches (exact 1) achieved by using best-fit
Co/Sine tables for all the historically plausible R values examined.
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matches

Almost exact
matches ( 1)

6 108 1 0
109 3 1
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1010 188 170
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1011 48 41
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1012 0 0

Table 14: Exact matches and almost exact matches (exact 1) obtained using best-fit tables
to recompute Rheticus’ Tangent table in the Opus palatinum.48

45 For more information, see Bockstaele, ‘Adrianus Romanus’.
46 Van Brummelen, The Mathematics of the Heavens, pp. 280–82; Archibald, ‘Rheticus’,

p. 588, and Andoyer, Nouvelles tables trigonométriques.
48 For each argument, when R 6 1010, there is a 5 in 6 probability that one of the

Sines (or Cosines) will be a multiple of 6. There is therefore a 25/36 probability that one
of the best possible Sines and one of the best possible Cosines will both be multiples of
6. As the Co/Sines used to produce the exact, or near-exact error matches when R 1010

were never in error by more than one in the last place, it is highly likely that these values,
multiplied by 6, will be very accurate Co/Sines for R 6 1010. Thus, it makes sense that
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a radius of R = 10000000000. Our reconstructions of the Sine and Cosine
tables underlying Rheticus’ printed Tangent table for arguments between 89◦

and 90◦ appear in Appendices 4b and 4c, respectively.
A comparison of the trios of Sine values in the reconstructed table (Ap-

pendix 4b) presents the following:
• The correct values (rounded to the nearest whole number) exactly match

both the reconstructed value and the value printed by Rheticus in his
tables in 300 of the 358 reliably reconstructed entries.49

• Of the remaining 58 entries, in 39 cases the reconstructed value matches
the value printed by Rheticus in his Sine tables, but not the correct
value.

• For the 19 remaining entries, while the reconstruction matches the com-
puted values, they do not match the values printed in Rheticus’ Sine
table.

We turn next to the reconstructed Cosine table (Appendix 4c).
• Here, the computed values match both the reconstruction and Rheti-

cus’ printed Cosine values for 308 out of the 358 reliably reconstructed
entries.50

• For 33 of the remaining 50 entries, the reconstructed value matches the
value printed by Rheticus in his Cosine table, but not the correct value.

• For 16 of the 17 remaining entries, the reconstruction matches the com-
puted values, but not the values printed in Rheticus’ Cosine table.

• For only one entry, the value printed by Rheticus matches the computed
value, but this value does not appear in the reconstructed table.

We conclude that the underlying Sine and Cosine tables are improved ver-
sions of Rheticus’ printed Sine and Cosine tables.

The reconstructed underlying Sine table is identical to Rheticus’ printed
Sine table with R = 10000000000 for 339 of the 358 reliably reconstructed
entries, and the reconstructed underlying Cosine table is identical to Rheti-
cus’ printed Cosine table with the same radius for 341 of 358 reliably recon-
structed entries. Of the remaining entries, all 19 of the reconstructed Sine
values and 16 of the reconstructed Cosine values appear to be improved ver-
sions of the values that appear in the Sine table printed in the Opus palat-
inum.

49 The entries for arguments 89◦16′0′′ and 89◦28′50′′ could not be reconstructed reliably.
50 As with the reconstruction of the Sine table, two of the reconstructions were unreliable,

likely due to computational error.
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Conclusion

We have determined how four early European Tangent tables were computed.
Unsurprisingly, all four use the relationship Tan θ = Sin θ

Cos θ · R. The Tangent
tables in Giovanni Bianchini’s Tabulae primi mobilis and Georg Rheticus’
Canon doctrinae triangulorum were computed using versions of the Co/Sine
tables printed alongside the Tangent tables in those same books with radii
R = 60000 and R = 10000000, respectively. While they were not identical
to the tables in the manuscripts, they were very similar. The reconstructed
entries which were different from those found in the manuscript were some-
times more accurate, and other times less accurate, than those found in the
manuscript. In contrast, the Tangent tables in Regiomontanus’ Tabulae direc-
tionum and Georg Rheticus’ Opus palatinum were computed using Co/Sine
tables that were significantly better than those in the manuscripts. The un-
derlying tables use the radii R = 60000 and R = 10000000000, respectively.

Our results help us to form a clearer picture of how these scholars thought
and worked behind the scenes, as they constructed early Tangent tables. Their
choices of R values, compared to the R values of the underlying Sine and Co-
sine tables, demonstrate differences in their conceptions of what the Tangent
function was. While Bianchini and Regiomontanus use different R values for
their Tangent tables and for their Sine and Cosine tables, Georg Rheticus
uses the same R value for both sets of tables. Regiomontanus and Bianchini
understood the Tangent as an auxiliary function without astronomical mean-
ing, which allowed them to choose any R value they saw fit as the base for
their table. In contrast, Rheticus used the same R value for all of his tables,
since his understanding of the six trigonometric functions was based upon
the construction of three similar triangles, each with one length equal to the
R he had chosen.

The differences between our reconstructed Co/Sine tables and the Co/Sine
tables in the texts themselves provide valuable insight into the authors’ rela-
tionships with their tables. For the Canon doctrinae triangulorum and the
Tabulae primi mobilis, the two sets of Co/Sine tables are similar. In the
cases of the Tabulae directionum and Opus palatinum, however, the under-
lying Co/Sine tables were found to be significantly more accurate than the
published Co/Sine tables. This indicates the authors’ continuing commitment
to improving the accuracy of their tables, even if those revised versions would
never be published.

As committed as these authors were, a comparison of their Tangent tables
to Arabic Tangent tables shows that these European table makers were at an
early stage, not as aware of issues of error propagation as the Arabic scholars
or those who came after them. Tables and their underlying computations grew
dramatically in sophistication in the 17th century.
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a radius of R 10000000000. Our reconstructions of the Sine and Cosine
tables underlying Rheticus’ printed Tangent table for arguments between 89
and 90 appear in Appendices 4b and 4c, respectively.

A comparison of the trios of Sine values in the reconstructed table (Ap-
pendix 4b) presents the following:

The correct values (rounded to the nearest whole number) exactly match
both the reconstructed value and the value printed by Rheticus in his
tables in 300 of the 358 reliably reconstructed entries.49

Of the remaining 58 entries, in 39 cases the reconstructed value matches
the value printed by Rheticus in his Sine tables, but not the correct
value.
For the 19 remaining entries, while the reconstruction matches the com-
puted values, they do not match the values printed in Rheticus’ Sine
table.

We turn next to the reconstructed Cosine table (Appendix 4c).
Here, the computed values match both the reconstruction and Rheti-
cus’ printed Cosine values for 308 out of the 358 reliably reconstructed
entries.50

For 33 of the remaining 50 entries, the reconstructed value matches the
value printed by Rheticus in his Cosine table, but not the correct value.
For 16 of the 17 remaining entries, the reconstruction matches the com-
puted values, but not the values printed in Rheticus’ Cosine table.
For only one entry, the value printed by Rheticus matches the computed
value, but this value does not appear in the reconstructed table.

We conclude that the underlying Sine and Cosine tables are improved ver-
sions of Rheticus’ printed Sine and Cosine tables.

The reconstructed underlying Sine table is identical to Rheticus’ printed
Sine table with R 10000000000 for 339 of the 358 reliably reconstructed
entries, and the reconstructed underlying Cosine table is identical to Rheti-
cus’ printed Cosine table with the same radius for 341 of 358 reliably recon-
structed entries. Of the remaining entries, all 19 of the reconstructed Sine
values and 16 of the reconstructed Cosine values appear to be improved ver-
sions of the values that appear in the Sine table printed in the Opus palat-
inum.

49 The entries for arguments 89 16 0 and 89 28 50 could not be reconstructed reliably.
50 As with the reconstruction of the Sine table, two of the reconstructions were unreliable,

likely due to computational error.
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Appendix 1a
Excerpt from Giovanni Bianchini’s ‘tabula magistralis quarta’, found in his Tabulae primi
mobilis, containing the entries for each 5◦ of arc from 0◦ to 80◦, and every 10′ of arc from
80◦ to 90◦. The complete table can be found at www.kailynpritchard.com.

Argument Tangent Error
0◦ 0
5◦ 875

10◦ 1 763
15◦ 2 679
20◦ 3 640
25◦ 4 663
30◦ 5 773 −1
35◦ 7 002
40◦ 8 391
45◦ 10 000
50◦ 11 918
55◦ 14 282 +1
60◦ 17 321
65◦ 21 445
70◦ 27 474 −1
75◦ 37 321
80◦ 56 712 −1

80◦10′ 57 693 −1
80◦20′ 58 708
80◦30′ 59 757 −1
80◦40′ 60 842 −2
80◦50′ 61 972 +2

81◦ 63 138
81◦10′ 64 346 −2
81◦20′ 65 607 +1
81◦30′ 66 908 −4
81◦40′ 68 268 −1
81◦50′ 69 683 +1

82◦ 71 158 +4
82◦10′ 72 692 +5
82◦20′ 74 293 +6
82◦30′ 75 964 +6
82◦40′ 77 910 +206
82◦50′ 79 535 +5

83◦ 81 447 +4
83◦10′ 83 449 −1
83◦20′ 85 562 +7
83◦30′ 87 771 +2

Argument Tangent Error
83◦40′ 90 044 −54
83◦50′ 92 555 +2

84◦ 95 139 −5
84◦10′ 97 867 −15
84◦20′ 100 771 −9
84◦30′ 103 850 −4
84◦40′ 107 119
84◦50′ 110 598 +4

85◦ 114 309 +8
85◦10′ 118 250 −12
85◦20′ 122 491 −14
85◦30′ 127 050 −12
85◦40′ 131 983 +14
85◦50′ 137 280 +13

86◦ 143 023 +16
86◦10′ 149 293 +49
86◦20′ 156 092 +44
86◦30′ 163 539 +40
86◦40′ 171 726 +33
86◦50′ 180 773 +23

87◦ 190 822 +11
87◦10′ 202 046 −10
87◦20′ 214 744 +40
87◦30′ 229 052 +14
87◦40′ 245 434 +16
87◦50′ 264 361 +45

88◦ 286 342 −21
88◦10′ 312 511 +95
88◦20′ 343 69151 +13
88◦30′ 381 789 −96
88◦40′ 429 678 +37
88◦50′ 490 892 −147

89◦ 572 980 +80
89◦10′ 687 216 −285
89◦20′ 859 542 +144
89◦30′ 1 145 000 −887
89◦40′ 1 719 170 +316
89◦50′ 3 420 851 −16 886

90◦ Infinitum

51 Entry corrected from 383 691.
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Appendix 1b
Reconstruction of the Sine table underlying Giovanni Bianchini’s ‘tabula magistralis quarta’,
found in his Tabulae primi mobilis. The computed values and values from the Tabulae primi
mobilis are given as differences between those values and the reconstructed values. Asterisks
denote entries for which the reconstruction is unreliable.

Argument Recon-
structed

Com-
puted Bianchini

80◦ 59 088
80◦10′ 59 118 +1
80◦20′ 59 148
80◦30′ 59 177
80◦40′ 59 205 +1
80◦50′ 59 233 +1

81◦ 59 261
81◦10′ 59 288
81◦20′ 59 315
81◦30′ 59 341
81◦40′ 59 366
81◦50′ 59 391 +1

82◦ 59 417 −1 −1
82◦10′ 59 440
82◦20′ 59 464
82◦30′ 59 487
82◦40′ 59 510 −1
82◦50′ 59 532 −1

83◦ 59 554 −1
83◦10′ 59 574
83◦20′ 59 594
83◦30′ 59 614
83◦40′ 59 636 −2 −3
83◦50′ 59 652 +1

84◦ 59 671
84◦10′ 59 689 −10
84◦20′ 59 707
84◦30′ 59 724
84◦40′ 59 740
84◦50′ 59 756

Argument Recon-
structed

Com-
puted Bianchini

85◦ 59 772
85◦10′ 59 787
85◦20′ 59 800 +1 +1
85◦30′ 59 815
85◦40′ 59 828
85◦50′ 59 841

86◦ 59 855 −1 −1
86◦10′ 59 866
86◦20′ 59 877
86◦30′ 59 888
86◦40′ 59 898
86◦50′ 59 908

87◦ 59 918
87◦10′ 59 927
87◦20′ 59 935
87◦30′ 59 943
87◦40′ 59 952 −2 −2
87◦50′ 59 957

88◦ 59 961 +2 +3
88◦10′ 59 971 −2 −2
88◦20′ 59 974 +1
88◦30′ 59 979
88◦40′ 59 983 +1
88◦50′ 59 987 +1

89◦ 59 991
89◦10′ 59 994
89◦20′ 59 996
89◦30′ 59 998
89◦40′ 59 999
89◦50′ 60 000 *
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Appendix 1a
Excerpt from Giovanni Bianchini’s ‘tabula magistralis quarta’, found in his Tabulae primi
mobilis, containing the entries for each 5 of arc from 0 to 80 , and every 10 of arc from
80 to 90 . The complete table can be found at www.kailynpritchard.com.

Argument Tangent Error
0 0
5 875

10 1 763
15 2 679
20 3 640
25 4 663
30 5 773 1
35 7 002
40 8 391
45 10 000
50 11 918
55 14 282 1
60 17 321
65 21 445
70 27 474 1
75 37 321
80 56 712 1

80 10 57 693 1
80 20 58 708
80 30 59 757 1
80 40 60 842 2
80 50 61 972 2

81 63 138
81 10 64 346 2
81 20 65 607 1
81 30 66 908 4
81 40 68 268 1
81 50 69 683 1

82 71 158 4
82 10 72 692 5
82 20 74 293 6
82 30 75 964 6
82 40 77 910 206
82 50 79 535 5

83 81 447 4
83 10 83 449 1
83 20 85 562 7
83 30 87 771 2

Argument Tangent Error
83 40 90 044 54
83 50 92 555 2

84 95 139 5
84 10 97 867 15
84 20 100 771 9
84 30 103 850 4
84 40 107 119
84 50 110 598 4

85 114 309 8
85 10 118 250 12
85 20 122 491 14
85 30 127 050 12
85 40 131 983 14
85 50 137 280 13

86 143 023 16
86 10 149 293 49
86 20 156 092 44
86 30 163 539 40
86 40 171 726 33
86 50 180 773 23

87 190 822 11
87 10 202 046 10
87 20 214 744 40
87 30 229 052 14
87 40 245 434 16
87 50 264 361 45

88 286 342 21
88 10 312 511 95
88 20 343 69151 13
88 30 381 789 96
88 40 429 678 37
88 50 490 892 147

89 572 980 80
89 10 687 216 285
89 20 859 542 144
89 30 1 145 000 887
89 40 1 719 170 316
89 50 3 420 851 16 886

90 Infinitum

51 Entry corrected from 383 691.
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Appendix 1c
Reconstruction of the Cosine table underlying Giovanni Bianchini’s ‘tabula magistralis quar-
ta’, found in his Tabulae primi mobilis. The computed values and values from the Tabulae
primi mobilis are given as differences between those values and the reconstructed values.
Bianchini’s Cosine values were obtained by reading the values for Sin(90◦

− θ) (Sine of the
complement) from his Sine table. He did not publish a separate Cosine table in the Tabulae
primi mobilis. Asterisks denote entries for which the reconstruction is unreliable.

Argument Recon-
structed

Com-
puted Bianchini

80◦ 10 419
80◦10′ 10 247
80◦20′ 10 075
80◦30′ 9 903
80◦40′ 9 731
80◦50′ 9 558

81◦ 9 386
81◦10′ 9 214
81◦20′ 9 041
81◦30′ 8 869
81◦40′ 8 696
81◦50′ 8 523

82◦ 8 350
82◦10′ 8 177 +1
82◦20′ 8 004 +1
82◦30′ 7 831 +1
82◦40′ 7 658
82◦50′ 7 485

83◦ 7 312
83◦10′ 7 139
83◦20′ 6 965 +1
83◦30′ 6 792
83◦40′ 6 621 −2 −2
83◦50′ 6 445

84◦ 6 272
84◦10′ 6 099 −1
84◦20′ 5 925 −1
84◦30′ 5 751
84◦40′ 5 577
84◦50′ 5 403

Argument Recon-
structed

Com-
puted Bianchini

85◦ 5 229
85◦10′ 5 056 −1
85◦20′ 4 882
85◦30′ 4 708
85◦40′ 4 533 +1
85◦50′ 4 359

86◦ 4 185
86◦10′ 4 010 +1
86◦20′ 3 836 +1
86◦30′ 3 662 +1
86◦40′ 3 488 +1
86◦50′ 3 314

87◦ 3 140
87◦10′ 2 966
87◦20′ 2 791 +1
87◦30′ 2 617
87◦40′ 2 443 −1
87◦50′ 2 268

88◦ 2 094
88◦10′ 1 919 +1
88◦20′ 1 745
88◦30′ 1 571
88◦40′ 1 396
88◦50′ 1 222

89◦ 1 047 +1
89◦10′ 873
89◦20′ 698
89◦30′ 524
89◦40′ 349
89◦50′ 175 *
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Appendix 2
Excerpt from Regiomontanus’ ‘tabula fecunda’, found in his Tabulae directionum, containing
the entries for each 5◦ of arc from 0◦ to 80◦, and every degree of arc from 80◦ to 90◦. The
complete table can be found at www.kailynpritchard.com.

Argument Tangent Error
0◦ 0
5◦ 8 748 −1
10◦ 17 633
15◦ 26 794 −1
20◦ 36 396 −1
25◦ 46 631
30◦ 57 734 −1
35◦ 70 022 +1
40◦ 83 909 −1
45◦ 100 000
50◦ 119 197 +22
55◦ 142 813 −2
60◦ 173 207 +2
65◦ 214 450 −1
70◦ 274 753 +5
75◦ 373 211 +6
80◦ 567 118 −10
81◦ 631 377 +2
82◦ 711 569 +32
83◦ 814 456 +21
84◦ 951 387 −49
85◦ 1 143 131 +126
86◦ 1 430 203 +136
87◦ 1 908 217 +103
88◦ 2 863 563 −62
89◦ 5 729 796 +800
90◦ Infinitum
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Appendix 1c
Reconstruction of the Cosine table underlying Giovanni Bianchini’s ‘tabula magistralis quar-
ta’, found in his Tabulae primi mobilis. The computed values and values from the Tabulae
primi mobilis are given as differences between those values and the reconstructed values.
Bianchini’s Cosine values were obtained by reading the values for Sin 90 θ (Sine of the
complement) from his Sine table. He did not publish a separate Cosine table in the Tabulae
primi mobilis. Asterisks denote entries for which the reconstruction is unreliable.

Argument Recon-
structed

Com-
puted Bianchini

80 10 419
80 10 10 247
80 20 10 075
80 30 9 903
80 40 9 731
80 50 9 558

81 9 386
81 10 9 214
81 20 9 041
81 30 8 869
81 40 8 696
81 50 8 523

82 8 350
82 10 8 177 1
82 20 8 004 1
82 30 7 831 1
82 40 7 658
82 50 7 485

83 7 312
83 10 7 139
83 20 6 965 1
83 30 6 792
83 40 6 621 2 2
83 50 6 445

84 6 272
84 10 6 099 1
84 20 5 925 1
84 30 5 751
84 40 5 577
84 50 5 403

Argument Recon-
structed

Com-
puted Bianchini

85 5 229
85 10 5 056 1
85 20 4 882
85 30 4 708
85 40 4 533 1
85 50 4 359

86 4 185
86 10 4 010 1
86 20 3 836 1
86 30 3 662 1
86 40 3 488 1
86 50 3 314

87 3 140
87 10 2 966
87 20 2 791 1
87 30 2 617
87 40 2 443 1
87 50 2 268

88 2 094
88 10 1 919 1
88 20 1 745
88 30 1 571
88 40 1 396
88 50 1 222

89 1 047 1
89 10 873
89 20 698
89 30 524
89 40 349
89 50 175 *
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Appendix 3a
Excerpt from Georg Rheticus’ Tangent table, found in his Canon doctrinae triangulorum,
containing the entries for each 5◦ of arc from 5◦ to 80◦, and every 10′ of arc from 80◦ to
90◦. The complete table can be found at www.kailynpritchard.com.

Argument Tangent Error
5◦ 874 886 −1
10◦ 1 763 269 −1
15◦ 2 679 491 −1
20◦ 3 639 702
25◦ 4 663 077
30◦ 5 773 503
35◦ 7 002 075
40◦ 8 390 996
45◦ 10 000 000
50◦ 11 917 537 +1
55◦ 14 281 480
60◦ 17 320 508
65◦ 21 445 068 −1
70◦ 27 474 777 +3
75◦ 37 320 514 +6
80◦ 56 712 813 −5

80◦10′ 57 693 673 −15
80◦20′ 58 708 044 +2
80◦30′ 59 757 645 +1
80◦40′ 60 844 394 +13
80◦50′ 61 970 266 −13

81◦ 63 137 498 −17
81◦10′ 64 348 408 −20
81◦20′ 65 605 540 +2
81◦30′ 66 916 224 +4 662
81◦40′ 68 269 413 −24
81◦50′ 69 682 330 −5

82◦ 71 153 699 +2
82◦10′ 72 687 230 −25
82◦20′ 74 287 083 +19
82◦30′ 75 957 539 −2
82◦40′ 77 703 478 −28
82◦50′ 79 530 235 +11

83◦ 81 443 497 +33
83◦10′ 83 449 584 +26
83◦20′ 85 555 482 +14
83◦30′ 87 768 888 +14
83◦40′ 90 098 230 −31

Argument Tangent Error
83◦50′ 92 553 002 −33

84◦ 95 143 612 −33
84◦10′ 97 881 716 −16
84◦20′ 100 780 357 +46
84◦30′ 103 853 920 −51
84◦40′ 107 119 198 +72
84◦50′ 110 594 305 −5

85◦ 114 300 579 +56
85◦10′ 118 261 757 +90
85◦20′ 122 505 018 −37
85◦30′ 127 062 036 −11
85◦40′ 131 968 930 +100
85◦50′ 137 267 523 +145

86◦ 143 006 616 −47
86◦10′ 149 244 149 −21
86◦20′ 156 048 656 +815
86◦30′ 163 498 661 +106
86◦40′ 171 693 462 +93
86◦50′ 180 749 538 −236

87◦ 190 811 200 −167
87◦10′ 202 055 702 +167
87◦20′ 214 704 086 +76
87◦30′ 229 037 584 −71
87◦40′ 245 417 544 −34
87◦50′ 264 316 359 +363

88◦ 286 362 496 −37
88◦10′ 312 416 183 +416
88◦20′ 343 677 947 +238
88◦30′ 381 885 288 +695
88◦40′ 429 641 796 +1 023
88◦50′ 491 038 024 −782

89◦ 572 899 830 +214
89◦10′ 687 500 739 −133
89◦20′ 859 395 374 −2 533
89◦30′ 1 145 891 136 +4 635
89◦40′ 1 718 863 108 +9 115
89◦50′ 3 437 829 002 +91 927

90◦ Infinitum
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Appendix 3b
Reconstruction of the Sine table underlying Georg Rheticus’ Tangent table found in his
Canon doctrinae triangulorum, containing entries for every 10′ of arc from 89◦ to 89◦50′.
The computed values and values from the Canon doctrinae triangulorum are given as differ-
ences between those values and the reconstructed values. Asterisks denote entries for which
the reconstruction is unreliable.

Argument Recon-
structed

Com-
puted Rheticus

80◦ 9 848 078
80◦10′ 9 853 087
80◦20′ 9 858 014 −1
80◦30′ 9 862 856
80◦40′ 9 867 616 −1
80◦50′ 9 872 291

81◦ 9 876 883
81◦10′ 9 881 393 −1 −1
81◦20′ 9 885 817
81◦30′ 9 890 161 * −2 −2
81◦40′ 9 894 416
81◦50′ 9 898 591 −1

82◦ 9 902 681
82◦10′ 9 906 688 −1
82◦20′ 9 910 610
82◦30′ 9 914 449
82◦40′ 9 918 204
82◦50′ 9 921 874

83◦ 9 925 462 −1
83◦10′ 9 928 965
83◦20′ 9 932 384
83◦30′ 9 935 719
83◦40′ 9 938 970 −1
83◦50′ 9 942 136

84◦ 9 945 219
84◦10′ 9 948 218 −1
84◦20′ 9 951 133 −1 −1
84◦30′ 9 953 962
84◦40′ 9 956 708
84◦50′ 9 959 371 −1 −1

Argument Recon-
structed

Com-
puted Rheticus

85◦ 9 961 947
85◦10′ 9 964 440
85◦20′ 9 966 849
85◦30′ 9 969 173
85◦40′ 9 971 414 −1
85◦50′ 9 973 570 −1

86◦ 9 975 641 −1
86◦10′ 9 977 628 −1
86◦20′ 9 979 532 * −2 −2
86◦30′ 9 981 348
86◦40′ 9 983 082
86◦50′ 9 984 731

87◦ 9 986 295
87◦10′ 9 987 775
87◦20′ 9 989 172 −1
87◦30′ 9 990 482
87◦40′ 9 991 709 +1
87◦50′ 9 992 850 +1

88◦ 9 993 908
88◦10′ 9 994 881
88◦20′ 9 995 770
88◦30′ 9 996 573
88◦40′ 9 997 292
88◦50′ 9 997 927

89◦ 9 998 477
89◦10′ 9 998 942
89◦20′ 9 999 323
89◦30′ 9 999 619
89◦40′ 9 999 830 +1
89◦50′ 9 999 957 +1
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Appendix 3a
Excerpt from Georg Rheticus’ Tangent table, found in his Canon doctrinae triangulorum,
containing the entries for each 5 of arc from 5 to 80 , and every 10 of arc from 80 to
90 . The complete table can be found at www.kailynpritchard.com.

Argument Tangent Error
5 874 886 1
10 1 763 269 1
15 2 679 491 1
20 3 639 702
25 4 663 077
30 5 773 503
35 7 002 075
40 8 390 996
45 10 000 000
50 11 917 537 1
55 14 281 480
60 17 320 508
65 21 445 068 1
70 27 474 777 3
75 37 320 514 6
80 56 712 813 5

80 10 57 693 673 15
80 20 58 708 044 2
80 30 59 757 645 1
80 40 60 844 394 13
80 50 61 970 266 13

81 63 137 498 17
81 10 64 348 408 20
81 20 65 605 540 2
81 30 66 916 224 4 662
81 40 68 269 413 24
81 50 69 682 330 5

82 71 153 699 2
82 10 72 687 230 25
82 20 74 287 083 19
82 30 75 957 539 2
82 40 77 703 478 28
82 50 79 530 235 11

83 81 443 497 33
83 10 83 449 584 26
83 20 85 555 482 14
83 30 87 768 888 14
83 40 90 098 230 31

Argument Tangent Error
83 50 92 553 002 33

84 95 143 612 33
84 10 97 881 716 16
84 20 100 780 357 46
84 30 103 853 920 51
84 40 107 119 198 72
84 50 110 594 305 5

85 114 300 579 56
85 10 118 261 757 90
85 20 122 505 018 37
85 30 127 062 036 11
85 40 131 968 930 100
85 50 137 267 523 145

86 143 006 616 47
86 10 149 244 149 21
86 20 156 048 656 815
86 30 163 498 661 106
86 40 171 693 462 93
86 50 180 749 538 236

87 190 811 200 167
87 10 202 055 702 167
87 20 214 704 086 76
87 30 229 037 584 71
87 40 245 417 544 34
87 50 264 316 359 363

88 286 362 496 37
88 10 312 416 183 416
88 20 343 677 947 238
88 30 381 885 288 695
88 40 429 641 796 1 023
88 50 491 038 024 782

89 572 899 830 214
89 10 687 500 739 133
89 20 859 395 374 2 533
89 30 1 145 891 136 4 635
89 40 1 718 863 108 9 115
89 50 3 437 829 002 91 927

90 Infinitum
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Appendix 3c
Reconstruction of the Cosine table underlying Georg Rheticus’ Tangent table found in his
Canon doctrinae triangulorum, containing entries for every 10′ of arc from 89◦ to 89◦50′.
The computed values and values from the Canon doctrinae triangulorum are given as differ-
ences between those values and the reconstructed values. Asterisks denote entries for which
the reconstruction is unreliable.

Argument Recon-
structed

Com-
puted Rheticus

80◦ 1 736 482
80◦10′ 1 707 828
80◦20′ 1 679 159
80◦30′ 1 650 476
80◦40′ 1 621 779
80◦50′ 1 593 069

81◦ 1 564 345
81◦10′ 1 535 608 −1
81◦20′ 1 506 857
81◦30′ 1 478 092 * +2 +2
81◦40′ 1 449 319
81◦50′ 1 420 531

82◦ 1 391 731
82◦10′ 1 362 920 −1
82◦20′ 1 334 096
82◦30′ 1 305 262
82◦40′ 1 276 417 −1
82◦50′ 1 247 560

83◦ 1 218 693
83◦10′ 1 189 816
83◦20′ 1 160 929
83◦30′ 1 132 032
83◦40′ 1 103 126
83◦50′ 1 074 210

84◦ 1 045 285
84◦10′ 1 016 351
84◦20′ 987 408
84◦30′ 958 458
84◦40′ 929 498 +1
84◦50′ 900 532 −1

Argument Recon-
structed

Com-
puted Rheticus

85◦ 871 557
85◦10′ 842 575 +1
85◦20′ 813 587
85◦30′ 784 591
85◦40′ 755 588 +1
85◦50′ 726 579 +1

86◦ 697 565
86◦10′ 668 544
86◦20′ 639 515 * +2 +2
86◦30′ 610 485
86◦40′ 581 448
86◦50′ 552 407 −1

87◦ 523 360
87◦10′ 494 308
87◦20′ 465 253
87◦30′ 436 194
87◦40′ 407 131
87◦50′ 378 064 +1

88◦ 348 995
88◦10′ 319 922
88◦20′ 290 847
88◦30′ 261 769
88◦40′ 232 689 +1
88◦50′ 203 608

89◦ 174 524 +1
89◦10′ 145 439
89◦20′ 116 353
89◦30′ 87 265
89◦40′ 58 177
89◦50′ 29 088 +1
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Appendix 4a
Excerpt from Georg Rheticus’ Tangent table, found in his Opus palatinum, containing the
entries for each 5◦ of arc from 5◦ to 80◦, every degree from 80◦ to 89◦, every 5′ from 89◦

to 89◦50′, every minute from 89◦51′ to 89◦53′, and every 10′′ from 89◦53′ to 90◦. The
complete table can be found at www.kailynpritchard.com. The asterisk denotes the obviously
incorrect value for 45◦ in the source.

Argument Tangent Error
5◦ 874 886 635
10◦ 1 763 269 808 +1
15◦ 2 679 491 924
20◦ 3 639 702 343
25◦ 4 663 076 581 −1
30◦ 5 773 502 692
35◦ 7 002 075 382
40◦ 8 390 996 312
45◦ 1 000 000 000 *
50◦ 11 917 535 925 −1
55◦ 14 281 480 068 +1
60◦ 17 320 508 076
65◦ 21 445 069 206 +1
70◦ 27 474 774 197 +2
75◦ 37 320 508 076
80◦ 56 712 818 196
81◦ 63 137 515 147
82◦ 71 153 697 224
83◦ 81 443 464 279 −1
84◦ 95 143 644 515 −27
85◦ 114 300 523 091 +63
86◦ 143 006 662 649 +82
87◦ 190 811 367 023 +146
88◦ 286 362 532 844 +15
89◦ 572 899 617 499 +1 191

89◦5′ 624 991 535 656 −1 344
89◦10′ 687 500 874 524 +2 419
89◦15′ 763 900 091 458 −1 653
89◦20′ 859 397 907 351 +99
89◦25′ 982 179 427 668 +1 779
89◦30′ 1 145 886 501 120 −173
89◦35′ 1 375 074 470 983 +3 439
89◦40′ 1 718 854 008 950 +16 149
89◦45′ 2 291 816 628 035 −8 059
89◦50′ 3 437 737 056 005 −18 501
89◦51′ 3 819 709 888 983 −18 572
89◦52′ 4 297 175 649 163 −57 296
89◦53′ 4 911 060 157 173 +129 159

Continued
on the
next page
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Appendix 3c
Reconstruction of the Cosine table underlying Georg Rheticus’ Tangent table found in his
Canon doctrinae triangulorum, containing entries for every 10 of arc from 89 to 89 50 .
The computed values and values from the Canon doctrinae triangulorum are given as differ-
ences between those values and the reconstructed values. Asterisks denote entries for which
the reconstruction is unreliable.

Argument Recon-
structed

Com-
puted Rheticus

80 1 736 482
80 10 1 707 828
80 20 1 679 159
80 30 1 650 476
80 40 1 621 779
80 50 1 593 069

81 1 564 345
81 10 1 535 608 1
81 20 1 506 857
81 30 1 478 092 * 2 2
81 40 1 449 319
81 50 1 420 531

82 1 391 731
82 10 1 362 920 1
82 20 1 334 096
82 30 1 305 262
82 40 1 276 417 1
82 50 1 247 560

83 1 218 693
83 10 1 189 816
83 20 1 160 929
83 30 1 132 032
83 40 1 103 126
83 50 1 074 210

84 1 045 285
84 10 1 016 351
84 20 987 408
84 30 958 458
84 40 929 498 1
84 50 900 532 1

Argument Recon-
structed

Com-
puted Rheticus

85 871 557
85 10 842 575 1
85 20 813 587
85 30 784 591
85 40 755 588 1
85 50 726 579 1

86 697 565
86 10 668 544
86 20 639 515 * 2 2
86 30 610 485
86 40 581 448
86 50 552 407 1

87 523 360
87 10 494 308
87 20 465 253
87 30 436 194
87 40 407 131
87 50 378 064 1

88 348 995
88 10 319 922
88 20 290 847
88 30 261 769
88 40 232 689 1
88 50 203 608

89 174 524 1
89 10 145 439
89 20 116 353
89 30 87 265
89 40 58 177
89 50 29 088 1
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Excerpt from Georg Rheticus’ Tangent table (continued)

Argument Tangent Error
89◦53′ 4 911 060 157 173 +129 159

89◦53′10′′ 5 030 842 265 276 −41 791
89◦53′20′′ 5 156 613 715 535 +23 542
89◦53′30′′ 5 288 834 966 475 +83 231
89◦53′40′′ 5 428 015 211 929 +135 875
89◦53′50′′ 5 574 718 694 224 +180 429

89◦54′ 5 729 572 021 517 −112 026
89◦54′10′′ 5 893 274 416 416 −105 912
89◦54′20′′ 6 066 606 340 655 −113 232
89◦54′30′′ 6 250 443 205 118 −136 085
89◦54′40′′ 6 445 770 261 771 +237 895
89◦54′50′′ 6 653 698 619 582 +201 999

89◦55′ 6 875 488 837 803 +144 371
89◦55′10′′ 7 112 574 899 755 +60 525
89◦55′20′′ 7 366 595 644 761 −53 420
89◦55′30′′ 7 639 432 702 116 −202 971
89◦55′40′′ 7 933 257 809 981 +232 965
89◦55′50′′ 8 250 588 250 873 +41 105

89◦56′ 8 594 362 842 728 −205 725
89◦56′10′′ 8 968 031 622 554 +285 237
89◦56′20′′ 9 375 669 422 708 −33 222
89◦56′30′′ 9 822 130 762 094 +524 977
89◦56′40′′ 10 313 237 189 509 +109 246
89◦56′50′′ 10 856 038 936 937 −426 636

89◦57′ 11 459 153 193 466 +199 732
89◦57′10′′ 12 133 220 628 617 −520 994
89◦57′20′′ 12 891 548 003 369 +198 602
89◦57′30′′ 13 750 985 747 924 +1 088 856
89◦57′40′′ 14 733 198 214 159 +30 400
89◦57′50′′ 15 866 522 557 360 +1 100 753

89◦58′ 17 188 731 457 652 −457 015
89◦58′10′′ 18 751 345 086 678 +841 860
89◦58′20′′ 20 626 477 397 360 −1 611 311
89◦58′30′′ 22 918 310 306 158 −44 632
89◦58′40′′ 25 783 101 825 985 +2 337 935
89◦58′50′′ 29 466 397 178 769 −2 582 423

89◦59′ 34 377 467 277 806 +539 580
89◦59′10′′ 41 252 966 938 221 +6 496 816
89◦59′20′′ 51 566 193 264 939 −7 650 378
89◦59′30′′ 68 754 936 735 144 +1 804 319
89◦59′40′′ 103 132 441 165 520 +38 365 292
89◦59′50′′ 206 264 670 327 177 −135 758 907

90◦ Infinitum
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Appendix 4b
Partial reconstruction of the Sine table underlying Georg Rheticus’ Tangent table found in
his Opus palatinum, containing entries for every 1′ of arc from 89◦ to 89◦59′, after which
point it contains entries for every 10′′ of arc. The complete reconstruction contains entries
for every 10′′ of arc from 89◦ to 89◦59′50′′, and can be found at www.kailynpritchard.com.
The computed values and values from the Opus palatinum are given as differences between
those values and the reconstructed values. Rheticus’ Sine values were obtained by reading
the values for Cos(90◦

− θ) (Cosine of the complement) from his Cosine table. While he
published both a Sine and Cosine table in his Opus palatinum, he only included these for
arguments up to 45◦. Asterisks denote entries for which the reconstruction is unreliable.

Argu-
ment

Recon-
structed

Com-
puted Rheticus

89◦0′ 9 998 476 951 +1
89◦1′ 9 998 527 295 +1
89◦2′ 9 998 576 793
89◦3′ 9 998 625 445
89◦4′ 9 998 673 251
89◦5′ 9 998 720 211
89◦6′ 9 998 766 325
89◦7′ 9 998 811 592 +1
89◦8′ 9 998 856 014
89◦9′ 9 998 899 590
89◦10′ 9 998 942 319
89◦11′ 9 998 984 203
89◦12′ 9 999 025 240
89◦13′ 9 999 065 431
89◦14′ 9 999 104 777
89◦15′ 9 999 143 276
89◦16′ 9 999 180 928 * +1 +1
89◦17′ 9 999 217 736
89◦18′ 9 999 253 697 −1
89◦19′ 9 999 288 811
89◦20′ 9 999 323 080
89◦21′ 9 999 356 503
89◦22′ 9 999 389 079
89◦23′ 9 999 420 809
89◦24′ 9 999 451 694
89◦25′ 9 999 481 732
89◦26′ 9 999 510 924
89◦27′ 9 999 539 270
89◦28′ 9 999 566 769
89◦29′ 9 999 593 423
89◦30′ 9 999 619 231
89◦31′ 9 999 644 192
89◦32′ 9 999 668 307

Argument Recon-
structed

Com-
puted Rheticus

89◦33′ 9 999 691 576
89◦34′ 9 999 713 999
89◦35′ 9 999 735 576
89◦36′ 9 999 756 307
89◦37′ 9 999 776 192
89◦38′ 9 999 795 230
89◦39′ 9 999 813 422
89◦40′ 9 999 830 768 +1
89◦41′ 9 999 847 268 +1
89◦42′ 9 999 862 922
89◦43′ 9 999 877 730
89◦44′ 9 999 891 692
89◦45′ 9 999 904 807
89◦46′ 9 999 917 076
89◦47′ 9 999 928 500 −1
89◦48′ 9 999 939 076 +1
89◦49′ 9 999 948 807
89◦50′ 9 999 957 692
89◦51′ 9 999 965 730 +1
89◦52′ 9 999 972 923
89◦53′ 9 999 979 269
89◦54′ 9 999 984 769
89◦55′ 9 999 989 423
89◦56′ 9 999 993 231
89◦57′ 9 999 996 192
89◦58′ 9 999 998 308
89◦59′ 9 999 999 577

89◦59′10′′ 9 999 999 706
89◦59′20′′ 9 999 999 812
89◦59′30′′ 9 999 999 894
89◦59′40′′ 9 999 999 953
89◦59′50′′ 9 999 999 988
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Excerpt from Georg Rheticus’ Tangent table (continued)

Argument Tangent Error
89 53 4 911 060 157 173 129 159

89 53 10 5 030 842 265 276 41 791
89 53 20 5 156 613 715 535 23 542
89 53 30 5 288 834 966 475 83 231
89 53 40 5 428 015 211 929 135 875
89 53 50 5 574 718 694 224 180 429

89 54 5 729 572 021 517 112 026
89 54 10 5 893 274 416 416 105 912
89 54 20 6 066 606 340 655 113 232
89 54 30 6 250 443 205 118 136 085
89 54 40 6 445 770 261 771 237 895
89 54 50 6 653 698 619 582 201 999

89 55 6 875 488 837 803 144 371
89 55 10 7 112 574 899 755 60 525
89 55 20 7 366 595 644 761 53 420
89 55 30 7 639 432 702 116 202 971
89 55 40 7 933 257 809 981 232 965
89 55 50 8 250 588 250 873 41 105

89 56 8 594 362 842 728 205 725
89 56 10 8 968 031 622 554 285 237
89 56 20 9 375 669 422 708 33 222
89 56 30 9 822 130 762 094 524 977
89 56 40 10 313 237 189 509 109 246
89 56 50 10 856 038 936 937 426 636

89 57 11 459 153 193 466 199 732
89 57 10 12 133 220 628 617 520 994
89 57 20 12 891 548 003 369 198 602
89 57 30 13 750 985 747 924 1 088 856
89 57 40 14 733 198 214 159 30 400
89 57 50 15 866 522 557 360 1 100 753

89 58 17 188 731 457 652 457 015
89 58 10 18 751 345 086 678 841 860
89 58 20 20 626 477 397 360 1 611 311
89 58 30 22 918 310 306 158 44 632
89 58 40 25 783 101 825 985 2 337 935
89 58 50 29 466 397 178 769 2 582 423

89 59 34 377 467 277 806 539 580
89 59 10 41 252 966 938 221 6 496 816
89 59 20 51 566 193 264 939 7 650 378
89 59 30 68 754 936 735 144 1 804 319
89 59 40 103 132 441 165 520 38 365 292
89 59 50 206 264 670 327 177 135 758 907

90 Infinitum
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Appendix 4c
Partial reconstruction of the Cosine table underlying Georg Rheticus’ Tangent table found
in his Opus palatinum, containing entries for every 1′ of arc from 89◦ to 89◦59′, after which
point it contains entries for every 10′′ of arc. The complete reconstruction contains entries
for every 10′′ of arc from 89◦ to 89◦59′50′′, and can be found at www.kailynpritchard.com.
The computed values and values from the Opus palatinum are given as differences between
those values and the reconstructed values. Rheticus’ Cosine values were obtained by read-
ing the values for Sin(90◦

− θ) (Sine of the complement) from his Sine table. While he
published both a Sine and Cosine table in his Opus palatinum, he only included these for
arguments up to 45◦.

Argu-
ment

Recon-
structed

Com-
puted Rheticus

89◦0′ 174 524 064
89◦1′ 171 615 618
89◦2′ 168 707 157
89◦3′ 165 798 682
89◦4′ 162 890 193
89◦5′ 159 981 690
89◦6′ 157 073 173
89◦7′ 154 164 643
89◦8′ 151 256 100
89◦9′ 148 347 545
89◦10′ 145 438 976 +1
89◦11′ 142 530 396
89◦12′ 139 621 803
89◦13′ 136 713 199
89◦14′ 133 804 583
89◦15′ 130 895 956
89◦16′ 127 987 317 *
89◦17′ 125 078 668
89◦18′ 122 170 008
89◦19′ 119 261 338
89◦20′ 116 352 658
89◦21′ 113 443 968
89◦22′ 110 535 268
89◦23′ 107 626 559
89◦24′ 104 717 841
89◦25′ 101 809 114
89◦26′ 98 900 378 +1
89◦27′ 95 991 635
89◦28′ 93 082 882 +1
89◦29′ 90 174 122 +1
89◦30′ 87 265 355
89◦31′ 84 356 580
89◦32′ 81 447 798

Argument Recon-
structed

Com-
puted Rheticus

89◦33′ 78 539 009
89◦34′ 75 630 213
89◦35′ 72 721 411
89◦36′ 69 812 603
89◦37′ 66 903 789
89◦38′ 63 994 969
89◦39′ 61 086 144
89◦40′ 58 177 313 +1
89◦41′ 55 268 478
89◦42′ 52 359 638
89◦43′ 49 450 794
89◦44′ 46 541 945
89◦45′ 43 633 093
89◦46′ 40 724 237
89◦47′ 37 815 377
89◦48′ 34 906 514
89◦49′ 31 997 648
89◦50′ 29 088 780 −1
89◦51′ 26 179 909
89◦52′ 23 271 036 −1
89◦53′ 20 362 160 +1
89◦54′ 17 453 284
89◦55′ 14 544 405
89◦56′ 11 635 526
89◦57′ 8 726 645
89◦58′ 5 817 764
89◦59′ 2 908 882

89◦59′10′′ 2 424 068
89◦59′20′′ 1 939 255
89◦59′30′′ 1 454 441
89◦59′40′′ 969 627
89◦59′50′′ 484 814



Part 2

Editing and Analysing Astronomical Tables



Editing Sanskrit Astronomical Tables:
The Candrārkī of Dinakara (1578 c)

Clemency Moll

1. Introduction

Numerical tables were a popular medium for mathematical astronomy in sec-
ond millennium India. Initial cataloguing efforts suggest there may be hun-
dreds of thousands, if not millions of folia containing tables still extant today.
From astronomical data to astrological correspondences, from horoscopes to
calendars, from star-lists to sine tables, such repositories of data, often re-
ferred to by the Sanskrit word koṣṭhaka (‘granary’) or sāraṇī (‘stream’), be-
came widespread and had a notable impact on cultures of scientific practice.
Given the scale and scope of such a genre, the situation for the historian of
astronomy is thus as daunting as it is thrilling.1
The critical editor of numerical tables has a special set of challenges above

and beyond the regular editor of textual material.2 For one, the notion of vari-
ant reading takes on new significance when dealing with computed data. Dis-
crepancies in the numerical data may arise from simple unintentional copying
slips, but they also might be systematic and reveal a computational preference
on the part of the compiler. Modern recomputations based on reconstructed
algorithms may offer guidance to the editor as to how to emend erroneous
values, however this must be done with some caution, as recomputed data
brings with it its own set of implicit biases. The editor has to make some

1 Despite the extent of the corpus, the study of numerical tables in India is just beginning.
Initial cataloguing efforts began with David Pingree’s publications ‘Sanskrit Astronomical Ta-
bles in the United States’ (SATIUS) and ‘Sanskrit Astronomical Tables in England’ (SATE).
Over the last few decades, with increased international scholarly interest in tables as a genre,
studies dedicated to numerical tables are becoming more numerous. See, for instance, Neuge-
bauer and Pingree, ‘The Astronomical Tables of Mahādeva’; Pingree, ‘On the Classification’;
Pingree, Śrīdhara’s Laghukhecarasiddhi; Ikeyama and Plofker, ‘The Tithicintāmaṇi of Gaṇeśa’;
Montelle and Plofker, ‘Karaṇakesari of Bhāskara II’; Montelle and Plofker, ‘The Transforma-
tion of a Handbook’; Montelle and Plofker, Sanskrit Astronomical Tables.

2 Despite numerous publications dealing with critical editing, few studies have focussed on
the issues faced by editing numerical data. See Montelle and Plofker, ‘Karaṇakesari of Bhāska-
ra II’, esp. pp. 32–34; Montelle and Plofker, ‘The Transformation of a Handbook’, and Misra
et al., The Sanskrit Astronomical Table Text Brahmatulyasāraṇī.
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Editing Sanskrit Astronomical Tables:
The Candrārkī of Dinakara (1578 c)

Clemency Moll

1. Introduction

Numerical tables were a popular medium for mathematical astronomy in sec-
ond millennium India. Initial cataloguing efforts suggest there may be hun-
dreds of thousands, if not millions of folia containing tables still extant today.
From astronomical data to astrological correspondences, from horoscopes to
calendars, from star-lists to sine tables, such repositories of data, often re-
ferred to by the Sanskrit word koṣṭhaka (‘granary’) or sāraṇī (‘stream’), be-
came widespread and had a notable impact on cultures of scientific practice.
Given the scale and scope of such a genre, the situation for the historian of
astronomy is thus as daunting as it is thrilling.1
The critical editor of numerical tables has a special set of challenges above

and beyond the regular editor of textual material.2 For one, the notion of vari-
ant reading takes on new significance when dealing with computed data. Dis-
crepancies in the numerical data may arise from simple unintentional copying
slips, but they also might be systematic and reveal a computational preference
on the part of the compiler. Modern recomputations based on reconstructed
algorithms may offer guidance to the editor as to how to emend erroneous
values, however this must be done with some caution, as recomputed data
brings with it its own set of implicit biases. The editor has to make some

1 Despite the extent of the corpus, the study of numerical tables in India is just beginning.
Initial cataloguing efforts began with David Pingree’s publications ‘Sanskrit Astronomical Ta-
bles in the United States’ (SATIUS) and ‘Sanskrit Astronomical Tables in England’ (SATE).
Over the last few decades, with increased international scholarly interest in tables as a genre,
studies dedicated to numerical tables are becoming more numerous. See, for instance, Neuge-
bauer and Pingree, ‘The Astronomical Tables of Mahādeva’; Pingree, ‘On the Classification’;
Pingree, Śrīdhara’s Laghukhecarasiddhi; Ikeyama and Plofker, ‘The Tithicintāmaṇi of Gaṇeśa’;
Montelle and Plofker, ‘Karaṇakesari of Bhāskara II’; Montelle and Plofker, ‘The Transforma-
tion of a Handbook’; Montelle and Plofker, Sanskrit Astronomical Tables.

2 Despite numerous publications dealing with critical editing, few studies have focussed on
the issues faced by editing numerical data. See Montelle and Plofker, ‘Karaṇakesari of Bhāska-
ra II’, esp. pp. 32–34; Montelle and Plofker, ‘The Transformation of a Handbook’, and Misra
et al., The Sanskrit Astronomical Table Text Brahmatulyasāraṇī.
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difficult decisions in light of the variety of discrepancies and whether or not
they should be emended or modified.3

Paratextual features including titles, column/row headings and marginal
notes pose interesting nuances to the task of editing numerical data. Fur-
thermore, the spatial arrangement of data on a page is ever more relevant.
All these subtleties are important, as they give us insight into the practices
surrounding table preparation, use, and transmission. They simultaneously pro-
vide insight into individual compilers and copiers as well as a glimpse of some
of the more general trends and priorities related to this milieu.
In order to explore these issues and some of the ways in which they may

be embraced, we consider here the task of editing the numerical data related
to a sixteenth century Sanskrit table-text concerning solar and lunar phenom-
ena, the Candrārkī by the astronomer Dinakara. In addition to a critical edi-
tion of the tables, we offer an exploration of the specific challenges that arose
when preparing this edition and the ways in which they were resolved. It is
hoped that this specific case study can contribute more generally to much
needed discussion on the resolution of the many issues surrounding editing
numerical data, both in the Indian context and more broadly with numerical
tables from different cultures of inquiry.

2. The Candrārkī

The Candrārkī, aptly named ‘Pertaining to the Moon and the Sun’, is a short
text of around 30 verses with accompanying numerical tables concerning lu-
nar and solar phenomena. This table-text was composed by Dinakara, an as-
tronomer who flourished in the latter half of the sixteenth century, about
whom we know very little.
Judging from the number of extant manuscripts—over 150 have been iden-

tified4—the Candrārkī was an extremely popular work. The majority of ex-
tant manuscripts were copied in the eighteenth century; the earliest extant
copy was produced in 1624. A critical edition of the versified text has been
prepared on the basis of around a dozen manuscripts,5 and a translation and
comprehensive astronomical analysis of the text has also been completed.6 An
edition of the tables still remains to be done, however.

3 An excellent description of various senses of tabular errors is given in van Dalen, Ancient
and Mediaeval Astronomical Tables, pp. 12–19.

4 See Pingree, Census, vol. A3, pp. 102–104; vol. A4, p. 109; vol. A5, pp. 138–139.
5 See Kolachana et al., ‘A Critical Edition of the Candrārkī’.
6 See Kolachana et al., ‘The Candrārkī of Dinakara’.
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The text reveals that Dinakara’s intention is that the reader be able to
complete a customised set of tables for any desired year. His opening verse
underscores this aim:7

sūryaṃ candraṃ sadguruṃ bhaktipūrvaṃ
natvā vakṣye sūryacandrodbhavaṃ ca |
patraṃ pañcāṅgābhidhaṃ buddhivṛddhyai
grāhyaṃ tajjñair yuktimat tanmayoktam || 1 ||

Having paid homage to the Sun, the Moon, and the great guru with complete
devotion, I [am going to] narrate tables (patra), generated from the positions of
the sun and the moon, called pañcāṅga. This rationale-based [pañcāṅga] stated by
me may be received by the specialists of that for expanding [the horizons of ] their
knowledge.

Indeed, the Candrārkī includes a set of tables from which to produce a
pañcāṅga (‘five-components’) or calendar for the year in question that pro-
vides details on the five key aspects: the weekday, tithi, yoga, nakṣatra, and
karaṇa, time units which are based on critical instants involving the moon
and the sun.8 The tables provide general solar and lunar phenomena which
can be customised by incorporating corrections for time and local circum-
stances for any year and locality the table user wants. This ambition is em-
phasised later in the work as well, as Dinakara includes specific instructions
in his text for filling in table values.9 In this sense it is a table-text for the
purpose of creating calendars.
An overview of the verses included in the Candrārkī is given in Table 1.

The table-text nexus is further complicated by the fact that some manuscripts
include the tables only, some the text only, and yet others still both the text
and the tables. Further studies and acquisition of more manuscripts will help
us understand better the trajectory, transformation, and use of this table-text.

2.1. A description of the sources

Hand made paper was a common medium for written documents in India.
Unfortunately it is rather fragile; largely because of the ambient climate con-

7 As edited and translated by Kolachana et al., ‘The Candrārkī of Dinakara’, pp. 9–10.
8 For more details on the Indian calendar, see Montelle and Plofker, Sanskrit Astronomical

Tables, Section 1.4.3, and Plofker and Knudsen, ‘Calendars in India’.
9 See verses 10 and 15–17 in Kolachana et al., ‘The Candrārkī of Dinakara’.
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difficult decisions in light of the variety of discrepancies and whether or not
they should be emended or modified.3
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edition of the tables. These are

Siglum Library and shelfmark No. of folia

J1 Jaipur, Palace Library, Khasmohor 5015 15 ff.
J2 Jaipur, Palace Library, Khasmohor 5081 10 ff.
R2 Jodhpur, Rajasthan Oriental Research

Institute (RORI), 10180 12 ff.
R3 Jodhpur, RORI, 20220 11 ff.
R7 Jodhpur, RORI, 7752 8 ff.

The manuscripts J1 and R2 include both the text and the tables. The remain-
ing include the tables only.
Digital colour copies of the manuscripts were obtained from the Palace

Library in Jaipur and the Rajasthan Oriental Research Institute in Jodhpur
in India. All manuscripts are written in Nāgarī script on hand-made paper
and are generally stored together as separate leaves. Brief descriptions of the
manuscripts are given below.

2.1.1. J1: Jaipur, Palace Library, Khasmohor 5015, ff. 1–10 and ff. 1–2
This MS contains tables (first, ff. 1–10) and text (last, ff. 1–2). The foliation
appears to have been made by the scribe who copied the manuscript, so the
two sets of foliation may simply reflect their decision to recommence num-
bering after the tables were complete. The MS is 12 28 cm.12 It is neatly
written using black ink for the entries and red ink for the double margin
lines and table grids. It includes table titles and row headers identifying the
units or contents of the table cells on every page. Occasional errors have been
corrected using whitish paste. On the very first page (f. 1r) there is written
sāraṇī caṃdrārkī (‘Tables Candrārkī’). See Figures 4 and 11 for examples of
this manuscript.

2.1.2. J2: Jaipur, Palace Library, Khasmohor 5081, ff. 1–11
This MS contains tables only. It measures 11 25 5 cm.13 It is legibly writ-
ten using black ink for the entries and paratext, and red ink for the double
margin lines and table grids. It includes row headers identifying the contents
of the table cells. On the very first page (f. 1r) there is written caṃdrārkī
sāraṇī patra 10. See Figures 5 and 12 for examples of this manuscript.

12 Pingree, A Descriptive Catalogue, p. 66.
13 Pingree, A Descriptive Catalogue, p. 67.
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Verse number(s) Topics
1 Invocation
2–5 Key annual and epoch parameters concerning lord of

the year, epact, and anomaly determination
6 Rāmabīja corrections
7 Determining local time
8–9 Longitude of sun at local sunrise
10 Solar true daily motion
11–13 Conversions between lunar and solar days
14 Rates of motion of moon and anomaly
15–17 Making one’s own customised annual table
18 Lunar true daily motion
19 Inaccuracy of previous authors
20–22 Determining tithis and karaṇas
23 Determining nakṣatras and yogas
24 Adding an intercalary month
25–26 Determining omitted tithis, nakṣatras, and yogas
27 Closing verse

Table 1: Overview of the contents of the Candrārkī table-text.

ditions, the paper doesn’t survive more than two to three centuries.10 The cor-
pus that remains today, conservatively estimated to be around seven million,
is thus generally made up of copies (of copies) no earlier than the eighteenth
century. Sanskrit scribal convention is to number folia on the verso. Text and
tables generally begin on the second page (the verso of the first folio). The
first page of a manuscript is usually left blank; occasionally the title of the
text is written on this.
Securing copies of manuscripts is not always easy, and we were able to gain

access to 12 manuscripts of the Candrārkī. These manuscripts fell into three
groups: those which contained the text and tables, those which contained
the text only, and those which contained the tables only.11 Five manuscripts
fell into the latter two categories which we used when preparing our critical

10 For an excellent survey of Indian manuscripts, their extent, and characteristics, see Wu-
jastyk, ‘Indian Manuscripts’.

11 Nine manuscripts include a copy of the text, and the sigla we gave these along with the
library which carries them and their shelf mark details are (see Kolachana et al., ‘A Critical
Edition of the Candrārkī’, Table 1, p. 3): B1 Baroda, Central Library, 3119; BO1 Pune, Bhan-
darkar Oriental Research Institute (BORI), 315/Viśrāmbag (i); BO3 Pune, BORI, 308/1882-
83; J1 Jaipur, Palace Library, Khasmohor 5015; R2 Jodhpur, Rajasthan Oriental Research In-
stitute (RORI), 10180; R4 Jodhpur, RORI, 5482; R5 Jodhpur, RORI, 11633; R6 Jodhpur,
RORI, 9026; and O1 Oxford, Bodleian Library, Walker 208b. Two additional manuscripts,
which were originally given the sigla J2 and BO2, turned out to be unrelated to the Can-
drārkī.
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2.1.3. R2: Jodhpur, Rajasthan Oriental Research Institute (RORI), 10180, ff. 1–12
This MS contains the text (first) and the tables (last), the latter of which be-
gins on f. 2v. It is neatly written using black ink for the entries and paratext,
and red ink for the double margin lines and table grids. It includes table ti-
tles and very occasionally row headings. See Figures 6 and 9 for examples of
this manuscript.

2.1.4. R3: Jodhpur, Rajasthan Oriental Research Institute (RORI), 20220, ff. 1–11
This MS contains the tables only. It is described in the catalogue as having
16 lines per page and 27 characters per line which appears to correspond
roughly to the rows of digits and columns respectively. The catalogue notes
it is in good condition. The MS is 11× 25.4 cm.14 It is clearly written using
black ink for the entries and paratext, and red ink for the double margin
lines and table grids. It includes occasional paratext and row headings most
often along the right hand side of the table. See Figures 7 and 10 and Plate 6
for examples of this manuscript.

2.1.5. R7: Jodhpur, Rajasthan Oriental Research Institute (RORI), 7752, ff. 1–7
This MS contains the tables only. It appears to have been somewhat rapidly
written using black ink for the entries and red ink for the double margin
lines and table grids. There is occasional smudging which may compromise
legibility in places. See Figure 8 and Plate 7 for examples of this manuscript.

3. Technical summary of the tables

As far as we know, the Candrārkī is the only text in the Indian astronomical
tradition dedicated exclusively to solar and lunar phenomena. In the text that
accompanies the tables, Dinakara reveals that the parameters he has based
his solar and lunar phenomena on derive from the Brāhmapakṣa school to
which many other famous authors, notably Brahmagupta and Bhāskara II,
adhered too.15 Furthermore, Dinakara’s choice of year length reveals he follows
various modifications made by Bhojarāja (fl. 11th century) and noted table
text composer Māhadeva (fl. 14th century). A fuller discussion of the relation
of this text and its parameters to others can be found in recent studies.16
There are four distinct tables in the Candrārkī. These are listed in Table 2.17
These four tables and the data they contain provide the user with enough

14 Jinavijaya, A Catalogue of Sanskrit and Prakrit Manuscripts, pp. 320–21.
15 For a detailed discussion of the pakṣa tradition in Indian astronomy, see Montelle and

Plofker, Sanskrit Astronomical Tables, Section 1.2.3, pp. 23–24.
16 Kolachana et al., ‘The Candrārkī of Dinakara’, pp. 6–9.
17 Preliminary identifications of these tables have been outlined in SATIUS, pp. 52–53.
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Manuscripts (folio numbers)
Number Table type J1 J2 R2 R3 R7

I True solar longitude and
corresponding velocity;
argument 0 to 365 days

1v–4v 1r–4r 2v–6r 1v–4v 1r–2v

II Mean motion of moon and
anomaly; argument 0 to
365 days

4v–7v 4v–6v 6r–9r 4v–7v 3r–5v

III Mean motion of moon and
anomaly; argument 1 to 60
ghaṭīs

10r–10v 7r–7v 11v–12v 8r 5v

IV Lunar manda-equation;
argument 0 to 360 degrees

8r–10r 8r–10v 9r–11v 8v–11r 6r–7v

Table 2: Overview of the contents and organisation of the Candrārkī tables.

information to construct the annual calendar with its various details, all of
which ultimately rely on knowing the true positions and motions of the sun
and the moon. The annual calendar, or pañcāṅga, includes the arrangement
of five divisions of time in India, which were fundamental for timekeeping.
These five units were all based on solar or lunar motion, or a combination

of both and included the weekday (vāra), the tithi, or lunar day, namely the
time interval over which the elongation of the moon and the sun increases
by 12◦, the karaṇa, which is half of a tithi, the nakṣatra, namely the time
it takes the moon to cover an arc of 13◦20′, the yoga, here the interval of
time taken for the sum of the sun’s and the moon’s motion to increase by
13◦20′. While tithis, karaṇas, and yogas depend on both the sun and the
moon, nakṣatras were an interval of time based solely on the moon. Thus
determining the positions of the sun and the moon along with their motions
were fundamental for determining these five elements.
Computing lunar and solar positions in Indian astronomy is based on ad-

justing a mean longitude, measured from the vernal equinox, with a correc-
tion term, known as the manda (‘slow’) correction. This correction, akin to
the equation of center, is a function of the angular separation of the mean
position of the planet from its apogee.18 In essence, the mean anomaly κ is
the difference between the mean longitude of the planet λ and its apogee A,
the point where it reaches its largest distance from the earth:

κ = λ −A.

18 Details of this correction can be found in Montelle and Plofker, Sanskrit Astronomical
Tables, Sections 2.1.1 and 2.1.2, as well as Montelle and Plofker, ‘The Transformation of a
Handbook’, pp. 12–14.
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Figure 1: Diagram of the manda-correction μ as a function of the anomaly κ = AOP produc-
ing the position of the true planet P from its mean position P. Here OP = R is the radius
of the deferent circle and PQ and PQ are r sin κ and r cos κ respectively, where r is the radius
of the epicycle, or equivalently, the eccentricity.

The manda-equation μ is then computed via the trigonometric relations:

sin μ =
r · sin κ

H
,

where r (= PP) is the radius of the epicycle and H is the distance between
the earth and the true (corrected) planet (OP in Figure 1). This hypotenuse
can be geometrically determined (using the Pythagorean theorem) as

However, in the Indian tradition H here is usually replaced with R, the
trigonometric radius of the circle, to simplify the computation, without much
loss of accuracy. Therefore, with this simplifying assumption, the manda-equa-
tion is computed via:

sin μ =
r · sin κ

R
or, in other words, the manda-equation is simply a scaled function of sin κ.
Because of this substitution, the values of the manda-equation will be sym-
metric about the quadrants, being a minimum when the mean planet is at
the apogee or perigee, and a maximum when the anomaly is 90◦ and 270◦.
For this reason tables of the manda-equation typically contain only values for
the first quadrant, as all other values can be supplied by symmetry.
In the Candrārkī, there is a single table for the sun which incorporates

the manda-correction in its values, thus giving the true position of the sun



 EDITING SANSKRIT ASTRONOMICAL TABLES 153EDITING SANSKRIT ASTRONOMICAL TABLES 153

directly. However, the moon requires three tables which must be used in
conjunction with each other to produce its true position. This is because,
unlike the solar apogee, the lunar apogee is moving and must be computed
independently.
While these tables are referred to often in the text, the references are gen-

erally focused on table use and very little detail is given as to how the nu-
merical data was generated. Using basic assumptions and knowledge about
how such phenomena were computed in other treatises,19 we tentatively pro-
pose algorithms and techniques that account for the general quantitative or
qualitative trends of the numerical data. We leave the finer details of recon-
structing the numerical data for future studies.
In the ensuing discussion, the table entries are identified as follows: argu-

ment, row 1 containing the numerical entries associated with that argument
(usually a string of successive significant places), row 2 containing the nu-
merical entries of a different relation associated with that argument, and so
on.
Although the Candrārkī has an epoch (1578 c) and various epoch posi-

tions are discussed in the text, the tables do not contain any epoch offsets in
their entries. Their purpose is for the user to manipulate the data contained
therein for their own circumstances.

Table I: True solar longitude and corresponding velocity (0 to 365 days)

Argument 0 to 365 days

Row 1 True longitude of the sun. The first value (day 0) is computed for
when the mean sun is at Aries 0◦. The procedure for determining the true
longitude of the sun involves computing the mean position and applying the
so-called manda-correction. This solar manda-equation μ is computed via:

sin μ =
sin κS · rS

R
, (1)

where κS is the angular displacement of the sun from the apogee, or anomaly,
rS is the radius of the solar epicycle, or eccentricity, and R the trigonometric
radius. The conventional value for the solar apogee in the Indian tradition is
78◦.20 Despite the fact that this value is not given anywhere by Dinakara, we
assume it is the one he used.

19 All the algorithms proposed here can be found in Bhāskara II’s canonical astronomical
handbook, the Karaṇakutūhala (epoch 1183 c). See, for instance, Mishra, Karaṇakutūhala,
and Balachandra Rao and Uma, Karaṇakutūhalam.

20 See, for instance, Bhāskara II’s Karaṇakutūhala, Chapter 2, verse 1.
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Figure 1: Diagram of the manda-correction μ as a function of the anomaly κ AOP produc-
ing the position of the true planet P from its mean position P. Here OP R is the radius
of the deferent circle and PQ and PQ are r sin κ and r cos κ respectively, where r is the radius
of the epicycle, or equivalently, the eccentricity.

The manda-equation μ is then computed via the trigonometric relations:

sin μ
r sin κ

H
where r PP is the radius of the epicycle and H is the distance between
the earth and the true (corrected) planet (OP in Figure 1). This hypotenuse
can be geometrically determined (using the Pythagorean theorem) as

However, in the Indian tradition H here is usually replaced with R, the
trigonometric radius of the circle, to simplify the computation, without much
loss of accuracy. Therefore, with this simplifying assumption, the manda-equa-
tion is computed via:

sin μ
r sin κ

R
or, in other words, the manda-equation is simply a scaled function of sin κ.
Because of this substitution, the values of the manda-equation will be sym-
metric about the quadrants, being a minimum when the mean planet is at
the apogee or perigee, and a maximum when the anomaly is 90 and 270 .
For this reason tables of the manda-equation typically contain only values for
the first quadrant, as all other values can be supplied by symmetry.
In the Candrārkī, there is a single table for the sun which incorporates

the manda-correction in its values, thus giving the true position of the sun
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Given the data in the table, we can back-compute to generate approxima-
tions for some of the parameters, most notably the ratio of the radius of the
epicycle rS to the radius of the base circle R. For instance, from the very
first value, we can get a good approximation to this parameter. That is, when
λS = 0◦, the solar anomaly is κS = |0− 78| = 78, and from the tables, the
corresponding entry can be read off as μ = 2;9,13. We can then use this data
to approximate the ratio of the radius of the epicycle to the radius using
equation 1, namely:

rS

R
=

sin μ
sin κS

≈
sin(2;9,13)
sin 78

≈ 0.03841828,

where modern sines have been used. In comparison, the Siddhāntaśiromaṇi
of Bhāskara II (Chapter 2.22) states parameters which produce rS

R = 41
1080 =

0.0379629 for the above ratio.21
Using this parameter to reconstruct the tabular values via equation 1, one

produces a reasonable fit.22 Further table cracking efforts to refine this ratio
would need to take account of the way of computing sines in line with early
techniques (i.e., an appropriate Indian sine table using linear interpolation for
non-tabulated values).

Row 2 True daily velocity of the sun. This appears to be the true angular
velocity, rather than the difference in successive true solar positions.23 That it
is not the latter can be quickly confirmed by taking successive differences in
solar positions, and comparing these with the tabular entries, which are close,
but distinctly different.
In the table, the maximum value 61;23 minutes occurs at argument values

260 to 266 (around the perigee). The minimum value 56;54 minutes occurs
at argument values 71 to 86 (around the apogee).
A recomputation of this can be made using the standard algorithm for

true velocity v given in the Siddhāntaśiromaṇi of Bhāskara II (2.36–38):

v = v−
v · cos κS · rS

R
,

21 Furthermore, using Bhāskara II’s accurate sine table with R = 3438 produces a value of
μmax = 2;10,31.

22 In general, the recomputed values differ from the tabulated values by no more than 25
seconds in extreme cases without an apparent pattern. This can be explained by the effects of
intermediate rounding, using a modern sine table, and interpolation.

23 Indeed, true angular velocity is simply the rate of change in true longitude. Called
tātkālikā (‘at that time’), precise formulations for true angular velocity were given by Sanskrit
authors. See, for instance, Bhāskara II, Siddhāntaśiromaṇi 2.36–38.
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taking mean daily solar velocity24 to be v = 59;8,10,12′ and the above ra-
tio for rS

R , and computing the trigonometric ratio using the modern cosine.
The resulting recomputation fits the tabular data quite well with differences
between the recomputed values and the tabulated ones generally remaining
within 5 seconds. In the recomputed data, the maximum value of 61;24′ oc-
curs at argument values 254 to 262. The minimum value of 56;51′ occurs at
argument values 76 to 80. This shift in extremal values in the recomputations
await further exploration with more detailed table cracking efforts.25

Table II: Mean motion and mean anomaly of the moon (0 to 365 days)

Argument 0 to 365 days

Row 1 Mean position of the moon at sunrise. Initial value is 11s 29;54,17◦ at
argument value 0. Differences between subsequent values are not constant but
range from around 13;9,54◦ to 13;11,0◦. Mean daily motion of the moon is
given by Dinakara as 13;10,35◦ (verse 14).

Row 2 Mean lunar anomaly at sunrise. Initial value is 11s 29;54,20◦ at ar-
gument value 0. Differences between subsequent values are not constant
but range from around 13;3,25◦ to 13;4,5◦. The daily mean motion of the
moon’s anomaly is given by Dinakara as 13;3,54◦ (verse 14).
Notably, these two tabulated quantities do not begin at zero for the first

entry (argument 0). This can be explained as follows: The daily mean motion
of the moon is adjusted to account for the fact that the instant of sunrise
is constantly changing. This correction is computed by multiplying the lunar
mean daily motion by the sum of the equation of time and the equation
of daylight and incorporating it positively or negatively as appropriate to the
mean daily displacement in anomaly at mean sunrise. This produces the mean
lunar anomaly at true sunrise per day, i.e., accounting for the fact that the
interval from one sunrise to the next is not constant.
This tabulation of lunar motion and anomaly is identical in its mathemat-

ical basis to that found in Haridatta’s Jagadbhūṣana, a table-text written over
50 years later in Śaka 1560 (1638 c).26 This similarity was crucial to us for
understanding Dinakara’s tables. However there are some differences in the
two. While the Candrārkī tabulates lunar motion and anomaly for every day,
the Jagadbhūṣana has only given values for every 14 day (avadhi) period (see

24 This parameter has been reconstructed from the so-called ‘lord of the year’ parameter.
See Kolachana et al., ‘The Candrārkī of Dinakara’.

25 In particular, we have not yet explained to our satisfaction a lack of symmetry with
respect to values around the perigee and the apogee, i.e., why the minimum value occurs for
more values around the apogee than the maximum around the perigee.

26 See SATIUS, Tables 10 and 16, pp. 56–58.
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Given the data in the table, we can back-compute to generate approxima-
tions for some of the parameters, most notably the ratio of the radius of the
epicycle rS to the radius of the base circle R. For instance, from the very
first value, we can get a good approximation to this parameter. That is, when
λS 0 , the solar anomaly is κS 0 78 78, and from the tables, the
corresponding entry can be read off as μ 2 9 13. We can then use this data
to approximate the ratio of the radius of the epicycle to the radius using
equation 1, namely:

rS

R
sin μ
sin κS

sin 2 9 13
sin 78

0 03841828

where modern sines have been used. In comparison, the Siddhāntaśiromaṇi
of Bhāskara II (Chapter 2.22) states parameters which produce rS

R
41
1080

0 0379629 for the above ratio.21
Using this parameter to reconstruct the tabular values via equation 1, one

produces a reasonable fit.22 Further table cracking efforts to refine this ratio
would need to take account of the way of computing sines in line with early
techniques (i.e., an appropriate Indian sine table using linear interpolation for
non-tabulated values).

Row 2 True daily velocity of the sun. This appears to be the true angular
velocity, rather than the difference in successive true solar positions.23 That it
is not the latter can be quickly confirmed by taking successive differences in
solar positions, and comparing these with the tabular entries, which are close,
but distinctly different.
In the table, the maximum value 61 23 minutes occurs at argument values

260 to 266 (around the perigee). The minimum value 56 54 minutes occurs
at argument values 71 to 86 (around the apogee).
A recomputation of this can be made using the standard algorithm for

true velocity v given in the Siddhāntaśiromaṇi of Bhāskara II (2.36–38):

v v
v cos κS rS

R

21 Furthermore, using Bhāskara II’s accurate sine table with R 3438 produces a value of
μmax 2 10 31.

22 In general, the recomputed values differ from the tabulated values by no more than 25
seconds in extreme cases without an apparent pattern. This can be explained by the effects of
intermediate rounding, using a modern sine table, and interpolation.

23 Indeed, true angular velocity is simply the rate of change in true longitude. Called
tātkālikā (‘at that time’), precise formulations for true angular velocity were given by Sanskrit
authors. See, for instance, Bhāskara II, Siddhāntaśiromaṇi 2.36–38.
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Figure 2: Table of lunar mean motion for true sunrise every 14 days (begins top right) from
a manuscript of the Jagadbhūṣana of Haridatta (Smith Indic 146, f. 98r).

Figure 3: Table of lunar mean motion for true sunrise for 1 to 60 ghaṭikās (begins top right)
from a manuscript of the Jagadbhūṣana of Haridatta (Smith Indic 146, f. 98v).

Figures 2 and 3). Comparing every 14th value in the Candrārkī with the
data in the Jagadbhūṣana, however, produces an exact match. Furthermore,
the Jagadbhūṣana includes a table giving the equation of time and equation
of daylight that is not included in the Candrārkī.27 This allowed us to apply
the data as per the method described above to confirm the resulting entries.
Further reconstruction efforts may reveal more accurate values of the under-
lying parameters on which Dinakara’s table is based, especially the obliquity

27 The data in this table is reproduced in SATIUS, Table 16, pp. 57–58.
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and solar eccentricity. And indeed, further study into the relations between
Dinakara’s table corpus, and those produced by Haridatta half a century later,
will shed more light on the development of lunar tables of this nature.
One significant point that immediately arises is that these tables are specific

to a certain geographical location as terrestial latitude underpins the length of
daylight. From related data in Haridatta’s tables, the terrestrial latitude can be
reconstructed.28 Doing this reveals that these tables are geographically deter-
mined for φ = 24◦.29 This is more or less consistent with Dinakara’s location
of Bariya, Gujarat.30 This implies that this particular lunar table is geograph-
ically determined and some modifications must be made by the pañcāṅga
makers to compute values which are specific to their locality if it differs from
Gujarat.

Table III: Mean motion of the moon and anomaly per ghaṭikā (1 to 60)
Argument 1 to 60 ghaṭikās (sixtieths of a day)
Row 1 Mean motion of the moon. First value 0;13,11◦ at argument value 1
and last value 13;10,35◦ at argument value 60. This table is constructed using
constant differences of 0;13,10,35◦, and entries are rounded to seconds.

Row 2 Mean motion of the lunar anomaly. First value 0;13,4◦ at argument
value 1 and last value 13;3,54◦ at argument value 60. This table is con-
structed using constant differences of 0;13,3,54◦, and entries are rounded to
seconds.
This table is also identical to the one given by Haridatta in his Jagad-

bhūṣana (see Figure 3).

Table IV: Lunarmanda-equation (0 to 360 degrees)
Argument 0 to 360 degrees

Row 1 Lunar manda-equation for 0 to 360 degrees of lunar anomaly. The
maximum equation is 5;2,35◦ at argument values 90 and 270. We assume
the lunar equation was generated via the standard relation:

sin μ =
sin κM · rM

R
28 Haridatta’s tables contain information that the length of the longest day is 33;48 ghaṭīs,

or equivalently around 13 hours 31 minutes. Using the relation sin ω = tan φ tan δ where ω
is the half equation of daylight, φ is the terrestrial latitude, and δ the declination of the sun
(at the instant of longest day, this is equal to the obliquity of the ecliptic, or ε = 24◦), the
terrestial latitude can be determined.

29 As stated in SATIUS, p. 57.
30 For further discussion on this geographical location, see Kolachana et al., ‘The Candrārkī

of Dinakara’, p. 2.
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Figure 2: Table of lunar mean motion for true sunrise every 14 days (begins top right) from
a manuscript of the Jagadbhūṣana of Haridatta (Smith Indic 146, f. 98r).

Figure 3: Table of lunar mean motion for true sunrise for 1 to 60 ghaṭikās (begins top right)
from a manuscript of the Jagadbhūṣana of Haridatta (Smith Indic 146, f. 98v).

Figures 2 and 3). Comparing every 14th value in the Candrārkī with the
data in the Jagadbhūṣana, however, produces an exact match. Furthermore,
the Jagadbhūṣana includes a table giving the equation of time and equation
of daylight that is not included in the Candrārkī.27 This allowed us to apply
the data as per the method described above to confirm the resulting entries.
Further reconstruction efforts may reveal more accurate values of the under-
lying parameters on which Dinakara’s table is based, especially the obliquity

27 The data in this table is reproduced in SATIUS, Table 16, pp. 57–58.
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where κM is the angular displacement of the moon from the apogee, rM is
the radius of the lunar epicycle, and R the trigonometric radius.
Back-computing using the data μ = 5;2,35◦ at κM = 90◦, we can determine

the ratio of the radius of the lunar epicycle to the radius, namely:

rM

R
=

sin μ
sin κS

=
sin(5;2,35)
sin 90

≈ 0.08790432,

where modern sines have been used. Again, this approximation fits the data
quite well when this parameter is used to recompute the data for other ar-
guments but further investigation needs to be carried out to determine the
precise parameters and method of computation.

Row 2 True lunar velocity. The maximum daily velocity is 14;19,24◦ at argu-
ment value 180. The minimum daily velocity is 12;1,46◦ at argument value
0. We assume the algorithm used to compute true velocity v was

v = v−
vA · cos κM · rM

R
,

where v is the mean lunar velocity and vA is the velocity of the lunar ano-
maly.
A recomputation of this numerical data can be made, using the mean daily

lunar velocity vM = 13;10,35◦, mean lunar anomaly vA = 13;3,53◦, the above
ratio for rS

R , and computing the trigonometric ratio using the modern cosine.
The resulting recomputation fits the tabular data very closely. In the recom-
puted data, the minimum velocity 12;1,40◦ occurs at argument value 0. The
maximum value of 14;19,29◦ occurs at argument value 180.

4. Table Edition

The Appendices contain a critical edition of Tables I–IV along with an ap-
paratus criticus given under the respective parts of the tables. In addition, we
outline the issues arising from the process of editing these tables, as well as
give an account of the editorial resolutions that we followed when preparing
the edition, the software we developed to assist the editing process and how
to read the apparatus criticus.

4.1. Preliminaries

4.1.1. Issues raised in editing the Candrārkī tables
Creating an edition of the numerical tables presented many issues which
needed to be resolved. In addition to general problems of editing sources,
numerical data in the Candrārkī raised the following specific issues:
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Layout

Page orientation The arrangement of tabular data in Sanskrit numerical tables gen-
erally is in landscape format, reflecting the traditional orientation of manuscripts
in India. Numerical data is tabulated horizontally: the argument and entries run
from left to right across the page. When the available space on the page is filled,
the table breaks off and continues underneath in a similar manner. Long tables
may extend across a number of pages. See any of the images throughout the
paper for this stacking effect.

Row breaks The length of tables in the Candrārkī range from 60 entries to 365
entries. They are thus broken up into stacks of roughly equal numbers of columns
and spread over several pages. Scribes make individual decisions about how many
stacks to fit on a page. For instance, MSS J1 and R3 (see Figures 4 and 7) have
two stacks on the page. MS R7 (see Figure 8) has managed to fit three. The
number of columns per stack is variable, but is usually around 30. MS R3 for
instance (see Figure 7) has 24 columns per stack for this particular page. Later
on R3 has 30 (see Figure 10). MS J1 (see Figure 11) has a page with 33 columns,
MS R7 (see Figure 8) has 31.

Beginning a new table Some scribes start new tables on new stacks: see for in-
stance MS R3 (Figure 7) in which Table I ends (argument 365) at the end of
the first stack, and Table II begins at the beginning of the second stack (ar-
gument 0). Other scribes continue with a new table on the same stack, taking
advantage of the preruled grid. For instance MS R2 (Figure 9) finished Table I
in the middle of the first stack and begins Table II several columns later on the
same stack. Some scribes are happy to leave tabular cells blank at the end of a ta-
ble, as in MSS J2 or R7 (Figures 5 and 8). Other scribes occasionally leave empty
cells for no apparent reason: see MS R2 (see Figure 6) with its three empty cells
at the end of the first stack.

Paratext Table titles and row/column headers are handled differently from
scribe to scribe.

Row headings There is no consistency between manuscripts regarding row headers.
In Table I, MS J1 (see Figure 4) has labelled each of the rows, in order: gaṇa
(‘number’) for the argument row, and rāśi, aṃśa, kalā, vikalā (‘sign’, ‘degree’,
‘minute’, ‘second’ respectively) for the successive units of mean motion and gatiḥ
(‘velocity’) for the solar true velocity. MS J2 (see Figure 5) in contrast labels
the mean motion rows simply with spaṣṭo’rka, literally ‘accurate sun’. Similarly
MS R3 (see Figure 7) labels these rows raviḥ, literally ‘sun’. In Table II, MS
R7 (see Figure 8) has somewhat haphazardly added row identifications to one
stack (top right hand corner) but left others blank. The scribe has added dina,
caṃdra, keṃdra (‘day’, ‘moon’, ‘anomaly’) for the argument, lunar mean motion,
and anomaly respectively. In Table IV, MS R3 (see Figure 10) adds several extra
details in their row headers concerning the mathematical way in which the data
is to be applied. The scribe often places row headers on the right hand side. The
argument is labelled keṃdrarāśi ’ṃśādi (‘anomaly [in] signs and degrees etc.’).
The lunar equation row is labelled maṃdaphala × (‘manda-equation, negative’)
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where κM is the angular displacement of the moon from the apogee, rM is
the radius of the lunar epicycle, and R the trigonometric radius.
Back-computing using the data μ 5 2 35 at κM 90 , we can determine

the ratio of the radius of the lunar epicycle to the radius, namely:

rM

R
sin μ
sin κS

sin 5 2 35
sin 90

0 08790432

where modern sines have been used. Again, this approximation fits the data
quite well when this parameter is used to recompute the data for other ar-
guments but further investigation needs to be carried out to determine the
precise parameters and method of computation.

Row 2 True lunar velocity. The maximum daily velocity is 14 19 24 at argu-
ment value 180. The minimum daily velocity is 12 1 46 at argument value
0. We assume the algorithm used to compute true velocity v was

v v
vA cos κM rM

R

where v is the mean lunar velocity and vA is the velocity of the lunar ano-
maly.
A recomputation of this numerical data can be made, using the mean daily

lunar velocity vM 13 10 35 , mean lunar anomaly vA 13 3 53 , the above
ratio for rS

R , and computing the trigonometric ratio using the modern cosine.
The resulting recomputation fits the tabular data very closely. In the recom-
puted data, the minimum velocity 12 1 40 occurs at argument value 0. The
maximum value of 14 19 29 occurs at argument value 180.

4. Table Edition

The Appendices contain a critical edition of Tables I–IV along with an ap-
paratus criticus given under the respective parts of the tables. In addition, we
outline the issues arising from the process of editing these tables, as well as
give an account of the editorial resolutions that we followed when preparing
the edition, the software we developed to assist the editing process and how
to read the apparatus criticus.

4.1. Preliminaries

4.1.1. Issues raised in editing the Candrārkī tables
Creating an edition of the numerical tables presented many issues which
needed to be resolved. In addition to general problems of editing sources,
numerical data in the Candrārkī raised the following specific issues:
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to indicate at that particular point in the function the values are to be applied
negatively. The difference row is labelled aṃtara | dhana (‘Difference. Positive’),
to indicate that the differences are positive. The final row, the true lunar velocity
is labelled gati (‘velocity’) or gatayaḥ (‘velocities’). In a similar spirit, but with
slightly less information, MS J1 gives the labels keṃdra, maṃdaphala, ’ṃtara,
and gati respectively.

Column headings Very occasionally, scribes will tag some paratext to a particular
column. For instance, in Table IV, the scribe of MS R2 (see bottom stack of
Figure 12) has written tulaḥ (‘Libra’) next to the column which contains the
argument 6,0 (i.e., the beginning of the sixth zodiacal sign, Libra). Likewise,
they have written vṛściḥ, short for vṛścikaḥ, (‘Scorpio’) close to the column which
contains the argument 7,0 (the beginning of Scorpio).

Table titles Tables may or may not be given titles by scribes. MS J1 has labelled
Table I (see Figure 4) sūryapaṃkti (‘solar result-line’) and repeats this on each
new page. MS R2 (see Figure 6) has labelled Table I ravikoṣṭhakā (‘solar table
entries’) and repeats this (or a close version of it) at the top of each stack.
MSS J2, R3 and R7 do not include table titles.

Table colophons MS R2 (see Figure 9) includes some paratext at the end of Table I
announcing that the table is finished iti ravikoṣṭhakā saṃpūrṇo yaṃ samāptaḥ
(‘Thus, the solar tabular entries are finished. This is completed.’) and announces
the beginning of Table II atha caṃdrakoṣṭhakāy[a]ṃarabhyate (‘Now, the lunar
tabular entries. This begins’).

Morphology Morphology of Sanskrit words or phrases in row/column head-
ings and general paratext varies inconsistently between abbreviated form, stem
form, and full inflected form. For instance, Table I in MS J1 reveals various
states of abbreviation of row headers. Rows in the first stack are labelled with
their stem forms: gaṇa, rāśi, ’ṃśa, kalā, vika·, and gati. The second stack are
labelled with abbreviated forms: gaṇa, rā·, ’ṃśa, ka·, vi·, and ga·.

Table ordering Tables do not always appear to be in the same order across
manuscripts. For instance, Table III in MS R7 appears as the last table. In
the other four manuscripts it is the third table.

Empty cells Some cells were not filled in for some inexplicable reason; other
entries may have been illegible. For instance, Table IV in MS R3 (see last
column 6th row in Figure 10) has a missing value.

Abbreviating numerical data Scribes occasionally adopt a short-hand for re-
presenting numbers, particularly when they are several significant figures in
length and one of the digits is repeated for long stretches. This occurs often
in arguments once they hit three significant figures. For instance, in Table I
in MS R3 (see the first stack in Figure 7) the first argument begins with 342
(days). It then continues 43, 44, 45, and so on, until the penultimate value
64, and the ultimate value 365. The first and last values in this row therefore
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Figure 4: An excerpt from the solar longitude and velocity table from J1 (MS Khasmohor 5015,
f. 2v) with two distinct row stacks and row headers repeated for each row stack.

Figure 5: An excerpt from the solar longitude and velocity table from J2 (MS Khasmohor 5081,
f. 4r) with rows headers in the left-hand margin and a group of values corrected with white paste.
There are many pre-ruled cells which have been left empty.

Figure 6: An excerpt from the solar longitude and velocity table from R2 (MS RORI 10180, f. 4r)
with a missing entry inserted in the left-hand margin and three empty cells on the right-hand side.
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to indicate at that particular point in the function the values are to be applied
negatively. The difference row is labelled aṃtara dhana (‘Difference. Positive’),
to indicate that the differences are positive. The final row, the true lunar velocity
is labelled gati (‘velocity’) or gatayaḥ (‘velocities’). In a similar spirit, but with
slightly less information, MS J1 gives the labels keṃdra, maṃdaphala, ’ṃtara,
and gati respectively.

Column headings Very occasionally, scribes will tag some paratext to a particular
column. For instance, in Table IV, the scribe of MS R2 (see bottom stack of
Figure 12) has written tulaḥ (‘Libra’) next to the column which contains the
argument 6,0 (i.e., the beginning of the sixth zodiacal sign, Libra). Likewise,
they have written vṛściḥ, short for vṛścikaḥ, (‘Scorpio’) close to the column which
contains the argument 7,0 (the beginning of Scorpio).

Table titles Tables may or may not be given titles by scribes. MS J1 has labelled
Table I (see Figure 4) sūryapaṃkti (‘solar result-line’) and repeats this on each
new page. MS R2 (see Figure 6) has labelled Table I ravikoṣṭhakā (‘solar table
entries’) and repeats this (or a close version of it) at the top of each stack.
MSS J2, R3 and R7 do not include table titles.

Table colophons MS R2 (see Figure 9) includes some paratext at the end of Table I
announcing that the table is finished iti ravikoṣṭhakā saṃpūrṇo yaṃ samāptaḥ
(‘Thus, the solar tabular entries are finished. This is completed.’) and announces
the beginning of Table II atha caṃdrakoṣṭhakāy[a]ṃarabhyate (‘Now, the lunar
tabular entries. This begins’).

Morphology Morphology of Sanskrit words or phrases in row/column head-
ings and general paratext varies inconsistently between abbreviated form, stem
form, and full inflected form. For instance, Table I in MS J1 reveals various
states of abbreviation of row headers. Rows in the first stack are labelled with
their stem forms: gaṇa, rāśi, ’ṃśa, kalā, vika , and gati. The second stack are
labelled with abbreviated forms: gaṇa, rā , ’ṃśa, ka , vi , and ga .

Table ordering Tables do not always appear to be in the same order across
manuscripts. For instance, Table III in MS R7 appears as the last table. In
the other four manuscripts it is the third table.

Empty cells Some cells were not filled in for some inexplicable reason; other
entries may have been illegible. For instance, Table IV in MS R3 (see last
column 6th row in Figure 10) has a missing value.

Abbreviating numerical data Scribes occasionally adopt a short-hand for re-
presenting numbers, particularly when they are several significant figures in
length and one of the digits is repeated for long stretches. This occurs often
in arguments once they hit three significant figures. For instance, in Table I
in MS R3 (see the first stack in Figure 7) the first argument begins with 342
(days). It then continues 43, 44, 45, and so on, until the penultimate value
64, and the ultimate value 365. The first and last values in this row therefore
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Figure 7: An excerpt from the solar longitude and velocity table from R3 (MS RORI 20220, f. 4v)
with row headers in the left-hand margin. A new table begins on the second stack without a title.

Figure 8: An excerpt from the solar longitude and velocity table from R7 (MS RORI 7752, f. 5v)
with three table stacks arranged on one page and extra cells added in the right-hand margin.

Figure 9: An excerpt from the end of the solar longitude and velocity table and the beginning of
the lunar longitude and anomaly table from R2 (MS RORI 10180, f. 6r) with a table ending and a
new one starting in the middle of a stack.
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Figure 10: An excerpt from the lunar equation table from R3 (MS RORI 20220, f. 9r) with addi-
tional abbreviated paratext on the right-hand side explaining how to apply the correction.

Figure 11: An excerpt from the lunar equation table from J1 (MS Khasmohor 5015, f. 8v) with
many numerical entries missing their first significant digit to save space.

Figure 12: An excerpt from the lunar equation table from J2 (MS Khasmohor 5081, f. 9r)
with descriptive row headings in the left-hand margin including instructions on how to apply
the correction.
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Figure 7: An excerpt from the solar longitude and velocity table from R3 (MS RORI 20220, f. 4v)
with row headers in the left-hand margin. A new table begins on the second stack without a title.

Figure 8: An excerpt from the solar longitude and velocity table from R7 (MS RORI 7752, f. 5v)
with three table stacks arranged on one page and extra cells added in the right-hand margin.

Figure 9: An excerpt from the end of the solar longitude and velocity table and the beginning of
the lunar longitude and anomaly table from R2 (MS RORI 10180, f. 6r) with a table ending and a
new one starting in the middle of a stack.
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include the correct rendering of the number with its three significant figures,
the intermediate arguments drop the three; it is to be assumed by the reader
from context. Scribes do not always put this helpful reminder at the begin-
ning and end of a stack however. For instance, in Table I in MS J2 (see
Figure 5) the argument starts at 12 (for 312) and continues in double dig-
its until 65 (for 365). The reader must therefore be very mindful of where
they are in the table to correctly reconstruct the correct argument. This prac-
tice occurs in table entries as well. For instance in Table IV in MS J1 (see
Figure 11), the true lunar velocity is given at the bottom of the stack. This
is given in minutes and seconds and varies from minute amounts from the
700s to the 800s. The first stack starts by giving these as 760;36, 760;45, af-
ter which point it drops the 7, and continues 61;37 (for 761;37), 63;38 (for
763;38), only occasionally writing out the number in full (see entry under ar-
gument 2,18: 776;36). In the bottom stack, at argument value 3,8 the lunar
velocity enters the 800s and this is indicated as 800;27. However, dropping
digits leads to some scribal carelessness as the next few numbers read: 81;58
(for 801;58), 83;42 (for 803;42), 0;34 (for 804;34), 5;13 (for 805;13), and
so on. The table reader therefore must have an idea of the broader context
of the entry with respect to the others to ascertain the correct value.

Additional features Some table cells include the symbols × (‘negative’)31 and
dha (‘positive’) to indicate where values are subtractive/negative or addi-
tive/positive. This is done somewhat inconsistently across manuscripts. For
instance, Table IV in MS J2 (see Figure 12) includes a cross in the manda-
equation value (argument 5,29) and a dha (an abbreviation for dhanaṃ, ‘pos-
itive’) in argument 6,0 to indicate the equation is to henceforth be applied
positively to the mean longitude.

Colour For the most part, the table data and paratext is written in black
ink and the table rulings in red. However, occasionally red ink is used for
some table headings. See for instance the table heading in Table II in MS
R2 (see bottom stack in Figure 9) in which the table heading atha caṃdra-
koṣṭhakāyāṃ (‘Now, in the lunar tabular cell[s]’) is rendered in red ink.
Corrections

Overwriting Table errors that are noticed by the scribe are generally corrected by
the application of white/yellow paste and the correct values are written on top.
This can be seen in entries 55–62 of Table I in MS J2 (see Figure 5) in which
the degrees, minutes and seconds components of mean motion have been cor-
rected.

31 This symbol derives from a short-hand for the nāgarī character ऋ or ṛ, an abbreviation
of ṛṇaṃ meaning ‘negative’ in Sanskrit. For further details and instances, see Montelle and
Plofker, Sanskrit Astronomical Tables, p. 88 et passim.
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Inserting a table entry An omitted table entry is sometimes inserted in the margin.
For instance, in the left hand margin of Table I in MS R2 (see Figure 6), the
entry for argument 141 is written as it has been left out of the main numerical
data.

4.1.2. Editorial resolutions
Taking note of every single variant that tables contain, with respect to the
variety of features described in Section 4.1.1, is impossible. Some variants are
more meaningful than others, especially given the basic assumptions of the
critical edition. In light of this and given the various issues raised by the
numerical data and its arrangement on the page by scribes, we observed the
following resolutions in producing the critical edition:

1. We consider the table is the fundamental object of interest and not the
manuscript page.

2. We preserve salient aspects of the layout in the edition, including the
horizontal format placed on the landscape orientation of the page. For
consistency we default to row breaks of 30 columns per stack and two
stacks per page. We argue that variations to this are insignificant in
terms of their ability to highlight relationships between the manuscripts.
We also preserve the vertical orientation of the numbers in which suc-
cessive components of the number are placed one below the other.

3. We preserve multiple functions that are tabulated with respect to a sin-
gle argument in the same table, delimiting them with a single ruled line,
as has been done by the scribes.

4. We have transcribed all Nāgarī numerals into their modern Indo-Arabic
equivalents.

5. We silently emend stem form or abbreviated forms of Sanskrit words to
their correct inflected equivalent.

6. We note an empty cell by x.
7. We note an illegible number by ?.
8. We silently emend the first significant digit which is inconsistently omit-
ted by all scribes in the case of three digit numbers (Table IV, lunar
velocity; the arguments for Tables I and II).

9. We have not attempted to regularise numerical content in any way.
Discrepancies between attested and recomputed tabular values can arise
from a variety of factors, including different computation techniques,
uncertainty surrounding precision, intermediate rounding, truncation,
copying errors, calculating errors, inappropriate modern assumptions and
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the like. Recomputing historical tabular data is a study in and of it-
self. The edition thus leaves the data in a state as close as possible to
manuscripts so that table cracking efforts can proceed from this.

4.1.3. How to read the apparatus criticus

The critical edition was created using the specially designed online software
package called CATE (Computer-Assisted Tables Editor). This was designed
and implemented by Paul Brouwers and is available on the online platform
found at http://uc.hamsi.org.nz/cate/#. CATE provides some relief
to the laborious task of critically editing tables by automating parts of the
process. With two or more electronic copies of manuscript versions of a table
as input, this package produces a base text and critical apparatus listing the
numerical variants according to their argument and row number.
CATE generates the base table according to either of two editing strat-

egy options. The first strategy is ‘nominate the base table’. This is where one
manuscript version is selected by the user as the base table, against which all
others are compared. The second editing strategy is ‘majority rules’. This is
where the base table is formed from the most common entry for that cell
among all table versions. The second option defaults to the first option in
the case of an absence of a majority. In this particular version, we found MS
R3 to be the most reliable. Thus we chose the ‘majority rules’ editing strategy
with the default option being MS R3 where there was no majority consensus.
The apparatus criticus is placed at the bottom of the pages covered by each

table. Variant readings are noted first with respect to the argument the vari-
ant falls under and secondly by the row under this in which it occurs. The
argument is given in bold for ease of reading. Multiple variant readings are
listed in alphabetical order according to the manuscript siglum. Variant read-
ings are listed in the apparatus criticus with respect to each row in ascending
order associated to an argument in ascending order.
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Figure 13: A screen-shot of the automated critical editing package for numerical tables CATE.
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Recomputing Sanskrit Astronomical Tables:
The Amṛtalaharī of Nityānanda (c. 1649/50 c)

Anuj Misra*

1. Introduction

Astronomical tables (koṣṭhakas or sāraṇīs) begin to appear in Sanskrit astral
sciences from around the twelfth century c. These tables described different
calendrical quantities (like the division of synodic lunar months or the lu-
nar mansions), a variety of mathematical and trigonometric relations, and the
planetary positions and motions. By the early modern period of Indian his-
tory, the corpus of Sanskrit astronomical tables had grown to reflect incredi-
ble ingenuity in the way complex calendrical and planetary elements were cal-
culated and represented. In Mughal India,1 as medieval Islamicate astronomy
began interacting with Sanskrit mathematical astronomy, the computational
practices of Sanskrit astronomers started to reflect this exchange of ideas. It
is in this historical context that we find the Amṛtalaharī of Nityānanda.
Nityānanda was a seventeenth-century Sanskrit astronomer at the court of

the Mughal emperor Shāh Jāhān (r. 1592 to 1666 c). He was commissioned
by Āsaf Khān, the emperor’s chief minister (vazīr), to translate into Sanskrit
the Zīj-i Shāh-Jahānī, an enormous compilation of Persian astronomical tables
prepared by Mullā Farīd al-Dīn Masʿūd al-Dihlavī in October 1629 c. Nityā-
nanda dedicated himself to the task and in the early 1630s, he completed
his translation the Siddhāntasindhu ‘Ocean of Siddhāntas’.2 Around a decade
later, in 1639 c, Nityānanda published his canonical treatise (siddhānta)

* Preliminary numerical computations were done with the assistance of Zachary Hynd
(Seequent, New Zealand).

1 Mughal India refers to the cosmopolitan society under the rule of the Mughal emperors
(1526 to 1857 c) where artistic, scientific, and linguistic exchanges between Islamicate (Ara-
bic and Persian) and Sanskrit scholars flourished for over three hundred years, see Truschke,
Culture of Encounters.

2 The four complete extant manuscripts of the Siddhāntasindhu, one bearing the seal of
Emperor Shāh Jāhān himself, are currently held at the City Palace Museum Library in Jaipur,
India. These manuscripts are over 450 folia each and contain vast numbers of mathematical,
astronomical, and astrological tables of different kinds, see Pingree, A Descriptive Catalogue,
pp. 138–43.
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and Mercury, or the positive norming in the tables of planetary equa-
tions.

Pingree concludes his paper with the remark:7

‘It remains unclear why Nityānanda wrote it [the Amṛtalaharī]; indeed, it is indeed
[sic] astonishing that even one copy of this unusual attempt to reform siddhāntic
astronomy has survived. It is a curiosity, but perhaps it played some role in history
by suggesting to Jayasiṃha’s astronomers how they might express de La Hire’s Latin
tables, which use the Julian and Gregorian calendars, in the form of an adjusted
Indian calendar.’

To understand better the implication of Nityānanda’s ‘attempt to reform sid-
dhāntic astronomy’, I recompute and analyse a set of astronomical tables from
the Amṛtalaharī in this study. My goal is to recompute the attested values
seen in the manuscript (MS Sanskrit 19) instead of suggesting the correct val-
ues derived from historically apposite procedures. By identifying the computa-
tional methods (including irregularities) and analysing the differences between
the attested values and our recomputed results, we can gain an insight into
the subtle mathematical practices of table authors.8 The analytical and his-
torical methods applied in this study demonstrate how numerical tables can
be seen as mathematical artefacts in the transmission of scientific knowledge
between cultures.
Section 2 begins with a description of the source manuscript and a general

overview of the tables of the Amṛtalaharī. Following this, I describe the set
of six tables selected for this study (hereafter referred to as the ‘selected cor-
pus’) and provide an English translation of the Sanskrit text associated with
these tables. Towards the end of the section, I discuss my methodological
framework to study the selected corpus, and also describe the mathematical
standards adopted in this study. In Section 3, for each table, I first outline
my recomputation strategies (including any irregular recomputations that ex-
actly reproduce an attested value), and then analyse the differences between
the attested values and my recomputed results individually. These discussions
also include a few proposed emendations to the attested values based on my

7 ibid., p. 213.
8 In this study, I use the term table authors to indicate those historical actors who change

certain numerical values based on their own computational decisions as they recopy a table.
Other actors, like scribes, who copy the tables without making any computational changes are
set apart. This separation is made for expedient reasons; it is not an attempt to divide them
into mutually exclusive categories. In fact, both kinds of actors modify a table as they copy
it (e.g. through their inadvertent oversights in copying); however, what sets them apart in
this study are recomputational interventions. Scribes and table authors may both intentionally
intervene to rectify a corrupted/illegible/missing entry, but table authors (often) do so by
applying a mathematical algorithm (e.g. interpolating) whereas scribes may simply fill in the
numbers by observing a pattern. More on this in Section 2.3.
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the Sarvasiddhāntarāja ‘King of all Siddhāntas’ as an attempt to explain Is-
lamicate (Ptolemaic) astronomical models and parameters in the language of
a traditional Sanskrit siddhānta.3 Misra, The Golādhyāya, pp. 12–17, discusses
the scientific milieu of Mughal India in which Nityānanda lived and worked.
A short paper by David Pingree brought Nityānanda’s Amṛtalaharī to my

attention.4 The Amṛtalaharī is a collection of astronomical tables for comput-
ing Indian calendrical elements, planetary positions, and ascensions of zodia-
cal signs. Pingree made some insightful observations on how the Amṛtalaharī
was an experiment in bringing elements of Islamicate and Sanskrit astronomy
together. The list below summarises some of his main remarks on the ta-
bles of the Amṛtalaharī (based on MS Sanskrit 19 from the collection of the
University of Tokyo).
1. The name Amṛtalaharī is reconstructed. As the incomplete incipit on
f. 1v indicates, Nityānanda may have called his work Kheṭakṛti. How-
ever, the manuscript catalogue of the collection of the University of
Tokyo identifies this work as the Amṛtalaharī, and accordingly, I follow
Pingree in referring to this work with its catalogued name.

2. Brief notes (in the paratext surrounding the tables) refer to earlier San-
skrit works, e.g. Makaranda’s Makaranda (1428 c) is mentioned in
the paratext surrounding the tithi tables on f. 2r.5 There are also certain
calendrical elements that, according to Pingree, are Nityānanda’s own
inventions. For instance, the mean motion tables employ a lunar-solar
calendar equivalent to three Metonic cycles of 57 solar years found in
Jewish calendars (and explained in Islamicate zījes).6

3. Pingree conjectures the epoch of the Amṛtalaharī as 21 February Julian
in 1593 c. According to him, the epoch year 1593 is the beginning
of the 57-year long period within which the work was composed. This
puts the terminus ante quem of the work around 1649/50 agreeing with
Nityānanda’s floruit in the early parts of the seventeenth century.

4. Certain features of the lunar and planetary tables of the Amṛtalaharī
closely resemble those seen in similar tables from Islamicate and Ptole-
maic traditions, and mostly absent in Sanskrit astronomical works,
e.g. tabulating the mean motions of the anomalies of the Moon, Venus,

3 See Pingree, ‘Indian Reception’, pp. 476–80; Pingree, ‘The Sarvasiddhāntarāja’; Montelle
et al., ‘Computation of Sines’, and Montelle and Ramasubramanian, ‘Determining the Sine’.

4 Pingree, ‘Amṛtalaharī’. In Misra, The Golādhyāya only two works are credited to Nityā-
nanda, the Sarvasiddhāntarāja and the Siddhāntasindhu. The existence of the Amṛtalaharī was
unknown to me at the time.

5 See Pingree, ‘Amṛtalaharī’, footnote 9 on p. 210.
6 ibid., pp. 211–12.
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puts the terminus ante quem of the work around 1649/50 agreeing with
Nityānanda’s floruit in the early parts of the seventeenth century.

4. Certain features of the lunar and planetary tables of the Amṛtalaharī
closely resemble those seen in similar tables from Islamicate and Ptole-
maic traditions, and mostly absent in Sanskrit astronomical works,
e.g. tabulating the mean motions of the anomalies of the Moon, Venus,

3 See Pingree, ‘Indian Reception’, pp. 476–80; Pingree, ‘The Sarvasiddhāntarāja’; Montelle
et al., ‘Computation of Sines’, and Montelle and Ramasubramanian, ‘Determining the Sine’.

4 Pingree, ‘Amṛtalaharī’. In Misra, The Golādhyāya only two works are credited to Nityā-
nanda, the Sarvasiddhāntarāja and the Siddhāntasindhu. The existence of the Amṛtalaharī was
unknown to me at the time.

5 See Pingree, ‘Amṛtalaharī’, footnote 9 on p. 210.
6 ibid., pp. 211–12.
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analysis, particularly, when an inadvertent or intentional scribal effect is evi-
dent. Finally, in Section 4, I summarise the main observations of this study,
and discuss the methodological questions that arise when recomputing histor-
ical tables using modern computational tools.

2. The Amṛtalaharī of Nityānanda

2.1. Description of the digitised microfilm

For this study, I have used a digital copy of the only verified manuscript of
the Amṛtalaharī currently known to be extant.9 MS Sanskrit 19 (henceforth
identified with the siglum ‘Tk’) is a part of the Sanskrit manuscript collec-
tions of the University of Tokyo and contains the tables of the Amṛtalaharī.10
The digitised microfilm of MS Tk11 contains the (catalogue?) reference num-
bers 547 (old) and 19 (new) at the very beginning of the reel. The second
frame captures an image of the cover page of the manuscript with the word
‘Amṛtalaharī’ (in the centre) and number ‘13’ (at the top-left corner) writ-
ten in Sanskrit. The handwriting on the cover page is notably different from
that of the scribe who copied this manuscript. I suspect an earlier cataloguer,
or perhaps Prof. Junjirō Takakusu, who brought the manuscript from Nepal
to Japan in 1913,12 wrote this on the cover page of the manuscript. The reel
number of the microfilm (MF_13) and the catalogued name Amṛtalaharī13
appear to be based on this writing on the cover page. All remaining frames
contain images of two folia of the manuscript, one above the other, with the
digital stamp Gl Liby. Uivsiy of Tokyo at the bottom-
right corner of each frame. Plates 8 and 9 show ff. 1v–2r from MS Tk,
photographed by Taro Mimura in January 2021, as examples.

2.1.1. Manuscript description from surrogate
According to Matsunami’s catalogue,14 MS Tk is a paper manuscript with
51 folia of dimensions 11× 5 inches that contain a collection of Sanskrit

9 An unconfirmed manuscript of a work called Amṛtalaharīsāraṇī (of unknown author-
ship) is catalogued in the collection of the Nepalese-German Manuscript Cataloguing Project
maintained by the University of Hamburg (https://catalogue.ngmcp.uni-hamburg.de/receive/
aaingmcp_ngmcpdocument_00002491). At the time of writing this chapter, I have been un-
able to independently verify the authenticity or the contents of this manuscript.

10 MS Tk is referenced in Matsunami, A Catalogue of the Sanskrit Manuscripts, pp. 8–9.
11 This is available at http://picservice.ioc.u-tokyo.ac.jp/03_150219~UT-library_sanskrit_

ms/MF13_03_004~MF13_03_004/?pageId=001.
12 See Pingree, ‘Amṛtalaharī’, p. 210.
13 See Matsunami, A Catalogue of the Sanskrit Manuscripts, pp. 8–9.
14 ibid.
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astronomical tables in Devanāgarī. I list below some additional features of
MS Tk from its digital surrogate.
1. The folio edges of the manuscript are frayed. There are no visible bind-
ing marks or string holes suggesting, perhaps, that the stacked folia were
merely wrapped in cloth and held together between (wooden?) cover
boards (resembling loose-leaf, unbound books called pothīs). The hand-
writing is in black ink, legible, free of any corrections, and produced
by a single scribal hand. The tables themselves appear to be written be-
tween (faint) double-ruled margins and, in a few instances, the paratext
and numbers extend into the margins. The folio numbers are written
on verso pages, towards the middle of the page in the right margin.

2. On f. 1v, an incomplete incipit verse is partially visible along the frayed
top edge of the folio. It contains the last three quatrains (pādas) (of an
incomplete verse in the indravaṃśā meter):

yā paṇḍitair indrapurī virājate |
śrīdevadattasya suto dvijānugaḥ
tasyāṃ vasan khetakṛtiṃ cikīrṣati ||
The [city of ] Indrapurī that appears beautiful with [the presence] of
scholars (paṇḍita), the ‘twice-born’ (dvija) [i.e. Brahmin] son of Śrī
Devadatta resident in that city desires to complete [this work called]
Kheṭakṛti.

3. Towards the top-left corner of f. 1v, the title ⟨A⟩mṛtalaharī (the initial
a is lost to the frayed edge of the folio) appears in the left margin.
According to Pingree, it is written by a different hand compared to the
copyist of the manuscript.15 The digital surrogate makes it difficult to
validate this claim with surety; however, I believe this was written by
the same hand as the main copyist. The shape of the remaining letters
in the word matches the chirography of the primary scribe.

4. The Sanskrit numerals, along with the paratext, table titles, and row
headings in Sanskrit, are written in the Nepālī (Pracalita Lipi, Newar,
or Nepāla Lipi) and Devanāgarī scripts, occasionally, conflating the two
scripts together. For example, Table 1 shows samples of Sanskrit num-
bers in MS Tk written in Pracalita Lipi and Devanāgarī.

5. The paratext surrounding the tables also use the two scripts in an in-
termixed manner. On the top-left corner of f. 1v (below the frayed
top edge), the words of the incipit … … (…yā paṃḍitair
iṃdrapūrī…) are in Pracalita Lipi. In other places, identical Sanskrit
words are written variously in Pracalita Lipi or Devanāgarī. For exam-
ple, the compounded words … … (…dhanam ṛṇaṃ…) on lines 3–4

15 See Pingree, ‘Amṛtalaharī’, p. 210.
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Script Sample

Hindu-Arabic Numerals 0 1 2 3 4 5 6 7 8 9
Devanāgarī Numerals ० १ २ ३ ४ ५ ६ ७ ८ ९
Pracalita Lipi Numerals

Digits ‘0–9’ in Devanāgarī (from f. 14r)
Digits ‘0–9’ in Pracalita Lipi (from f. 1v)

Mixed scripts (from f. 1v):
Numbers ‘25–29’ in Pracalita Lipi (top line)
Numbers ‘35–39’ in Devanāgarī (bottom line)

Table 1: Samples from MS Tk showing Sanskrit numbers written in different scripts.

of the text block to the right of f. 1v are in Pracalita Lipi, while the
same set of words …धनमृणं… (…dhanam ṛṇaṃ…) on line 4 of the text
block to the right on f. 2r are in Devanāgarī.

6. When letters in the two scripts are homoglyphic (in handwritten San-
skrit), the scribe appears to write the letters using Pracalita Lipi, e.g. the
letter la, seen as in MS Tk, is closer in appearance to the letter in
Pracalita Lipi than the letter ल in Devanāgarī.

7. Finally, the number ‘1’ is written at the beginning of every table title. In
Prachalita Lipi, the number stands for the Sanskrit invocation siddhir
astu ‘may there be success’ as a benedictory supplication.16

2.2. Overview of the tables of the Amṛtalaharī
Table 2 includes an overview of the types and foliation of the tables of the
Amṛtalaharī in MS Tk. A more detailed description of these tables, and the
different table parameters in each instance, can be found (in the Appendix)
in Pingree, ‘Amṛtalaharī’, pp. 214–17.
My study focuses on the collection of tables seen in row VI of Table 2.

The selected corpus includes the table of Sines (kramajyā);17 the table of solar
declinations (krānti); the three tables of shadow lengths for gnomons (śaṅku-
chāyā) of heights 60 digits, 12 digits, and 7 digits; and the table of lunar
latitudes (śara).
For each of these six different tables, the arguments range from 1◦ to 90◦

in one-degree steps, and their corresponding values are expressed in sexages-

16 See Sircar, Indian Epigraphy, pp. 92–97 for a discussion on auspicious marks in Indian
texts and epigraphs.

17 Throughout this chapter, I use capitalised initials for trigonometric functions ‘Sine’, ’Co-
sine’, ’Chord’, etc. to indicate a non-unitary radius R (sinus totus). Mathematically, Sin θ ≡
Rsin θ, Cos θ≡R cos θ, Crd θ≡R crd θ, etc.



 RECOMPUTING SANSKRIT ASTRONOMICAL TABLES 193RECOMPUTING SANSKRIT ASTRONOMICAL TABLES 193

Number Table types Foliation

I.A Tables of tithis.18 Ff. 1v–6v
I.B Tables of nakṣatras.19 Ff. 7r–11v
I.C Tables of yogas.20 Ff. 11v–17v
II Tables of abdapas and saṅkrāntīs.21 Ff. 17v–18r
III Tables of planetary mean motions of the Sun, the

Moon, Lunar anomaly, Lunar node, Mars, Mercury’s
anomaly, Jupiter, Venus’ anomaly and Saturn.

Ff. 18v–27r

IV Tables of planetary equations: (a)manda equations for
the Sun and the Moon; and (b) the set of first śīghra,
manda, and second śīghra equations for the five star-
planets.22

Ff. 27v–44r

V Tables of rising times of zodiacal signs (right and
oblique ascensions).

Ff. 44v–49r

VI Tables of (a) Sines (here: Table VI.A); (b) solar decli-
nations (Table VI.B); (c) shadow lengths of gnomons
of heights 60 digits (Table VI.C1), 12 digits (Ta-
ble VI.C2), and 7 digits (Table VI.C3); and (d) lunar
latitudes (Table VI.D).

Ff. 49v–50v

VII Tables of adjustments for the five star-planets. F. 51r

Table 2: An overview of the tables of the Amṛtalaharī in MS Tk.

18 A tithi is the thirtieth part of a synodic lunar month, or the time interval during which
the longitudinal difference between the Sun and the Moon increases by 12◦.

19 A nakṣatra (or lunar mansion) is the constellation in which the Moon is located. Typ-
ically, Sanskrit astronomy lists 27 nakṣatras each spanning 13◦20′ along the 360◦ orbit of
revolution of the Moon.

20 A yoga (or nityayoga ‘daily yoga’) is the duration in which the combined motions of
the Sun and the Moon amount to 1 nakṣatra or 13◦20′. There are 27 identified yogas corre-
sponding to the 27 nakṣatras.

21 The abdapas are the weekdays on which particular years commence, and saṅkrāntīs refer
to the solar ingress (saṅkramaṇa) into the 12 zodiacal signs (rasis) and 27 lunar mansions
(nakṣatras).

22 In Indian astronomy, the manda-saṃskāras are the equation-of-centre corrections applied
to the mean longitude of the planets (madhyama-grahas) to produce the manda-corrected
longitudes or manda-sphuṭa-grahas. In case of the Sun and the Moon, this is the only cor-
rection required to obtain their true longitudes (sphuṭa-grahas). However, for the other five
star-planets—the two interior planets Mercury and Venus and the three exterior planets Mars,
Jupiter, and Saturn—an additional śīghra-saṃskāra (correction due to the anomaly of con-
junction) is applied to their manda-sphuṭa-grahas to obtain their true longitudes. For exte-
rior planets, the manda-sphuṭa-grahas are their true heliocentric longitudes and the śīghra-
saṃskāra converts these values to their true geocentric longitudes. For interior planets, the
manda-sphuṭa-graha is the manda-corrected mean Sun that gets śīghra-corrected to produce
their true geocentric longitudes.
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imal numbers (up to a fractional precision of seconds). The six tables are
identically arranged over three folia (ff. 49v–50v) of MS Tk. Each folio has
thirty arguments in the first row, followed by six successive rows listing the
corresponding six function values (i.e. the attested values of each table) in in-
dividual rows. Appendix A (pp. 226–31) includes the images of ff. 49v–50v
from MS Tk and a diplomatic transcription of the six tables on these folia.

2.2.1. Translation of the table titles

The three table titles (seen at the top of ff. 49r–50v of MS Tk respectively)
are presented below. The Sanskrit text is transliterated with Latin characters
and also translated into English.

|| 1 atha kramajyā-krānti-ṣaṣṭyaṅgula-śaṅku-dvādaśāṅgula-saptāṅgula-śaṅku-
chāyā-candra-śarāṃśāḥ ||

Now, the Sines (kramajyā); the solar declinations (krānti); the shadow lengths
(chāyā) [of ] 60-digit gnomon (ṣaṣṭi-aṅgula-śaṅku), 12-digit (dvādaśa-aṅgula) [gno-
mon], 7-digit gnomon (sapta-aṅgula-śaṅku); [and] the degrees of lunar latitudes
(candra-śara-aṃśa).

|| 1 pratyaṃśa-kramajyā-krānti-chāyāḥ śarāśca ||

For every degree (aṃśa), the Sines (kramajyā), the solar declinations (krānti), the
shadow lengths (chāyā), and the [lunar] latitudes (śara).

|| 1 iti pratyaṃśaka-kramajyā-kranti-chāyāḥ śarāśca samāptaḥ ||

Thus, the Sines (kramajyā), the solar declinations (krānti), the shadow lengths
(chāyā), and the [lunar] latitudes (śara) for every degree (aṃśaka) ends.

At the bottom of f. 50v of MS Tk, we find the following text:

|| pātonacandro bhujā kārye bhujyaṃśebhyaḥ śaro grāhyāḥ yadi pātonacandraḥ ṣaḍbho-
nas tadā śaraḥ saumyaḥ yadādhikas tadā yāmyaḥ ||23

In [taking] the longitude (bhujā) of the Moon (candra) minus the node (pāta), the
lunar latitude (śara) is to be understood from the degrees fulfilling it [i.e. calculated
according to the degrees of lunar elongation]. If the [longitude of ] the Moon minus
the node (pāta) is less than six signs (ṣaḍ-bha) [i.e. less than 180◦] then the lunar
latitude (śara) is in the northern direction (saumya) [i.e. north of the ecliptic plane];
if it is more [i.e. greater than 180◦] then [the lunar latitude] is in the southern
direction (yāmya) [i.e. south of the ecliptic plane].

23 This sentence is grammatically ill-formed; for example, the attested words bhujyaṃśe-
bhyaḥ (instead of bhujāṃśebhyaḥ) and grāhyāḥ (instead of grāhyaḥ) have orthographic defects.
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2.3. Methodology of recomputation and analysis

Before describing my general methodology for recomputing and analysing in-
dividual tables, I note the following remarks on the selected corpus, and on
my mathematical practice of recomputing numerical tables.
1. Ff. 49v–50v of MS Tk do not contain any instructions to compute the
attested values of the six functions (Tables VI.A–VI.D). As the transla-
tions of the table titles show, the titular text merely identifies the types
of tables written on a particular folio.24 The other table titles through-
out the rest of this manuscript (as well as the paratext surrounding those
tables) also lack any computational instructions. Hence, the recomputa-
tion strategies used in this study are derived from other apposite San-
skrit and Islamicate sources.
Recent studies on Nityānanda’s texts,25 and more generally, the cul-

ture of science that thrived at the Mughal courts of early seventeenth
century India,26 suggest that he was well acquainted with Islamicate
(Persianate) theories in addition to Sanskrit siddhāntic astronomy.27 His
Amṛtalaharī uses certain parameters that are distinctly Islamicate, e.g. a
sinus totus of 60, as well as those that are traditionally siddhāntic, e.g. an
ecliptic obliquity of 24◦. In fact, the Amṛtalaharī contains several in-
stances that testify to Nityānanda’s familiarity with (and acceptance of )
both traditions of knowledge. It is, therefore, reasonable to choose re-
computational methods from the Sanskrit texts (e.g. siddhāntas, karaṇas,
or koṣṭhakas) or the Islamicate zījes that were in circulation in Mughal
India during his time.28

2. Establishing an absolute agreement between the attested and recom-
puted values is extremely difficult, if not nearly impossible. While some
differences can be explained computationally, there are other unknown
factors that lead to differences between the attested and recomputed val-
ues.29 In fact, even at the level of recomputations, the arithmetical prac-
tices of table authors (e.g. dividing mixed fractions, rounding/truncating

24 The text at the bottom of f. 50v of MS Tk explains certain aspects of the lunar latitude
(śara); however, it does not describe a computational procedure or algorithm.

25 For example, Misra, The Golādhyāya; Montelle et al., ‘Computation of Sines’, and Mon-
telle and Ramasubramanian, ‘Determining the Sine’.

26 For example, Minkowski, ‘Astronomers and Their Reasons’ and Truschke, Culture of En-
counters.

27 For example, Misra, ‘Persian Astronomy in Sanskrit’ and Misra, ‘Sanskrit Recension of
Persian Astronomy’.

28 See Ansari, ‘On the Transmission’ and Ansari, ‘Survey of Zījes’.
29 See Appendix A2 Tabular errors in van Dalen, ‘A Statistical Method’, pp. 116–19 for a

statistical description of the errors in numerical tables.
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the fractions, approximating/interpolating between fractions, etc.) affect
our own calculations at every step. The cumulative effect of these de-
cisions create an uncertainty in precisely reproducing the attested value.
In this study, all recomputed values are presented up to a level of com-
putational efficacy that retains a residual arithmetical noise.

3. In some instances, the differences between the attested and recomputed
values can indicate scribal discrepancies. Typically, these include
(a) inadvertent copying oversights in the digits of an entry (or the whole

entry), e.g.
– permutation or transposition of digits/entries,
– unwitting alteration of homoglyphic digits (due to misreading);
– dittography, i.e. copying a sequence of digits/entries twice;
– haplography, i.e. omitting a sequence of identical digits/entries
while copying; or

– mistranscription, i.e. a general non-purposive mistake in reading
and copying an individual digit, a whole entry, or a sequence of
digits/entries; and

(b) intentional interventions by historical actors (scribes/table authors) to
rectify corrupted/illegible/missing digits of an entry (or the whole
entry), e.g.
– ad hoc substitution, i.e. replacing illegible digits by other digits;
– assimilation, i.e. merging digits of adjacent entries to create new
entries;

– insertion, i.e. filling missing digits or whole entries by inspecting
the sequence; or

– contamination, i.e. inserting digits/entries from elsewhere (on the
folio) to fill missing entries.

It is worth noting that the lists above are neither exhaustive nor mu-
tually exclusive. It is often the case that distinguishing between inad-
vertent or intentional actions is simply not possible. Moreover, even in
the clearest of examples, any emendations to the attested value (that are
meant to correct/rectify these actions) remain conjectural. With these
caveats, it is nevertheless useful to analyse the differences between the
attested and recomputed values. If a difference can be justifiably ex-
plained as the result of an inadvertent copying mistake or an inten-
tional (but inaccurate) intervention, the attested value can be emended
to a recomputed result as a proposed emendation.
For example, in Table VI.A, the attested digits (in the minutes places)

for Sin 16◦, Sin 17◦, Sin 18◦, and Sin 19◦ are 32, 33, 32, and 32 re-
spectively. The recomputed Sines for these arguments suggest that digits
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in the minutes places for each of these arguments should be 32. The
abrupt increase of +1m (for Sin 17◦) in an overall monotonic sequence
suggests a plausible error in coping ‘33’ instead of ‘32’. The digits २
and ३ in handwritten Devanāgarī are often homoglyphic, and hence,
an unwitting alteration of these digits is not uncommon. Accordingly,
I emend the digits in the minutes place of Sin 17◦ from ‘33’ to the
recomputed result ‘32’ in Table VI.A.

4. A particular class of intentional actions, different from the ones listed
in the previous remark, are recomputational interventions. While scribes
may intervene to correct a corrupted/illegible/missing entry following
some rudimentary logic, table authors do the same but they recalculate
(or estimate) the values using more elaborate mathematical procedures.
Sometimes, table authors apply these mathematical procedures to inten-
tionally intervene, but do so inattentively which leads to an erroneous
result. By retracing their calculations (using historically apposite proce-
dures instead of modern ones), we can detect the irregularities along
the way that lead to the errant result. The goal of this study is to re-
compute the attested results, and therefore, identifying recomputational
irregularities is an important part of the process. In my study of the se-
lected corpus, I have identified the following kinds of recomputational
irregularities:
(a) instances where table authors (unwittingly) err in applying a math-

ematical procedure, e.g. misidentifying an appropriate interval when
interpolating;

(b) instances where table authors perpetuate an erroneous calculation,
e.g. using an erroneous Sine to compute the solar declination; and

(c) instances where table authors round/truncate the sexagesimal digits
in a calculation inconsistently.

The six individual tables from the selected corpus are recomputed and anal-
ysed following a common methodological routine:

Routine of recomputation
1. Recompute the values of the table for the entire range of arguments
using apposite historical procedures.

2. Compare the attested values (in MS Tk) and the results of the first
recomputation, and note the differences (between the digits in corre-
sponding sexagesimal places).

3. Inspect all non-zero differences, and where possible, identify any irregu-
lar recomputations that reproduce the attested values (and thereby, elim-
inate these differences).
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4. Reassess the revised differences between the attested values and the re-
sults of the second recomputation (i.e. recomputations including irregu-
lar ones).

Routine of analysis
5. Re-examine the attested values in (the diplomatic transcription and the
digital surrogate of ) MS Tk for those arguments that still have large
(revised) differences.

6. Identify, if possible, any copying oversights or intentional (non-recom-
putational) interventions in the attested value, and propose emendations
or corrections to those values with justifications.

2.3.1. Mathematical standards
1. I follow two main mathematical standards to recompute the individual
tables in this study:
(a) recomputed sexagesimal values are reduced to the second fractional

place by systematically rounding the digits in the final result instead
of truncating them (at the seconds place),30 and

(b) recomputed Sines are chosen over attested Sines (in MS Tk) for all
calculations.31

Appendices C.1–2 include my statistical justifications for choosing these
mathematical standards in this study.

2. When the division of sexagesimal numbers is an intermediate part of
a computation, the result of the division is rounded to seconds before
proceeding further. Effectively, this implies that,
– while calculating the solar declination in Section 3.3, Sin δ = Sin λ×

Sin 24◦/60 is computed as a sexagesimal number (rounded to seconds)
before proceeding to find δ as the inverse arc of Sin δ;

– while calculating the shadow lengths in Section 3.5, Cos a◦/Sin a◦ is
computed as a sexagesimal number (rounded to seconds) before mul-
tiplying it by the different gnomon heights h to determine the value
of their respective shadow lengths; and

30 For a sexagesimal number a; b, c, d with a, b, c, d ∈ [0, 59], systematic rounding results in
either a; b, c for d < 29 or a; b, c + 1 for d ≥ 30. All calculations in this study follow this
standard of systematic rounding. In contrast, truncation ignores the final (third) sexagesimal
digit d and simply takes the result as a; b, c for any value of d.

31 Sines are required for recomputing the solar declinations (in Table VI.B), the shadow
lengths for gnomons of various heights (in Tables VI.C1–VI.C3), and lunar latitudes (in Ta-
ble VI.D).
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– while calculating the lunar latitude in Section 3.7, Sin β= 4;42,25×
Sin ω/60 is computed as a sexagesimal number (rounded to seconds)
before proceeding to find β as the inverse arc of Sin β.

3. In addition to this:
(a) the lunar latitudes (in Table VI.D) are recomputed using an exact

expression in lieu of an approximate one, and
(b) the lunar latitude recomputations use Sin 4◦30′ = 4;45,25.
Appendices C.3–4 include my statistical justifications for these choices.

3. Recomputation strategies and analyses of differences for Tables VI.A–D

Following the general methodology described above, my recomputation strate-
gies for each of the six tables from the selected corpus, along with an analyses
of the differences between the attested values and my recomputed results, are
presented below in separate subsections.

3.1. Table of Sines (kramajyā): Recomputation strategy
The Sine table of the Amṛtalaharī (in MS Tk) is computed for every degree
of arc from 1◦ to 90◦ and has a maximum value (sinus totus R) of 60;0,0.
I recompute the Sines following a sequence of interdependent mathematical
operations based on arithmetical, geometrical, and trigonometric arguments.
My recomputed table of Sines for the first ninety degrees of arc is presented
in Table VI.A on page 233.
The Amṛtalaharī (in particular, MS Tk) does not describe any method

to compute the Sines; however, Nityānanda’s Sarvasiddhāntarāja (1639 c)
includes a detailed discussion on Sine computations (sixty verses including
several diagrams in six sections) in the spaṣṭādhikāra of the gaṇitādhyāya,
I.3: 19–85. A critical edition, English translation, and technical commen-
tary of the verses from the first five sections can be found in Montelle
et al., ‘Computation of Sines’, and those from the sixth section can be
found in Montelle and Ramasubramanian, ‘Determining the Sine’. Consid-
ering the Amṛtalaharī was composed almost contemporaneously with the
Sarvasiddhāntarāja (i.e. around the first half of the seventeenth century), it is
reasonable to assume that Nityānanda used analogous geometrical arguments
and trigonometric formulae (including the iterative algorithm for calculating
the Sine of 1◦) to construct the Sine tables of the Sarvasiddhāntarāja and
the Amṛtalaharī.32

32 See Van Brummelen, The Mathematics of the Heavens and Plofker, Mathematics in India
for a more detailed discussion on the history and development of trigonometry in India.

198 ANUJMISRA

4. Reassess the revised differences between the attested values and the re-
sults of the second recomputation (i.e. recomputations including irregu-
lar ones).

Routine of analysis
5. Re-examine the attested values in (the diplomatic transcription and the
digital surrogate of ) MS Tk for those arguments that still have large
(revised) differences.

6. Identify, if possible, any copying oversights or intentional (non-recom-
putational) interventions in the attested value, and propose emendations
or corrections to those values with justifications.

2.3.1. Mathematical standards
1. I follow two main mathematical standards to recompute the individual
tables in this study:
(a) recomputed sexagesimal values are reduced to the second fractional

place by systematically rounding the digits in the final result instead
of truncating them (at the seconds place),30 and

(b) recomputed Sines are chosen over attested Sines (in MS Tk) for all
calculations.31

Appendices C.1–2 include my statistical justifications for choosing these
mathematical standards in this study.

2. When the division of sexagesimal numbers is an intermediate part of
a computation, the result of the division is rounded to seconds before
proceeding further. Effectively, this implies that,
– while calculating the solar declination in Section 3.3, Sin δ Sin λ

Sin 24 60 is computed as a sexagesimal number (rounded to seconds)
before proceeding to find δ as the inverse arc of Sin δ;

– while calculating the shadow lengths in Section 3.5, Cos a Sin a is
computed as a sexagesimal number (rounded to seconds) before mul-
tiplying it by the different gnomon heights h to determine the value
of their respective shadow lengths; and

30 For a sexagesimal number a b c d with a b c d 0 59 , systematic rounding results in
either a b c for d 29 or a b c 1 for d 30. All calculations in this study follow this
standard of systematic rounding. In contrast, truncation ignores the final (third) sexagesimal
digit d and simply takes the result as a b c for any value of d.

31 Sines are required for recomputing the solar declinations (in Table VI.B), the shadow
lengths for gnomons of various heights (in Tables VI.C1–VI.C3), and lunar latitudes (in Ta-
ble VI.D).



200 ANUJ MISRA200 ANUJMISRA

3.1.1. Recomputing the Sines of the elementary arcs based on geometrical arguments
I first compute the Sines of 90◦, 72◦, 60◦, 54◦, 45◦, 36◦, 30◦, and 18◦. In
the Sarvasiddhāntarāja I.3: 24–54, Nityānanda computes these Sines using
(a) geometrical arguments in a circle of radius 60, (b) the half-arc and
double-arc formulae for Sines, and (c) the sum and difference laws for Sines.
I list below the different expressions for calculating these Sines. All of these
expressions can be derived using simple geometrical arguments; readers may
refer to Montelle et al., ‘Computation of Sines’ where Nityānanda’s deriva-
tions from the Sarvasiddhāntarāja are described in greater detail.
1. Sin 90◦ corresponds to the radius (vyāsa-khaṇḍa) of a circle, i.e. we have
Sin 90◦ ≡R= 60;0,0,0 (Sarvasiddhāntarāja I.3: 24).33

2. Sin 45◦ can be expressed as 1√
2

√
R2 ≈ 42;25,35,3 (Sarvasiddhāntarāja

I.3: 28). This expression is derived using the Pythagorean theorem in an
inscribed right triangle at the centre of a circle of radius R.34

3. Sin 30◦ can be expressed as 1
2R= 30;0,0,0 (Sarvasiddhāntarāja I.3: 24).

An equilateral triangle subtended at the centre of a circle of radius R
has sides measuring Crd 60◦ ≡ R. The Sine (jyārdha ‘half the chord’)
corresponding to an arc (cāpa) of 30◦ is ‘half the chord of double the
arc’, i.e. 12 Crd 60

◦.35

4. Sin 60◦ is approximately 51;57,41,29. This value is computed using
Nityānanda’s procedure for the Sine of double the arc (Sarvasiddhānta-
rāja I.3: 37) for an arc of 30◦. Montelle et al., ‘Computation of Sines’,
pp. 28–29 discuss the two-step procedure for this calculation as well as
Nityānanda’s Sanskrit expressions of the formula for the Sine of double
the arc.

5. Sin 18◦ can be expressed as
»

(D
4

)2
+

1
4

(D
4

)2 − 1
2

(D
4

)

≈ 18;32,27,40
(Sarvasiddhāntarāja I.3: 24), where the diameter D ≡ 2R = 120.
Nityānanda’s geometrical demonstration for this expression (in the
Sarvasiddhāntarāja I.3: 25–27), and its equivalence to Bhāskara II’s ex-
pression 1

4(
√
5R2−R) stated in terms of the radius R (in his Jyotpatti:

9, 1150 c) is discussed in Montelle et al., ‘Computation of Sines’,
pp. 18–22.36

33 Montelle et al., ‘Computation of Sines’, p. 18.
34 ibid., pp. 22–23.
35 ibid., p. 18.
36 Bhāskara II does not derive this equation; Munīśvara (fl. 1638 c), in his commentary

Marīci-ṭīkā on the Jyotpatti, offers a geometrical explanation for it. In fact, Munīśvara proposes
the lemma dasāśra-bhujā-vargo’yaṃ bhuja-trijyā-vadhena yuk trijyāvargo bhavet ‘The square of
a side of a regular decagon together with the product of the side and the radius (of the
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6. Sin 36◦ is approximately 35;16,1,36. Like Sin 60◦, this value is also
computed using Nityānanda’s procedure for the Sine of double the arc
(Sarvasiddhāntarāja I.3: 37) for an arc of 18◦.37

7. Sin 54◦ is approximately 48;32,27,40. This value is computed using
Nityānanda’s procedure for the Sine of the difference of two arcs (Sarva-
siddhāntarāja I.3: 49) for two arcs measuring 90◦ and 36◦, with Sin 90◦
= 60 and Sin 36◦ = 35;16,1,36. Nityānanda’s geometrical demonstration
of this expression (in the Sarvasiddhāntarāja I.3: 50–54) is discussed in
Montelle et al., ‘Computation of Sines’, pp. 38–41.

8. And finally, Sin 72◦ is approximately 57;3,48,12, also using Nityānanda’s
procedure for the Sine of the difference of two arcs (Sarvasiddhāntarāja
I.3: 49) for two arcs measuring 90◦ and 18◦, with Sin 90◦ = 60 and
Sin 18◦ = 18;32,27,40.38

3.1.2. Recomputing the Sines for multiples of 3◦ of arc
Next, I compute the Sines of multiples of 3◦ of arc (in a circle of radius 60).
These values are calculated by successively applying the trigonometric formulae
for (a) the Sine of half the arc and (b) the Sine of the sum and differences
of arcs.
In his Sarvasiddhāntarāja I.3: 31–32 and 36, Nityānanda gives two expres-

sions to determine the Sine of half the arc. The first method calculates the
Sine in terms of the Versine (utkramajyā), while the second method com-
putes it iteratively. See Montelle et al., ‘Computation of Sines’, pp. 23–27 for
a more detailed description of these methods, including their derivations and
equivalence.
As an example, Sin 27◦ is calculated from Sin 54◦ ≈ 48;32,27,40 (with the

first method) as

Sin 27◦ = Sin
Å

54◦

2

ã

=

 

Å

Vers 54◦

2

ã2

+

Å

Sin 54◦

2

ã2

(where Vers 54◦ =R−Cos 54◦)
⇒ Sin 27◦ ≈ 27;14,21,56.

In the Sarvasiddhāntarāja I.3: 41 and 49, Nityānanda also gives the ex-
pressions for the Sine of the addition of (or the subtraction between) two
arcs; see Montelle et al., ‘Computation of Sines’, pp. 29–46 for Nityānanda’s

circumscribing circle) is equal to the square of the radius’ to derive an expression for Sin 18◦,
see Gupta, ‘Sine of Eighteen Degrees’.

37 Montelle et al., ‘Computation of Sines’, pp. 28–29.
38 ibid., pp. 38–41.
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geometrical arguments to derive these expressions. Essentially, these formulae
help calculate new Sines using previously determined Sines (and correspond-
ing Cosines). For example, Sin 48◦ is calculated from Sin 30◦ = 30;0,0,0 and
Sin 18◦ ≈ 18;32,27,40 as

Sin 48◦ = 1
60 Sin (30

◦ + 18◦)
= 1

60(Sin 30
◦Cos 18◦ +Cos 30◦ Sin 18◦)≈ 44;35,19,16.

Similarly, the Sine of the difference between two arcs is calculated using the
Sines (and corresponding Cosines) of the two arcs. For example, Sin 6◦ is
calculated from Sin 36◦ = 35;16,1,36 and Sin 30◦ = 30;0,0,0 as

Sin 6◦ ≡ 1
60 Sin (36

◦

− 30◦)
= 1

60(Sin 36
◦Cos 30◦ −Cos 36◦ Sin 30◦)≈ 6;16,18,8.

I calculate the Sines for the thirty arguments that are multiples of 3◦ of arc
by successively applying the formulae for the Sine of half the arc and the
Sine of the sums and differences of arcs.

3.1.3. Recomputing the Sine of 1◦ of arc
To calculate the remaining Sines, in particular, the Sines for arguments that
are multiples of 2◦ (distinct from the multiples of 3◦), e.g. Sin 4◦ or Sin 56◦,
the value of Sine of 1◦ is essential.
Typically, in the Indian tradition, the Sines were tabulated in 24 blocks of

3◦45′ (or 225′) for the first 90◦ (the first quadrant) of a circle of specified
radius (identified as the trijyā or sinus totus).39 The Sine of a non-tabulated
argument was calculated by interpolating between appropriate (successive) val-
ues using different interpolation (and iterative) schemes.40

39 Bag, ‘Sine Table’ describes the different sine tables in the Indian tradition. Also, Sub-
barayappa and Sarma, Indian Astronomy, pp. 62–73 present translations and analyses of the
verses (from primary sources) that discuss Sine computations from major Sanskrit texts.

40 For example, see Hayashi, ‘Āryabhaṭa’s Rule’ for Āryabhaṭa’s rule of differences for com-
puting Sines in his Āryabhaṭīya (c. 499 c); Gupta, ‘Second Order Interpolation’, p. 88 for
Brahmagupta’s second-order finite-difference interpolation scheme for approximating Sines in
his Dhyānagraha (c. early 7th century)—a technique also repeated in his later and more famous
work Khaṇḍakhādyaka (665 c); Plofker, ‘An Example of the Secant Method’ for Parame-
śvara’s fixed-point iterations to compute Sines in his Siddhāntadīpikā (c. 14th century); Rama-
subramanian and Sriram, Tantrasaṅgraha, pp. 52–68 for Āryabhaṭa’s commentator Nīlakaṇṭha
Somayājī’s interpolation techniques to compute desired Sines in his Tantrasaṅgraha (1501 c);
and Sarma et al., Gaṇita-yukti-bhāṣā, pp. 90–102 for Jyeṣṭhadeva’s demonstrations of the sine
and cosine series approximations—attributed to the famous Kerala astronomer Mādhava of
Saṅgamagrāma (fl. c. 1380/1420 c)—in his Gaṇitayuktibhāṣā (c. 16th century).
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In his Sarvasiddhāntarāja I.3: 60–66, Nityānanda gives three different it-
erative algorithms to determine the Sine of one degree as a solution to a
cubic equation. Montelle and Ramasubramanian, ‘Determining the Sine’ dis-
cuss, in detail, Nityānanda’s algebraic and geometrical rationales in using a
cubic equation, his derivation of the Sine of one degree as a recursive solu-
tion of a cubic equation, as well as the historical and technical context of this
derivation—including its origin in al-Kāshī’s method from the 15th century.
I describe below the main steps in calculating Sin 1◦ following Nityānanda’s

first iterative method described in his Sarvasiddhāntarāja I.3: 60–63.41

1. Calculate Sin 3◦. In the Sarvasiddhāntarāja I.3: 66, Nityānanda expressly
mentions the value of Sin 3◦ as 3;8,24,33,59,34,28,14,50; however, for
the present purpose, a recomputed value (to thirds) provides an identical
estimate of Sin 1◦ up to the fourth fractional place in this algorithm.
The formula for the Sine of half the arc for an arc of 6◦ (with Sin 6◦
≈ 6;16,18,8) gives Sin 3◦ ≈ 3;8,24,33.

2. Solve a cubic equation in X (with X ≡ 2× Sin 1◦) of the form (in
modern notation)

X =
2× Sin 3◦

3
+

X3

3R2 or Sin 1◦ =
Sin 3◦

3
+

(Sin 1◦)3

3R2 .

By treating the number X as a sequence of successive sexagesimal digits
p0, p1, p2, . . . , pn (up to the nth level of precision), Nityānanda’s first it-
erative method (Sarvasiddhāntarāja I.3: 60–63) generates the individual
digits pi for i ∈ Nn recursively in n iterations. Essentially, this method
uses successive divisions of remainders to determine a progressively more
accurate root of the cubic equation in Sin 1◦. According to Montelle
and Ramasubramanian, ‘Determining the Sine’, pp. 15–16, this algo-
rithm gives Sin 1◦ = 1;2;49,43,11 (calculated up to the fourth fractional
place).

3.1.4. Recomputing the Sines of the remaining arcs
The Sines for all remaining integer-valued arcs between 1◦ and 90◦ can be
easily recomputed with Sin 1◦ and the formulae for Sines of half the arc
and the sums and differences of arcs. For example, Sin 2◦ is calculated from
Sin 3◦ ≈ 3;8,24,33 and Sin 1◦ ≈ 1;2;49,43 as

Sin 2◦ ≡ Sin (3◦ − 1◦) = 1
60 (Sin 3

◦Cos 1◦ −Cos 3◦ Sin 1◦)≈ 2;5,38,17.

41 See Montelle and Ramasubramanian, ‘Determining the Sine’, pp. 13–14.
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geometrical arguments to derive these expressions. Essentially, these formulae
help calculate new Sines using previously determined Sines (and correspond-
ing Cosines). For example, Sin 48 is calculated from Sin 30 30 0 0 0 and
Sin 18 18 32 27 40 as

Sin 48 1
60 Sin 30 18
1
60 Sin 30 Cos 18 Cos 30 Sin 18 44 35 19 16

Similarly, the Sine of the difference between two arcs is calculated using the
Sines (and corresponding Cosines) of the two arcs. For example, Sin 6 is
calculated from Sin 36 35 16 1 36 and Sin 30 30 0 0 0 as

Sin 6 1
60 Sin 36 30
1
60 Sin 36 Cos 30 Cos 36 Sin 30 6 16 18 8

I calculate the Sines for the thirty arguments that are multiples of 3 of arc
by successively applying the formulae for the Sine of half the arc and the
Sine of the sums and differences of arcs.

3.1.3. Recomputing the Sine of 1 of arc
To calculate the remaining Sines, in particular, the Sines for arguments that
are multiples of 2 (distinct from the multiples of 3 ), e.g. Sin 4 or Sin 56 ,
the value of Sine of 1 is essential.
Typically, in the Indian tradition, the Sines were tabulated in 24 blocks of

3 45 (or 225 ) for the first 90 (the first quadrant) of a circle of specified
radius (identified as the trijyā or sinus totus).39 The Sine of a non-tabulated
argument was calculated by interpolating between appropriate (successive) val-
ues using different interpolation (and iterative) schemes.40

39 Bag, ‘Sine Table’ describes the different sine tables in the Indian tradition. Also, Sub-
barayappa and Sarma, Indian Astronomy, pp. 62–73 present translations and analyses of the
verses (from primary sources) that discuss Sine computations from major Sanskrit texts.

40 For example, see Hayashi, ‘Āryabhaṭa’s Rule’ for Āryabhaṭa’s rule of differences for com-
puting Sines in his Āryabhaṭīya (c. 499 c); Gupta, ‘Second Order Interpolation’, p. 88 for
Brahmagupta’s second-order finite-difference interpolation scheme for approximating Sines in
his Dhyānagraha (c. early 7th century)—a technique also repeated in his later and more famous
work Khaṇḍakhādyaka (665 c); Plofker, ‘An Example of the Secant Method’ for Parame-
śvara’s fixed-point iterations to compute Sines in his Siddhāntadīpikā (c. 14th century); Rama-
subramanian and Sriram, Tantrasaṅgraha, pp. 52–68 for Āryabhaṭa’s commentator Nīlakaṇṭha
Somayājī’s interpolation techniques to compute desired Sines in his Tantrasaṅgraha (1501 c);
and Sarma et al., Gaṇita-yukti-bhāṣā, pp. 90–102 for Jyeṣṭhadeva’s demonstrations of the sine
and cosine series approximations—attributed to the famous Kerala astronomer Mādhava of
Saṅgamagrāma (fl. c. 1380/1420 c)—in his Gaṇitayuktibhāṣā (c. 16th century).
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3.2. Table of Sines (kramajyā): Analysis of differences
List of proposed emendations to the attested Sines in MS Tk:42

Based on inadvertent copying oversights
1. Sin 1◦m: 5→ 2 and Sin 2◦m: 0→ 5. The value of Sin 1◦ is an impor-
tant part of the recomputation of Sines, and hence, an error in the
minutes place of Sin 1◦ suggests an unintentional copying mistake rather
than an irregular recomputation. The digits ‘5’ and ‘0’ in Sin 1◦m and
Sin 2◦m could have been mistakenly transposed during copying; however,
Sin 1◦m = 0 is still a significant error.

2. Sin 17◦m: 33→ 32. Suspected alteration of homoglyphic digits ‘2’ and
‘3’ in handwritten Devanāgarī. Also, Sin 16◦m, Sin 17◦m, Sin 18◦m, and
Sin 19◦m appear in the sequence ‘32’, ‘33’, ‘32’, and ‘32’ respectively so
a mistranscription is just as likely.

3. Sin 37◦m: 16→ 6. Suspected dittography. Sin 36◦m and Sin 37◦m appear
in the sequence ‘16’ and ‘16’ respectively.

4. Sin 50◦u: 46 → 45. Suspected mistranscription. Sin 49◦u, Sin 50◦u, and
Sin 51◦u appear in the sequence ‘45’, ‘46’, and ‘46’ respectively.

5. Sin 75◦s: 30 → 20. Suspected alteration of homoglyphic digits ‘2’ and
‘3’ in handwritten Devanāgarī.

Based on intentional interventions
6. Sin 88◦m,s: 59,27 → 57,48. Suspected contamination. Adjacent entries
Sin 88◦ and Sin 89◦ are both 59;59,27. This could also suggest a dittog-
raphy; however, the entries for all six functions corresponding to the
88th and 89th arguments are identical in MS Tk. (Pages 230–31 show
the printed reproduction and a diplomatic transcription of f. 50v from
MS Tk.) I suspect a table author intentionally copied the entire column
of (correct) entries corresponding to the 89th argument (from a parent
manuscript) to replace a corrupted/illegible/missing column of entries
for the 88th argument.

Remarks on Table VI.A
1. On f. 49v of MS Tk, the digits ‘2’ and ‘0’ (of the number 20) in
Sin 57◦m have overhead marks: , 2̌0̈. This could suggest a correction

42 The subscripts ‘u’, ‘d’, ‘m’, and ‘s’ are used to indicate digits in the units, degrees, minutes,
and seconds place respectively. I use ‘→’ to represent a change between digits, in other words,
the digits to the left of ‘→’ are emended to the ones on its right. I follow these conventions
to indicate my proposed emendations for the rest of this chapter.
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to the (digits in the) number 20; however, there are no marginal cor-
rections visible on the folio and hence I simply record this entry as 20
in my transcription.

2. The attested and recomputed Sin 46◦, Sin 49◦, Sin 50◦, Sin 52◦, Sin 53◦,
Sin 54◦, and Sin 57◦ differ as ±1′. My recomputations (including irreg-
ular ones) have been unsuccessful in removing this difference, and there
are no discernible copying mistakes or scribal corrections in any of these
instances. Therefore, I present the attested digits (in the minutes place)
of these Sines in Table VI.A without suggesting any emendations.
However, looking at Nityānanda’s Sine table from his Sarvasiddhānta-

rāja,43 we find:44

Sin 46◦ = 43; 9, 37,23,49
Sin 49◦ = 45; 16, 57,16,10 Sin 50◦ = 45; 57, 45,35,59
Sin 52◦ = 47; 16, 50,19,22 Sin 53◦ = 47; 55, 5,16,13
Sin 54◦ = 48; 32, 27,40,15 Sin 57◦ = 50; 19, 12,50,34

The underlined digits (in the minutes place) of these values are identi-
cal to the corresponding digits of my recomputed Sines in Table VI.A.
The similarity between these Sines in the Sarvasiddhāntarāja and the
Amṛtalaharī alludes to a common computational nuance, or perhaps a
common textual ancestor.

3. Sin 14◦s, Sin 21◦s, Sin 45◦s, and Sin 65◦s have a difference of +1 be-
tween the attested values (from MS Tk) and the recomputed results.
This difference appears to be the result of an unknown (and possibly,
irregular) arithmetical calculation by a table author. I leave the digits
(in the seconds place) of these Sines unchanged in Table VI.A.

3.3. Table of solar declinations (krānti): Recomputation strategy
The table of solar declination (krānti) of the Amṛtalaharī (in MS Tk) is
computed for every degree of celestial (tropical or sāyana) longitude λ from
1◦ to 90◦ and has a maximum value (equal to the obliquity of the ecliptic
ε) of 24◦0′0′′. The solar declination δ is related to the celestial longitude λ
with the expression

Sin δ = Sin λ×
Sin ε
R

≡ Sin λ×
Sin 24◦

60
∵ Sin 90◦ =R= 60.

43 MS Sans γ550, f. 19r, from the Wellcome Institute for the History of Medicine and
MS Reel No. B 354/15, f. 15r, from the National Archive Kathmandu.

44 The fifth digit ‘49’ of Sin 46◦ is illegible in MS B 354/15. Also, Sin 54◦s resembles ‘20’
in MS B 354/15.
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3.2. Table of Sines (kramajyā): Analysis of differences
List of proposed emendations to the attested Sines in MS Tk:42

Based on inadvertent copying oversights
1. Sin 1 m: 5 2 and Sin 2 m: 0 5. The value of Sin 1 is an impor-
tant part of the recomputation of Sines, and hence, an error in the
minutes place of Sin 1 suggests an unintentional copying mistake rather
than an irregular recomputation. The digits ‘5’ and ‘0’ in Sin 1 m and
Sin 2 m could have been mistakenly transposed during copying; however,
Sin 1 m 0 is still a significant error.

2. Sin 17 m: 33 32. Suspected alteration of homoglyphic digits ‘2’ and
‘3’ in handwritten Devanāgarī. Also, Sin 16 m, Sin 17 m, Sin 18 m, and
Sin 19 m appear in the sequence ‘32’, ‘33’, ‘32’, and ‘32’ respectively so
a mistranscription is just as likely.

3. Sin 37 m: 16 6. Suspected dittography. Sin 36 m and Sin 37 m appear
in the sequence ‘16’ and ‘16’ respectively.

4. Sin 50 u: 46 45. Suspected mistranscription. Sin 49 u, Sin 50 u, and
Sin 51 u appear in the sequence ‘45’, ‘46’, and ‘46’ respectively.

5. Sin 75 s: 30 20. Suspected alteration of homoglyphic digits ‘2’ and
‘3’ in handwritten Devanāgarī.

Based on intentional interventions
6. Sin 88 m,s: 59 27 57 48. Suspected contamination. Adjacent entries
Sin 88 and Sin 89 are both 59 59 27. This could also suggest a dittog-
raphy; however, the entries for all six functions corresponding to the
88th and 89th arguments are identical in MS Tk. (Pages 230–31 show
the printed reproduction and a diplomatic transcription of f. 50v from
MS Tk.) I suspect a table author intentionally copied the entire column
of (correct) entries corresponding to the 89th argument (from a parent
manuscript) to replace a corrupted/illegible/missing column of entries
for the 88th argument.

Remarks on Table VI.A
1. On f. 49v of MS Tk, the digits ‘2’ and ‘0’ (of the number 20) in
Sin 57 m have overhead marks: , 20. This could suggest a correction

42 The subscripts ‘u’, ‘d’, ‘m’, and ‘s’ are used to indicate digits in the units, degrees, minutes,
and seconds place respectively. I use ‘ ’ to represent a change between digits, in other words,
the digits to the left of ‘ ’ are emended to the ones on its right. I follow these conventions
to indicate my proposed emendations for the rest of this chapter.
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This expression is commonly found in most Sanskrit siddhāntas from very
early times, e.g. Brahmagupta’s Brāhmasphuṭasiddhānta (628 c): II.55. See
Plofker, ‘An Example of the Secant Method’, pp. 91–92 for a simple geomet-
ric derivation of this expression applying the ‘rule of three’ to similar right
triangles inscribed between the ecliptic and the equator. Having calculated
the Sine of the declination, the method to find the arc of declination cor-
responding to it involves estimating the inverse arc of Sine. Several Sanskrit
texts describe the method to find the inverse Sine, i.e. the arc measure (cāpa
or dhanus, ‘bow’) corresponding to a particular Sine (kramajyā) value.45
Typically, the unknown arc θ for a given Sin θ is linearly interpolated using

localised Sine differences. The general algorithm of this method (in modern
notation) is as follows:

1. Identify the interval Sin θi < Sin θ < Sin θi+1 for i ∈ Z
+

90 in the table of
Sines. The Sine function is a monotonic function that increases from 0
to R in the interval [0◦, 90◦], and therefore, the corresponding interval
of the argument θ can be identified as θi < θ < θi+1 for i ∈ Z

+

90.

2. Compute δθ, where δθ def= θ− θi and hence θ = θi + δθ. The increment
δθ can be computed from a linear incremental ratio in the unit interval
[θi, θi+1] as

Sin θ− Sin θi

θ− θi
=
Sin θi+1− Sin θi

1

⇒ θ− θi =
Sin θ− Sin θi

Sin θi+1− Sin θi
⇒ δθ =

δSin θ
ΔiSin θ

.

3. Calculate θ from θi and δθ with θ = θi + δθ.
It is worth noting that table authors are not as systematic in linearly in-
terpolating between successive values as described above. Sometimes, certain
(re)computational irregularities are easy to identify, e.g. choosing Sin θi+2 −
Sin θi+1 instead of Sin θi+1− Sin θi in calculating δθ. However, in other in-
stances, table authors make intuitive choices like approximating the argument
instead of interpolating it (for smaller values), making it difficult to explain
an anomalous entry. My recomputations of the solar declinations attested in
MS Tk admit to this level of uncertainty in a few instances.

3.3.1. Worked example
Calculating the solar declination δ corresponding to a celestial longitude λ of
52◦:

45 For example, see Bhāskara II’s Karaṇakutūhala (1183 c): II.8 (Rao and Uma, Karaṇa-
kutūhalam, p. S19) or Nilakaṇṭha’s Tantrasaṅgraha (1501 c): II.7 (Ramasubramanian and
Sriram, Tantrasaṅgraha, pp. 68–70).
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1. For the celestial longitude λ = 52◦, using the recomputed results
Sin 52◦ = 47;16,50 and Sin 24◦ = 24;24,15 from Table VI.A,

Sin δ(52◦) = Sin 52◦ ×
Sin 24◦

60
≈ 19;13,50,33.

2. To determine the arc δ(52◦) corresponding to a Sine of 19;13,51
(rounded to seconds), observe from Table VI.A that Sin 18◦ ≡

18;32,28< Sin δ(52◦)< Sin 19◦ ≡ 19;32,3. Therefore,

δ(52◦) = 18◦ +
Sin δ(52◦)− Sin 18◦

Sin 19◦ − Sin 18◦

= 18◦ +
ï

19;13,51− 18;32,28
19;32,3− 18;32,28

ò

in degrees
= 18◦ +

ï

0;41,23
0;59,35

ò

in degrees

= 18◦ + 0◦41′40′′ (rounded to seconds)≈ 18◦41′40′′

The recomputed solar declination corresponding to a celestial longitude
of 52◦ is 18◦41′40′′.

Table VI.B on page 234 presents the recomputed solar declinations for every
degree of celestial longitude from 1◦ to 90◦. Most of these recomputations
follow the algorithm described above; however, a few entries are calculated
irregularly as described below.

3.3.2. Recomputational irregularities in solar declination calculations
1. Recomputing the solar declination for a celestial longitude of 28◦. For
λ = 28◦, Sin δ(28◦) = Sin 28◦ × Sin 24◦

/60. With Sin 28◦ = 28;10,6 and
Sin 24◦ = 24;24,15, Sin δ(28◦) = 11.45707836 ≈ 11;27,25. A regular
interval to determine the inverse arc of this Sine (by interpolation) is

Sin 11◦ < Sin δ(28◦)< Sin 12◦

⇒ 11;26,55< Sin δ(28◦)≈ 11;27,25< 12;28,29,

which gives δ ≈ 11;0,30 (rounded to seconds). However, the irregular
interval

Sin 10◦ < Sin δ(28◦)< Sin 12◦

⇒ 10;25,8< Sin δ(28◦)≈ 11;27,25< 12;28,29

gives

δ(28◦) = 10◦ +
Sin δ(28◦)− Sin 10◦

Sin 12◦ − Sin 11◦

≈ 10◦ + 1◦0′41′′54′′′ ≈ 11◦0′41′′54′′′.

The truncated value δ(28◦) = 11◦0′41′′ is identical to the attested value
in MS Tk.
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This expression is commonly found in most Sanskrit siddhāntas from very
early times, e.g. Brahmagupta’s Brāhmasphuṭasiddhānta (628 c): II.55. See
Plofker, ‘An Example of the Secant Method’, pp. 91–92 for a simple geomet-
ric derivation of this expression applying the ‘rule of three’ to similar right
triangles inscribed between the ecliptic and the equator. Having calculated
the Sine of the declination, the method to find the arc of declination cor-
responding to it involves estimating the inverse arc of Sine. Several Sanskrit
texts describe the method to find the inverse Sine, i.e. the arc measure (cāpa
or dhanus, ‘bow’) corresponding to a particular Sine (kramajyā) value.45
Typically, the unknown arc θ for a given Sin θ is linearly interpolated using

localised Sine differences. The general algorithm of this method (in modern
notation) is as follows:

1. Identify the interval Sin θi Sin θ Sin θi 1 for i 90 in the table of
Sines. The Sine function is a monotonic function that increases from 0
to in the interval 0 90 , and therefore, the corresponding interval
of the argument θ can be identified as θi θ θi 1 for i 90.

2. Compute δθ, where δθ def θ θi and hence θ θi δθ. The increment
δθ can be computed from a linear incremental ratio in the unit interval
θi θi 1 as

Sin θ Sin θi

θ θi

Sin θi 1 Sin θi

1

θ θi
Sin θ Sin θi

Sin θi 1 Sin θi
δθ

δSin θ
ΔiSin θ

3. Calculate θ from θi and δθ with θ θi δθ.
It is worth noting that table authors are not as systematic in linearly in-
terpolating between successive values as described above. Sometimes, certain
(re)computational irregularities are easy to identify, e.g. choosing Sin θi 2
Sin θi 1 instead of Sin θi 1 Sin θi in calculating δθ. However, in other in-
stances, table authors make intuitive choices like approximating the argument
instead of interpolating it (for smaller values), making it difficult to explain
an anomalous entry. My recomputations of the solar declinations attested in
MS Tk admit to this level of uncertainty in a few instances.

3.3.1. Worked example
Calculating the solar declination δ corresponding to a celestial longitude λ of
52 :

45 For example, see Bhāskara II’s Karaṇakutūhala (1183 c): II.8 (Rao and Uma, Karaṇa-
kutūhalam, p. S19) or Nilakaṇṭha’s Tantrasaṅgraha (1501 c): II.7 (Ramasubramanian and
Sriram, Tantrasaṅgraha, pp. 68–70).
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2. Recomputing the solar declinations for the celestial longitudes 2◦, 7◦,
12◦, 15◦, 18◦, 37◦, 43◦, 45◦, 49◦, 53◦, 55◦, 61◦, 64◦, 72◦, 74◦, 78◦, 80◦,
and 82◦. The recomputed values match the attested values in MS Tk
when the final results are truncated to seconds (instead of systematically
rounding them to seconds), e.g.

δ (recomputed, up to thirds) δ (attested in MS Tk)
δ(2◦) = 0◦48′47′′44′′′ ←→ δ(2◦) = 0◦48′47′′

δ(18◦) = 7◦13′14′′45′′′ ←→ δ(18◦) = 7◦13′14′′

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.B registers them as a difference of ‘−1’.

3.4. Table of solar declinations (krānti): Analysis of differences
List of proposed emendations to the attested solar declinations in MS Tk:

Based on inadvertent copying oversights
1. δ(23◦)d: 8 → 9. Suspected mistranscription. δ(22◦)d, δ(23◦)d, and
δ(24◦)d appear in the sequence ‘8’, ‘8’, and ‘9’ respectively.

2. δ(67◦)s: 25→ 15. Suspected alteration of homoglyphic digits ‘1’ and ‘2’
in handwritten Devanāgarī.

3. δ(70◦)m: 29 → 28. Suspected mistranscription. δ(68◦)m, δ(69◦)m, and
δ(70◦)m appear in the sequence ‘9’, ‘19’, and ‘29’ respectively.

4. δ(77◦)s: 44→ 55. Suspected alteration of homoglyphic digits ‘4’ and ‘5’
in handwritten Devanāgarī.

Based on intentional interventions
5. δ(88◦)s: 46→ 4. Suspected contamination. Adjacent entries δ(88◦) and
δ(89◦) are both 23◦59′46′′. All six functions corresponding to the 88th

and 89th arguments are identical in MS Tk. See note 6 on page 204.

Remarks on Table VI.B
The digits in the seconds place of the attested and recomputed solar decli-
nations for several degrees of celestial longitudes vary by ±1. A few entries
differ by up to ±4′′, with one instance of a +5′′ variation. I suspect these
differences are a result of irregular arithmetic calculations, or selecting incor-
rect interpolation intervals. However, I have not been able to explain these
differences mathematically (or justify them as interventions/oversights), and
therefore, I do not emend the attested digits (in the seconds places) of the
solar declinations corresponding to these longitudes in Table VI.B.
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3.5. Tables of shadow lengths (śaṅkuchāyā): Recomputation strategy
The tables of lengths of shadows (chāyā) of gnomons (śaṅku) of the Amṛta-
laharī (in MS Tk) are computed for every degree of solar altitude (lam-
baka)46 from 1◦ to 90◦ for gnomons of heights 60 digits, 12 digits, and 7
digits.47 The shadow length (śaṅkuchāyā) of a gnomon of height h digits,
hereafter abbreviated as Chāyā h , is related to the solar altitude a with the
expression

Chāyā h a = h×
Cos a
Sin a

,

where a ≡ solar altitude and h ≡ gnomon height (in digits). A simple geo-
metric derivation for this expression (for a 12 digit gnomon, a typical mea-
sure in Indian astronomy) is described in Ramasubramanian and Sriram,
Tantrasaṅgraha, p. 135. Another way to interpret the shadow length is to
consider the argument as the terrestrial latitude ϕ of an observer. The tab-
ulated shadow lengths then represent the length of the equinoctial noon
shadow cast by the gnomon (of a particular height h). On the day of the
equinox, the declination of the Sun is zero and hence the diurnal path of the
Sun (almost) traces the celestial equator in the sky. At midday on this day,
the local zenith crossing of the Sun corresponds to the local terrestrial lat-
itude (measured from the local zenith). Thus, the equinoctial noon shadow
of the gnomon (viṣuvatchāyā) can be expressed as a function of the local
terrestrial latitude, i.e. h ×

Sin ϕ/Cos ϕ.48 Several Sanskrit texts, beginning from
very early times, describe how the shadow lengths of gnomons (for known
heights) are computed, e.g. Kauṭilīya’s Arthaśāstra (2nd century–3rd century
c) or Āryabhaṭa’s Āryabhaṭīya (c. 499 c).49

3.5.1. Worked example
Calculating the shadow length Chāyā h corresponding to a solar altitude a of
52◦ for gnomons of heights h = 60 digits, 12 digits, and 7 digits:
1. For the solar altitude a = 52◦ and gnomon height h = 60, Sin a ≡

Sin 52◦ ≈ 47;16,50 and Cos a ≡ Cos 52◦ = Sin (38◦)≈ 36;56,23 (using
recomputed Sines from Table VI.A). Thus,

Chāyā 60 52
◦ = h×

Cos 52◦

Sin 52◦
≡ 60×

36;56,23
47;16,50

≈ 46;52,38

46 The solar altitude (lambaka) (above the horizon) is the complement of the zenith dis-
tance (natāṃśa) of the Sun.

47 A digit or aṅgula is a unit of linear measure of a finger breadth, approximately, (1/24)th
part of a cubit (hasta).

48 Ramasubramanian and Sriram, Tantrasaṅgraha, p. 140.
49 See, respectively, Abraham, ‘The Gnomon’ and Shukla and Sarma, Āryabhaṭīya.
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2. Recomputing the solar declinations for the celestial longitudes 2 , 7 ,
12 , 15 , 18 , 37 , 43 , 45 , 49 , 53 , 55 , 61 , 64 , 72 , 74 , 78 , 80 ,
and 82 . The recomputed values match the attested values in MS Tk
when the final results are truncated to seconds (instead of systematically
rounding them to seconds), e.g.

δ (recomputed, up to thirds) δ (attested in MS Tk)
δ 2 0 48 47 44 δ 2 0 48 47
δ 18 7 13 14 45 δ 18 7 13 14

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.B registers them as a difference of ‘ 1’.

3.4. Table of solar declinations (krānti): Analysis of differences
List of proposed emendations to the attested solar declinations in MS Tk:

Based on inadvertent copying oversights
1. δ 23 d: 8 9. Suspected mistranscription. δ 22 d, δ 23 d, and
δ 24 d appear in the sequence ‘8’, ‘8’, and ‘9’ respectively.

2. δ 67 s: 25 15. Suspected alteration of homoglyphic digits ‘1’ and ‘2’
in handwritten Devanāgarī.

3. δ 70 m: 29 28. Suspected mistranscription. δ 68 m, δ 69 m, and
δ 70 m appear in the sequence ‘9’, ‘19’, and ‘29’ respectively.

4. δ 77 s: 44 55. Suspected alteration of homoglyphic digits ‘4’ and ‘5’
in handwritten Devanāgarī.

Based on intentional interventions
5. δ 88 s: 46 4. Suspected contamination. Adjacent entries δ 88 and
δ 89 are both 23 59 46 . All six functions corresponding to the 88th

and 89th arguments are identical in MS Tk. See note 6 on page 204.

Remarks on Table VI.B
The digits in the seconds place of the attested and recomputed solar decli-
nations for several degrees of celestial longitudes vary by 1. A few entries
differ by up to 4 , with one instance of a 5 variation. I suspect these
differences are a result of irregular arithmetic calculations, or selecting incor-
rect interpolation intervals. However, I have not been able to explain these
differences mathematically (or justify them as interventions/oversights), and
therefore, I do not emend the attested digits (in the seconds places) of the
solar declinations corresponding to these longitudes in Table VI.B.
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(rounded to seconds). The recomputed shadow length for a gnomon
of height 60 digits and corresponding to a solar altitude of 52◦ is
46;52,38.

2. Similarly, for h = 12 and h = 7: Chāyā 12 52◦ ≡ 12× 36;56,23
47;16,50 ≈ 9;22,32

and Chāyā 7 52◦ ≡ 7× 36;56,23
47;16,50 ≈ 5;28,8. The recomputed shadow lengths

for gnomons of height 12 digits and 7 digits corresponding to a so-
lar altitude of 52◦ are 9;22,32 and 5;28,8 respectively. Both values are
rounded to the second fractional place.

Tables VI.C1 (page 235), VI.C2 (page 236), and VI.C3 (page 237) present
the recomputed shadow lengths for every degree of solar altitude from 1◦ to
90◦ for gnomon lengths 60 digits, 12 digits, and 7 digits respectively. Most
of these recomputations follow the algorithm described above; however, a few
entries are calculated irregularly as described below.

3.5.2. Recomputational irregularities in shadow-length calculations:
60-digit gnomon (Table VI.C1)

1. Recomputing the shadow length for a solar altitude of 14◦. Using
the attested value Sin 14◦ = 14;30,56 from MS Tk (see Table VI.A)
gives Chāyā 60 (14◦) = 60× Cos 14◦

Sin 14◦ = 60× 58;13,4
14;30,56 ≈ 60×4;0,38,34,45≈

240;38,34,45 (truncated to seconds). This value is identical to the at-
tested value in MS Tk. The shadow length value with the recomputed
Sin 14◦ as 14;30,55 is 240;38,51 (rounded to seconds).

2. The recomputations of the shadow lengths for the following arguments
agree with their attested values in MS Tk if irregular Sine (or Co-
sine) values are considered. These recomputational scenarios are seem-
ingly random; nevertheless, I list them below for completeness. The at-
tested or recomputed Sines stated below can be found in Table VI.A.
(a) With the recomputed Sin 11◦=11;26,55 and an arbitrary Cos 11◦=

Sin 79◦ = 58;53,53, Chāyā 60 (11◦) ≈ 308;40,25 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The
shadow length with the attested/recomputed Cos 11◦ as 58;53,51
is 308;40,14 (rounded to seconds).

(b) With the attested Sin 21◦ = 21;30,8 and the recomputed Cos 21◦ =
Sin 69◦ = 56;0,53, Chāyā 60 (21◦) ≈ 156;18,14 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The shadow
length with the recomputed Sin 21◦ as 21;30,6,59 is 156;18,22
(rounded to seconds).

(c) With an arbitrary Sin 42◦ = 40;8,50 and the recomputed Cos 42◦ =
Sin 48◦ = 44;35,19, Chāyā 60 (42◦) ≈ 66;38,16 (rounded to sec-
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onds), which agrees with the attested value in MS Tk. The shadow
length with the attested/recomputed Sin 42◦ as 40;8,52 is 66;38,12
(rounded to seconds).

(d) With an arbitrary Sin 43◦=40;55,16 and the recomputed Cos 43◦=
Sin 47◦ = 43;52,52, Chāyā 60 (43◦) ≈ 64;20,24 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The
shadow length with the attested/recomputed Sin 43◦ as 40;55,12 is
64;20,30 (rounded to seconds).

(e) With an arbitrary Sin 50◦=45;57,47 and the recomputed Cos 50◦=
Sin 40◦ = 38;34 (rounded to minutes), Chāyā 60 (50◦) ≈ 50;20,41
(rounded to seconds), which agrees with the attested value in MS
Tk. The shadow length with the attested Sin 50◦ as 46;56,46 and
the recomputed Cos 50◦ as 38;34,2 (up to the seconds) is 49;17,29
(rounded to seconds), whereas the shadow length with the recom-
puted Sin 50◦ as 45;57,46,0 and the recomputed Cos 50◦ as 38;34,2
(up to the seconds) is 50;20,45 (rounded to seconds).

3. Recomputing the shadow lengths of a 60-digit gnomon for the solar
altitudes 3◦, 5◦, 23◦, 27◦, 40◦, 41◦, 49◦, 51◦, 59◦, 61◦, 64◦, 68◦, 80◦,
83◦, 86◦, and 87◦. The recomputed values match the attested values
in MS Tk when the final results are truncated to seconds instead of
systematically rounding them to seconds), e.g.

Chāyā 60 (recomputed to thirds) Chāyā 60 (attested value)
Chāyā 60 (3

◦) = 1114;49,27,53 ←→ Chāyā 60 (3
◦) = 1114;49,27

Chāyā 60 (49
◦) = 52;9,26,35 ←→ Chāyā 60 (49

◦) = 52;9,26

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C1 registers them as a difference of ‘−1’.

3.5.3. Recomputational irregularities in shadow length calculations:
12-digit gnomon (Table VI.C2)

1. Recomputing the attested shadow length for a solar altitude of 4◦. The
shadow-lengths of gnomons of heights 60 and 12 digits are related by
Chāyā 12 = 1

5 Chāyā 60 . For a solar altitude of 4◦, using the attested
value of Chāyā 60 (4◦) = 859;3,48 from MS Tk (see Table VI.A) gives
Chāyā 12 (4◦) =

859;3,48
5 ≈ 171;48,45,36 ≈ 171;48,46 (rounded to sec-

onds). This value agrees with the attested value 172; 48,46 in MS Tk
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(rounded to seconds). The recomputed shadow length for a gnomon
of height 60 digits and corresponding to a solar altitude of 52 is
46 52 38.

2. Similarly, for h 12 and h 7: Chāyā 12 52 12 36 56 23
47 16 50 9 22 32

and Chāyā 7 52 7 36 56 23
47 16 50 5 28 8 The recomputed shadow lengths

for gnomons of height 12 digits and 7 digits corresponding to a so-
lar altitude of 52 are 9 22 32 and 5 28 8 respectively. Both values are
rounded to the second fractional place.

Tables VI.C1 (page 235), VI.C2 (page 236), and VI.C3 (page 237) present
the recomputed shadow lengths for every degree of solar altitude from 1 to
90 for gnomon lengths 60 digits, 12 digits, and 7 digits respectively. Most
of these recomputations follow the algorithm described above; however, a few
entries are calculated irregularly as described below.

3.5.2. Recomputational irregularities in shadow-length calculations:
60-digit gnomon (Table VI.C1)

1. Recomputing the shadow length for a solar altitude of 14 . Using
the attested value Sin 14 14 30 56 from MS Tk (see Table VI.A)
gives Chāyā 60 14 60 Cos 14

Sin 14 60 58 13 4
14 30 56 60 4 0 38 34 45

240 38 34 45 (truncated to seconds). This value is identical to the at-
tested value in MS Tk. The shadow length value with the recomputed
Sin 14 as 14 30 55 is 240 38 51 (rounded to seconds).

2. The recomputations of the shadow lengths for the following arguments
agree with their attested values in MS Tk if irregular Sine (or Co-
sine) values are considered. These recomputational scenarios are seem-
ingly random; nevertheless, I list them below for completeness. The at-
tested or recomputed Sines stated below can be found in Table VI.A.
(a) With the recomputed Sin 11 11 26 55 and an arbitrary Cos 11

Sin 79 58 53 53, Chāyā 60 11 308 40 25 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The
shadow length with the attested/recomputed Cos 11 as 58 53 51
is 308 40 14 (rounded to seconds).

(b) With the attested Sin 21 21 30 8 and the recomputed Cos 21
Sin 69 56 0 53, Chāyā 60 21 156 18 14 (rounded to sec-
onds), which agrees with the attested value in MS Tk. The shadow
length with the recomputed Sin 21 as 21 30 6 59 is 156 18 22
(rounded to seconds).

(c) With an arbitrary Sin 42 40 8 50 and the recomputed Cos 42
Sin 48 44 35 19, Chāyā 60 42 66 38 16 (rounded to sec-
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if the digits ‘172’ in the units place are considered a copying over-
sight for ‘171’. (The digits ‘1’ and ‘2’ are homoglyphic in handwrit-
ten Devanāgarī.) Using the recomputed value Chāyā 60 (4◦) as 858;3,48,
Chāyā 12 (4◦)≈ 171;36,46 (rounded to seconds).

2. Recomputing the shadow length for a solar altitude of 24◦. With the
arbitrary shadow length Chāyā 60 (24◦) = 134;45,5, Chāyā 12 (24◦) =
1
5 × 134;45,5 = 26;57,1, which agrees with the attested value in MS
Tk. The shadow length Chāyā 12 (24◦) with the attested/recomputed
Chāyā 60 (24◦) as 134;45,45 is 26;57,9.

3. Recomputing the shadow length for a solar altitude of 87◦. The regu-
lar expression for Chāyā 12 87◦ is 12×

Cos 87◦
Sin 87◦ . However, using Cos 88

◦ =
Sin 2◦ = 2;0,38 (the attested value in MS Tk) instead of Cos (87◦) gives
Chāyā 12 (87◦) = 12× Cos 88◦

Sin 87◦ = 12× 2;0,38
59;55,4 = 0;24,9,35≈ 0;24,9 (trun-

cated to seconds), which agrees with the attested value in MS Tk. A
regular recomputation of Chāyā 12 (87◦) (using recomputed Sin 87◦ and
Cos 87◦ = Sin 3◦) gives 0;37,44 (rounded to seconds).

4. Recomputing the shadow lengths of a 12-digit gnomon for the solar
altitudes 3◦, 17◦, 20◦, 39◦, 46◦, 47◦, 56◦, 58◦, 65◦, and 86◦. The re-
computed values match the attested values in MS Tk when final results
are truncated to seconds (instead of systematically rounding them to
seconds), e.g.

Chāyā 12 (recomputed to thirds) Chāyā 12 (attested value)
Chāyā 12 (3

◦) = 228;57,53,34 ←→ Chāyā 12 (3
◦) = 228;57,53

Chāyā 12 (39
◦) = 14;49,7,47 ←→ Chāyā 12 (39

◦) = 14;49,7

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C2 registers them as a difference of ‘−1’.

3.5.4. Recomputational irregularities in shadow length calculations:
7 digits (Table VI.C3)

1. Recomputing the shadow length for a solar altitude of 4◦. The
shadow-lengths of gnomons of heights 60 and 7 digits are related by
Chāyā 7 = 7

60 Chāyā 60 . For a solar altitude of 4◦, using the attested
value Chāyā 60 (4◦) = 859;3,48 from MS Tk (see Table VI.A) gives
Chāyā 7 (4◦) =

7×859;3,48
60 ≈ 100;13,26,36 ≈ 100;13,27 (rounded to sec-

onds). This value agrees with the attested value in MS Tk. Using the re-
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computed value Chāyā 60 (4◦) as 858;3,48 gives Chāyā 7 (4◦)≈ 100;6,27
(rounded to seconds).

2. Recomputing the shadow length for a solar altitude of 12◦. For an ar-
bitrary value of Sin 12◦ = 12;28,30, Chāyā 7 (12◦) = 32;55,54, which
agrees with the attested value in MS Tk. The recomputed Sin 12◦ as
12;28,28,55 gives 32;55,57 (rounded to seconds).

3. Recomputing the shadow length for a solar altitude of 37◦. With the
recomputed Sin 37◦ = 36;6,32 and an arbitrary Cos 37◦ = Sin 53◦ =
47;56,50, Chāyā 7 (37◦) ≈ 9;17,42 (rounded to seconds), which agrees
with the attested value in MS Tk. The shadow length with the recom-
puted Sin 37◦ as 36;6,32 and the attested Cos 37◦ as 47;56,5 is 9;17,33
(rounded to seconds), whereas the shadow length with the recomputed
Sin 37◦ as 36;6,32 and the recomputed Cos 37◦ as 47;55,5 is 9;17,21
(rounded to seconds).

4. Recomputing the shadow lengths of a 7-digit gnomon for the solar al-
titudes 39◦, 42◦, and 59◦. The recomputed values match the attested
values in MS Tk when final results are truncated to seconds (instead of
systematically rounding them to seconds), e.g.

Chāyā 7 (recomputed to thirds) Chāyā 7 (attested value)
Chāyā 7 (39

◦) = 8;38,39,40 ←→ Chāyā 7 (39
◦) = 8;38,39

Chāyā 7 (42
◦) = 7;46,27,48 ←→ Chāyā 7 (42

◦) = 7;46,27

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C3 registers them as a difference of ‘−1’.

3.6. Table of shadow lengths (śaṅkuchāyā): Analysis of differences
In the following subsections, I present a list of proposed emendations to the
attested values of shadow lengths for gnomons of heights 60 digits, 12 digits,
and 7 digits respectively.

3.6.1. Shadow length for gnomon of height 60 digits (Table VI.C1)
Based on inadvertent copying oversights
1. Chāyā 60 (10◦)s: 24→ 34. Suspected alteration of homoglyphic digits ‘2’
and ‘3’ in handwritten Devanāgarī.

2. Chāyā 60 (12◦)s: 19→ 39. Suspected alteration of homoglyphic digits ‘1’
and ‘3’ in handwritten Devanāgarī.
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if the digits ‘172’ in the units place are considered a copying over-
sight for ‘171’. (The digits ‘1’ and ‘2’ are homoglyphic in handwrit-
ten Devanāgarī.) Using the recomputed value Chāyā 60 4 as 858 3 48,
Chāyā 12 4 171 36 46 (rounded to seconds).

2. Recomputing the shadow length for a solar altitude of 24 . With the
arbitrary shadow length Chāyā 60 24 134 45 5, Chāyā 12 24
1
5 134 45 5 26 57 1, which agrees with the attested value in MS
Tk. The shadow length Chāyā 12 24 with the attested/recomputed
Chāyā 60 24 as 134 45 45 is 26 57 9.

3. Recomputing the shadow length for a solar altitude of 87 . The regu-
lar expression for Chāyā 12 87 is 12 Cos 87

Sin 87 . However, using Cos 88
Sin 2 2 0 38 (the attested value in MS Tk) instead of Cos 87 gives
Chāyā 12 87 12 Cos 88

Sin 87 12 2 0 38
59 55 4 0 24 9 35 0 24 9 (trun-

cated to seconds), which agrees with the attested value in MS Tk. A
regular recomputation of Chāyā 12 87 (using recomputed Sin 87 and
Cos 87 Sin 3 ) gives 0 37 44 (rounded to seconds).

4. Recomputing the shadow lengths of a 12-digit gnomon for the solar
altitudes 3 , 17 , 20 , 39 , 46 , 47 , 56 , 58 , 65 , and 86 . The re-
computed values match the attested values in MS Tk when final results
are truncated to seconds (instead of systematically rounding them to
seconds), e.g.

Chāyā 12 (recomputed to thirds) Chāyā 12 (attested value)
Chāyā 12 3 228 57 53 34 Chāyā 12 3 228 57 53

Chāyā 12 39 14 49 7 47 Chāyā 12 39 14 49 7

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.C2 registers them as a difference of ‘ 1’.

3.5.4. Recomputational irregularities in shadow length calculations:
7 digits (Table VI.C3)

1. Recomputing the shadow length for a solar altitude of 4 . The
shadow-lengths of gnomons of heights 60 and 7 digits are related by
Chāyā 7

7
60 Chāyā 60 . For a solar altitude of 4 , using the attested

value Chāyā 60 4 859 3 48 from MS Tk (see Table VI.A) gives
Chāyā 7 4 7 859 3 48

60 100 13 26 36 100 13 27 (rounded to sec-
onds). This value agrees with the attested value in MS Tk. Using the re-
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3. Chāyā 60 (67◦)s: 0 → 7. Suspected alteration of homoglyphic digits ‘0’
and ‘7’ in handwritten Devanāgarī.

Based on intentional interventions
5. Chāyā 60 (88◦): 1;2,50→ 2;5,43. Suspected contamination. Adjacent en-
tries Chāyā 60 (88◦) and Chāyā 60 (89◦) are both 1;2,50. All six functions
corresponding to the 88th and 89th arguments are identical in MS Tk.
See note 6 on page 204.

Remarks on Table VI.C1

1. The attested entry ‘859’ for Chāyā 60 (4◦)u could be emended to ‘858’ as
a suspected mistranscription by a table author (or scribe). This emenda-
tion would agree with the recomputed result, and also avoid the differ-
ence of 1 integer unit between the attested and recomputed entries (a
significant statistical anomaly). However, the attested shadow lengths of
the 60-digit and 12-digit gnomons corresponding to 4◦ of solar altitude
in MS Tk are computationally interrelated. The irregular recomputation
of Chāyā 12 (4◦) uses 859;3,48 as the attested value of Chāyā 60 (4◦) (see
note 1 in Section 3.5.3).

2. On f. 49v of MS Tk, the digit ‘0’ (of the number 30) in Chāyā 60 (23◦)s
had a dot under it: , 3

˙
0. An underdot is sometimes used as a signe

de renvoi (cancellation mark) in Sanskrit, and the recomputational ev-
idence also suggests Chāyā (23◦)s = 3. Hence, I record the value of
Chāyā 60 (23◦)s as 3 in my transcription.

3. The digits in the seconds place of the attested and recomputed shadow
lengths of a 60-digit gnomon for certain degrees of solar altitudes
(e.g. 38◦, 56◦, or 65◦) vary by up to ±3. I have not been able to justify
these differences mathematically (or as obvious interventions/oversights),
and therefore, I do not propose any emendations in Table VI.C1 to
change the attested digits (in the seconds place) of the shadow lengths
corresponding to these arguments.

3.6.2. Shadow length for gnomon of height 12 digits (Table VI.C2)

Based on inadvertent copying oversights
1. Chāyā 12 (4◦)u: 172→ 171. Suspected alteration of homoglyphic digits
‘1’ and ‘2’ in handwritten Devanāgarī.

2. Chāyā 12 (19◦)m: 1 → 51. Suspected mistranscription. Chāyā 12 (18◦)m,
Chāyā 12 (19◦)m, and Chāyā 12 (20◦)m appear in the sequence ‘55’, ‘1’,
and ‘58’ respectively.
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3. Chāyā 12 (23◦)s: 23→ 13. Suspected alteration of homoglyphic digits ‘1’
and ‘2’ in handwritten Devanāgarī.

4. Chāyā 12 (25◦)s: 12 → 2. Suspected mistranscription. Chāyā 12 (24◦)s,
Chāyā 12 (25◦)s and Chāyā 12 (26◦)s appear in the sequence ‘1’, ‘12’, and
‘14’ respectively.

5. Chāyā 12 (33◦)m: 48→ 28. Suspected mistranscription. Chāyā 12 (32◦)m,
Chāyā 12 (33◦)m and Chāyā 12 (34◦)m appear in the sequence ‘12’, ‘48’,
and ‘47’ respectively.

6. Chāyā 12 (43◦)m: 55→ 52. Suspected mistranscription. Chāyā 12 (42◦)m,
Chāyā 12 43◦, and Chāyā (44◦)m appear in the sequence ‘19’, ‘55’, and
‘25’ respectively.

7. Chāyā 12 (53◦)s: 34→ 14. Suspected alteration of homoglyphic digits ‘1’
and ‘3’ in handwritten Devanāgarī.

8. Chāyā 12 (68◦)s: 4→ 54. Suspected mistranscription (perhaps, an inad-
vertent omission of the digit ‘5’ in ‘54’).

9. Chāyā 12 (86◦)s: 29→ 21. Suspected alteration of homoglyphic digits ‘1’
and ‘9’ in handwritten Devanāgarī.

10. Chāyā 12 89◦m: 32 → 12 and Chāyā 12 89◦s: 24 → 34. Suspected alter-
ation of homoglyphic digits ‘1’, ‘2’, and ‘3’ in handwritten Devanāgarī.

Based on intentional interventions

11. Chāyā 12 (88◦) : 0;32,24 → 0;25,9. Suspected contamination. Adjacent
entries Chāyā 12 (88◦) and Chāyā 12 (89◦) are both 0;32,24. All six func-
tions corresponding to the 88th and 89th arguments are identical in
MS Tk. See note 6 on page 204.

Remarks on Table VI.C2

The digits in the seconds place of the attested and recomputed shadow
lengths of a 12-digit gnomon for several degrees of solar altitudes vary by
±1. For a few entries, the values differ by up to +3′′ or −4′′. I suspect these
differences are a result of irregular sexagesimal divisions. However, I have not
been able to justify these differences mathematically (or observe inadvertent
or intentional scribal discrepancies). Therefore, I present the attested digits (in
the seconds place) of the shadow lengths corresponding to these arguments
in Table VI.C2 without suggesting any emendations.
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3. Chāyā 60 67 s: 0 7. Suspected alteration of homoglyphic digits ‘0’
and ‘7’ in handwritten Devanāgarī.

Based on intentional interventions
5. Chāyā 60 88 : 1 2 50 2 5 43. Suspected contamination. Adjacent en-
tries Chāyā 60 88 and Chāyā 60 89 are both 1 2 50. All six functions
corresponding to the 88th and 89th arguments are identical in MS Tk.
See note 6 on page 204.

Remarks on Table VI.C1

1. The attested entry ‘859’ for Chāyā 60 4 u could be emended to ‘858’ as
a suspected mistranscription by a table author (or scribe). This emenda-
tion would agree with the recomputed result, and also avoid the differ-
ence of 1 integer unit between the attested and recomputed entries (a
significant statistical anomaly). However, the attested shadow lengths of
the 60-digit and 12-digit gnomons corresponding to 4 of solar altitude
in MS Tk are computationally interrelated. The irregular recomputation
of Chāyā 12 4 uses 859 3 48 as the attested value of Chāyā 60 4 (see
note 1 in Section 3.5.3).

2. On f. 49v of MS Tk, the digit ‘0’ (of the number 30) in Chāyā 60 23 s
had a dot under it: , 30. An underdot is sometimes used as a signe
de renvoi (cancellation mark) in Sanskrit, and the recomputational ev-
idence also suggests Chāyā 23 s 3. Hence, I record the value of
Chāyā 60 23 s as 3 in my transcription.

3. The digits in the seconds place of the attested and recomputed shadow
lengths of a 60-digit gnomon for certain degrees of solar altitudes
(e.g. 38 , 56 , or 65 ) vary by up to 3. I have not been able to justify
these differences mathematically (or as obvious interventions/oversights),
and therefore, I do not propose any emendations in Table VI.C1 to
change the attested digits (in the seconds place) of the shadow lengths
corresponding to these arguments.

3.6.2. Shadow length for gnomon of height 12 digits (Table VI.C2)

Based on inadvertent copying oversights
1. Chāyā 12 4 u: 172 171. Suspected alteration of homoglyphic digits
‘1’ and ‘2’ in handwritten Devanāgarī.

2. Chāyā 12 19 m: 1 51. Suspected mistranscription. Chāyā 12 18 m,
Chāyā 12 19 m, and Chāyā 12 20 m appear in the sequence ‘55’, ‘1’,
and ‘58’ respectively.
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3.6.3. Shadow length for gnomon of height 7 digits (Table VI.C3)
Based on inadvertent copying oversights
1. Chāyā 7 (1◦)u: 410 → 400. Suspected mistranscription. Also, the digits
‘0’ and ‘1 can (sometimes) appear homoglyphic in handwritten Deva-
nāgarī suggesting a possible unwitting alteration.

2. Chāyā 7 (67◦)m: 59 → 58. Suspected mistranscription. Chāyā 7 (67◦)m
and Chāyā 7 (68◦)m appear in the sequence ‘59’ and ‘49’ respectively.
Also, the digits ‘8’ and ‘9’ can (sometimes) appear homoglyphic in hand-
written Devanāgarī suggesting a possible alteration.

3. Chāyā 7 (81◦)u: 16→ 6. Suspected mistranscription. Chāyā 7 (80◦)u and
Chāyā 7 (81◦)u appear in the sequence ‘14’ and ‘16’ respectively.

4. Chāyā 7 (82◦)u: 34 → 2. Suspected mistranscription. Chāyā 7 (82◦),
Chāyā 7 (83◦), and Chāyā 7 (84◦) appear in the sequence ‘34’, ‘34’, and
‘34’ respectively.

5. Chāyā 7 (84◦)u: 34 → 9. Suspected mistranscription. Chāyā 7 (82◦),
Chāyā 7 (83◦), and Chāyā 7 (84◦) appear in the sequence ‘34’, ‘34’, and
‘34’ respectively.

6. Chāyā 7 (89◦)s: 10→ 20. Suspected alteration of homoglyphic digits ‘1’
and ‘2’ in handwritten Devanāgarī.

Based on intentional interventions
7. Chāyā 7 (87◦): 0;14,40→ 0;22,1. Suspected contamination. The recom-
puted value of Chāyā 7 (88◦) is 0;14,40; this value appears under the
87th argument as a dislocated or displaced entry (perhaps, to replace a
corrupted/illegible/missing entry; however, this could also be an unin-
tentional mistranscription).

8. Chāyā 7 (88◦) : 0;7,20 → 0;14,40. Suspected contamination. Adjacent
entries Chāyā 7 (88◦) and Chāyā 7 (89◦) are both 0;7,20. All six func-
tions corresponding to the 88th and 89th arguments are identical in
MS Tk. See note 6 on page 204.

Remarks on Table VI.C3

The digits in the seconds place of the attested and recomputed shadow
lengths of a 7-digit gnomon for the solar altitudes of 18◦, 25◦, 34◦, 38◦,
43◦, 51◦, and 77◦ vary by +1. Without any mathematical justification for
these differences (or any evidence to suggest scribal interventions/oversights),
I leave digits (in the seconds place) of these shadow lengths in Table VI.C3
unemended.
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3.7. Table of lunar latitudes (śara): Recomputation strategy
The table of lunar latitude (śara) of the Amṛtalaharī (in MS Tk) is computed
for every degree of the lunar-nodal elongation50 from 1◦ to 90◦ and has a
maximum value (equal to the inclination i of the lunar orbit) of 4◦30′. The
lunar latitude β is related to the lunar-nodal elongation (also known as the
argument of lunar latitude) ω with the expression

Sin β= Sin i×
Sin ω
R

≡ Sin 4◦30′ ×
Sin ω
60

∵ i = 4◦30′ and R= 60.

1. Most Sanskrit siddhāntas approximate the lunar latitude β as 4;30×
Sin ω

/R (in degrees), e.g. Lalla’s Śiṣyadhīvṛddhidatantra (c. early 9th cen-
tury): V.11.51 However, MS Tk uses the exact form of the expres-
sion to calculate the lunar latitude.52 Appendix C.3 includes a statistical
analysis of the differences between the attested lunar latitudes (from
MS Tk) and the recomputed results when the approximate expression
(4;30× Sin ω/R) or the exact equation (Sin 4◦30′ × Sin ω/R) are used
separately.

2. The value of the parameter Sin 4◦30′ can be calculated in two different
ways:
(a) by linear interpolation using the recomputed values of Sin 4◦ and

Sin 5◦ as 4;11,17 and 5;13,46 (from Table VI.A) respectively, or
(b) by using the formula for the Sine of half the arc for an arc of

9◦ and the recomputed value Cos 9◦ = Sin 81◦ = 59;15,41 (from
Table VI.A).

The method of linear interpolation gives 4;42,26,29,59 (with all sub-
sequent fractions greater than 30), or 4;42,27 (successively rounded to
seconds). Using the trigonometric formula gives 4;42,26,8,59, or ap-
proximately 4;42,26 (rounded to seconds). My recomputations, however,
indicate that the lunar latitude calculations in MS Tk use Sin 4◦30′ =
4;42,25. I select the value 4;42,25 by statistically testing the differences
between the attested values in MS Tk and my recomputed results (us-
ing all three values of the parameter Sin 4◦30′ separately) to find the
parametric estimate that minimises these differences, see Appendix C.4.

50 The lunar-nodal elongation is the difference between the celestial longitude of the orbital
lunar node (☊ or ☋) and the orb of the Moon, i.e. ω = λMoon − λ☊ or☋. The lunar-nodal
elongation ranges from 0◦ to ±180◦ depending on the position of the Moon (along its orbit)
and the lunar node.

51 Chatterjee, Śiṣyadhīvṛddhida Tantra, pp. 113–14, includes a derivation of Lalla’s method
to compute the lunar latitude using the approximate expression.

52 The maximum value of β (at ω = 90◦) is equal to the inclination of the lunar orbit,
i.e. 4◦30′. As Sin 4◦30′ ≈ 4;30, most Sanskrit texts take Sin β≈ β for all 0◦ ≤ β≤ 4◦30′.
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3.6.3. Shadow length for gnomon of height 7 digits (Table VI.C3)
Based on inadvertent copying oversights
1. Chāyā 7 1 u: 410 400. Suspected mistranscription. Also, the digits
‘0’ and ‘1 can (sometimes) appear homoglyphic in handwritten Deva-
nāgarī suggesting a possible unwitting alteration.

2. Chāyā 7 67 m: 59 58. Suspected mistranscription. Chāyā 7 67 m
and Chāyā 7 68 m appear in the sequence ‘59’ and ‘49’ respectively.
Also, the digits ‘8’ and ‘9’ can (sometimes) appear homoglyphic in hand-
written Devanāgarī suggesting a possible alteration.

3. Chāyā 7 81 u: 16 6. Suspected mistranscription. Chāyā 7 80 u and
Chāyā 7 81 u appear in the sequence ‘14’ and ‘16’ respectively.

4. Chāyā 7 82 u: 34 2. Suspected mistranscription. Chāyā 7 82 ,
Chāyā 7 83 , and Chāyā 7 84 appear in the sequence ‘34’, ‘34’, and
‘34’ respectively.

5. Chāyā 7 84 u: 34 9. Suspected mistranscription. Chāyā 7 82 ,
Chāyā 7 83 , and Chāyā 7 84 appear in the sequence ‘34’, ‘34’, and
‘34’ respectively.

6. Chāyā 7 89 s: 10 20. Suspected alteration of homoglyphic digits ‘1’
and ‘2’ in handwritten Devanāgarī.

Based on intentional interventions
7. Chāyā 7 87 : 0 14 40 0 22 1. Suspected contamination. The recom-
puted value of Chāyā 7 88 is 0 14 40; this value appears under the
87th argument as a dislocated or displaced entry (perhaps, to replace a
corrupted/illegible/missing entry; however, this could also be an unin-
tentional mistranscription).

8. Chāyā 7 88 0 7 20 0 14 40. Suspected contamination. Adjacent
entries Chāyā 7 88 and Chāyā 7 89 are both 0 7 20. All six func-
tions corresponding to the 88th and 89th arguments are identical in
MS Tk. See note 6 on page 204.

Remarks on Table VI.C3

The digits in the seconds place of the attested and recomputed shadow
lengths of a 7-digit gnomon for the solar altitudes of 18 , 25 , 34 , 38 ,
43 , 51 , and 77 vary by 1. Without any mathematical justification for
these differences (or any evidence to suggest scribal interventions/oversights),
I leave digits (in the seconds place) of these shadow lengths in Table VI.C3
unemended.
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The method of determining the lunar latitude (from its Sine) is similar to
that of the solar declination. Having calculated the Sine of the lunar latitude,
the corresponding latitude (in degrees) is determined by finding the inverse
arc of Sine. See Section 3.3 for the algorithm to inversely interpolate the
measure of arc corresponding to a particular Sine.

3.7.1. Worked example
Calculating the lunar latitude β corresponding to a lunar-nodal elongation ω
of 52◦:
1. For a lunar-nodal elongation ω = 52◦, using the recomputed Sin 52◦ =
47;16,50 from Table VI.A, Sin β(52◦) = 4;42,25× Sin 52◦/60 ≈ 3;42,33
(rounded to seconds).

2. To determine the lunar latitude β(52◦) corresponding to a Sine of
3;42,33, observe from Table VI.A that Sin 3◦ ≡ 3;8,25 < Sin β(52◦) <
Sin 4◦ ≡ 4;11,7. Therefore,

β(52◦) = 3◦ +
Sin β(52◦)− Sin 3◦

Sin 4◦ − Sin 3◦

= 3◦ +
ï

3;42,33− 3;8,25
4;11,7− 3;8,25

ò

in degrees
= 3◦ +

ï

0;34,9
1;2,42

ò

in degrees

= 3◦ + 0◦32′40′′ (rounded to seconds)≈ 3◦32′40′′.

The recomputed lunar latitude corresponding to a lunar-nodal elonga-
tion of 52◦ is 3◦32′40′′.

Table VI.D on page 238 presents the recomputed lunar latitudes for every de-
gree of lunar-nodal elongation from 1◦ to 90◦. Most of these recomputations
follow the algorithm described above; however, a few entries are calculated
irregularly as described below.

3.7.2. Recomputational irregularities in lunar latitude calculations
1. Recomputing the lunar latitude β for a lunar-nodal elongation of ω =
90◦. For ω = 90◦, Sin β(90◦) = Sin 4◦30′ as Sin ω = Sin 90◦ = R.
Hence, β(90◦) is simply 4◦30′ (the inclination of the lunar orbit).
Alternatively, with Sin (4◦30′) ≈ 4;42,25, β(90◦) ≡ arcSin (4;42,25) ≈
4◦29′59′′ (rounded to seconds). This value is inversely interpolated us-
ing the recomputed values Sin 4◦ = 4;11,7 and Sin 5◦ = 5;13,46 from
Table VI.A. The attested value of 4;30′ in MS Tk agrees with this in-
terpolated value (rounded to minutes).

2. Recomputing the lunar latitudes for the lunar-nodal elongations 4◦, 7◦,
24◦, 25◦, 26◦, 42◦, 48◦, 50◦, 62◦, and 79◦. The recomputed values
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match the attested values in MS Tk when the final results are trun-
cated to seconds (instead of systematically rounding them to seconds),
e.g.

β (recomputed, up to thirds) β (attested in MS Tk)
β(4◦) = 0◦18′48′′42′′′ ←→ β(4◦) = 0◦18′48′′

β(24◦) = 1◦49′42′′48′′′ ←→ β(24◦) = 1◦49′42′′

The truncated versions of these recomputed values are not suggested
as emendations; instead, the third row of differences between the at-
tested and recomputed values (corresponding to these arguments) in
Table VI.D registers them as a difference of ‘−1’.

3.8. Table of lunar latitudes (śara): Analysis of differences
List of proposed emendations to the attested lunar latitudes in MS Tk:

Based on inadvertent copying oversights
1. β(12◦)d: 1→ 0. Suspected mistranscription. β(10◦)d, β(11◦)d, β(12◦)d,
and β(13◦)d appear in the sequence ‘0’, ‘0’, ‘1’, and ‘1’ respectively.

2. β(44◦)s: 36→ 26. Suspected alteration of homoglyphic digits ‘2’ and ‘3’
in handwritten Devanāgarī.

Based on intentional interventions
3. β(85◦)s: 20→ 57. Suspected contamination. The recomputed value of
β(86◦)s is ‘19’; the number ‘20’ (∼ ‘19’ at the level of arithmetical
noise) appears under the 85th argument as a dislocated or displaced
entry, perhaps, to replace a corrupted/illegible/missing entry. However,
this could also be an unintentional mistranscription by a scribe/table
author.

4. β(86◦)s: 37→ 20. Suspected contamination. The recomputed value of
β(87◦)s is ‘37’; this value appears under the 86th argument as a dislo-
cated or displaced entry (perhaps, to replace a corrupted/illegible/miss-
ing entry or a perpetuated mistranscription).

5. β(87◦)s: 50 → 37 Suspected contamination. The recomputed value of
β(88◦)s is ‘50’; the number ‘49’ (∼ ‘50’ at the level of arithmetical
noise) appears under the 87th argument as a dislocated or displaced en-
try (perhaps, to replace a corrupted/illegible/missing entry or a perpet-
uated mistranscription).

6. β(88◦)s: 57 → 50. Suspected contamination. Adjacent entries β(88◦)s
and β(89◦)s are ‘57’. All six functions corresponding to the 88th and
89th arguments are identical in MS Tk. See note 6 on page 204.
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The method of determining the lunar latitude (from its Sine) is similar to
that of the solar declination. Having calculated the Sine of the lunar latitude,
the corresponding latitude (in degrees) is determined by finding the inverse
arc of Sine. See Section 3.3 for the algorithm to inversely interpolate the
measure of arc corresponding to a particular Sine.

3.7.1. Worked example
Calculating the lunar latitude β corresponding to a lunar-nodal elongation ω
of 52 :
1. For a lunar-nodal elongation ω 52 , using the recomputed Sin 52
47 16 50 from Table VI.A, Sin β 52 4 42 25 Sin 52 60 3 42 33
(rounded to seconds).

2. To determine the lunar latitude β 52 corresponding to a Sine of
3 42 33, observe from Table VI.A that Sin 3 3 8 25 Sin β 52
Sin 4 4 11 7. Therefore,

β 52 3
Sin β 52 Sin 3
Sin 4 Sin 3

3
3 42 33 3 8 25
4 11 7 3 8 25 in degrees

3
0 34 9
1 2 42 in degrees

3 0 32 40 (rounded to seconds) 3 32 40

The recomputed lunar latitude corresponding to a lunar-nodal elonga-
tion of 52 is 3 32 40 .

Table VI.D on page 238 presents the recomputed lunar latitudes for every de-
gree of lunar-nodal elongation from 1 to 90 . Most of these recomputations
follow the algorithm described above; however, a few entries are calculated
irregularly as described below.

3.7.2. Recomputational irregularities in lunar latitude calculations
1. Recomputing the lunar latitude β for a lunar-nodal elongation of ω
90 . For ω 90 , Sin β 90 Sin 4 30 as Sin ω Sin 90 .
Hence, β 90 is simply 4 30 (the inclination of the lunar orbit).
Alternatively, with Sin 4 30 4 42 25, β 90 arcSin 4 42 25
4 29 59 (rounded to seconds). This value is inversely interpolated us-
ing the recomputed values Sin 4 4 11 7 and Sin 5 5 13 46 from
Table VI.A. The attested value of 4 30 in MS Tk agrees with this in-
terpolated value (rounded to minutes).

2. Recomputing the lunar latitudes for the lunar-nodal elongations 4 , 7 ,
24 , 25 , 26 , 42 , 48 , 50 , 62 , and 79 . The recomputed values
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Remarks on Table VI.D
1. The lunar latitudes for 57◦ to 60◦ of lunar-nodal elongation are illegible
in the minutes and seconds places in MS Tk. I represent these illegible
entries, the differences between the corresponding sexagesimal digits, and
their proposed emendations as ‘[--]’ in Table VI.D.

2. The attested and recomputed lunar latitudes for 70◦, 71◦, 74◦, 75◦, 76◦,
77◦, 81◦, and 82◦ of lunar-nodal elongation differ by ±1′. My recom-
putations (including irregular ones) have been unsuccessful in removing
this difference, and there are no discernible copying mistakes or scribal
corrections in any of these instances. Therefore, I present the attested
digits (in the minutes place) of these lunar latitudes in Table VI.D with-
out suggesting any emendations.

3. Also, the digits in the seconds place of the attested and recomputed lu-
nar latitudes for several degrees of lunar-nodal elongations vary by up to
±3. I suspect these differences are a result of irregular arithmetic calcu-
lations or selecting incorrect interpolation intervals. However, I have not
been able to explain these differences mathematically (or justify them
as interventions/oversights), and therefore, I do not emend the attested
digits (in the seconds place) for these arguments in Table VI.D.

4. Conclusion and Discussion

In this study, I recomputed a selection of six tables from Nityānanda’s Amṛta-
laharī to understand the algorithms, the irregularities, and the interdependen-
cies that capture the mathematics of these tables. I also analysed the differ-
ences between the attested values (in a single witness MS Tk) and my re-
computed results to identify plausible scribal discrepancies (inadvertent copy-
ing oversights or intentional interventions), which then allowed to propose a
few emendations to the attested values. The process of recomputing attested
tables not only reveals the subtle mathematical decisions that table authors
make as they recalculate or rectify entries, but also indicates patterns of er-
rors and oversights that get transmitted as the tables are recopied over time.
This study brings to light the challenges in applying this process when work-
ing with a single manuscript witness. I summarise below the main observa-
tions of my study, and the ensuing questions they pose as we begin to build
modern digital tools to understand better the historical process of computing
astronomical tables.
1. The attested values corresponding to the 88th and 89th arguments are
identical for all six functions tabulated on the manuscript. The digital
surrogates (of ff. 49v–50v) of MS Tk show faint vertical rules separating
thirty columns of arguments on each folio, with corresponding six sets
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of functions vertically stacked below them and mutually separated by
horizontal rules. This formatted (grid-like) presentation of the six tables
on MS Tk suggests that a professional scribe could have copied the
entries from a parent manuscript, column by column, and while doing
so, inadvertently duplicated all six sets of values for the 88th and 89th
arguments as they populated the grid.
However, there are other instances where individual digits (in the

sexagesimal places of the value of a function) appear to be shifted hor-
izontally into adjacent cells, e.g. the leftwards displacement of the dig-
its (in the seconds place) for lunar latitudes corresponding to the 86th,
87th, and 88th arguments. These horizontal shifts suggest that the tables
(or certain parts of the tables) were perhaps copied cell by cell along
each row. Certain mathematical aspects of a function (e.g. monotonic-
ity) become evident when copying the values progressively, and hence,
table authors may have found it intuitive to copy the sexagesimal digits
(of the value of a function) row-wise. The various patterns of compu-
tational irregularities or scribal discrepancies noted in this study suggest
different directions in which the tables were possibly copied. The extent
to which anomalous entries can expose the direction of copying, and
perhaps, the intention of the copyist themselves, is a challenging ques-
tion that requires more advanced methods of analysis applied to larger
selections of tables from a manuscript.

2. While the identical sets of values for the 88th and 89th arguments on
f. 50v of MS Tk could be the result of an inadvertent copying oversight,
it is just as likely the result of an intentional change. At some point in
the transmission of the tables, a diligent scribe (or a table author) may
have simply copied the six sets of values for the 89th argument into
the column of the 88th argument to rectify a corrupted, illegible, or
missing column in a parent manuscript (perhaps, treating the small dif-
ferences between these values to be mathematically insignificant). These
speculations indicate how inadvertent or intentional choices of succes-
sive historical actors (scribes or table authors) modify a particular table,
and separate each subsequent copy from the previous one (and the orig-
inal) by an added degree of uncertainty.

3. In this study, there are some cases where irregular recomputations elim-
inate the differences between the attested values (in MS Tk) and my
recomputed results. In other instances, inadvertent or intentional scribal
changes are evident enough to justify emending the attested values, and
by doing so, reduce or remove the differences. Nevertheless, there are
still several (small) differences between the attested and recomputed val-

220 ANUJMISRA

Remarks on Table VI.D
1. The lunar latitudes for 57 to 60 of lunar-nodal elongation are illegible
in the minutes and seconds places in MS Tk. I represent these illegible
entries, the differences between the corresponding sexagesimal digits, and
their proposed emendations as ‘[--]’ in Table VI.D.

2. The attested and recomputed lunar latitudes for 70 , 71 , 74 , 75 , 76 ,
77 , 81 , and 82 of lunar-nodal elongation differ by 1 . My recom-
putations (including irregular ones) have been unsuccessful in removing
this difference, and there are no discernible copying mistakes or scribal
corrections in any of these instances. Therefore, I present the attested
digits (in the minutes place) of these lunar latitudes in Table VI.D with-
out suggesting any emendations.

3. Also, the digits in the seconds place of the attested and recomputed lu-
nar latitudes for several degrees of lunar-nodal elongations vary by up to
3. I suspect these differences are a result of irregular arithmetic calcu-

lations or selecting incorrect interpolation intervals. However, I have not
been able to explain these differences mathematically (or justify them
as interventions/oversights), and therefore, I do not emend the attested
digits (in the seconds place) for these arguments in Table VI.D.

4. Conclusion and Discussion

In this study, I recomputed a selection of six tables from Nityānanda’s Amṛta-
laharī to understand the algorithms, the irregularities, and the interdependen-
cies that capture the mathematics of these tables. I also analysed the differ-
ences between the attested values (in a single witness MS Tk) and my re-
computed results to identify plausible scribal discrepancies (inadvertent copy-
ing oversights or intentional interventions), which then allowed to propose a
few emendations to the attested values. The process of recomputing attested
tables not only reveals the subtle mathematical decisions that table authors
make as they recalculate or rectify entries, but also indicates patterns of er-
rors and oversights that get transmitted as the tables are recopied over time.
This study brings to light the challenges in applying this process when work-
ing with a single manuscript witness. I summarise below the main observa-
tions of my study, and the ensuing questions they pose as we begin to build
modern digital tools to understand better the historical process of computing
astronomical tables.
1. The attested values corresponding to the 88th and 89th arguments are
identical for all six functions tabulated on the manuscript. The digital
surrogates (of ff. 49v–50v) of MS Tk show faint vertical rules separating
thirty columns of arguments on each folio, with corresponding six sets
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ues in every table that cannot be justified as anomalous calculations or
scribal discrepancies. Perhaps, in some measure, these differences are the
result of historical actors making tacit decisions ad libitum. Most his-
torical recomputations of astronomical tables, including those presented
here, admit to this level of residual noise.

4. In my study of the selected corpus, I found a single instance where an
attested Sine from MS Tk (different from my recomputed Sine) repro-
duces an attested value (of another function) identically and exclusively.
With Cos 88◦ = Sin 2◦ = 2;0,38, the recomputed shadow length of a
12-digit gnomon for a solar altitude of 87◦ is identical to its attested
value in MS Tk. Mathematically, this recomputation is highly irregular
as it not only enters a wrong Cosine in the algorithm (Cos 88◦ instead
of the regular Cos 87◦ = Sin 3◦), but also uses an inaccurate Sine (Sin 2◦
should be 2;5,38) in the calculation that follows. Accordingly, this at-
tested (or irregularly recomputed) shadow length for the 87th argument
makes the sequence Chāyā 12 (86◦) = 0;50,20, Chāyā 12 (87◦) = 0;24,9,
and Chāyā 12 (88◦) = 0;32,24 in MS Tk mathematically inconsistent.
(The shadow length is a monotonically decreasing function for the first
ninety degrees of the argument.) The recomputational irregularities that
involve interdependencies between attested values from different tables
are a strong indication of secondary interventions. In this case, it is very
likely that a (later) table author (mis)calculated the shadow length for
a corrupted/illegible/missing entry corresponding to the 87th argument
by simply using the attested value of Sine (in the parent manuscript).

5. The three tables of shadow lengths in MS Tk reveal further interde-
pendencies between their entries, e.g. the shadow lengths Chāyā 7 (4◦)
and Chāyā 60 (4◦), Chāyā 12 (4◦) and Chāyā 60 (4◦), or Chāyā 12 (24◦) and
Chāyā 60 (24◦). These computational interdependencies also indicate that
historical actors (presumably, different from the original author) regu-
larly modified tables by recomputing certain entries using attested values
from a parent manuscript.

The observations of this study show how historical actors carelessly or con-
sciously modify a table as they copy it. Their modifications increasingly dis-
tance earlier versions of the table from what is attested in a present witness.
Essentially, each witness is a mathematical artefact from a particular time that
contains an aggregated picture of the changes made (and unmade) by previous
actors. Our modern recomputations simulate historical procedures, identify
computational irregularities, and analyse scribal discrepancies to help us trace
the mathematical practices of these actors. As more advanced tools from data
sciences (in particular, knowledge discovery processes and machine learning)
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are adapted to analyse and predict patterns in these table entries, method-
ological questions become important for designing meaningful algorithms. For
instance, how do table authors modify theoretical (canonical) formulae for
practical computations? What combinations of arithmetical operations repro-
duce the anomalous values attested in a table? Do residual differences follow
a behavioural trend for a selected corpus? What is a sensible taxonomy of
recomputational irregularities and scribal discrepancies? How can competing
recomputational strategies be statistically chosen? This study addresses some
of these questions by examining a few selected tables of the Amṛtalaharī.
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Appendix B: Recomputation and analysis of Tables VI.A–D

Conventions for representing the tables

The six tables (Tables VI.A, VI.B, VI.C1–3, and VI.D) from the selected cor-
pus are presented on pp. 233–38.
1. Each table has four separate rows of (sexagesimal) entries, placed one
below the other, in three argument blocks 1◦ to 30◦, 31◦ to 60◦, and
61◦ to 90◦. The arguments (in degrees) represent the following different
quantities for the respective tables:
(a) Table of Sines (VI.A): measure of arc;
(b) Table of solar declinations (VI.B): celestial longitude;
(c) Table of shadow lengths of gnomons of 60-digit (VI.C1), 12-digit

(VI.C2), and 7-digit heights (VI.C3): solar altitude; and
(d) Table of lunar latitudes (VI.D): lunar-nodal elongation.

2. The sexagesimal values of the table entries are written vertically. The
digits at the top of a vertical stack represent the integer part (i.e. units
or degrees) of the number, those in the middle indicate the first frac-
tional part (i.e. minutes), and the digits at the bottom of a stack signify
the second fractional part (i.e. seconds).

3. In each argument block of thirty degrees,
(a) the first row lists the attested values from MS Tk;
(b) the second row presents the recomputed values with

– the digits (in individual sexagesimal places) that result from ir-
regular recomputations enclosed in a rectangular box;

(c) the third row shows the difference in digits between corresponding
sexagesimal places of the attested and recomputed values (from the
previous two rows) with
– all non-zero differences enclosed in shaded grey boxes; and

(d) the fourth row lists the proposed emendation to the attested values
where
– any modified entries (in individual sexagesimal places) are en-
closed in circles.

These conventions allow (a) recomputational irregularities (digits in rectan-
gular boxes), (b) non-zero revised differences (digits in grey cells), and (c)
proposed emendations (encircled digits) to be clearly identified. For a collec-
tion of tables from a single manuscript, this visual representation allows the
recomputational and the text-critical versions of individual tables to be seen
concurrently.
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Appendix B: Recomputation and analysis of Tables VI.A–D

Conventions for representing the tables

The six tables (Tables VI.A, VI.B, VI.C1–3, and VI.D) from the selected cor-
pus are presented on pp. 233–38.
1. Each table has four separate rows of (sexagesimal) entries, placed one
below the other, in three argument blocks 1 to 30 , 31 to 60 , and
61 to 90 . The arguments (in degrees) represent the following different
quantities for the respective tables:
(a) Table of Sines (VI.A): measure of arc;
(b) Table of solar declinations (VI.B): celestial longitude;
(c) Table of shadow lengths of gnomons of 60-digit (VI.C1), 12-digit

(VI.C2), and 7-digit heights (VI.C3): solar altitude; and
(d) Table of lunar latitudes (VI.D): lunar-nodal elongation.

2. The sexagesimal values of the table entries are written vertically. The
digits at the top of a vertical stack represent the integer part (i.e. units
or degrees) of the number, those in the middle indicate the first frac-
tional part (i.e. minutes), and the digits at the bottom of a stack signify
the second fractional part (i.e. seconds).

3. In each argument block of thirty degrees,
(a) the first row lists the attested values from MS Tk;
(b) the second row presents the recomputed values with

– the digits (in individual sexagesimal places) that result from ir-
regular recomputations enclosed in a rectangular box;

(c) the third row shows the difference in digits between corresponding
sexagesimal places of the attested and recomputed values (from the
previous two rows) with
– all non-zero differences enclosed in shaded grey boxes; and

(d) the fourth row lists the proposed emendation to the attested values
where
– any modified entries (in individual sexagesimal places) are en-
closed in circles.

These conventions allow (a) recomputational irregularities (digits in rectan-
gular boxes), (b) non-zero revised differences (digits in grey cells), and (c)
proposed emendations (encircled digits) to be clearly identified. For a collec-
tion of tables from a single manuscript, this visual representation allows the
recomputational and the text-critical versions of individual tables to be seen
concurrently.
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Appendix C: Statistical Analysis

C.1. Choosing systematic rounding over truncation

All regular recomputations in this study express sexagesimal numbers up to
the second fractional place. To reduce a sexagesimal number in the final re-
sult of a recomputation, I chose to systematically round the number to the
seconds place instead of truncating it; in other words, for a number of the
form a; b, c, d, I round the number to a; b, c when d < 30 or a; b, c+1 when
d ≥ 30 (instead of truncating it to a; b, c for any value of d). To validate
this choice, I statistically test the proportion of differences between the at-
tested and recomputed values when two mutually independent strategies are
used to reduce the final result, namely, systematic rounding and truncation.
In both reduction strategies, computing the differences between the attested
values and the recomputed results are considered as binary events, i.e. they
generate zero (0-state) or non-zero values (1-state) of the differences. The z-
test for two population proportions is then used to test the efficacy of these
two strategies in minimising the proportion of the differences for every ta-
ble from the selected corpus. The parameters, hypotheses, and test statistic in
implementing this test are described below.
1. The ninety reduced entries (i.e. the final results) using systematic round-
ing and those using truncation are considered as two independent pop-
ulations with a common size. The total number of determinate events
n det is selected as the common sample size from both populations. The
determinate events are those instances where a clear distinction can be
made between the choice of sexagesimal reduction.53 For every table, the
reduced sample size n det is large enough (i.e. greater than thirty) to as-
sume normality, and the individual events (in the 0-state or 1-state) in
the sample are mutually independent.

2. In the two samples of size n det, x sys.rnddet indicates the number of 1-state
events (i.e. those producing non-zero differences between the attested
and recomputed values) generated by the first population (systematic
rounding) and x truncdet indicates the 1-state events generated by the second
population (truncation). With these values, the sample proportions for
the two populations are computed as

53 For a sexagesimal result a; b, c, d with d ≤ 29, systematic rounding or truncation reduce
the number to a; b, c identically. Such instances are called indeterminate events n indet as the two
reduction strategies are indistinguishable. The present analysis only includes determinate events
n det where the reduction strategies can be clearly identified from one another; in other words,
cases where the recomputed results are a; b, c, d with d ≥ 30 (and hence reduced to a; b, c + 1 by
systematic rounding or a; b, c by truncation). For every table, n det+ n indet = 90.
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p̂ sys.rnddet =
x sys.rnddet

n det
and p̂ truncdet =

x truncdet

n det
.

3. To statistically test:

the null hypothesis H0: p̂ sys.rnddet ≤ p̂ truncdet against
the alternative hypothesis Ha: p̂ sys.rnddet > p̂ truncdet .
The null hypothesis maintains that the proportion of 1-state events in
the first population is lower or equal to those in the second population,
whereas the alternative hypothesis claims the converse. In other words,
the null hypothesis expresses the belief that systematic rounding is sta-
tistically better (or at least, equivalent to) truncating the digits when
the two reduction strategies are compared. The alternative hypothesis, if
true, shows that truncating the digits, instead of systematically round-
ing them, is significantly better at minimising the non-zero differences
between the attested and recomputed results.

4. The test statistic based on the pooled sample proportion is:

z-statistic: z =
p̂ sys.rnddet − p̂ truncdet

√

p̂ det× (1− p̂ det)×
Ä

2
n det

ä

,

where

p̂ det ≡
p̂ sys.rnddet × n det+ p̂ truncdet × n det

n det+ n det
=

x sys.rnddet + x truncdet

2n det

is the pooled proportion. For every table, n det is large enough to ensure
p̂ det× n det ≥ 5 and (1− p̂ det)× n det ≥ 5. This allows the z-statistic to
be validly applied.

5. The hypothesis is tested at a 5% level of significance α using the right-
tailed z-test for two population proportions. For α = 0.05, the decision
rule is:

Reject H0 ∀ z ∈ R, where the rejection region R := {z : z > 1.645}.

The critical value of the right-tailed z-test is taken as zc ≡ zα = 1.645.

As Table 3 shows, the calculated z-statistic lies outside the rejection region
for all six tables of the selected corpus, and therefore, the null hypothesis H0
is retained and the alternative Ha is rejected. At a 5% level of significance,
the proportion of non-zero differences between the attested and recomputed
values using systematic rounding is lower (or at the very least, equal to) the
proportion when truncation is used. The recomputations in this study, in
particular, the final results of a calculation, are reduced to seconds by system-
atically rounding the digits based on this statistical inference.
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Type of
recomputation

Sexagesimal reduction strategies

Systematic rounding Truncation

Sines
Table VI.A

n det = 46 and n indet = 44

x sys.rnddet = 3, p̂ sys.rnddet ≈ 0.065 x truncdet = 46, p̂ truncdet = 1

p̂ det = 49/92≈ 0.533 and z ≈ − 0.935/0.104≈−8.985< zc = 1.645
∵ z /∈ R ⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Solar declinations
Table VI.B

n det = 45 and n indet = 45

x sys.rnddet = 26, p̂ sys.rnddet = 0.578 x truncdet = 26, p̂ truncdet ≈ 0.578

p̂ det = 52/90≈ 0.578 and z ≈ 0/0.104= 0< zc = 1.645
∵ z /∈ R ⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Shadow lengths:
60-digit gnomon
Table VI.C1

n det = 42 and n indet = 48

x sys.rnddet = 19, p̂ sys.rnddet ≈ 0.452 x truncdet = 23, p̂ truncdet ≈ 0.548

p̂ det = 42/84= 0.5 and z ≈ − 0.096/0.109≈−0.881< zc = 1.645
∵ z /∈ R ⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Shadow lengths:
12-digit gnomon
Table VI.C2

n det = 48 and n indet = 42

x sys.rnddet = 13, p̂ sys.rnddet ≈ 0.271 x truncdet = 37, p̂ truncdet = 0.771

p̂ det = 50/96≈ 0.521 and z ≈ − 0.5/0.102≈−4.903< zc = 1.645
∵ z /∈ R ⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Shadow lengths:
7-digit gnomon
Table VI.C3

n det = 41 and n indet = 49

x sys.rnddet = 5, p̂ sys.rnddet = 0.122 x truncdet = 38, p̂ truncdet = 0.927

p̂ det = 43/82≈ 0.524 and z ≈ − 0.805/0.110≈−7.297< zc = 1.645
∵ z /∈ R ⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Lunar latitudes
Table VI.D

n det = 49 and n indet = 41

x sys.rnddet = 29, p̂ sys.rnddet ≈ 0.592 x truncdet = 36, p̂ truncdet ≈ 0.735

p̂ det = 65/98≈ 0.663 and z ≈ − 0.143/0.095≈−1.496< zc = 1.645
∵ z /∈ R ⇒ Accept H0 and reject Ha

statistically preferred statistically rejected

Table 3: Statistical test (right-tailed z-test for two population proportions) to select between sys-
tematic rounding or truncation (two mutually independent reduction strategies) to reduce the final
results of the recomputations to the second fractional place for the six tables from MS Tk.
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p sys.rnddet
x sys.rnddet

n det
and p truncdet

x truncdet

n det
.

3. To statistically test:

the null hypothesis H0: p sys.rnddet p truncdet against
the alternative hypothesis Ha: p sys.rnddet p truncdet .
The null hypothesis maintains that the proportion of 1-state events in
the first population is lower or equal to those in the second population,
whereas the alternative hypothesis claims the converse. In other words,
the null hypothesis expresses the belief that systematic rounding is sta-
tistically better (or at least, equivalent to) truncating the digits when
the two reduction strategies are compared. The alternative hypothesis, if
true, shows that truncating the digits, instead of systematically round-
ing them, is significantly better at minimising the non-zero differences
between the attested and recomputed results.

4. The test statistic based on the pooled sample proportion is:

z-statistic: z
p sys.rnddet p truncdet

p det 1 p det 2
n det

where

p det
p sys.rnddet n det p truncdet n det

n det n det

x sys.rnddet x truncdet

2n det

is the pooled proportion. For every table, n det is large enough to ensure
p det n det 5 and 1 p det n det 5. This allows the z-statistic to
be validly applied.

5. The hypothesis is tested at a 5% level of significance α using the right-
tailed z-test for two population proportions. For α 0 05, the decision
rule is:

Reject H0 z R, where the rejection region R z z 1 645 .

The critical value of the right-tailed z-test is taken as zc zα 1 645.

As Table 3 shows, the calculated z-statistic lies outside the rejection region
for all six tables of the selected corpus, and therefore, the null hypothesis H0
is retained and the alternative Ha is rejected. At a 5% level of significance,
the proportion of non-zero differences between the attested and recomputed
values using systematic rounding is lower (or at the very least, equal to) the
proportion when truncation is used. The recomputations in this study, in
particular, the final results of a calculation, are reduced to seconds by system-
atically rounding the digits based on this statistical inference.
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C.2. Choosing recomputed Sines over the attested Sines in MS Tk

The solar declinations, shadow lengths of gnomons of various heights, and
lunar latitudes in this study are calculated using the recomputed Sines (Sin r)
instead of the attested Sines (Sin a) in MS Tk.54 I justify this choice on the
basis of the following two statistical measures:
1. The first measure compares the differences di s between the attested val-
ues of these functions (from MS Tk) and their recomputed values using
Sin r and Sin a separately, i.e.

d Sin a
i = |Value recompi [Sin a]−Value attesti | and

d Sin r
i = |Value recompi [Sin r]−Value attesti |∀ i ∈ N90

Similar to the 0-state and 1-state described in Appendix C.1, these dif-
ferences (i.e. d Sin a

i and d Sin r
i ) are considered as binary events. Accord-

ingly, I consider

– x Sin a
sim and x Sin r

sim as the number of 0-states (i.e. instances when the
differences di s are similar or zero) using the attested and recomputed
Sines respectively, and

– x Sin a
diss and x Sin r

diss as the number of 1-states (i.e. instances when the
differences di s are dissimilar or non-zero) using the attested and re-
computed Sines respectively.

For a total of n = 90 entries for each function, the proportion of 0 and
1 states using Sin r and Sin a separately can be expressed as

p Sina
sim =

x Sina
sim

n
, p Sinr

sim =
x Sinr
sim

n
, p Sina

diss =
x Sina
diss

n
, and p Sinr

diss =
x Sinr
diss

n
.

Table 4 presents these four proportions (in percentages) for the recom-
putations of the solar declinations, shadow lengths of gnomons of var-
ious heights, and lunar latitudes in 2×2 contingency tables. For lunar
latitudes, the attested values for 57◦, 58◦, 59 ◦, and 60◦ are illegible
in MS Tk, and accordingly, n = 86 for calculating these proportions.
The percentage proportion of dissimilar (non-zero) differences between
the attested and recomputed function values are typically lower (or, at
the very least, comparably equal) when recomputed Sines are used in-
stead of the attested Sines from MS Tk. Equivalently, the percentage

54 I use the attested Sine values with my proposed emendations (to correct for scribal discrep-
ancies) in this analysis. For example, the attested Sin a1◦ is taken as 1;2,50 instead of 1;5,50 (seen
inMS Tk).Without these emendation, the recomputed function values based on the attested Sines
become highly irregular and statistically superfluous. Also, for all calculations in this analysis, the
final sexagesimal results are systematically rounded to the second fractional place.
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Solar declinations

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sina
sim = 50/90≈ 55.56% p Sina

diss =
40/90≈ 44.44%

Recomputed p Sinr
sim = 50/90≈ 55.56% p Sinr

diss =
40/90≈ 44.44%

Shadow lengths: 60-digit gnomon

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sina
sim = 49/90≈ 54.44% p Sina

diss =
41/90≈ 45.56%

Recomputed p Sinr
sim = 58/90≈ 64.44% p Sinr

diss =
32/90≈ 35.56%

Shadow lengths: 12-digit gnomon

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sina
sim = 52/90≈ 57.78% p Sina

diss =
38/90≈ 42.22%

Recomputed p Sinr
sim = 63/90= 70% p Sinr

diss =
27/90= 30%

Shadow lengths: 7-digit gnomon

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sina
sim = 67/90≈ 74.44% p Sina

diss =
23/90≈ 25.56%

Recomputed p Sinr
sim = 80/90≈ 88.89% p Sinr

diss =
10/90≈ 11.11%

Lunar latitudes

Sines

Differences 0-state
(similar or zero)

1-state
(dissimilar or non-zero)

Attested p Sina
sim = 14/86≈ 16.28% p Sina

diss =
72/86≈ 83.72%

Recomputed p Sinr
sim = 34/86≈ 39.53% p Sinr

diss =
52/86≈ 60.47%

Table 4: 2×2 contingency tables showing the proportions of differences (in percentages) between
the attested and recomputed values of solar declinations, shadow lengths for gnomons of various
heights, and lunar latitudes calculated using the attested Sines (in MS Tk) and the recomputed
Sines separately.
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C.2. Choosing recomputed Sines over the attested Sines in MS Tk

The solar declinations, shadow lengths of gnomons of various heights, and
lunar latitudes in this study are calculated using the recomputed Sines (Sin r)
instead of the attested Sines (Sin a) in MS Tk.54 I justify this choice on the
basis of the following two statistical measures:
1. The first measure compares the differences di s between the attested val-
ues of these functions (from MS Tk) and their recomputed values using
Sin r and Sin a separately, i.e.

d Sin a
i Value recompi Sin a Value attesti and

d Sin r
i Value recompi Sin r Value attesti i 90

Similar to the 0-state and 1-state described in Appendix C.1, these dif-
ferences (i.e. d Sin a

i and d Sin r
i ) are considered as binary events. Accord-

ingly, I consider

– x Sin a
sim and x Sin r

sim as the number of 0-states (i.e. instances when the
differences di s are similar or zero) using the attested and recomputed
Sines respectively, and

– x Sin a
diss and x Sin r

diss as the number of 1-states (i.e. instances when the
differences di s are dissimilar or non-zero) using the attested and re-
computed Sines respectively.

For a total of n 90 entries for each function, the proportion of 0 and
1 states using Sin r and Sin a separately can be expressed as

p Sina
sim

x Sina
sim

n
p Sinr
sim

x Sinr
sim

n
p Sina
diss

x Sina
diss

n
and p Sinr

diss
x Sinr
diss

n
Table 4 presents these four proportions (in percentages) for the recom-
putations of the solar declinations, shadow lengths of gnomons of var-
ious heights, and lunar latitudes in 2 2 contingency tables. For lunar
latitudes, the attested values for 57 , 58 , 59 , and 60 are illegible
in MS Tk, and accordingly, n 86 for calculating these proportions.
The percentage proportion of dissimilar (non-zero) differences between
the attested and recomputed function values are typically lower (or, at
the very least, comparably equal) when recomputed Sines are used in-
stead of the attested Sines from MS Tk. Equivalently, the percentage

54 I use the attested Sine values with my proposed emendations (to correct for scribal discrep-
ancies) in this analysis. For example, the attested Sin a1 is taken as 1 2 50 instead of 1 5 50 (seen
inMS Tk).Without these emendation, the recomputed function values based on the attested Sines
become highly irregular and statistically superfluous. Also, for all calculations in this analysis, the
final sexagesimal results are systematically rounded to the second fractional place.
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Type of Recomputation
Sines

Attested Recomputed

Solar declinations
s≈ 7.258s

≈ 2.779s
s≈ 1.265s

≈ 0.689s

Shadow lengths: 60-digit gnomon
s≈ 380.840s

= 52.7s
s≈ 379.528s

≈ 41.067s

Shadow lengths: 12-digit gnomon
s≈ 6.536s

≈ 2.811s
s≈ 0.767s

= 0.367s

Shadow lengths: 7-digit gnomon
s≈ 3.485s

≈ 1.367s
s≈ 0.333s

≈ 0.111s

Lunar latitudes
s≈ 18.161s

≈ 6.779s
s≈ 18.219s

≈ 6.256s

Table 5: Table comparing the Root Mean Square Deviation (s) and Average Absolute Devi-
ation () (both measures in seconds) in recomputing the solar declinations, shadow lengths of
gnomons of various heights, and lunar latitudes using the attested Sines (in MS Tk) and the re-
computed Sines separately.

of similar (zero) differences between the attested and recomputed func-
tion values are typically higher (or comparably equal) when recomputed
Sines are used. This provides the first measure of validation for using the
recomputed Sines in calculating the other functions in this study.

2. In addition to the percentage proportions of differences, I calculate the
Root Mean Square Deviation (s) and the Average Absolute De-
viation () for an Ordinary Least Squares (OLS) regression model
as a second statistical measure to validate my choice. For each recom-
puted function, treating the attested Value attesti as the predicted value
yi and the recomputed Value

recomp
i [Sin a] or Value

recomp
i [Sin r] as the ob-

served value ŷ αi (α being Sin a or Sin r, and i ∈ N90), the i th residual is
e αi = ŷ αi − yi (among the total n = 90 residuals). With this

s=

∑n
i (e αi )

2

n
≡

∑n
i (ŷ αi − yi)

2

n
and

=

∑n
i |e αi |
n

≡

∑n
i |̂y αi − yi|

n
.

The s measures the square root of the variance of the residual; in
other words, it indicates the standard deviation of the unexplained vari-
ance between the prediction and the observation. The  indicates the
absolute average value of the residual, i.e. the average difference between
the attested and recomputed values of the functions. Both measures of
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fit are absolute measures (in the units of the entries themselves) with
lower values indicating a better fit. In OLS regression models, s
and  are used to indicate how accurately a model predicts the re-
sponse. Table 5 lists the s and  values (in seconds) for my
recomputations of the solar declinations, shadow lengths of gnomons of
various heights, and lunar latitudes using the attested and recomputed
Sines. (The lunar latitude calculations use n = 86 as four attested en-
tries in MS Tk are illegible.) The s and  values are lower in
most recomputations when recomputed Sines are used (instead of the
attested Sines in MS Tk), and thus, provide a second reason to choose
recomputed Sines to calculate the other functions in this study.55

C.3. Choosing the exact expression of lunar latitude over the approximate one

In this study, the lunar latitude β is recomputed for each degree of lunar-
nodal elongation ω using the exact expression Sin β = Sin 4◦30′ × Sin ω/60 in-
stead of the approximate expression β ≈ 4◦30′ × Sin ω/60. I justify this choice
based on the following two statistical measures:
1. The first measure compares the proportion of differences between the
attested and recomputed lunar latitudes when the two expressions are
used separately. Similar to the first statistical measure in Appendix C.2
(note 1), the proportions of the 0-state (similar or zero) and 1-state
(dissimilar or non-zero) differences using the exact and approximate ex-
pressions of lunar latitudes separately can be calculated as

p exactsim =
x exactsim

n
, p approxsim =

x approxsim

n
, p exactdiss =

x exactdiss

n
, and p approxdiss =

x approxdiss

n
.

where x exactsim and x approxsim are the number of 0-states using the respective
expressions; x exactdiss and x approxdiss are the number of 1-states using the re-
spective expressions; and n = 86 (since four entries corresponding to the
arguments 57◦ to 60◦ are illegible in MS Tk). Table 6 presents these
four proportions (in percentages) for the lunar latitude recomputations
in a 2×2 contingency table. Following previous calculations, the final
sexagesimal results are systematically rounded to the second fractional
place, and recomputed Sines (instead of the attested Sines in MS Tk)
are used. The percentage proportion of dissimilar (non-zero) differences
between the attested and recomputed lunar latitudes is lower when the
exact expression is used instead of the approximate one. Or equivalently,

55 The s is sensitive to outliers as the effect of each residual is proportional to the size of
its squared value. On account of this, the s value for the lunar latitude recomputations using
recomputed Sines is slightly larger than the corresponding value using attested Sines in Table 5.
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Type of Recomputation
Sines

Attested Recomputed

Solar declinations
s 7 258s

 2 779s
s 1 265s

 0 689s

Shadow lengths: 60-digit gnomon
s 380 840s

 52 7s
s 379 528s

 41 067s

Shadow lengths: 12-digit gnomon
s 6 536s

 2 811s
s 0 767s

 0 367s

Shadow lengths: 7-digit gnomon
s 3 485s

 1 367s
s 0 333s

 0 111s

Lunar latitudes
s 18 161s

 6 779s
s 18 219s

 6 256s

Table 5: Table comparing the Root Mean Square Deviation (s) and Average Absolute Devi-
ation () (both measures in seconds) in recomputing the solar declinations, shadow lengths of
gnomons of various heights, and lunar latitudes using the attested Sines (in MS Tk) and the re-
computed Sines separately.

of similar (zero) differences between the attested and recomputed func-
tion values are typically higher (or comparably equal) when recomputed
Sines are used. This provides the first measure of validation for using the
recomputed Sines in calculating the other functions in this study.

2. In addition to the percentage proportions of differences, I calculate the
Root Mean Square Deviation (s) and the Average Absolute De-
viation () for an Ordinary Least Squares (OLS) regression model
as a second statistical measure to validate my choice. For each recom-
puted function, treating the attested Value attesti as the predicted value
yi and the recomputed Value

recomp
i Sin a or Value recompi Sin r as the ob-

served value y αi (α being Sin a or Sin r, and i 90), the i th residual is
e αi y αi yi (among the total n 90 residuals). With this

s
n
i e αi

2

n

n
i y αi yi

2

n
and


n
i e αi
n

n
i y αi yi

n

The s measures the square root of the variance of the residual; in
other words, it indicates the standard deviation of the unexplained vari-
ance between the prediction and the observation. The  indicates the
absolute average value of the residual, i.e. the average difference between
the attested and recomputed values of the functions. Both measures of
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Expressions

Differences 0 state
(similar or zero)

1 state
(dissimilar or non-zero)

Exact p exactsim = 34/86≈ 39.53% p exactdiss = 52/86≈ 60.47%

Approximate p approxsim = 10/86≈ 11.63% p approxdiss = 80/86≈ 93.02%

Table 6: 2×2 contingency table showing the proportions of differences (in percentages) between
the attested and recomputed values of lunar latitudes calculated using the exact and approximate
expressions separately.

the percentage of similar (zero) differences between the attested and re-
computed lunar latitudes is higher when the exact expression is used.
This provides the first measure of validation for using the exact expres-
sion to recompute lunar latitudes.

2. I calculate the Median Absolute Deviation () of the differences
between the attested and recomputed lunar latitudes using the exact
and approximate expressions separately to establish the second statistical
measure. With the i th difference di = Value recompi [α̃]−Value attesti where
α̃ is the exact or approximate expression and i ∈ N86,

=Median (|di −Median(di)|) .

 provides a robust measure of the variability of the differences
with non-normal distributions.56 With it, a median-centred interval
[ν− 2, ν+ 2] can be constructed to identify statistical outliers
that lie outside the limits. Table 7 provides the descriptive statistics for
86 entries of di s using the exact and approximate expressions of lunar
latitude. When the exact expression is used,
– 75 entries (out of 86) are within ±2 of the median, in other
words, a set of 75 differences d corrected

i ∈ [−2, 2] are statistically rele-
vant; while

– 78 entries (out of 86) are within ±2 of the median when the
appropriate expression is used, i.e. 78 differences d corrected

i ∈ [−7, 17]
are statistically relevant.

Among these outlier-corrected differences d corrected
i ,

– there are 41 dissimilar (non-zero) differences out of 75, i.e. around
54.67%, when the exact expression is used, and

– there are 72 dissimilar (non-zero) differences out of 78, i.e. around
92.03%, when the approximate expression is used.

56 Typically, a normal distribution has skewness ς ∼ 0 and kurtosis κ ∼ 3, with the mean μ ∼
median ν. As Table 7 shows, the differences between the attested and recomputed lunar latitudes
using the exact and approximate expressions are not normally distributed.
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Type of Recomputation
Expressions of lunar latitude
Exact Approximate

Median Absolute Deviation () 1 6
Median ν≡Median(di) 0 5

Mean μ ≈−2.442 ≈ 1.953
Standard Deviation σ ≈ 18.055 ≈ 18.578

Skewness ς(di) ≈−1.279 ≈−1.509
Kurtosis κ(di) ≈ 7.275 ≈ 6.789

Table 7: Table showing the descriptive statistics, including the Median Absolute Deviation ()
of the differences between the attested and recomputed lunar latitudes calculated using the exact
and approximate expressions separately.

The lower percentage of outlier-corrected dissimilar (non-zero) differ-
ences between the attested and recomputed lunar latitudes using the
exact expression (compared to the approximate one) validates its choice
in this study.

C.4. Choosing the parameter Sin 4◦30′ = 4;45,25 for lunar latitude recomputa-
tions

In this study, the lunar latitude β is recomputed for each degree of lunar-
nodal elongation ω using the exact expression with the parameter Sin 4◦30′ =
4;42,25 instead of 4;42,26 or 4;42,27.57 I justify this choice based on the
following two statistical measures:
1. The first measure compares the proportion of differences between the
attested and recomputed values when the three estimates of the param-
eter Sin 4◦30′ are used separately. Similar to the first statistical measures
in Appendices C.2–3 (note 1), the proportion of the 0-state (similar or
zero) and 1-state (dissimilar or non-zero) differences can be separately
calculated using 4;42,25, 4;42,26, and 4;42,27 as

p 25ssim =
x 25ssim

n
, p 26ssim =

x 26ssim

n
, p 26ssim =

x 27ssim

n
,

p 25sdiss =
x 25sdiss

n
, p 26sdiss =

x 26sdiss

n
, and p 26sdiss =

x 27sdiss

n
,

where x 25ssim, x 26ssim, and x 27ssim are the 0-states using 4;42,25, 4;42,26, and
4;42,27 respectively; x 25sdiss, x 26sdiss, and x 27sdiss are the 1-states using the same

57 The different estimates of the parameter Sin 4◦30′ are derived using different methods, see
Section 3.7 (note 2).
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Expressions

Differences 0 state
(similar or zero)

1 state
(dissimilar or non-zero)

Exact p exactsim
34 86 39 53 p exactdiss

52 86 60 47

Approximate p approxsim 10 86 11 63 p approxdiss
80 86 93 02

Table 6: 2 2 contingency table showing the proportions of differences (in percentages) between
the attested and recomputed values of lunar latitudes calculated using the exact and approximate
expressions separately.

the percentage of similar (zero) differences between the attested and re-
computed lunar latitudes is higher when the exact expression is used.
This provides the first measure of validation for using the exact expres-
sion to recompute lunar latitudes.

2. I calculate the Median Absolute Deviation () of the differences
between the attested and recomputed lunar latitudes using the exact
and approximate expressions separately to establish the second statistical
measure. With the i th difference di Value recompi α Value attesti where
α is the exact or approximate expression and i 86,

 Median di Median di

 provides a robust measure of the variability of the differences
with non-normal distributions.56 With it, a median-centred interval
ν 2 ν 2 can be constructed to identify statistical outliers
that lie outside the limits. Table 7 provides the descriptive statistics for
86 entries of di s using the exact and approximate expressions of lunar
latitude. When the exact expression is used,
– 75 entries (out of 86) are within 2 of the median, in other
words, a set of 75 differences d corrected

i 2 2 are statistically rele-
vant; while

– 78 entries (out of 86) are within 2 of the median when the
appropriate expression is used, i.e. 78 differences d corrected

i 7 17
are statistically relevant.

Among these outlier-corrected differences d corrected
i ,

– there are 41 dissimilar (non-zero) differences out of 75, i.e. around
54.67%, when the exact expression is used, and

– there are 72 dissimilar (non-zero) differences out of 78, i.e. around
92.03%, when the approximate expression is used.

56 Typically, a normal distribution has skewness ς 0 and kurtosis κ 3, with the mean μ
median ν. As Table 7 shows, the differences between the attested and recomputed lunar latitudes
using the exact and approximate expressions are not normally distributed.
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Sin 4◦30′
Differences 0 state

(similar or zero)
1 state

(dissimilar or non-zero)

4;42,25 p 25ssim = 38/86≈ 39.53% p 25sdiss =
52/86≈ 60.47%

4;42,26 p 26ssim = 30/86≈ 34.88% p 26sdiss =
60/86≈ 69.77%

4;42,27 p 27ssim = 14/86≈ 16.28% p 27sdiss =
76/86≈ 88.37%

Table 8: 3×2 contingency table showing the proportions of differences (in percentages) between the
attested and recomputed values of lunar latitudes calculated with the parametric estimates 4;42,25,
4;42,26, and 4;42,27 separately.

parametric estimates respectively; and n = 86 (since four entries cor-
responding to the arguments 57◦ to 60◦ are illegible in MS Tk). Ta-
ble 8 presents these six proportions (in percentages) for the lunar lat-
itude recomputations in a 3×2 contingency table. Like the previous
calculations, the final sexagesimal results are systematically rounded to
the second fractional place, and recomputed Sines (instead of those at-
tested in MS Tk) are used. The percentage proportions of dissimilar
(non-zero) differences between the attested and recomputed lunar lati-
tudes is lower with the parametric estimate 4;42,25 instead of 4;42,26
or 4;42,27. Or equivalently, the percentage of similar (zero) differences
between the attested and recomputed lunar latitudes is higher when
4;42,25 is used. This provides the first measure to statistically validate
using Sin 4◦30′ = 4;42,25 to recompute the lunar latitudes.

2. The second statistical measure uses the Median Absolute Deviation
() calculated for the three parametric estimates separately. As de-
scribed in note 2 of Appendix C.3, the  values determines a
median-centred interval [ν− 2, ν+ 2] of differences di s be-
tween the attested and recomputed lunar latitudes for each of the three
parametric estimates. Table 9 provides the descriptive statistics for 86
entries of di s calculated with the parametric estimates 4;42,25, 4;42,26,
and 4;42,27 separately.

– Using 4;42,25, 75 entries (out of 86) are within ±2 of the
median, i.e. 75 differences d corrected

i ∈ [−2, 2] are statistically relevant;
– using 4;42,26, 77 entries (out of 86) are within ±2 of the me-
dian, i.e. 77 differences d corrected

i ∈ [−1, 3] are statistically relevant;
and

– using 4;42,27, 78 entries (out of 86) are within ±2 of the me-
dian, i.e. 78 differences d corrected

i ∈ [−2, 4] are statistically relevant.
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Type of Recomputation
Sin 4◦30′

4;42,25 4;42,26 4;42,27

Median Absolute Deviation () 1 1 1.5

Median ν≡Median(di) 0 1 1

Mean μ ≈−2.442 ≈−1.930 ≈−1.291

Standard Deviation σ ≈ 18.055 ≈ 18.086 ≈ 18.072

Skewness ς(di) ≈−1.279 ≈−1.741 ≈−1.638

Kurtosis κ(di) ≈ 7.275 ≈ 7.64 ≈ 7.690

Table 9: Table showing the descriptive statistics, including theMedianAbsoluteDeviation () of
the differences between the attested and recomputed lunar latitudes calculated with the parametric
estimates 4;42,25, 4;42,26, and 4;42,27 separately.

Among these outlier-corrected differences d corrected
i ,

– there are 41 dissimilar (non-zero) difference out of 75, i.e. around
54.67%, when Sin 4◦30′ = 4;42,25;

– there are 50 dissimilar (non-zero) difference out of 77, i.e. around
64.94%, when Sin 4◦30′ = 4;42,26; and

– there are 70 dissimilar (non-zero) difference out of 78, i.e. around
89.74%, when Sin 4◦30′ = 4;42,27.

The lower percentage of outlier-corrected dissimilar (non-zero) differ-
ences between the attested and recomputed lunar latitudes calculated
with the parameter Sin 4◦30′ = 4;42,25 (compared to the estimates
4;42,26 and 4;42,27) validates its choice in this study.
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Sin 4 30

Differences 0 state
(similar or zero)

1 state
(dissimilar or non-zero)

4 42 25 p 25ssim
38 86 39 53 p 25sdiss

52 86 60 47

4 42 26 p 26ssim
30 86 34 88 p 26sdiss

60 86 69 77

4 42 27 p 27ssim
14 86 16 28 p 27sdiss

76 86 88 37

Table 8: 3 2 contingency table showing the proportions of differences (in percentages) between the
attested and recomputed values of lunar latitudes calculated with the parametric estimates 4 42 25,
4 42 26, and 4 42 27 separately.

parametric estimates respectively; and n 86 (since four entries cor-
responding to the arguments 57 to 60 are illegible in MS Tk). Ta-
ble 8 presents these six proportions (in percentages) for the lunar lat-
itude recomputations in a 3 2 contingency table. Like the previous
calculations, the final sexagesimal results are systematically rounded to
the second fractional place, and recomputed Sines (instead of those at-
tested in MS Tk) are used. The percentage proportions of dissimilar
(non-zero) differences between the attested and recomputed lunar lati-
tudes is lower with the parametric estimate 4 42 25 instead of 4 42 26
or 4 42 27. Or equivalently, the percentage of similar (zero) differences
between the attested and recomputed lunar latitudes is higher when
4 42 25 is used. This provides the first measure to statistically validate
using Sin 4 30 4 42 25 to recompute the lunar latitudes.

2. The second statistical measure uses the Median Absolute Deviation
() calculated for the three parametric estimates separately. As de-
scribed in note 2 of Appendix C.3, the  values determines a
median-centred interval ν 2 ν 2 of differences di s be-
tween the attested and recomputed lunar latitudes for each of the three
parametric estimates. Table 9 provides the descriptive statistics for 86
entries of di s calculated with the parametric estimates 4 42 25, 4 42 26,
and 4 42 27 separately.

– Using 4 42 25, 75 entries (out of 86) are within 2 of the
median, i.e. 75 differences d corrected

i 2 2 are statistically relevant;
– using 4 42 26, 77 entries (out of 86) are within 2 of the me-
dian, i.e. 77 differences d corrected

i 1 3 are statistically relevant;
and

– using 4 42 27, 78 entries (out of 86) are within 2 of the me-
dian, i.e. 78 differences d corrected

i 2 4 are statistically relevant.





Part 3

Computational Practices and Table Cracking





Tables of Sunrise and Sunset in Yuan and Ming China 
(1271–1644) and their Adoption in Korea∗

li Liang

Introduction

Tables that record times of sunrise and sunset were common both in the astral 
sciences and in daily life in ancient China, and sometimes they were presented 
in a different form as tables of daytime and nighttime. An early document 
named Day Book (Rishu 日書) contains an extant table of this kind. Writ-
ten on bamboo slips, it was excavated from tomb M11 in Shuihudi in the 
province Hubei and is thought to have been sealed in 217 bce. This type of 
table gives the durations of daytime and nighttime throughout the year and 
uses a division of the day into 16 parts. It is the type of astronomical table 
most frequently inserted in early manuscripts dealing with the astral sciences.1 
Tables of daytime and nighttime became widespread, although the division of 
a day was changed to 100 ke 刻 per day. Through the Monographs on Har-
monics and Astronomy (Lü-lizhi 律曆志, further abbreviated as Monographs) in 
the Standard Histories (Zhengshi 正史) of the Chinese dynasties, we can find 
such tables in various calendrical systems2 between the first and sixth centu-
ries.3 Generally, in these calendrical systems, authors would give the daytime 
and nighttime together with the length of the gnomon shadow for each of the 
twenty-four solar terms (qi 氣) during a year.

From the late sixth century, tables of sunrise and sunset were generally used 
in parallel with, or in place of, the tables of daytime and nighttime in the 
Monographs. For example, the Great Patrimony System (Daye li 大業曆),4 used 

* I would like to express my sincere gratitude to my colleagues Benno van Dalen, Clem-
ency Montelle, Daniel Morgan, Matthieu Husson and Richard Kremer for their constructive 
suggestions and comments 

1 See Chemla and Li, ‘Numerical Tables’.
2 For the translation of li 曆 in this paper I use ‘calendrical system’ or ‘system’ for short. 

The character also stands for mathematical astronomy or calendrical astronomy in general.
3 According to Chen Meidong, twenty-one Chinese calendrical systems recorded in the 

Monographs provide a method to find daytime and nighttime. Twelve of these rely on astro-
nomical tables, six refer to algebraic formulae described in textual form, and three systems give 
both tables and a formula. See Chen and Li, ‘Research of lou-ke Calculation’.

4 In order to be consistent with previous studies, I borrow the translations of the names of 
calendrical systems and some technical terms from Sivin, Granting the Seasons.

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 253–285

© F  H  G  10.1484/M.PALS-EB.5.127700
t H i s  i s  a n  o p e n  ac c e s s  c H a p t e r  D i s t r i b u t e D  u n D e r  a  c c  b y- n c - n D  4 . 0  i n t e r n at i o n a l  l i c e n s e
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between 597 and 618, is the first calendrical system in the Monographs con-
taining a table of sunrise and sunset instead of a table of daytime and night-
time. Following the table, the canon introduces a method named ‘procedure to 
find sunrise and sunset’ (qiu richuru suozaishu 求日出入所在術).5 By means of 
this method the user may determine the times of sunrise and sunset for each 
day in a year using linear interpolation between the times of sunrise and sunset 
at the twenty-four solar terms given in this table. The lengths of daytime and 
nighttime depend on the times of dawn and dusk, which are also related to 
the times of sunrise and sunset.6 In most ancient Chinese calendrical systems, 
regardless of the season, a constant value of 2.5 ke is assigned to twilight, the 
time between dawn and sunrise or between sunset and dusk. The table of day-
time and nighttime and the table of sunrise and sunset can easily be converted 
to each other, which is why many calendrical systems in the Monographs pres-
ent only one of them rather than both in order to save space.

In the Yuan period (1271–1368), the table of sunrise and sunset became 
more sophisticated and accurate.7 The table attached to the Season-Granting 
System (Shoushi li 授時曆),8 the official calendrical system of the Yuan dynasty 
finished by the astronomer Guo Shoujing 郭守敬 (1231–1316) and his col-
leagues and used between 1281 and 1384, is different from previous methods 
which were based on an algebraic expression. Guo Shoujing compiled this table 
on the basis of a geometrical model and relied on calculations similar to West-
ern spherical trigonometry. Moreover, he used the ‘altitude of the North Pole’ 
(beiji chudi 北極出地, i.e. geographical latitude) of Dadu 大都 (nowadays Bei-
jing), the capital city of the Yuan period.

5 Lidai tianwen lüli deng zhi huibian, p. 1928.
6 The Book of Song (Songshu 宋書) records 天之晝夜以日出入為分, 人之晝夜以昏明為限  

‘The daytime and nighttime for heaven are divided by sunrise and sunset; the daytime and 
nighttime for persons rely on dawn and dusk’. See Lidai tianwen lüli deng zhi huibian, p. 293.

7 Chen Meidong analyzed the accuracy of the table of daytime and nighttime of the Sea-
son-granting System. The average difference between the table and modern theory is about 
0.7 minute if the latitude is taken as 39.95 degrees. See Chen and Li, ‘Research of Lou-ke 
Calculation’. Concerning further research of tables of sunrise and sunset in ancient China, 
Jin-Chyuan Lin discusses the record of sunrise and sunset in the Concordant Epoch System 
(Tong Yuan li 統元曆, used between 1135 and 1167); see Lin, ‘The Pick-up Tables’. Mihn 
et al., ‘Analysis of Interval Constants’, provides a brief comparison of the nighttime lengths 
from the Season-granting System and the Great Concordance System with the results of modern 
calculations, but does not analyze the underlying methods.

8 The Season-granting System, created for the Mongol emperor Kublai Khan 忽必烈 
(r. 1260–1294), is considered to be the most sophisticated system of calendrical astronomy in 
ancient China. Its treatise records detailed instructions for computing eclipses and the motions 
of the planets, based on a rich archive of observations. See the Japanese translation Yabuuti 
and Nakayama, Season-granting System, and the English translation and study in Sivin, Grant-
ing the Seasons.
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After the Ming dynasty replaced the Yuan in 1368, the director of the 
Astronomical Bureau, Yuan Tong 元統 (fl. 1384–1396)9 attempted to revise 
the Season-granting system. With the assistance of Guo Boyu 郭伯玉 (a descen-
dent of Guo Shoujing who flourished in the 1380s), Yuan Tong finished the 
Great Concordance System (Datong li 大統曆),10 which was used between 1384 
and 1644. In most parts, the Great Concordance system is adapted from the 
Season-granting System with only very few modifications. One of the distinct 
differences between the two systems is that the author of the former recalcu-
lated every value in the table of sunrise and sunset for the latitude of Nan-
jing, the new capital city of the Ming dynasty. The maximum deviation of the 
times of sunrise and sunset between Nanjing and Dadu reaches about three ke 
(almost 43 minutes).

Not long after these two calendrical systems were adopted in Yuan and 
Ming China, they were successively transmitted to Korea. In order to learn 
the methods of calendrical systems, in 1303 the Koryeo court (918–1392) sent 
the officer Choi Seongji 崔誠之 to the Yuan empire. Finally, the Koryeo King-
dom mastered computational techniques to adjust the Season-granting System 
for use in Korea after the year 1309.11 Since the method of extracting square 
roots was not transmitted, the section on eclipses still needed to follow the old 
method of the Extending Enlightenment System (Xuanming li 宣明曆), used in 
China between 822 and 892.12 As for the table of sunrise and sunset, it did 
not provide correct results because of the difference in latitude between Beijing 
and Koryeo. Even though the Korean astronomers perceived this problem, they 
were not able to revise the table accordingly. They could only duplicate the 
procedures of the Season-granting System from China and included these con-
tents in the History of Koryeo (Koryeo-Sa 高麗史) without revision.

In 1392, the Koryeo dynasty was replaced by the Joseon dynasty, and Seoul 
was chosen as the new capital. To develop calendrical astronomy, King Sejong 
世宗 (r. 1418–1450) directed his astronomers to undertake systematic research 
on the Chinese Season-granting System and the Great Concordance System. 
Their most significant achievement was the compilation of the Korean calen-
drical work Inner Chapter of Computation of the Seven Regulators (Chiljeongsan 
Naepyon 七政算内篇),13 finished in 1442. The Inner Chapter mostly copied the 

9 Yuan Tong was originally a ‘doctor of the clepsydra’ (louke boshi 漏刻博士) at the Chi-
nese Astronomical Bureau, but was promoted to director of the bureau in 1385 because of his 
contribution to the modification of the official calendrical system.

10 The Great Concordance System is mostly identical to the Season-granting System, but has 
some small improvements such as several epoch constants.

11 Lee, ‘Korean Astronomical Calendar’.
12 Koryeo-Sa, 50.1b.
13 The Chiljeongsan Naepyon was considered to be the first original Korean calendrical sys-

tem. However, its contents is in fact basically identical to its Chinese sources. This system used 
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Season-granting System and the Great Concordance System, but it provided a 
new table of sunrise and sunset for the city of Seoul.

As has been mentioned above, various versions of tables of sunrise and sun-
set were used in China and Korea during the Yuan and Ming periods; their 
underlying theories are not clear. This paper will detail the methods of con-
struction and use of tables of sunrise and sunset in China and analyze how 
Korean astronomers updated these tables in Korea with their limited math-
ematical knowledge. Section 2 provides a survey of the sources containing 
the relevant tables, and Section 3 introduces the two types of tables of sun-
rise and sunset with different layouts and applications. The first type tabu-
lates data required in some specific calendrical calculations, while the second 
type is more straightforward to use. Section 4 analyzes the algorithms and 
methods of calculation underlying these tables. Two methods to produce the 
tables of sunrise and sunset in the Season-granting System will be presented. 
One employs the arc-sagitta method of calculation (i.e. characteristic ‘Chinese 
spherical trigonometry’) and imposes a heavy calculational burden. The other 
method named ‘Method of Nine Domains’ is simple but approximative. In 
Section 5, it is discussed how Korean astronomers constructed their own tables 
without sufficient mathematical knowledge, and a possible method for the cal-
culation of their tables is outlined.

Description of the Sources and Systems of Measuring Time

The documents included in the Season-granting System have four parts: Eval-
uation (Liyi 曆議),14 Canon (Lijing 曆經), Pick-up Tables (Licheng 立成)15 and 
Detailed Procedures (Licao 曆草).16 The former two parts are the ones incorpo-

the value 

Mathematical formulas for Li Liang

Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

 du (corresponding to 37;41°) for the latitude of Hanyang 漢陽 (the old name 
for the Joseon capital and nowadays the northern part of Seoul). However, in this paper I find 
that the table of sunrise and sunset in the Chiljeongsan Naepyon does not fit this latitude value 
very well.

14 The Evaluation sets out in detail how the Yuan astronomers used a remarkable archive 
of observations covering more than a thousand years to test the new astronomical system, prov-
ing that it would be more reliable than its predecessors. See Sivin, Granting the Seasons, p. 21.

15 Nathan Sivin translates licheng 立成 as ‘ready reckoner’, but in this paper I use Karine 
Chemla’s translation ‘Pick-up tables’. See Chemla and Li, ‘Numerical Tables’. The calculations 
required in ancient Chinese calendrical systems could be carried out by two different methods: 
by procedures described in texts, or using specific types of tables named licheng. This type of 
table seems to have come into use in the Sui period (581–618) and to have been widespread 
from the Tang period (618–907) onward. Its development appears to be correlated to the intro-
duction of astronomical functions based on quadratic interpolation. Thus rather than having 
to perform calculations with numbers provided in the text, the results could be readily ‘picked 
up’ from a licheng table based on the values of its arguments. See Li, ‘Astronomical Tables’.

16 The term ‘detailed procedures’ (cao 草) initially came from ancient mathematical texts 
and referred to a kind of notebook used to explain algorithms or give detailed comments on 
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rated in the official History of the Yuan Dynasty (Yuanshi 元史), and both of 
them consist of two volumes. The Pick-up Tables were omitted from the Chi-
nese official histories to save space, but they still exist as they were reprinted in 
Korea in the first half of the fifteenth century.17 They also consist of two vol-
umes: volume A contains the tables describing the motions of the sun, moon 
and planets, and the whole of volume B is devoted to the tables of sunrise and 
sunset.

In China, the Detailed Procedures were still available as late as the early 
eighteenth century. The mathematician Mei Wending 梅文鼎 (1633–1721) 
once referred to the Detailed Procedures and cited part of them in his contri-
bution to the chapter Monographs in the History of the Ming Dynasty.

The Season-granting System contains two sets of tables of sunrise and sunset 
of different types, one in the Canon and the other in the Pick-up Tables. In 
order to distinguish them, we classify them as Type I and Type II respectively, 
and will explain their differences in the next section.

The corpus of tables of sunrise and sunset that we deal with in this paper 
includes general works on the astral sciences and the monographs on calendri-
cal astronomy that are included in the official dynastical histories. This paper 
focuses on the contents of these tables but will not address the process of their 
compilation. Three-part abbreviations will be used to identify the characteris-
tics of each table (see the column ‘Type’ in Table 1). The first letter (C or K) 
indicates whether it concerns a document from China or Korea. The second 
part (I or II) indicates the type of the table. The third letter (B, N or S, stand-
ing for Beijing, Nanjing and Seoul respectively) shows the specific location the 
table is computed for. For example, C-I-B indicates that the table is a table 
from China of Type I and is compiled for Beijing.
This article focuses on the practices surrounding the computation of various 
tables of sunrise and sunset. The main issues that have guided the inquiry 
include:

1. Algorithms and methods of calculation underlying these tables.

2. The differences between the two approaches in the Season-granting Sys-
tem to calculate the times of sunrise and sunset.

3. The actual latitude values these tables used.

4. The possible solutions the Korean astronomers may have sought to 
make the table suitable for the latitude of Seoul.

classic mathematical texts. Here, licao refers to a document explaining the mathematical algo-
rithms behind the procedures that have been given in the canon.

17 A copy of the Licheng is saved in the Gyujanggak Library in Seoul; see Pick-Up Tables.
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Source Date Type

Canon of the Season-granting System in the 
History of the Yuan Dynasty 
元史·授時曆經18

1369 C-I-B

Pick-up Tables (Licheng) in the  
Season-granting System
授時曆立成19

1280s C-II-B

Times of Sunrise and Sunset in the  
Great Concordance System
大統日出入分20

1380s C-II-N

Canon of the Season-granting System in the 
History of the Koryeo Dynasty
高麗史·授時曆經21

1451 K-I-B

Pick-up Tables (Licheng) in the Great  
Concordance System, History of the  

Ming Dynasty
明史·大统曆法立成22

final version finished in 1735 C-I-B

C-II-N

Inner Chapter of Computation of the Seven 
Regulators (Chiljeongsan Naepyon)

七政算內篇23

1442 K-I-S

K-II-S

Table 1: Tables of sunrise and sunset discussed in this paper

We will first present essential details of the ancient Chinese systems for measur-
ing time. Three systems were most common throughout Chinese history.24 The 
first of these is the ‘double-hour system’, in which the ‘double-hour’ (shi 時),  
a twelvefold division of the day, is employed as the basic unit.25 The second 
system is the ‘one-hundredth-of-a day system’, which divides each day into 100 
ke 刻 of 14.4 minutes (i.e. slightly less than a quarter of an hour). Each ke is 
further divided into 100 fen 分, so that one day equals ten thousand fen.

18 Lidai tianwen lüli deng zhi huibian, pp. 3371–3441.
19 See Pick-up Tables.
20 See Datong richu riru fen.
21 Koryeo-Sa, vol. 51. The Canon for the Season-granting System in the History of the Ko-

ryeo Dynasty is almost identical to its counterpart in the History of the Yuan Dynasty. The 
differences lie in that the former omitted the section ‘To find clepsydra marks at [any] location 
within the nine domains’ 求九服所在漏刻. See Koryeo-Sa, 51.33b.

22 Lidai tianwen lüli deng zhi huibian, pp. 3633–94.
23 See Chiljeongsan Naepyon.
24 For a detailed discussion of ancient Chinese systems of measuring time, see Chen, ‘Re-

search on Chinese Ancient Time-Reckoning Systems’; Wang, ‘Investigation into Systems of 
Reckoning Time’, and Qu, ‘Time-reckoning in Ancient Chinese Calendrical Systems’.

25 In this system, the earthly branches (ganzhi 干支) are used to name the twelve shi, and 
each shi can also be divided into two parts named chu 初 (‘beginning’) and zheng 正 (‘stan-
dard’) respectively.
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Figure 1: System of watches and points.

Different from the above two systems, a third system, named ‘watches and 
points’, is utilized specifically for nighttime. For the purpose of civil time-
keeping, nighttime was the interval between dusk and dawn. Ancient Chinese 
astronomers divided it into five equal ‘watches’ (geng 更), and subdivided each 
geng into five equal ‘points’ (dian 點). In the course of a year, the number of 
watches and points remained constant, so the length of both units varied from 
day to day (Figure 1).26 In order to provide the correct nighttime, most Chi-
nese calendrical systems presented a table of daytime and nighttime according 
to this system.

In addition to keeping track of time the tables of daytime and nighttime or 
the tables of sunrise and sunset are necessary in some other calculations. For 
example, the times of sunrise and sunset are useful to determine whether a 
solar eclipse will be visible when it occurs. The times of dusk or dawn, on the 
other hand, can be used to determine which star is culminating (i.e. crossing 
the meridian) at these moments.

Two Types of Sunrise and Sunset Tables

As previously mentioned, the Season-granting System offers two types of tables 
related to sunrise and sunset for distinct purposes. The first type, which we 
classify as Type I, is a table entitled ‘Declination and polar distance of the eclip-
tic, and half lengths of daytime and nighttime’ (Huangdao churu chidaonei-
wai qujidu ji banzhouyefen 黃道出入赤道內外去極度及半晝夜分).27 This table

26 Sivin, Granting the Seasons, p. 494.
27 Lidai tianwen lüli deng zhi huibian, pp. 3405–14.



260 LI LIANG

Figure 2: The Chinese measuring unit du.

belongs to the chapter ‘The Pacing of the Centered Star’ (Buzhongxing 步中星, 
the fifth section of the Canon), which concentrates on whatever star is culminat-
ing (crossing the meridian) at a given moment such as dusk or dawn (see Plate 9a).

Table 2 is a transcription of the table of Type I in the Canon of the Sea-
son-granting System, and its columns are arranged as follows:28

1. The argument, ‘ecliptic accumulated degrees’ (huangdao jidu 黃道積度), 
is degrees of the ecliptic measured from the solstice in ‘Chinese degrees’ 
(du 度).29 In Chinese calendrical systems, the unit du corresponds to 
the mean solar motion in exactly one day, so that the number of du in 
a full circle is equal to the length of the solar year. In the Season-grant-
ing System this ‘circumference of heaven’ (zhoutian 周天, or ‘circuit of 
heaven’) amounts to 365.2575 du (see Figure 2).30 The argument of the 
table runs from 0 to 91.31 du (i.e. a quarter of the circumference of 
heaven, which is 365.2575/4 = 91.314375 or 91.31 after rounding off), 
and the interval between consecutive arguments is one du, except for 
the last interval which is 0.31 du.

2. ‘Inside/outside degrees’ (neiwai du 內外度), the declination measured 
from the equator to the ecliptic.

28 In all transcriptions of tables in this article, columns and rows have been transposed, 
because the original Chinese texts are read vertically and from right to left.

29 Different from Western astronomical systems, which measure the degree of the ecliptic 
from the vernal equinox, almost all Chinese calendrical systems start from the winter solstice.

30 In the Season-granting System the tropical year is 365.2425 days, the motion of the sun 
in a year is 365.2425 du, and the sidereal year is 365.2575 days (or 365.2575 du, the circumfer-
ence of heaven, found as the sum of 365.2425 du and a precession of 0.0150 du).
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(1) (2) (3) (4) (5) (6) (7) (8)

0 23.9030  0.33 115.2173 67.4113 1907.96 3092.04 0.09
1 23.8997  0.99 115.2140 67.4146 1908.05 3091.95 0.29
2 23.8898  1.66 115.2041 67.4245 1908.34 3091.66 0.47
3 23.8732  2.31 115.1875 67.4411 1908.81 3091.19 0.66
4 23.8501  2.99 115.1644 67.4642 1909.47 3090.53 0.85
5 23.8202  3.65 115.1345 67.4941 1910.32 3089.68 1.04
6 23.7837  4.32 115.0980 67.5306 1911.36 3088.64 1.22
7 23.7405  4.98 115.0548 67.5738 1912.58 3087.42 1.42
8 23.6907  5.65 115.0050 67.6236 1914.00 3086.00 1.61
9 23.6342  6.36 114.9485 67.6801 1915.61 3084.39 1.79

10 23.5706  7.02 114.8849 67.7437 1917.40 3082.60 1.99
    ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

85  2.4583 38.93  93.7726 88.8560 2443.45 2556.55 8.97
86  2.0690 38.94  93.3833 89.2453 2452.42 2547.58 8.96
87  1.6796 38.94  92.9939 89.6347 2461.38 2538.62 8.96
88  1.2902 38.95  92.6045 90.0241 2470.34 2529.66 8.96
89  0.9007 38.95  92.2150 90.4136 2479.30 2520.70 8.96
90  0.5112 38.95  91.8255 90.8031 2488.26 2511.74 8.95
91  0.1217 12.17  91.4360 91.1926 2497.21 2502.79 2.79

91.31 0 0  91.3143 91.3143 2500 2500 0

Table 2: Transcription of the table of Type C-I-B (Type I for the site of Beijing, excerpt). 

3. ‘Inside/outside difference’ (neiwai cha 內外差), the successive differences 
of neiwai du. It is used for carrying out linear interpolation in column 2.

4. ‘Polar distance before/after the winter solstice’ (dongzhi qianhou quji 冬
至前後去極), a quarter cycle 91.314375 du plus the values from column 2.

5. ‘Polar distance before/after the summer solstice’ (xiazhi qianhou quji 夏至
前後去極), a quarter cycle 91.314375 du minus the values from column 2.

6. ‘Winter daytime/summer nighttime’ (dongzhou xiaye 冬晝夏夜), half of 
the length of daytime or nighttime. It is the time between dawn and 
noon (or between noon and dusk) in the winter or the time between 
dusk and midnight (or between midnight and the next dawn) in the 
summer, since the duration of daytime or nighttime is symmetric about 
noon or midnight. The unit of this quantity is fen (1/10000 day),31 and 
the times of sunrise and sunset can be obtained through the addition 
and subtraction of 250 fen, regardless of the season.

7. ‘Summer daytime/winter nighttime’ (xiazhou dongye 夏晝冬夜), the 
complement of column 6. It is the time between dawn and noon in 
summer or the time between dusk and midnight in winter.

8. ‘Day-night difference’ (zhouyecha 晝夜差), the successive differences of 
columns 6 or 7.

31 Here it uses the ‘one-hundredth-of-a-day system’ (see above).
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(1) (2) (3) (4) (5) (6)

0 23.9030  0.33 1956.50 3043.50 0.08
1 23.8997  0.99 1956.58 3043.42 0.27
2 23.8898  1.66 1956.85 3043.15 0.43
3 23.8732  2.31 1957.28 3042.72 0.61
4 23.8501  2.99 1957.89 3042.11 0.78
5 23.8202  3.65 1958.67 3041.33 0.95
6 23.7837  4.32 1959.62 3040.38 1.12
7 23.7405  4.98 1960.74 3039.26 1.30
8 23.6907  5.65 1962.04 3037.96 1.48
9 23.6342  6.36 1963.52 3036.48 1.64

10 23.5706  7.02 1965.16 3034.84 1.83
    ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

85  2.4583 38.93 2448.06 2551.94 8.23
86  2.0690 38.94 2456.29 2543.71 8.23
87  1.6796 38.94 2464.52 2535.48 8.23
88  1.2902 38.95 2472.25 2527.25 8.23
89  0.9007 38.95 2480.98 2519.02 8.23
90  0.5112 38.95 2489.21 2510.79 8.22
91  0.1217 12.17 2497.43 2502.57 2.57

91.31 0    0   2500   2500   0

Table 3: Transcription of the table of Type K-I-S (Type I for the site of Seoul, excerpt).

A table of Type I (K-I-S) also exists in the Korean work Inner Chapter of Com-
putation of the Seven Regulators. Different from Type C-I-B shown above, this 
table omits the two columns for ‘polar distance’, which can be calculated from 
the ‘inside/outside degrees’ in the second column. Type K-I-S also revised the 
values of column 6, 7 and 8 from Type C-I-B (and placed them in the columns 
4, 5 and 6 respectively) to serve for the latitude of the Korean capital Seoul 
(see Table 3).

The lengths of half daytime or nighttime in tables C-I-B and K-I-S are dis-
played in Figure 3, in which the horizontal axis shows the ‘accumulated degrees’ 
after the solstices and the vertical axis depicts the length of time in the unit 
fen. It is noteworthy that the maximum difference between values of the two 
cities appears at the two solstices, where it reaches 48.54 fen. This means that 
the length of daytime at the summer solstice in Beijing is 97.08 fen (48.54 × 2, 
modern equivalent 13.98 minutes) longer than in Seoul.

The second type of table of sunrise and sunset, the one we classify as 
Type II, is more straightforward. It exists in the Pick-up Tables (Licheng) part 
of the Season-granting System and is titled ‘Sunrise, sunset, dawn, dusk and 
half nighttime of the Season-granting System’ (Shoushi li richuru chenhun ban-
zhoufen 授時曆日出入晨昏半晝分).32 The two sections of this table cover ‘after

32 Pick-up Tables, vol. 2, 1a–51b.
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Figure 3: The half lengths of daytime and nighttime in C-I-B and K-I-S.

the winter solstice’ and ‘after the summer solstice’, and both sections have as 
arguments days 0 to 182 after the solstice (see Plate 9b).

A transcription of this table is given in Table 4, and the columns of this 
table are arranged as follows:

1. The argument, ‘accumulated days’ ( jiri 積日), the number of days after 
the solstices.

2. ‘Time of dawn’ (chenfen 晨分), the time from midnight (the beginning 
of a day) to dawn.

3. ‘Time of sunrise’ (richufen 日出分), the time from midnight to sunrise.

4. ‘Half daytime’ (banzhoufen 半晝分), the time from sunrise to midday or 
from midday to sunset.

5. ‘Time of sunset’ (rirufen 日入分), the time from midnight to sunset.

6. ‘Time of dusk’ (hunfen 昏分), the time from midnight to dusk.

In addition to ‘C-II-B’, two more documents that incorporated a table of 
Type II can be found in the Great Concordance System and the Inner Chapter 
of Computation of the Seven Regulators. They are here labelled Type C-II-N 
and Type K-II-S (see Table 5 and Table 6). Their values were revised for the 
sites of Nanjing and Seoul respectively. In order to clarify their differences, we 
display their times of sunrise in a diagram (see Figure 4).



264 LI LIANG

(1) (2) (3) (4) (5) (6)

  0 2842.04 3092.04 1907.96 6907.96 7157.96

  1 2841.94 3091.94 1908.06 6908.06 7158.06

  2 2841.62 3091.62 1908.38 6908.38 7158.38

  3 2841.09 3091.09 1908.91 6908.91 7158.91

  4 2840.36 3090.36 1909.64 6909.64 7159.64

  5 2839.42 3089.42 1910.58 6910.58 7160.58

  6 2838.28 3088.28 1911.72 6911.72 7161.72

  7 2836.93 3086.93 1913.07 6913.07 7163.07

  8 2835.37 3085.37 1914.63 6914.63 7164.63

  9 2833.60 3083.60 1916.40 6916.40 7166.40

 10 2831.63 3081.63 1918.37 6918.37 7168.37

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

178 1659.83 1909.83 3090.17 8090.17 8340.17

179 1659.12 1909.12 3090.88 8090.88 8340.88

180 1658.58 1908.58 3091.42 8091.42 8341.42

181 1658.21 1908.21 3091.79 8091.79 8341.79

182 1658.01 1908.01 3091.99 8091.99 8341.99

(1) (2) (3) (4) (5) (6)

  0 1657.96 1907.96 3092.04 8092.04 8342.04

  1 1658.04 1908.04 3091.96 8091.96 8341.96

  2 1658.31 1908.31 3091.69 8091.69 8341.69

  3 1658.74 1908.74 3091.26 8091.26 8341.26

  4 1659.34 1909.34 3090.66 8090.66 8340.66

  5 1660.11 1910.11 3089.89 8089.89 8339.89

  6 1661.06 1911.06 3088.94 8088.94 8338.94

  7 1662.17 1912.17 3087.83 8087.83 8337.83

  8 1663.46 1913.46 3085.54 8086.54 8336.54

  9 1664.93 1914.93 3085.07 8085.07 8335.07

 10 1666.56 1916.56 3083.44 8083.44 8333.44

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

178 2840.34 3090.34 1909.34 6909.66 7159.66

179 2840.69 3090.69 1909.31 6909.31 7159.31

180 2841.33 3091.33 1908.67 6908.67 7158.67

181 2841.76 3091.76 1908.24 6908.246 7158.24

182 2841.99 3091.99 1908.01 6908.01 7158.01

Table 4: Transcription of the first half (‘after the winter solstice’, above) and second half (‘after 
the summer solstice’, below) of Type C-II-B (Type II for the site of Beijing, excerpt).
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(1) (2) (3) (4) (5) (6)

  0 2681.70 2931.70 2068.30 7068.30 7318.30

  1 2681.62 2931.62 2068.38 7068.38 7318.38

  2 2681.39 2931.39 2068.61 7068.61 7318.61

  3 2681.01 2931.01 2068.99 7068.99 7318.99

  4 2680.48 2930.48 2069.52 7069.52 7319.52

  5 2679.79 2929.79 2070.21 7070.21 7320.21

  6 2678.96 2928.96 2071.04 7071.04 7321.04

  7 2677.97 2927.97 2072.03 7072.03 7322.03

  8 2676.83 2926.83 2073.17 7073.17 7323.17

  9 2675.55 2925.55 2074.45 7074.45 7324.45

 10 2674.11 2924.11 2075.89 7075.89 7325.89

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

178 1819.66 2069.66 2930.34 7930.34 8180.34

179 1819.14 2069.14 2930.86 7930.86 8180.86

180 1818.75 2068.75 2931.25 7931.25 8181.25

181 1818.49 2068.49 2931.51 7931.51 8181.51

182 1818.34 2068.34 2931.66 7931.66 8181.66

Table 5: Transcription of the first half (‘after the winter solstice’) of Type C-II-N (Type II for 

the site of Nanjing, excerpt)

(1) (2) (3) (4) (5) (6)

  0 2793.50 3043.50 1956.50 6956.50 7206.50

  1 2793.41 3043.41 1956.59 6956.59 7206.59

  2 2793.11 3043.11 1956.89 6956.89 7206.89

  3 2792.63 3042.63 1957.37 6957.37 7207.37

  4 2791.95 3041.95 1958.05 6958.05 7208.05

  5 2791.09 3041.09 1958.91 6958.91 7208.91

  6 2790.05 3040.05 1959.95 6959.95 7209.95

  7 2788.81 3038.81 1961.19 6961.19 7211.19

  8 2787.38 3037.38 1962.62 6962.62 7212.62

  9 2785.76 3035.76 1964.24 6964.24 7214.24

 10 2783.95 3033.95 1966.05 6966.05 7216.05

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

178 1708.20 1958.20 3041.80 8041.80 8291.80

179 1707.55 1957.55 3042.45 8042.45 8292.45

180 1707.06 1957.06 3042.94 8042.94 8292.94

181 1706.73 1956.73 3043.27 8043.27 8293.27

182 1706.55 1956.55 3043.45 8043.45 8293.45

Table 6: Transcription of the first half (‘after the winter solstice’) of Type K-II-S (Type II for 

the site of Seoul, excerpt).
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Figure 4: The times of sunrise in the first half (above) and second half (below) of the tables of 

types C-II-B, C-II-N and K-II-S.
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Figure 5: Modern geometrical model for calculating the hour angle (h).

4. The Underlying Mathematical Methods

4.1 Calculation of arc, chord, and sagitta

From a modern point of view, the determination of the times of sunrise and 
sunset is related to the calculation of the hour angle (h).

Figure 5 depicts the celestial sphere for an observer at O, whose geometrical 
latitude is φ (arc NP). Point Z is the zenith, point P the celestial north pole, 
and N, W, S, E the north, west, south and east points on the horizon. The 
meridian is circle ZSNP, the equator is circle GWBF, and the diurnal circle 
is circle HCAD. Arc AB is the declination of the sun (δ). Point A is the posi-
tion of the sun at sunset, and point C is the position of the sun at dusk. To 
determine the hour angle h, we make use of the spherical triangle PAS.33 Using 
modern spherical trigonometry, the hour angle can be found directly from the 
values of the latitude φ and the declination δ:

Mathematical formulas for Li Liang

Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan(arcPS) ∙ cot(arcPA)
= tan(180◦ − φ) ∙ cot(90◦ + δ)
= − tan φ ∙ tan δ.

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

However, it needs to be pointed out that early Chinese astronomy was a great 
deal less concerned with geometric deductions, so not much attention was 
paid to the relation between arcs and chords until the late eleventh century, 
when Shen Gua 沈括 (1031–1095) worked out a general formula for chords 
of two-dimensional arcs.34 Shen Gua provided an approximate method which

33 Qu, Chinese Mathematical Astronomy, p. 244.
34 Sivin, Granting the Seasons, p. 66.
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Figure 6: Schematic diagram of Shen Gua’s formula.

originated from the Chinese classic mathematical document The Nine Chap-
ters of the Mathematical Art (Jiuzhang suanshu 九章算術) (see Figure 6).35 He 
considered the length of arc AC (2a) as a function of the chord AC (2c) sub-
tending the arc, and the corresponding sagitta BD (b), as well as the diameter  
of the circle d (d=2r, where r represents radius OB or OA). For any value of 
arc, chord, and sagitta, the following relation holds:

Mathematical formulas for Li Liang (corrected)

page 268, after first six lines
and sagitta, the following relation holds:

a = c + b2
d .

With the Theorem of Pythagoras, we can obtain: …With the Theorem of Pythagoras, we can obtain:

.

Mathematical formulas for Li Liang

Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − (r − b)2.

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

Eliminating the half chord c from the above two equations, we can achieve an 
equation of order four:

Mathematical formulas for Li Liang

Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − (d2 − 2da)b2 − d3b + d2a2 = 0.

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

This is one of the major formulae of the so-called ‘Chinese spherical trigo-
nometry’ that Guo Shoujing used in the Season-granting System to compute 
many of the astronomical tables. However, as Martzloff points out, this type 
of trigonometry is based on arcs, chords and sagittas obtained from approx-
imate formulae, instead of on angles and exact formulae. Moreover, it never 
involves triangles with three spherical sides, but only triangles with at most 
one spherical side, as well as plane triangles.36 With this so-called ‘method for 
determining the sagitta by the segment of the circle’ (hushi geyuan shu 弧矢割
圓術), a close approximation for a triangle with one spherical side, the authors 
of the Season-granting System made their own contribution to finding solutions 
for spherical problems.

35 Liu, ‘Summary of Season-granting System’.
36 Martzloff, A History of Chinese Mathematics, p. 329.
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4.2 Method for calculating tables of Type I

According to the History of the Yuan Dynasty, local latitude and solar declina-
tion are the two key values used to construct the table of sunrise and sunset in 
the Season-granting System. The text in Biography of Guo Shoujing (Guo Shou-
jing zhuan 郭守敬傳) states:

大明曆日出入晝夜刻，皆據汴京為準，其刻數與大都不同。今更以本方北極出地高
下，黃道出入內外度，立術推求每日日出入晝夜刻。
The [values of] sunrise and sunset, daytime and nighttime in the Revised Great 
Enlightenment System (used between 1181 and 1280) are all provided for [the site 
of] Bianjing (nowadays Kaifeng), and these times are different from [the values for] 
Dadu (nowadays Beijing). Now [we] change [the method], and use the ‘altitude of 
the North Pole’ (geographical latitude) and ‘inside/outside degrees of the ecliptic’ 
(declination measured from the equator to the ecliptic) to set up a method to cal-
culate the times of sunrise and sunset and of daytime and nighttime for each day.37

Notably, we cannot find any specific discussion concerning the underlying 
method of Table C-I-B in the existing documents of the Season-granting Sys-
tem in the History of the Yuan Dynasty. Fortunately, the editors of the History 
of the Ming Dynasty realized the importance of the method, and discussed it 
when they re-edited the Great Concordance System, which is a revised version 
of the Season-granting System. The editor Mei Wending (1633–1721) pointed 
out that this method had been introduced in the book Detailed Procedures by 
Guo Shoujing; only very few copies of the book survived up to Mei’s times. 
According to Mei Wending, the calculations of daytime and nighttime in Guo 
Shoujing’s Detailed Procedures are based on the projection of the ecliptic, equa-
tor and diurnal circle into planes, and it uses the method of ‘Chinese spherical 
trigonometry’, to determine the declination δ.

4.2.1 Mei Wending’s reasoning for tables of Type I

In the History of the Ming Dynasty, Mei Wending presented a method con-
sisting of two procedures to calculate the daytime and nighttime for a desired 
position of the sun on the ecliptic based on Guo Shoujing’s book Detailed 
Procedures. The first one is based on the difference in the times of sunrise 
and sunset at the solstices, and the second one is referred to as qiu huangdao 
meidu zhouyeke 求黃道每度晝夜刻, that is, ‘to find the lengths of daytime and 
nighttime for each du of the ecliptic’.38 Geometrical diagrams are not often 
included in Chinese calendrical works. However, Mei Wending emphasized 
that ‘without a diagram [things] do not become clear’ ( feitu buming 非圖不
明),39 so to expound the theory of sunrise and sunset, he presented a diagram

37 Yuanshi, p. 3850.
38 Lidai tianwen lüli deng zhi huibian, p. 3621.
39 Lidai tianwen lüli deng zhi huibian, p. 3583.
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Figure 7: ‘Diagram for the difference in the times of sunrise and sunset at the solstices’ in the 
History of the Ming Dynasty. From the Qing copy of Shanghai shenji shuzhuang 上海慎記書
莊刻本.

Figure 8: A modern reproduction of the ‘Diagram for the difference in the times of sunrise 
and sunset at the solstices’ in the History of the Ming Dynasty.
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in which he projected all arcs onto the plane of the meridian, similar to the 
analemma known from Greek and Islamic sources (see Figure 7). To make this 
diagram easy to read for modern readers, we have redrawn it and added two 
auxiliary lines, namely the projections of the ecliptic and the diurnal circle of a 
given position (see Figure 8).

Because Mei Wending’s reasoning is very long and not easy to understand 
for modern readers,40 in the following section I will outline it using modern 
mathematical symbolism. In the reproduction of Mei Wending’s projection 
(Figure 8), point P is the north pole of the equator, point Z is the zenith, and 
N and S are the north and south points of the horizon. Line CD is the projec-
tion of the equator; line BE is the projection of the ecliptic. Line AB represents 
the projection of the diurnal circle at the summer solstice and, at this time, 
point G is the position of the sun at the times of sunrise and sunset, and point 
A is the position of the sun at midday. Suppose M is the position of the sun 
on the ecliptic on a given day, then line AʹBʹ is the projection of the diurnal 
circle for this day and point Gʹ is the corresponding position of the sun at the 
times of sunrise and sunset. The lengths of the arcs AʹGʹ and BʹGʹ are, respec-
tively, half daytime (banzhoufen 半晝分) and half nighttime for this given day. 
Readers who are not interested in the details of Mei Wending’s reasoning may 
pass over the following calculations and skip ahead to the final equation for 
the hour angle h.

In the History of the Ming Dynasty, the latitude of Beijing is taken as 40.95 du, 
and the obliquity of the ecliptic (ε) is 23.903 du (23.9 du after rounding). Accord-
ing to the method of ‘Chinese spherical trigonometry’ (hushi geyuan shu 弧矢割
圓術), we can obtain PH = 39.26 du in △POH, and FO = AK = EK = 23.71 du.

It is noteworthy that in this spherical system, the traditional Chinese rule 
‘the circumference of a circle is 3 if the diameter is 1’ (zhousan jingyi 周三徑一) 
is applicable, which means that the value of π may be taken as 3. As Martzloff 
has demonstrated, this seemingly eccentric use of 3 for π made it possible to 
obtain considerably more accurate results than the use of the exact value of 
π.41 The circumference of heaven is 365.25 du (truncated from its exact value 
365.2575 du), so the diameter is 121.75 = 365.25/3 du and the radius OP or 
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC – 
OK = OC – 

Mathematical formulas for Li Liang

Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC −

√

r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun = 4.81 du. At noon of the summer solstice, the sun 
is at point A, so the arc AS = 74.265 du.42 According to the rule of ‘Chinese 

40 Qu Anjing provides annotations for Mei’s reasoning in modern mathematical terms. See 
Qu, Chinese Mathematical Astronomy, pp. 279–83.

41 Martzloff points out that π = 3 is not the value that gives the best results in combina-
tion with Guo Shoujing’s approximate computations, but at any rate the best possible value is 
certainly very close to π = 3. See Martzloff, A History of Chinese Mathematics, p. 334.

42 Here, arc AS = arc ZS − φ + ε = 91.315 − 40.95 + 23.9 = 74.265 du. Arc ZS is a quad-
rant of circle, equaling 365.2575/4 = 91.314375 ≈ 91.315 du.
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spherical trigonometry’, we find AJ = 58.45 du. The consequent steps can be 
transcribed as follows:

page 272, top The consequent steps can be
transcribed as follows:

△FOI ∼△POH → FI = FO×PH
r = 15.29 du

AL = AJ − LJ = AJ − FI = 43.16 du
AF = OK = r − CK = 56.065 du

△FAL ∼△GFI → FG = FI×AF
AL = 19.87 du

With the help of ‘Chinese spherical trigonometry’, we now find:

arc FG = 19 9614 du and

FGO F G O arc F G
F O = arc FG

FO = 0 8419

This value 0.8419 is a ratio …

page 272, middle the apparent
motion of the sun) is:

arc F G
6A F + 1 =

0 8419×A K
6A F + 1 (unit: day).

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake …

page 272, below middle i.e. from point
G (sunrise) to point A (midday), can be obtained as follows:

h = 0 25 ± 0 8419×A K
6A F + 1

= 0 25 ± 0 8419×A K
6 r2 − A K 2 + 1

(unit: day).43

The above is the final equation of the hour angle, …

page 273, near bottom
unit ke. The nighttime of the desired day (HN) is as follows:

HN = 50 ± SD×δ× 10
239

In this equation, δ is the declination … Thus the equation is equiv-
alent to

HN = 50 ± SD× δ
ε

This procedure avoids the use of the complicated method …

page 281, near bottom The relationship between
the two DNds is then as follows:

DNd(n)_KIS
541 5 = DNd(n)_CIB

592 04

(here n is the day after the solstice from 0 to 91.31).

2

With the help of ‘Chinese spherical trigonometry’, we now find:

page 272, top The consequent steps can be
transcribed as follows:

FOI POH FI = FO×PH
r = 15 29 du

AL = AJ − LJ = AJ − FI 43 16 du
AF = OK = r − CK = 56 065 du

FAL GFI FG = FI×AF
AL 19 87 du

With the help of ‘Chinese spherical trigonometry’, we now find:

arc FG = 19.9614 du and

△FGO ∼△F ′G ′O →
arc F ′G ′

F ′O = arc FG
FO = 0.8419.

This value 0.8419 is a ratio …

page 272, middle the apparent
motion of the sun) is:

arc F G
6A F + 1 =

0 8419×A K
6A F + 1 (unit: day).

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake …

page 272, below middle i.e. from point
G (sunrise) to point A (midday), can be obtained as follows:

h = 0 25 ± 0 8419×A K
6A F + 1

= 0 25 ± 0 8419×A K
6 r2 − A K 2 + 1

(unit: day).43

The above is the final equation of the hour angle, …

page 273, near bottom
unit ke. The nighttime of the desired day (HN) is as follows:

HN = 50 ± SD×δ× 10
239

In this equation, δ is the declination … Thus the equation is equiv-
alent to

HN = 50 ± SD× δ
ε

This procedure avoids the use of the complicated method …

page 281, near bottom The relationship between
the two DNds is then as follows:

DNd(n)_KIS
541 5 = DNd(n)_CIB

592 04

(here n is the day after the solstice from 0 to 91.31).

2

This value 0.8419 is a ratio named ‘[latitude] difference variate’ (ducha fen 度
差分), which connects the values of arc F ʹGʹ and F ʹO. Here F ʹO = AʹK ,́ and 
AʹK ʹ is the chord of the declination δ. The ratio of the equation of daylight, 
arc F ′G′, to the apparent motion of the sun 6A′F ′+1 (line A′F ′ is the radius of 
the diurnal circle, therefore 6A′F ′ is its circumference and 6A′F ′+1 the appar-
ent motion of the sun) is:

page 272, top The consequent steps can be
transcribed as follows:

FOI POH FI = FO×PH
r = 15 29 du

AL = AJ − LJ = AJ − FI 43 16 du
AF = OK = r − CK = 56 065 du

FAL GFI FG = FI×AF
AL 19 87 du

With the help of ‘Chinese spherical trigonometry’, we now find:

arc FG = 19 9614 du and

FGO F G O arc F G
F O = arc FG

FO = 0 8419

This value 0.8419 is a ratio …

page 272, middle the apparent
motion of the sun) is:

arc F ′G ′

6A ′F ′ + 1 =
0.8419×A ′K ′

6A ′F ′ + 1 (unit: day).

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake …

page 272, below middle i.e. from point
G (sunrise) to point A (midday), can be obtained as follows:

h = 0 25 ± 0 8419×A K
6A F + 1

= 0 25 ± 0 8419×A K
6 r2 − A K 2 + 1

(unit: day).43

The above is the final equation of the hour angle, …

page 273, near bottom
unit ke. The nighttime of the desired day (HN) is as follows:

HN = 50 ± SD×δ× 10
239

In this equation, δ is the declination … Thus the equation is equiv-
alent to

HN = 50 ± SD× δ
ε

This procedure avoids the use of the complicated method …

page 281, near bottom The relationship between
the two DNds is then as follows:

DNd(n)_KIS
541 5 = DNd(n)_CIB

592 04

(here n is the day after the solstice from 0 to 91.31).

2

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake 出入差
刻), i.e. the length of time when the sun is displaced from position F ′ to posi-
tion G′. Therefore, the length of half daytime (banzhou 半晝), i.e. from point 
G′ (sunrise) to point A′ (midday), can be obtained as follows:

page 272, top The consequent steps can be
transcribed as follows:

FOI POH FI = FO×PH
r = 15 29 du

AL = AJ − LJ = AJ − FI 43 16 du
AF = OK = r − CK = 56 065 du

FAL GFI FG = FI×AF
AL 19 87 du

With the help of ‘Chinese spherical trigonometry’, we now find:

arc FG = 19 9614 du and

FGO F G O arc F G
F O = arc FG

FO = 0 8419

This value 0.8419 is a ratio …

page 272, middle the apparent
motion of the sun) is:

arc F G
6A F + 1 =

0 8419×A K
6A F + 1 (unit: day).

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake …

page 272, below middle i.e. from point
G (sunrise) to point A ′ (midday), can be obtained as follows:

h = 0.25 ± 0.8419×A ′K ′

6A ′F ′ + 1

= 0.25 ± 0.8419×A ′K ′

6
√

r2 − A ′K ′2 + 1
(unit: day).43

The above is the final equation of the hour angle, …

page 273, near bottom
unit ke. The nighttime of the desired day (HN) is as follows:

HN = 50 ± SD×δ× 10
239

In this equation, δ is the declination … Thus the equation is equiv-
alent to

HN = 50 ± SD× δ
ε

This procedure avoids the use of the complicated method …

page 281, near bottom The relationship between
the two DNds is then as follows:

DNd(n)_KIS
541 5 = DNd(n)_CIB

592 04

(here n is the day after the solstice from 0 to 91.31).

2

 
(unit: day).43

The above is the final equation for the hour angle, and the values of A′K′ and 
A′F ′ can be picked up from the tables in the History of the Ming Dynasty. 
So the half daytime for each du along the ecliptic can be calculated by this 
method. With the value of the half daytime and the characteristics of symme-
try, it is easy to obtain the times of dawn and dusk or the times of sunrise and 
sunset; thus the data in columns 6, 7 and 8 of the Table C-I-B can be deter-
mined. With the ratio ‘[latitude] difference variate’ calculated according to the 
latitude of a particular place instead of Beijing’s 0.8419 (corresponding to the 
latitude 40.95 du), we can compile the table for any geographical location.

Even though the underlying latitude of the Table K-I-S is unknown, the 
above method allows us to reproduce this type of table for any latitude, and 
thus to establish the latitude which leads to the closest result. With the assis-
tance of a computer program, it can be found that the ratio ‘[latitude] differ-

43 Here, ‘+’ is used after the vernal equinox, and ‘−’ is used after the autumnal equinox.
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ence variate’ of Table K-I-S is 0.7729, and therewith that a latitude of 38.6 du 
produces results which are almost identical to those in the table.

4.2.2 The ‘Method of Nine Domains’

In addition to what we may recover from Mei Wending’s narrative, the canon 
of the Season-granting System provides another concise method titled ‘clepsy-
dra time at [any location within] the nine domains’ ( jiufu louke 九服漏刻) to 
calculate the times of sunrise and sunset. The term ‘nine domains’ ( jiufu 九
服) is a literary allusion to an early theory of monarchy which already existed 
in China before the second or first century B.C. This theory divides the terri-
tory of the state into concentric squares, with the king’s domain in the center 
and the residences of barbarians on the periphery.44 The method in question is 
appropriate for sites outside of the capital city. The procedure states:

各於所在以儀測驗，或下水漏，以定其處冬至或夏至夜刻，與五十刻相減，餘為至差
刻。置所求日黃道去赤道內外度及分，以至差刻乘之，進一位，如二百三十九而一，所
得內減外加五十刻，即所求夜刻；以減百刻，餘為晝刻。
Determine the length of local nighttime at the winter or summer solstice at each 
location through instrumental observations or with the help of the clepsydra. Sub-
tract 50 ke [from the length of nighttime], the remainder is the ‘solstice difference 
mark’. For the selected day, set out its declination of the ecliptic, inside or outside 
the equator, in units du and fen. Multiply it by the solstice difference mark, advance 
one column, and count 1 for each 239 in the result.45 If on that day, the ecliptic is 
inside the equator, subtract the result from 50 ke; if it is outside, add 50 ke to the 
result. So the required length of nighttime is obtained. Subtract it from 100, the 
remainder is daytime.46

In this method, the ‘solstice difference mark’ (zhicha 至差刻), an empirical 
local measure of the difference between solstitial and equinoctial daylength, 
needs to be obtained in advance. Suppose HW is the length of nighttime at the 
winter solstice and HS is the length of nighttime at the summer solstice, then 
the ‘solstice difference mark’ (SD for short) is ‘50 – HW’ or ‘50 – HS’ in the 
unit ke. The nighttime of the desired day (HN) is as follows:

page 272, top The consequent steps can be
transcribed as follows:

FOI POH FI = FO×PH
r = 15 29 du

AL = AJ − LJ = AJ − FI 43 16 du
AF = OK = r − CK = 56 065 du

FAL GFI FG = FI×AF
AL 19 87 du

With the help of ‘Chinese spherical trigonometry’, we now find:

arc FG = 19 9614 du and

FGO F G O arc F G
F O = arc FG

FO = 0 8419

This value 0.8419 is a ratio …

page 272, middle the apparent
motion of the sun) is:

arc F G
6A F + 1 =

0 8419×A K
6A F + 1 (unit: day).

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake …

page 272, below middle i.e. from point
G (sunrise) to point A (midday), can be obtained as follows:

h = 0 25 ± 0 8419×A K
6A F + 1

= 0 25 ± 0 8419×A K
6 r2 − A K 2 + 1

(unit: day).43

The above is the final equation of the hour angle, …

page 273, near bottom
unit ke. The nighttime of the desired day (HN) is as follows:

HN = 50 ± SD×δ× 10
239 .

In this equation, δ is the declination … Thus the equation is equiv-
alent to

HN = 50 ± SD× δ
ε

This procedure avoids the use of the complicated method …

page 281, near bottom The relationship between
the two DNds is then as follows:

DNd(n)_KIS
541 5 = DNd(n)_CIB

592 04

(here n is the day after the solstice from 0 to 91.31).

2

In this equation, δ is the declination of the ecliptic inside or outside the equator, 
and ‘10/239’ is one divided by the obliquity ε. Thus the equation is equivalent to

page 272, top The consequent steps can be
transcribed as follows:

FOI POH FI = FO×PH
r = 15 29 du

AL = AJ − LJ = AJ − FI 43 16 du
AF = OK = r − CK = 56 065 du

FAL GFI FG = FI×AF
AL 19 87 du

With the help of ‘Chinese spherical trigonometry’, we now find:

arc FG = 19 9614 du and

FGO F G O arc F G
F O = arc FG

FO = 0 8419

This value 0.8419 is a ratio …

page 272, middle the apparent
motion of the sun) is:

arc F G
6A F + 1 =

0 8419×A K
6A F + 1 (unit: day).

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake …

page 272, below middle i.e. from point
G (sunrise) to point A (midday), can be obtained as follows:

h = 0 25 ± 0 8419×A K
6A F + 1

= 0 25 ± 0 8419×A K
6 r2 − A K 2 + 1

(unit: day).43

The above is the final equation of the hour angle, …

page 273, near bottom
unit ke. The nighttime of the desired day (HN) is as follows:

HN = 50 ± SD×δ× 10
239

In this equation, δ is the declination … Thus the equation is equiv-
alent to

HN = 50 ± SD× δ
ε .

This procedure avoids the use of the complicated method …

page 281, near bottom The relationship between
the two DNds is then as follows:

DNd(n)_KIS
541 5 = DNd(n)_CIB

592 04

(here n is the day after the solstice from 0 to 91.31).

2

This procedure avoids the use of the complicated method of ‘Chinese spher-
ical trigonometry’, and presumes that the changes in the lengths of daytime 
and nighttime are simply proportional to the change in solar declination. The 
result can thus be obtained as a simple linear function of the value δ. This 

44 Sivin, Granting the Seasons, p. 496.
45 That is, divide the value by 239.
46 Lidai tianwen lüli deng zhi huibian, p. 3416.
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Ecliptic  
accumulated  

degrees

C-I-B47 
(Beijing)

Nine 
Domains 
(Beijing)

Differences
(Beijing)

K-I-S48 
(Seoul)

Nine 
Domains 
(Seoul)

Differences
(Seoul)

0 1907.96 1907.88569 0.07431 1956.5 1956.43178 0.06822

1 1908.05 1907.96743 0.08257 1956.58 1956.50682 0.07318

2 1908.34 1908.21267 0.12733 1956.85 1956.73195 0.11805

3 1908.81 1908.62388 0.18612 1957.28 1957.10945 0.17055

4 1909.47 1909.19610 0.2739 1957.89 1957.63476 0.25524

5 1910.32 1909.93677 0.38323 1958.67 1958.31470 0.3553

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

50 2133.83 2117.505 16.325 2163.86 2148.86489 14.99511

51 2142.09 2125.64246 16.44754 2171.44 2156.33517 15.10483

52 2150.41 2133.88147 16.52853 2179.08 2163.89869 15.18131

53 2158.81 2142.21462 16.59538 2186.79 2171.54862 15.24138

54 2167.27 2150.65429 16.61571 2194.56 2179.29634 15.26366

55 2175.81 2159.18809 16.62191 2202.4 2187.13047 15.26953

56 2184.4 2167.81106 16.58894 2210.29 2195.04647 15.24353

57 2193.04 2176.51826 16.52174 2218.22 2203.03979 15.18021

58 2201.73 2185.30473 16.42527 2226.2 2211.10587 15.09413

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

88 2470.34 2468.03975 2.30025 2472.25 2470.66010 1.5899

89 2479.3 2477.68827 1.61173 2480.98 2479.51755 1.46245

90 2488.26 2487.33678 0.92322 2489.21 2488.37501 0.83499

91 2497.21 2496.98530 0.2247 2497.43 2497.23247 0.19753

91.31 2500 2500 0 2500 2500 0

Table 7: Differences in ‘winter daytime/summer nighttime’ between Type I and the ‘Method 
of Nine Domains’.

approximate ‘Method of Nine Domains’ is suitable for non-core sites outside of 
the capital. While this method is not particularly accurate, it helps to reduce 
the computational burden.

The canon of the Season-granting System gives Table C-I-B directly for the 
Yuan capital Beijing (geographical latitude 40.95 du) and provides the ‘Method 
of Nine Domains’ as an alternative method of calculation for sites outside of the 
capital. A comparison shows that the values obtained by the ‘Method of Nine 
Domains’ are smaller than the corresponding values in Table C-I-B, and the 
maximum difference 16.6219 fen (about 2.4 minutes in modern time) appears 
in the entry for 55 du after the solstices (see Table 7). In addition, if we apply

47 Winter daytime/summer nighttime (dongzhou xiaye 冬晝夏夜) in Table C-I-B.
48 Winter daytime/summer nighttime (dongzhou xiaye 冬晝夏夜) in Table K-I-S.
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Figure 9: Comparison of two methods for the lengths of daytime and nighttime.
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the ‘Method of Nine Domains’ to Seoul, the calculation results will be smaller 
than those in Table K-I-S, which is consistent with what happens for Beijing 
(see Figure 9).49 This comparison indicates that neither Table C-I-B nor Table 
K-I-S is produced by the ‘Method of Nine Domains’. A probable reason is that 
both tables were compiled for capital cities and thus had to be highly accurate.

4.3 Method of computation for tables of Type II

The difference between tables of Type I and of Type II is that they have dif-
ferent ranges of arguments. Both start from the solstices, but Type I has an 
argument range from 0 to 91.31 du, and Type II from 0 to 182 days. The 
interval of the former is one du in Chinese degrees, while the interval of the 
latter is one day in time. In the canon of the Season-granting System, the third 
section of the chapter ‘The Pacing of the Centered Star’ (buzhongxing 步中
星, i.e. measuring the time of the meridian transit of stars) introduces a proce-
dure titled ‘Finding the half daytime/nighttime and the time of sunrise, sunset, 
dawn and dusk of each day’ (qiu meiri banzhouye ji richuru chenhunfen 求每日
半晝夜及日出入晨昏分).50 This procedure begins by picking up data from the 
table and carrying out interpolation for the lengths of daytime and nighttime; 
the purpose is to transfer the argument from Type I to Type II. The text states:

置所求入初末限，滿積度，去之，餘以晝夜差乘之，百約之，所得，加減其段半晝夜
分，為所求日半晝夜分；前多後少為減，前少後多為加。以半夜分便為日出分，用減日
周，餘為日入分；以昏明分減日出分，餘為晨分；加日入分，為昏分。
Set the Beginning/End Extent for the desired argument (the true solar position 
of the day, taken from the solar equation table) and cast the full accumulated du 
(counted along the ecliptic from the appropriate solstice).51 Multiply its remainder (a 
value smaller than accumulated du) by the day/night difference (column 8 in Table 
C-I-B) and simplify the result by 100 and round it off. The result, when added to 
or subtracted from midday and midnight time for the corresponding increment, 
becomes midday and midnight time for the day. If it is greater before than after, 
subtract; if smaller before than after, add. Then take midnight time as sunrise time. 
Subtract from the day cycle (10000 fen) and the remainder is sunset time. Subtract 
dusk/daybreak time (twilight) from sunrise time and the remainder is dawn time. 
Add [dusk/daybreak time (250 fen)] to sunset time to produce dusk time.52

49 The maximum difference of 15.26953 fen (about 2.2 minutes in modern time) appears 
for the entry 55 du after the solstices.

50 Lidai tianwen lüli deng zhi huibian, p. 3414.
51 In the Season-granting System, the sun’s speed and the daily increment to the equation of 

center are identical in the four quadrants. Thus the Beginning/End Extent in quadrants I and 
IV is read from the winter solstice, and in quadrants II and III from the summer solstice. See 
Sivin, Granting the Seasons, p. 415.

52 Lidai tianwen lüli deng zhi huibian, pp. 3414–15.
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Figure 10: Process of transforming from Type I to Type II.

In this procedure, the user needs to refer to the solar anomaly table and pick 
up the true position of the sun for the desired day. Because the Season-grant-
ing System chooses the winter solstice as the approximated solar apogee, and 
the mean motion of the sun is one du per day, the true solar position on day 
n after the solstice is n times 1 du plus or minus the correction of the solar 
equation of anomaly.

For example, for the tenth day after the winter solstice we have 10 du as the 
total motion of the mean sun and the solar equation of anomaly is 0.48841 
du, thus the sum is 10.48841 du, which is the true position of the sun (mea-
sured from the winter solstice) on this day. With 10.48841 as the argument, 
we now cast out the whole ecliptical degrees, resulting in 0.48841. After multi-
plying the remainder by the corresponding day/night difference of 1.99 picked 
up from the table of Type I (column 8 in the table of Type C-I-B), we obtain 
0.9719359. Adding this to 1917.4, the corresponding half daytime (column 10 
in Table C-I-B), the half daytime for day 10 after the winter solstice can be 
obtained (see Figure 10). Finally, by symmetry, we can produce the times of 
sunrise, sunset, dawn and dusk on this day.

5. Tables revised in Korea

When the Season-granting System and the Great Concordance System were 
transmitted to Korea, the Korean astronomers were aware of the difference in 
latitude between the Chinese capital and the Korean capital, and tried to find 
a solution. A Korean commentary on the Great Concordance System mentions:

《授時曆》、《通軌》、《回回曆》日出入畫夜刻，各據所在推定，與本國不同。今更以
本國漢都每日日出入畫夜刻錄於內、外篇中，永為定式。
The times of sunrise, sunset, daytime and nighttime in [books such as] the Sea-
son-granting System, General Rules [of the Great Concordance System] and the 
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Huihui Calendrical System (Chinese-Islamic System) are all based on calculation 
results of their corresponding sites, which are different from our own country. Now 
we replace these data with the times of sunrise and sunset, the lengths of daytime 
and nighttime for each day at our capital Hanyang (Seoul), and record them in the 
Inner Chapter and the Outer Chapter [of Computation of the Seven Regulators] as 
acknowledged facts that remain true forever.53

In addition to this text, the official record in the The Veritable Records of the 
Joseon Dynasty (Joseon wangjo shillok 朝鮮王朝實錄) also points out that ‘the 
[Chinese] Great Ming dynasty refers to the book General Rules [of the Great 
Concordance System]’ 大明用《通軌》日出分 to determine the time of sunrise, 
while ‘our country uses the Inner Chapter [of Computation of Seven Regula-
tors]’ 本國用《內篇》日出分.54 These records show that the Korean astronomers 
were aware that the differences in the times of sunrise and sunset were caused 
by the difference in latitude. Consequently, in order to compile a new table for 
Seoul, one had to possess not only astronomical knowledge but also enough 
computing skills.

Eun-Hee Lee points out that the half lengths of daytime and nighttime in 
Table K-I-S were calculated based on the ‘inside/outside degrees of the eclip-
tic’ (huangdao churu chidao neiwaidu 黃道出入赤道內外度, i.e., the declination 
measured from the equator to the ecliptic) and the ‘solstice difference mark’ 
(zhichake 至差刻). In addition, the solar declination was calculated by applying 
Shen Gua’s formula from the late eleventh century. She also compares the val-
ues in Table K-I-S with a recalculation using modern methods, and says that 
the disagreement between Table K-I-S and modern methods is caused by the 
use of the approximate formula of Shen Gua, who adopted the value of π = 3.55 
However, we cannot find historical records to support the fact that the Korean 
astronomers had mastered the knowledge of determining the sagitta by the seg-
ment of the circle (by the rule of ‘Chinese spherical trigonometry’, hushi geyuan 
shu 弧矢割圓術). Shi Yunli criticizes Eun-Hee Lee’s conclusion and points out 
that this table may have been produced by the ‘Method of Nine Domains’ with 
its algebraic formula, which is the concise method introduced in the canon of 
the Season-granting System. He supports his argument by pointing out that 
the Korean documents in their calculation emphasize the ‘solstice difference 
mark’ (zhichake 至差刻), which only appears in the procedure of the ‘Method 
of Nine Domains’.56 Indeed, our analysis has demonstrated that the procedure 
to construct this table is more complex than scholars have previously imagined.

53 Datong lifa tonggui, epilogue 2a.
54 Joseon wangjo shillok, Sejo annals 119.2b.
55 See Lee, ‘The Ch’iljǒngsan Naepiǒn’.
56 Shi, ‘The Study of Shoushili’.
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As mentioned in the last section, according to the Table K-I-S in the Inner 
Chapter of Computation of the Seven Regulators, we find that the latitude 
adopted by the Korean astronomers is about 38.6 du. However, none of the 
historical documents mentions this value; even the Inner Chapter of Computa-
tion of the Seven Regulators avoids discussing the latitude value actually used.

The History of the Yuan Dynasty reports that as early as 1279 the Chinese 
astronomer Guo Shoujing carried out a survey to accurately measure the lati-
tude at twenty-seven different sites including Koryeo (Korea). The latitude of 
Koryeo is recorded as 

Mathematical formulas for Li Liang

Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

 du (37°41′). This value is thought to belong to Gae-
gyeong, the capital of Koryeo and presently the North-Korean city Kaesong, 50 
km north of Seoul.

In 1432, several Korean scholars including Jeong Inji 鄭麟趾 (1396–1478) 
were assigned by King Sejong to measure the latitude of Seoul. They established 
the latitude as 38 du, and came to the conclusion that this value is ‘close to the  
measurement recorded in the History of the Yuan Dynasty’ 少與《元史》所測合
符.57 Later, the Korean astronomer Yi Soonji 李純之 (fl. 1450s) recomputed the 
latitude and obtained 
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Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

 du. At first, King Sejong was not convinced, but 
in time, the Chinese Ming court issued an almanac to Korea, which says  
‘the latitude of Korea is 

Mathematical formulas for Li Liang

Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

 du’ 高麗北極出地, 三十八度强.58

Because the Inner Chapter of Computation of the Seven Regulators, finished 
in 1442, only displays the tables and conceals the latitude and the method of 
calculation, the only clue we can find in this book is the following passage:

日出入隨處各異，諸曆不同。《內篇》據漢陽日至之晷，推求至差，得每日日出晝夜刻
分，定為本國所用。
Sunrise and sunset vary from place to place, and each calendrical system [has] dif-
ferent [values]. The Inner Chapter [of Computation of the Seven Regulators] fixes 
the hours of day and night appropriate for use in this country as calculated from the 
‘solstice difference [mark]’ according to the solstitial gnomon [shadow] at Hanyang.59

In addition, the book Method for the Calculation of the Eclipses (Gyosik Chu-
bobeob 交食推步法), finished in 1457, which is a revision of the Inner Chapter 
of Computation of the Seven Regulators, presents a similar expression:

日出入則以北極出地高下，隨處各異。而書雲觀只依中朝大統曆日出入用之，極爲踈
闊。故軫慮精思，先測定我國漢陽北極出地三十八度少弱，參考其二至晷影，推求得日
出入之分。
The [times of] sunrise and sunset are related to the polar altitude (geographical lat-
itude), and each site is different. Since the Hall of Heavenly Records (Korean Royal 
Observatory and Astronomical Bureau) merely relies on [the times of] sunrise and 
sunset mentioned in the Great Concordance System from China, data in this book 

57 Joseon wangjo shillok, Sejo annals 77.9b.
58 Joseon wangjo shillok, Sejo annals 36.14a.
59 Chiljeongsan Naepyon, vol. A, 38.b.
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are extremely inaccurate [for use in our country]. So [we are] anxious about this 
and have spent great efforts on it. Firstly, [we] determined the latitude of Hanyang 
(Seoul) to be 
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Basic fractions in ordinary text (for footnote 13 on p. 256: see below)
3814 du … 38 1

12 … 3816 …

page 256, footnote 13
the value 38 14 du (corresponding to 37;41 ) for the latitude …

page 267, near bottom
… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …
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and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …

page 271, last line
OC is 60.875 du. By means of the Pythagorean theorem, we get CK = OC −
OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun

 du. Then, referring to the shadow of the sundial at two solstices, 
[we] obtained the times of sunrise and sunset.60

In these two texts, we find that the Korean astronomers calculated the times 
of sunrise and sunset based on observations with a sundial in Hanyang (Seoul). 
The calculation of a table of Type I requires the exact local latitude and mas-
tery of the method of ‘Chinese spherical trigonometry’. The underlying lati-
tude 38.6 du adopted by Table K-I-S is not consistent with other historical 
values such as 
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… values of the latitude φ and the declination δ:

cos h = − tan arcPS ∙ cot arcPA
= tan 180 − φ ∙ cot 90 + δ
= − tan φ ∙ tan δ

However, it needs to be pointed out that …

page 267, near bottom
and sagitta, the following relation holds:

a = c + b2
d

With the Theorem of Pythagoras, we can obtain:

c2 = r2 − r − b 2

Eliminating the half chord c from the above two equations, we can achieve
an equation of order four:

b4 − d2 − 2da b2 − d3b + d2a2 = 0

This is one of the major formulae …
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OK = OC − r2 − EK2 = 4 81 du. At noon of the summer solstice, the sun
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 du. Although the Korean astron-
omers received many astronomical and mathematical books from China in the 
fifteenth century, the catalogue of these books did not include Detailed Proce-
dures which explains the underlying theory,61 so probably they were not able to 
compile the tables of sunrise and sunset by the sophisticated method of ‘Chi-
nese spherical trigonometry’. Another relevant detail is that at that time, the 
Korean astronomers had limited mathematical skills in calendrical calculations. 
According to the official annals, many staff members of the Korean Royal 
Observatory and Astronomical Bureau only ‘mastered preliminary arithmetic 
such as multiplication and division’ 粗習乘除而已, and even ‘the extraction of 
the cubic root was unknown’ 立方開法尚未知也.62 It is therefore very unlikely 
that the sophisticated theory was accessible to Korean astronomers and that 
their calculation ability was adequate to apply ‘Chinese spherical trigonometry’.

In all historical texts mentioned above, we should pay special attention to 
the term ‘solstice difference mark’. The ‘Method of Nine Domains’ provides 
us with a calculation procedure based on the ‘solstice difference mark’, but our 
analysis has shown that the data of Table K-I-S do not correspond with this 
method. The Korean astronomers may have found an ingenious way to obtain 
accurate data for Table K-I-S, that borrows data from the earlier Table C-I-B.

Column 8 of Table C-I-B gives the ‘day-night difference’ (zhouye cha 晝夜
差), the increase or decrease of daytime for each day ranging from solstice to 
equinox, and the sum of the day-night differences is 592.04 fen. This is equiva-
lent to the maximum difference of half daytime between the solstices and equi-
noxes and is half of the ‘solstice difference mark’.63

The Korean astronomers must have carried out an empirical measurement of 
daylength at the two solstices at first, and found the ‘solstice difference mark’

60 Gyosik Chubobeob, vol. A, 1a.
61 The book Detailed Procedures (Licao) was almost lost in China at the time, but we can 

access its contents through Mei Wending’s record from the late seventeenth century.
62 Joseon wangjo shillok, Sejo annals, 20.39a.
63 The length of half daytime at the winter and summer solstices is 1907.96 fen and 

3092.04 fen respectively. The length of half daytime at the two equinoxes is 2500 fen.
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Ecliptic  
accumulated 

degrees

K-I-S 
(Seoul)

Recomputation
(Seoul)

Differences
(Seoul)

0 0.08 0.08232 0.00232

1 0.27 0.26524 −0.00476
2 0.43 0.42988 −0.00012
3 0.61 0.60366 −0.00634
4 0.78 0.77744 −0.00256
5 0.95 0.95122 0.00122

     ⋮ ⋮ ⋮ ⋮

50 7.58 7.55488 −0.02512
51 7.64 7.60976 −0.03024
52 7.71 7.68293 −0.02707
53 7.77 7.7378  −0.0322
54 7.84 7.81098 −0.02902
55 7.89 7.85671 −0.03329
56 7.93 7.90244 −0.02756
57 7.98 7.94817 −0.03183
58 8.03 8.00305 −0.02695

     ⋮ ⋮ ⋮ ⋮

88 8.23 8.19512 −0.03488
89 8.23 8.19512 −0.03488
90 8.22 8.18598 −0.03402
91 2.57 2.55183 −0.01817

91.31 0 2.55550 0

Table 8: Differences of ‘day-night difference’ between K-I-S and my recomputation.

as 541.5 fen. Then they needed to find a way to distribute the 541.5 fen over 
91.31 days. Table C-I-B gives the ‘day-night difference’ for Beijing in column 8.  
By scaling the data in this column, it would not be difficult to rebuild the 
‘day-night difference’ (DNd for short) in Table K-I-S. The relationship between 
the two DNds is then as follows:

page 272, top The consequent steps can be
transcribed as follows:

FOI POH FI = FO×PH
r = 15 29 du

AL = AJ − LJ = AJ − FI 43 16 du
AF = OK = r − CK = 56 065 du

FAL GFI FG = FI×AF
AL 19 87 du

With the help of ‘Chinese spherical trigonometry’, we now find:

arc FG = 19 9614 du and

FGO F G O arc F G
F O = arc FG

FO = 0 8419

This value 0.8419 is a ratio …

page 272, middle the apparent
motion of the sun) is:

arc F G
6A F + 1 =

0 8419×A K
6A F + 1 (unit: day).

This ratio is called ‘time deviation for sunrise and sunset’ (churu chake …

page 272, below middle i.e. from point
G (sunrise) to point A (midday), can be obtained as follows:

h = 0 25 ± 0 8419×A K
6A F + 1

= 0 25 ± 0 8419×A K
6 r2 − A K 2 + 1

(unit: day).43

The above is the final equation of the hour angle, …

page 273, near bottom
unit ke. The nighttime of the desired day (HN) is as follows:

HN = 50 ± SD×δ× 10
239

In this equation, δ is the declination … Thus the equation is equiv-
alent to

HN = 50 ± SD× δ
ε

This procedure avoids the use of the complicated method …

page 281, near bottom The relationship between
the two DNds is then as follows:

DNd(n)_KIS
541.5 = DNd(n)_CIB

592.04

(here n is the day after the solstice from 0 to 91.31).

2

(here n is the day after the solstice from 0 to 91.31).
With the formula above, the average difference of the ‘day-night difference’ 

between K-I-S and my recomputation is about −0.02113 fen (0.18 seconds in 
modern time), and the maximum difference is −0.03488 fen (0.30 seconds in 
modern time). These small deviations may be caused by the used method of 
rounding or truncation (see Table 8).
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With the ‘day-night difference’ of Table K-I-S in column 8 and the lengths 
of daytime and nighttime on the days of the summer and winter solstice, the 
lengths of daytime and nighttime of any given day listed in columns 4 and 5 in 
Table K-I-S can be obtained easily. In this way, the Korean astronomers could 
ignore the value of the geographical latitude, and avoid the complicated opera-
tions of ‘Chinese spherical trigonometry’ to produce a table practically as good 
as the one used in China. This reasoning is consistent with the record in the 
book Inner Chapter of Computation of the Seven Regulators. If true, it would be 
a typical case of drawing support from existing astronomical tables to bypass 
the theoretical and technological obstacles and compile a new one. As to the 
question of why the underlying latitude of table K-I-S is not given and its value 
is not consistent with actual historical observations, a reasonable explanation 
is that this table is probably made based on empirical measurement and Table 
C-I-B, rather than sticking to some fixed calculation procedure based on the 
latitude.

6. Concluding remarks

Firstly, this paper scrutinizes various tables of sunrise and sunset in the calen-
drical works of Yuan and Ming China, including the Season-granting System 
in the History of the Yuan Dynasty and the Great Concordance System in the 
History of the Ming Dynasty. These tables of sunrise and sunset belong to two 
types, and the distinct differences between them are their layouts and appli-
cations. The Type I table with the argument of ‘ecliptic accumulated degrees’ 
is a necessary tabular tool in some specific calendrical calculations, while the 
table of Type II is more straightforward and can be used by non-experts to 
calibrate time reckoning instruments such as the clepsydra.64 These two types 
of tables can be converted to each other when required, and the canon of the 
Season-granting System includes the procedure to transform from Type I to 
Type II.

The Season-granting System provides two methods to produce the tables 
of sunrise and sunset. One employs arc and sagitta calculations and utilizes 
the characteristic ‘Chinese spherical trigonometry’ (hushi geyuan shu 弧矢割圓
術). This approach is based on a specific geometrical model and can be clearly 
explained in theory, but as it imposes too much calculation burden, it is only 
used for the capital cities. This method is not recorded in the existing canon 
of the Season-granting System in the History of the Yuan Dynasty, but we can 
learn about it through Mei Wending’s record from the late seventeenth century. 
The other method named ‘Method of Nine Domains’ is rough but simple, and 
it applies to districts outside of the capital. Based on our analysis, tables of sun-

64 Sometimes it is necessary to convert the time from the ‘one-hundredth-of-a-day system’ 
to the ‘watches-and-points system’ and ‘double-hour system’.
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rise and sunset for Beijing, Nanjing, and Seoul in historical documents were all 
produced using the first method, because these three cities were the capitals of 
the Chinese Yuan and Ming dynasty and the Korean Joseon dynasty respec-
tively. The historical document states the latitude used for table C-I-B as 40.95 
du, which is consistent with the result of our recomputation. Tables C-I-N and 
K-I-S do not specify the latitude of their places of use; calculation finds that 
the most likely values of the two tables are 32.5 du and 38.6 du.

Secondly, there is no direct evidence telling us how the Korean astronomers 
constructed their own tables K-I-S. It is not clear whether they did calculations 
independently or adapted Chinese tables for Korea. The analysis shows that 
the underlying latitude of Tables K-I-S does not agree with any previous histor-
ical measurement. It is reasonable to deduce that the Korean astronomers prob-
ably compiled their tables on the basis of existing Chinese tables. Although the 
Korean astronomers were not familiar with the specific underlying theory, they 
managed to construct their own tables by referring to available Chinese tables 
when their mathematical and geometrical knowledge was inadequate.
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The Tables of Planetary Latitudes in  
Jamshīd al-Kāshī’s Khāqānī Zīj

Glen van bruMMelen

After the ninth century aD, the practice of Islamic mathematical astronomy 
was inspired mostly by the tradition initiated by Claudius Ptolemy’s Alma- 
gest.1 The determination of the positions of the celestial bodies as a function of 
time was at the heart of the project, with various applications (such as eclipse 
reckoning, religious observances such as prayer times, and astrological prog-
nostications) following from them. Although there were several genres within 
Islamic astronomy, the largest, with more than 225 known representatives, was 
the zīj.2 These treatises generally eschewed explicit representation of geometric 
theory in favour of application, containing astronomical tables and instructions 
for their use but comparatively little discussion of the underlying trigonometry 
or observations. In this respect they were closer in spirit to Ptolemy’s Handy 
Tables; however, in their tabulations of the positions of the planets they fre-
quently followed the methods of the Almagest.

The Almagest deals with the motions of the planets in Books IX–XI (and 
Books III and IV, if one includes the Sun and Moon). But in these books he 
deals only with the planets’ longitudes, i.e., their positions as if they travel along 
the ecliptic (Figure 1) measured from the vernal equinox. However, the planets 
move above and below the ecliptic by up to several degrees, and the predic-
tive power of the Almagest would be limited had he not dealt with latitudes 
as well. Ptolemy’s approach to modeling latitudes in the XIIIth and last book 
involves somewhat complicated three-dimensional geometry. The mathematics 
that Ptolemy applies to the problem is filled with approximations, more than 
one finds within the treatment of planetary longitudes earlier in the Almagest.3

1 Toomer, Ptolemy’s Almagest.
2 For surveys of the zīj literature and summaries of the most important zījes (including 

those mentioned in this article), see Kennedy, ‘A Survey’; and King et al., ‘Astronomical Hand-
books’.

3 For overviews of Ptolemaic latitude theory see Neugebauer, A History, vol. I, pp. 208–16; 
and Pedersen, A Survey, pp. 355–86. See also Riddell, ‘The Latitudes of Venus’; Swerdlow, 
‘Ptolemy’s Theory of the Inferior Planets’; and Swerdlow, ‘Ptolemy’s Theories of the Latitude’. 
On planetary latitudes in medieval Islam (especially in Maragha and Samarqand) see Mozaf-
fari, ‘Planetary Latitudes’. For a summary of planetary latitude tables in medieval Islam see van 
Dalen, ‘Tables of Planetary Latitude’, pp. 325–28.

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 287–329

© F  H  G  10.1484/M.PALS-EB.5.127702
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Figure 1: The longitude and latitude of Venus.

Due partly to the lesser significance of planetary latitudes (as opposed to lon-
gitudes) in astrology, they were often treated cursorily, and latitude tables were 
frequently taken directly from the Almagest or copied from one zīj to the next.

Two of the most sophisticated zījes composed in the first half of the fif-
teenth century were related to each other. The first is the Khāqānī Zīj by Jam-
shīd Ghiyāth al-Dīn al-Kāshī of Kashan, Iran.4 Written early in his working 
life, the Khāqānī Zīj still holds many secrets. Unusually for zījes, it contains 
extensive accounts of mathematical and astronomical innovations. Small sec-
tions of the work have been examined in the modern literature: for instance, 
the trigonometric tables,5 its first determination of sin 1°,6 its spherical astrono-
my,7 aspects of its astrology,8 its planetary longitude tables,9 and its novel deter-
mination of planetary longitudes and latitudes that replaces Ptolemy’s epicyclic 
circle with an epicyclic sphere.10

4 For a survey of the contents of the entire zīj, see Kennedy, On the Contents.
5 Hamadanizadeh, ‘The Trigonometric Tables’.
6 Van Brummelen, ‘Crossing a Mathematical Rubicon’. This is not the well-known method 

that solves a cubic equation numerically; for that see Aaboe, ‘Al-Kāshī’s Iteration Method’, or 
Rosenfeld and Hogendijk, ‘A Mathematical Treatise’.

7 Kennedy, ‘Spherical Astronomy’.
8 Kennedy, ‘Treatise V of Kāshī’s Khāqānī Zīj ’, and Kennedy, ‘The Prime Vertical  

Method’.
9 Tichenor, ‘Late Medieval Two-Argument Tables’.
10 Van Brummelen, ‘Taking Latitude with Ptolemy’.
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The Khāqānī Zīj was written as an upgrade to Naṣīr al-Dīn al-Ṭūsī’s 
mid-thirteenth-century Īlkhānī Zīj.11 Indeed, al-Kāshī’s Zīj begins with a list 
of some 70 improvements of his work over its predecessor. It opens with an 
effusive passage praising his sponsor Ulugh Beg, sultan in Samarqand and an 
astronomer in his own right. Al-Kāshī would eventually end up in Ulugh Beg’s 
scientific court,12 and it is there that he would perform the computational feats 
for which he is best known today: the determinations of π and of sin 1° to the 
equivalent of 16 decimal places.13

Al-Kāshī died in 1429, but astronomical work continued at Ulugh Beg’s 
court, culminating in the Sulṭānī Zīj written by 1447 – just two years before 
Ulugh Beg’s own death. The Sulṭānī Zīj became perhaps the widest distrib-
uted zīj of all time, available in hundreds of manuscripts over a vast region and 
translated into Arabic and Turkish. Its tables are among the most impressive 
of their type; for instance, its sine table gives values of sines for each minute 
of arc (5400 entries altogether) to five sexagesimal (base 60) places, equivalent 
to roughly nine decimal places and generally accurate to within one unit of 
the last place. The text of the zīj was edited and translated to French over 
150 years ago and recently the work was translated to Russian,14 but an edition 
remains to be attempted.

This paper proposes to study al-Kāshī’s planetary latitude tables, only partly 
completed in the Khāqānī Zīj. They consist of a set of single-argument tables 
mostly but not completely derived from their counterparts in the Īlkhānī Zīj; 
and a set of double-argument tables, one of only two such sets composed in 
medieval Islam. We shall study the relation between the tables in the Īlkhānī 
Zīj and the Khāqānī Zīj, paying special attention to the computational inno-
vations proposed by al-Kāshī. Since the double-argument tables were not com-
pleted, we are afforded a brief glimpse into the activity of table production. 
Finally, we shall compare al-Kāshī’s tables to the corresponding set in the 
Sulṭānī Zīj, providing another data point toward understanding the extent of 
al-Kāshī’s influence on this latter great work.

11 Although Naṣīr al-Dīn al-Ṭūsī is known for his Tadhkira, a work that replaces Ptolemy’s 
geometric models of planetary motion with alternate models (see Ragep, Nașīr al-Dīn al-Ṭūsī’s 
Memoir), his highly popular Īlkhānī Zīj, extant in dozens of manuscripts, is firmly within the 
Ptolemaic tradition.

12 We know something of the life of Ulugh Beg’s court and observatory through several 
sources, including two letters al-Kāshī wrote to his father. See Kennedy, ‘A Letter of Jamshid 
al-Kāshī’; Bagheri, ‘A Newly Found Letter’, and Giahi Yazdi and Rezvani, ‘Chronology of the 
Events’.

13 On sin 1° see note 6. On π see Luckey, Der Lehrbrief über den Kreisumfang, and Azari-
an, ‘Al-Kāshī’s Fundamental Theorem’.

14 Sédillot, Prolégoménes des Tables Astronomiques.



290 GLEN VAN BRUMMELEN

Manuscripts

The Khāqānī Zīj is available in at least ten manuscripts, of which several are 
fragments. Our edition of the double argument tables for Mercury and Venus 
in the appendix is based on the following:15

• London, British Library, MS India Office 430 (Ethé 2232)16

• Istanbul, Süleymaniye Library, MS Ayasofya 2692

• Cairo, Dār al-Kutub, MS TR 149
The latitude tables are found in the following folios:

India Office Ayasofya Dār al-Kutub
Lunar latitude fol. 138v, 139r fol. 100v pp. 241, 242

Superior planets single-argument 139r, v 101r 242, 243

Venus single-argument 139v, 140r 101v 243, 244

Mercury single-argument 140v, 141r 102r 245

Saturn double-argument 152r – empty 113r – empty 268 – empty
Jupiter double-argument 152v – empty missing 269 – empty
Mars double-argument 153r – empty missing 270 – empty
Venus double-argument 153v; 154r, v 

partly completed
113v (empty);

114r, v 
(partly completed)

271–74
partly completed

Mercury double-argument 155r, v; 156r 115r, v,  
116r all empty

276, 277, 278

As one can see, al-Kāshī apparently never began to fill in the double-argu-
ment tables for the superior planets; thus we shall focus on the inferior plan-
ets. Noting that the Ayasofya manuscript’s double-argument table for Mercury 
and the first page of the Venus table are empty, Kennedy suggests either that 
a scribe left them out or that the Ayasofya manuscript was compiled before 
these tables were completed.17 The Dār al-Kutub manuscript is missing one of 
four pages of the Mercury table, but has a few extra entries in the Venus table. 
The latitude tables are found along with other planetary tables (including his 
double-argument planetary latitude tables) at the end of Treatise III; al-Kāshī’s 
text describing his mathematical innovations and criticisms of Ptolemy are in 
Treatise III, Chapter 2, Sections 6 and 7.

15 Other complete manuscripts, not used for this study, include Hyderabad, OMLRI, 
MS Āṣafiyya 323; Jaipur, Maharaja Man Singh II Museum Library, MS 9, and Qum, Marʿashī 
Library, MS 8144.

16 A rough translation of the instructions for the tables’ use based on this manuscript, pro-
vided to the author by E. S. Kennedy for this purpose, was invaluable.

17 Kennedy, On the Contents, p. 30.
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Figure 2: Ptolemy’s model for the longitudes of the planets.

When the Īlkhānī Zīj and the Sulṭānī Zīj are cited below, folio numbers for 
the former refer to London, British Library, MS Or. 7464, and for the latter, 
Oxford, Bodleian Library, MS Marsh 396.

Ptolemy’s latitude model

Ptolemy’s complete set of models for the latitudes of the planets, as well as their 
motivations and derivations, are described in several places.18 Various modern 
authors use different terms to describe the several planetary latitude effects; for 
the most part we base our language and notation on Pedersen’s A Survey of the 
Almagest. In this paper we shall outline only enough to understand al-Kāshī’s 
calculations. The model for the superior planets differs substantially from that 
of the inferior planets. Since al-Kāshī’s single-argument tables for the superior 
planets are taken from the Īlkhānī Zīj and the double-argument tables were never 
computed, we shall focus entirely on the inferior planets Venus and Mercury.

Ptolemy’s basic model for the motions of the planets (Figure 2) works as 
follows. The center of the epicycle travels along the edge of a larger circle, the 
deferent, while the planet revolves around the epicycle. The epicycle’s motion 
along the deferent takes place so that the mean centrum (angle cm – the angle 
at the equant point, corresponding to the arc from the apogee to the center of 
the epicycle) increases uniformly with time. The planet moves on the epicycle 
so that the mean anomaly (angle am) increases uniformly with time. In order to 
find the position of a planet as seen from the Earth, first the values of cm and 
am are found using mean motion tables. Next, geometric arguments allow Ptol- 

18 See especially Pedersen, A Survey, Chapter 12, and Riddell, ‘The Latitudes of Venus’.
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Figure 3(a): Ptolemy’s model for the latitudes of the inferior planets, c = 0°.

Figure 3(b): idem, c = 90°.

emy to find the value of the true centrum (angle c) from cm, and the value of the 
true anomaly (angle av) from the values of am and cm. From them Ptolemy can 
compute the equation of anomaly p (a function of both av and c), which when 
added to c gives the planet’s position seen from the Earth with respect to the 
apogee. Finding the planet’s longitude λ requires adding to this position the arc 
between the apogee and the zero point of longitude, the vernal equinox .19

However, the entire model of Figure 2 takes place within the plane of the 
ecliptic, while the planets move up to several degrees or even more above and 
below it. Ptolemy handles these motions in latitude in Book XIII, at the end 
of the Almagest. He does so by causing the deferent and epicycle to move above 
(northward) and below (southward) the plane of the ecliptic. The model for the 
superior planets (Mars, Jupiter, Saturn) differs from the more complicated model 
for the inferior planets (Venus, Mercury). Although Ptolemy later simplified this 

19 Ptolemy’s model for Mercury varies from this description. See Neugebauer, A History, 
pp. 158–69, and Pedersen, A Survey, pp. 309–28.
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Figure 3(c): Ptolemy’s model for the latitudes of the inferior planets, c = 180°.

Figure 3(d): idem, c = 270°.

model and its tabulations in his Handy Tables,20 the zīj tradition followed the 
Almagest. Since al-Kāshī seems never to have begun his double-argument tables 
for the superior planets, we describe here only the model for the inferior planets.

The latitude is a combination of three phenomena. The first, called the 
inclination, is a wobble of the deferent circle as the epicycle travels around the 
deferent. In the four diagrams comprising Figure 3, the rightmost point of the 
deferent corresponds to c = 0°. In Figure 3(a), c = 0° and the deferent is inclined 
to the ecliptic by its maximum value imax. For Venus we shall assume that the 
direction above the ecliptic plane is northward; for Mercury, that direction is 
southward. For Venus, imax = 0;10°; for Mercury, imax = 0;45°. In Figure 3(b), c 
has increased to 90° and the deferent has returned to the plane of the ecliptic. 

20 For the first of six planned volumes of the Handy Tables see Tihon and Mercier, 
Πτολεμαίον Πρόχειροι Κανόνες; see also Stahlman, The Astronomical Tables, and Swerdlow, 
‘Ptolemy’s Theories of the Latitude’.
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In Figure 3(c), c is now 180° and the deferent is again inclined by an angle of 
imax, but in the other direction. In Figure 3(d) c has reached 270°; the deferent 
is again on the plane of the ecliptic. Finally, after c increases by another 90° we 
return to the situation of Figure 3(a). Thus, in Figures 3(b) and 3(d) the center 
of the epicycle is in the plane of the ecliptic; while at all other times, the center 
of the epicycle is above the ecliptic.

The second phenomenon, the deviation, is the first of two wobbles of the 
epicycle with respect to the deferent circle. The first diameter of the epicycle 
extends from the point nearest to the Earth to the point furthest from the 
Earth. In Figure 3(a) the first diameter is on the plane of the deferent. By Fig-
ure 3(b), its deviation from the plane of the deferent has gradually increased 
and is now at its maximal amount jmax (2;30° for Venus and 6;15° for Mer-
cury). By Figure 3(c) the first diameter has returned to the deferent, and by 
Figure 3(d) it has reached its maximal deviation jmax in the opposite direction.

The third phenomenon, the slant, is a wobble of the second diameter of the 
epicycle, which is perpendicular to the first diameter. In Figure 3(a) the second 
diameter’s leading edge slants by its maximal amount kmax (3;30° for Venus; 7° 
for Mercury). In Figure 3(b) it has returned to the plane of the deferent; in 
Figure 3(c) it now slants by kmax in the other direction; and in Figure 3(d) it 
has again returned to the plane of the deferent.

Calculating and tabulating the three latitude effects: The inclination

As we shall see, al-Kāshī follows the overall structure of Ptolemy’s computa-
tion and tabulation of latitudes. However, in a number of instances he points 
out some approximation made by Ptolemy, either agreeing or disagreeing with 
Ptolemy’s assumption that the error caused by the approximation is negligible 
and may be permitted.21 This provides us an opportunity to gain insight into 
al-Kāshī’s implied standards for the level of precision appropriate to planetary 
predictions; we shall also be able to judge whether or not al-Kāshī’s standards 
are consistent from one such instance to the next.

The planet’s latitude β is a function22 of the epicycle’s position on the defer-
ent c, and of the planet’s position on the epicycle av. In their tabulations Ptolemy

21 It is worth noting here the assumption that numerical accuracy is a central criterion to 
measure the quality of a mathematical astronomical procedure. This is not always the case 
in al-Kāshī’s work; he also concerns himself with the extent to which a theoretical approach 
conforms to geometric method (see, for instance, Van Brummelen, ‘Crossing a Mathematical 
Rubicon’). However, occasionally he allows himself to violate geometric restrictions when the 
error is sufficiently small. If he had not, it seems certain he would never have accomplished 
anything on planetary latitudes.

22 Of course the term ‘function’ is anachronistic in the context of ancient and medieval 
science. Our use of it here and elsewhere implies only the prescription of a procedure that takes 
a value of one quantity and transforms it into a value of another, dependent quantity.
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Figure 4: The inclination of an inferior planet.

and al-Kāshī deal with the inclination (β1), deviation (β2), and slant (β3) sepa-
rately and add these three effects together:

β(c, av) = β1(c) + β2(c, av) + β3(c, av). (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

Our first effect is the inclination, which is a function only of c. In Figure 4, 
the center of the epicycle C travels around the deferent (the epicycle itself is 
not drawn), with c measured from the rightmost position counterclockwise as 
seen in the figure. Then, where i is the current inclination of the deferent, 
spherical trigonometry gives β1 according to23

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin(270◦ + c) = sin i ∙ cos c. (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

However, i is a very small angle varying up to 0;10° (Venus) or 0;45° (Mer-
cury). Ptolemy assumes then that β1 / i = sin β1 / sin i, so that

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c. (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

Now, the value of i varies sinusoidally as the deferent oscillates, so

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c. (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

23 We have had to make some concessions to modern terminology to render the histori-
cal procedures comprehensible to the modern reader. For example: (a) Ptolemy does not have 
modern trigonometric functions, relying instead only on the chord; we convert to sines and 
cosines for ease of comparison with al-Kāshī. (b) Ancient and medieval authors defined their 
trigonometric functions not with a unit circle, but with a circle of radius 60. We convert to 
the modern functions here. (c) sin(270° + c) is equal to −cos c , but negative quantities did not 
exist at this time. Rather, quantities were added or subtracted and then given as northward/
southward, or measured clockwise/counterclockwise from some reference point.
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c Venus Mercury

0 0;10 0;45
1 0;10 0;45
2 0;10 0;45
3 0;10 0;45
⋮ ⋮ ⋮

10 0;10 0;44
⋮ ⋮ ⋮

20 0;09 0;39
⋮ ⋮ ⋮

30 0;08 0;34
⋮ ⋮ ⋮

40 0;06 0;27
⋮ ⋮ ⋮

50 0;04 0;19
⋮ ⋮ ⋮

60 0;02 0;11
⋮ ⋮ ⋮

70 0;01 0;06
⋮ ⋮ ⋮

80 0;00 0;02
⋮ ⋮ ⋮

90 0;00 0;00

Table 1: Excerpts of al-Kāshī’s inclination tables for Venus and Mercury.

Therefore, combining (3) and (4),24

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c. (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

Ptolemy does not tabulate β1(c) directly, but Islamic zīj authors did. Excerpts 
of al-Kāshī’s inclination tables for Venus and Mercury are given in Table 1.25

Here we arrive at the first opportunity to examine al-Kāshī’s standards for 
approximation. In his text on the inclination,26 he states that equation (3)  
should be replaced by

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c, (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

but he allows the approximation to stand. Our recomputations confirm that 
the errors involved here are never larger than 0.00013″ for Venus and 0.012″ 
for Mercury, which are indeed tiny.

A similar (although not quite identical) situation arises with respect to the 
Moon’s latitude. In Figure 5 the Moon travels on a plane inclined to the eclip-
tic by 5°, and so

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5◦ sin λd. (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

24 See Neugebauer, A History, p. 224; Toomer, Ptolemy’s Almagest, pp. 631, 636; and Ped-
ersen, A Survey, pp. 376–77.

25 The arguments of the table for Mercury continue to 180°; since the function is symmet-
ric around 90°, we do not include the second half of the table here.

26 Treatise 3, Section II.7; fol. 102r in the India Office MS.



 THE TABLES OF PLANETARY LATITUDES 297

Figure 5: The Moon’s latitude.

λd Lunar latitude Error vs (7) Error vs (8)
0 0;00,00
1 0;05,14
2 0;10,27 [–1]
3 0;15,42 [+1]
⋮ ⋮ ⋮ ⋮

10 0;52,02 [–4]
⋮ ⋮ ⋮ ⋮

20 1;42,28 [–1] [–8]
⋮ ⋮ ⋮ ⋮

30 2;29,51 [–9]
⋮ ⋮ ⋮ ⋮

40 3;12,41 [–1] [–9]
⋮ ⋮ ⋮ ⋮

50 3;49,41 [–1] [–8]
⋮ ⋮ ⋮ ⋮

60 4;19,44 [–4]
⋮ ⋮ ⋮ ⋮

70 4;41,52 [–2]
⋮ ⋮ ⋮ ⋮

80 4;55,25 [–1] [–2]
⋮ ⋮ ⋮ ⋮

90 5;00,00

Table 2: Excerpts from al-Kāshī’s lunar latitude table, with errors displayed with respect to 
the precise formula (7) and the approximate formula (8). The table itself is given for every 
fifth of a degree. Errors are given in the usual way, as multiples of units of the last tabulated 
sexagesimal place. Blank entries in the error columns indicate that the historical table’s entry 
is correct to all places.

However, Ptolemy seems to calculate using the approximation

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5◦ sin λd. (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

It is difficult to tell whether Ptolemy actually uses (8), since his lunar latitude 
table is given only to minutes and only one entry produces different values 
when computed with (7). Here al-Kāshī objects to the approximation, which 
he says is also used in other zījes.27 Instead he calculates lunar latitudes to sec-

27 Treatise 3, Section II.4; fol. 79r in the India Office MS.
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onds rather than the usual minutes, and at this level of precision there is a sig-
nificant difference between the two formulas. He gives his new, more accurate 
table as the 22nd of his 70 improvements over the Īlkhānī Zīj. Table 2 presents 
excerpts from this improved table, with errors given in comparison with both 
(7) and (8). Clearly al-Kāshī is correct that (8) does not produce sufficient 
accuracy on the order of seconds of arc.

As for the origins of the planetary inclination tables themselves, both 
tables (one each for Venus and Mercury) are almost identical to those in the 
Īlkhānī Zīj.28 This sort of copying, especially for latitude tables, was common  
practice.29

Calculating and tabulating the three latitude effects: The deviation

The second latitude β2, the effect of the deviation, may be seen from Figure 3 
to be a function of two arguments. Clearly β2 is affected by the planet’s posi-
tion on the epicycle av. But since the first diameter’s inclination changes as 
the epicycle moves around the deferent, β2 is also a function of c. In principle 
this would require that β2(av,c) be tabulated in a rectangular grid rather than 
a single column. But from Ptolemy onward, this had been considered to be a 
daunting computational prospect to be avoided at all costs. In the case of the 
deviation (and also the slant, as we shall see) the cost of avoiding a double-ar-
gument table is an error caused by approximation. Ptolemy and his successors 
reason as follows: imagine in Figure 3 that the planet is fixed in place on the 
epicycle, i.e., that av is constant. Then as the epicycle moves around the defer-
ent, β2 varies sinusoidally with extreme values in the positions of Figures 3(a) 
and 3(c), and with values of zero in the positions of Figures 3(b) and 3(d). In 
other words

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2(c, av) ≈ β2(270
◦

, av) ∙ sin c. (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

Thus astronomers need only tabulate two columns: one for the maximal devi-
ation d(av) = β2(270°,av), and another for the deviation interpolation function 
fd(c) = sin c. To arrive at a value for β2, the user simply looks up the values for 
d(av) and fd(c) and multiplies them together.

The geometry behind d(av) leads Ptolemy and al-Kāshī to a procedure equiv-
alent to the following:

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d(av) =
r sin jmax cos av

√

ρ2 + 2ρr cos jmax cos av + r2
, (10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

28 Most of the 14 differences in the two Venus inclination tables are caused by a single er-
ror, a vertical shift in a string of entries caused by some scribe omitting an entry in the copying 
process. Three of the four differences in the Mercury table may have been caused by a similar 
copying error.

29 See the discussion of possible reasons for this in van Dalen, ‘Tables of Planetary Lati-
tude’, pp. 323–25.
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where r is the radius of the epicycle (43;10 for Venus and 22;30 for Mercury), 
jmax is the maximum inclination of the first diameter, and ρ is the distance 
from the Earth to the center of the epicycle when c = 270° (60 for Venus, 
56;40 for Mercury). Ptolemy’s values for jmax are 2;30 (Venus) and 6;15 (Mer-
cury); al-Kāshī refers also to alternate ‘modern’ parameters 3;30 (Venus) and 
7;0 (Mercury).30

Excerpts of al-Kāshī’s tables for d(av) and fd(c) for both Venus and Mercury 
are given in Table 3, with graphs of d(av) in Figure 6. Repeating our finding 
for the inclination tables, the values are taken from the Īlkhānī Zīj.31 In all 
but one case the parameter jmax implied by the entries in the table is the Ptole-
maic one. A curiosity arises with respect to d(av) for Venus: both al-Ṭūsī’s and 
al-Kāshī’s table use the Ptolemaic value for jmax (2;30) for the first 90 entries, 
and seem to use a value quite close to the modern one (3;30) for the last 90. 
This is the reason for the bend in the graph at the argument of 90°. Since 
the problem goes back at least as far as al-Ṭūsī, al-Kāshī’s only involvement in 
the issue was to copy the table, and we leave the matter for future research.32

Calculating and tabulating the three latitude effects: The slant

The Ptolemaic approach to the third latitude β3 parallels that of the second lat-
itude β2. As before, the slant is a function of both av and c and would therefore 
require the production of a double-argument table. Instead, as before imagin-
ing the planet to be fixed in place on the epicycle while the latter revolves 
around the deferent, β3 reaches extreme values in Figures 3(b) and 3(d), and is 
zero in Figures 3(a) and 3(c). Thus once more we may split the calculation of 
the deviation into two parts:

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

√

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3(c, av) ≈ β3(0, av) ∙ cos c. (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

This again permits the tabulation of only two columns, one for the maximal 
slant s(av) = β3(0°,av), and the other the slant interpolation function fs(c) = cos c.

The computation of s(av) is vexed already in the Almagest.33 Although there 
is a geometric path to s similar to what we saw for the maximal deviation, in 
this case Ptolemy and successors reasoned differently. In Figure 7, looking more 
closely at the epicycle in Figure 3(a), E is the Earth, the dashed circle with cen-
ter G is the epicycle before the rotation caused by the slant, FP is the epicycle 
after the slant has been applied, and P is the planet. In this configuration c = 0

30 On the origins of these new parameters in the Maragha tradition see Mozaffari, ‘Plane-
tary Latitudes’, pp. 520–22.

31 All four pairs of tables match all 90 or 180 entries except for up to seven entries; where 
they do differ, it is always by one unit in the last place.

32 On this anomalous table see Mozaffari, ‘Planetary Latitudes’, pp. 533–35.
33 See Neugebauer, A History, vol. I, pp. 221–26; Pedersen, A Survey, pp. 379–85, and Van 

Brummelen, Mathematical Tables, pp. 367–72.
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Argument
Venus  

deviation
Venus  

interpolation
Mercury 
deviation

Mercury  
interpolation

0 1;02 0 1;45 0
1 1;02 1 1;45 1
2 1;02 2 1;45 2
3 1;02 3 1;45 3
⋮ ⋮ ⋮ ⋮ ⋮

15 1;02 15 1;43 15
⋮ ⋮ ⋮ ⋮ ⋮

30 0;57 30 1;35 30
⋮ ⋮ ⋮ ⋮ ⋮

45 0;50 42 1;20 42
⋮ ⋮ ⋮ ⋮ ⋮

60 0;35 52 1;01 52
⋮ ⋮ ⋮ ⋮ ⋮

75 0;20 58 0;32 58
⋮ ⋮ ⋮ ⋮ ⋮

90 0;00 60 0;00 60

⋮ ⋮ ⋮
105 −0;370 −0;400
⋮ ⋮ ⋮

120 −1;200 −1;250
⋮ ⋮ ⋮

135 −2;280 −2;160
⋮ ⋮ ⋮

150 −4;260 −3;070
⋮ ⋮ ⋮

165 −6;530 −3;480
⋮ ⋮ ⋮

179 −8;400 −4;040

Table 3: The deviation tables; note that the two interpolation tables are identical. As else-
where, we use the convention that positive values imply northward for Venus and southward 
for Mercury. The interpolation coefficients are expressed in minutes.
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0
1
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Figure 6: Graphs of al-Kāshī’s tables of maximum deviation: Venus (left) and Mercury (right).
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Figure. 7: Calculating the slant.

and so the epicycle’s slant is at its maximum value kmax = ∠PHX. In addition 
av = ∠FGP, s(av) = ∠PEX, and the equation of anomaly p(av,0°) = ∠HEP.34 
We begin the derivation of s by noting that

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s(av) = sin kmax sin p(av, 0). (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

35

If we imagine as before the epicycle remaining fixed and the planet moving 
around the epicycle, we see that as av varies the angles s and p vary apparently 
in synchrony, seeming to reach their maxima, minima, and zero values for the 
same values of av. Assuming then that they reach their maxima smax and pmax for 
the same value of av (a little more than 90°), we have

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s(av)
p(av,0) ≈

smax
pmax . (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

If this approximation is to be trusted, we have now a method to tabulate s(av) 
simply as a constant multiple of the table for p(av,0). This is what Ptolemy did, 
with one minor caveat: he replaced p(av,0) with p(av,cm0), where cm0 is a value a 
bit larger than 90° chosen so that ρ = 60.36 Thus for Ptolemy

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s(av)
p(av,cm0)

≈ smax
pmax . (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

But al-Kāshī tabulated p in a different way. The only table that appears explic-
itly in his zīj is p(av,0), so he prefers (13).

34 Recall that p is a function of both av and cm; in this configuration, cm = c = 0. There is a 
question here concerning whether p is to be measured on the tilted epicycle or on the original 
epicycle, but this does not affect our study of the tables.

35 Because sin s = PX/PE, sin kmax = PX/PG, and sin p = PG/PE.
36 This is true for Venus. We shall deal with the variations caused by Mercury’s different 

planetary model momentarily.

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)
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However, al-Kāshī has a further objection. Applying (12) at the situation 
where s and p are maximized, we have sin smax = sin kmax sin pmax; and combin-
ing this relation with (12), instead of (14) we arrive at

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s(av)
sin p(av,0) =

sin smax
sin pmax . (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

Al-Kāshī claims that the difference between (12) and (15) is significant enough 
to be taken into account,37 which provides another opportunity to judge his 
standards for precision. For Mercury, the difference in the calculation of lati-
tude is on average about 23″, with a maximum difference a bit more than 1′. 
For Venus we have differences on average around 2′. Again al-Kāshī’s computa-
tional standards push the computations to the level of seconds rather than his 
predecessors’ minutes.38

Al-Kāshī is now in a position to tabulate s(av) easily as a multiple of the 
table for p(av,0). For his Venus table the multiple is 2;30/45; for Mercury it 
is 2;30/19;1.39 Excerpts from the Venus tables for s(av) and the interpolation 
function fs(c) are given in Table 4. As with the other tables we have seen so 
far, the table for s(av) is nearly identical to the corresponding Īlkhānī Zīj table, 
differing in only one entry. The Īlkhānī Zīj does not have a table for fs(c).

Turning to Mercury, recall that the Ptolemaic longitude model differs from 
that of the other planets. This difference has not affected the tables for incli-
nation and deviation, but it does make a difference for the slant. The reason 
is that ρ(c), the distance from the Earth to the center of the epicycle, varies by 
a large enough amount to affect the latitude calculation substantially (between 
57 and 69 units, as opposed to 58;45 and 61;15 units for Venus). Ptolemy deals 
with this variation in ρ rather crudely. When 90° < c < 270° – that is, when 
the epicycle’s center is on the left side of the deferent in Figure 3 – ρ is smaller 
than average, so the epicycle is closer to the Earth and the slant component of 
the latitude must be greater. Ptolemy increases it by a factor of one tenth:

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3(c, av) = 11
10 s(av) ∙ cos c (16)

β3 c av = 9
10 s av ∙ cos c (17)

(compare with (11)). For the other values of c the slant component of the lati-
tude is decreased by one tenth:

β c av = β1 c + β2 c av + β3 c av (1)

sin β1 = sin i ∙ sin 270 + c = sin i ∙ cos c (2)

β1 = i cos c (3)

i = imax cos c (4)

β1 = imax cos2 c (5)

sin β1 = sin i cos c (6)

sin β = sin 5 sin λd (7)

β = 5 sin λd (8)

β2 c av ≈ β2 270 av ∙ sin c (9)

sin d av =
r sin jmax cos av

ρ2 + 2ρr cos jmax cos av + r2
(10)

β3 c av ≈ β3 0 av ∙ cos c (11)

sin s av = sin kmax sin p av 0 (12)

s av
p av 0 ≈ smax

pmax (13)

s av
p av cm0

≈ smax
pmax (14)

sin s av
sin p av 0 = sin smax

sin pmax (15)

β3 c av = 11
10 s av ∙ cos c (16)

β3(c, av) = 9
10 s(av) ∙ cos c. (17)

Now, zījes sometimes made their users’ work easier by incorporating these mul-
tiplicative factors into the tables.40 So, rather than providing a table of s(av),

37 Treatise 3, Section II.7; fol. 102r in the India Office MS. This same approximation is 
questioned by a modern commentator on the Almagest in Pedersen, A Survey, p. 381.

38 Toomer, ‘Review of Olaf Pedersen’, p. 145, notes that the errors in Ptolemy’s approxima-
tions for the slant are small, i.e., for Venus less than 7 minutes. However, this level of error is 
clearly insufficient by al-Kāshī’s standards.

39 These values correspond to the maximum values in the tables of s(av) and p(av,0).
40 See van Dalen, ‘Tables of Planetary Latitude’, pp. 323–25.
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Argument Slant Interpolation

0 0; 0 60
1 0; 2 60
2 0; 3 60
3 0; 5 60
⋮ ⋮ ⋮

15 0;22 58
⋮ ⋮ ⋮

30 0;41 52
⋮ ⋮ ⋮

45 1; 2 42
⋮ ⋮ ⋮

60 1;20 30
⋮ ⋮ ⋮

75 1;39 15
⋮ ⋮ ⋮

90 1;57 0

⋮ ⋮
105 2;12
⋮ ⋮

120 2;25
⋮ ⋮

135 2;30
⋮ ⋮

150 2;22
⋮ ⋮

165 1;41
⋮ ⋮

179 0;8

Table 4: Slant tables for Venus. The interpolation coefficients are expressed in minutes. 
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and 9
10 s av , one table or the other to be used depending on the value of c.

Let s0 av = 11
10 s av be the maximal slant at perigee; it is the correct max-

imal slant when c = 180 .
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and 9
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β c av = β1 c + d av ∙ fd c + s0 av ∙ fs c (21)

2

, one table or the other to be used 
depending on the value of c.

Al-Kāshī, however, objects to the use of one multiplicative constant for some 
of the values of c and another multiplicative constant for the others.41 Instead, 
he argues, we must allow the factor multiplied by s(av) to vary continuously, as 
follows. Let 

So, rather than providing a table of s av , they gave tables of both 11
10 s av

and 9
10 s av , one table or the other to be used depending on the value of c.

Let s0(av) = 11
10 s(av) be the maximal slant at perigee; it is the correct max-

imal slant when c = 180 .

At apogee (c = 0), the correct maximal slant will be smaller than s0 av by
a factor of 2

11 . 

2
11 ∙

ρ c − 57
69 − 57

= 2
11 ∙

ρ c − 57
12

(18)

β3 c av = s0 av ∙ 1 −
2

11
∙
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12

∙ cos c (19)

fs c = 1 − 2
11 ∙

ρ c − 57
12

∙ cos c 44 (20)

β c av = β1 c + d av ∙ fd c + s0 av ∙ fs c (21)

2

 be the maximal slant at perigee; it is the correct 
maximal slant when c = 180°. At apogee (c = 0), the correct maximal slant will 
be smaller than s0(av) by a factor of 

So, rather than providing a table of s av , they gave tables of both 11
10 s av

and 9
10 s av , one table or the other to be used depending on the value of c.

Let s0 av = 11
10 s av be the maximal slant at perigee; it is the correct max-

imal slant when c = 180 .

At apogee (c = 0), the correct maximal slant will be smaller than s0 av by
a factor of 2

11 . 

2
11 ∙

ρ c − 57
69 − 57

= 2
11 ∙

ρ c − 57
12

(18)

β3 c av = s0 av ∙ 1 −
2

11
∙

ρ c − 57
12

∙ cos c (19)

fs c = 1 − 2
11 ∙

ρ c − 57
12

∙ cos c 44 (20)

β c av = β1 c + d av ∙ fd c + s0 av ∙ fs c (21)

2

.42 For other values of c, this factor varies 

41 Treatise 3, Section II.7; fols 103v–104r in the India Office MS.
42 Al-Kāshī calculates this factor as the ratio between (a) the difference between the great-

est value of the maximal slant at perigee and the greatest value of the maximal slant at apogee 
(0;30), and (b) the greatest value of the maximal slant at perigee (2;45).
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according to the value of ρ(c). Since at Mercury’s apogee ρ is equal to 69 while 
at perigee ρ is equal to 57,43 al-Kāshī asserts that the factor should be

2
11

∙
ρ(c) − 57
69 − 57

=
2
11

∙
ρ(c) − 57

12
. (18)

β3 c av = s0 av ∙ 1 −
2
11

∙
ρ c − 57

12
∙ cos c (19)

fs c = 1 −
2
11

∙
ρ c − 57

12
∙ cos c 44 (20)

β c av = β1 c + d av ∙ fd c + s0 av ∙ fs c (21)

2

This leads us to the formula

2
11

∙
ρ c − 57
69 − 57

=
2
11

∙
ρ c − 57

12
(18)

β3(c, av) = s0(av) ∙
[

1 −
2
11

∙
ρ(c) − 57

12

]

∙ cos c (19)

fs c =
[

1 −
2
11

∙
ρ c − 57

12

]

∙ cos c 44 (20)

β c av = β1 c + d av ∙ fd c + s0 av ∙ fs c (21)

2

(compare with (11)). Thus the new interpolation function for Mercury is

2
11

∙
ρ c − 57
69 − 57

=
2
11

∙
ρ c − 57

12
(18)

β3 c av = s0 av ∙
[

1 −
2
11

∙
ρ c − 57

12

]

∙ cos c (19)

fs(c) =
[

1 −
2
11

∙
ρ(c) − 57

12

]

∙ cos c.44 (20)

β c av = β1 c + d av ∙ fd c + s0 av ∙ fs c (21)

2

The tables for s0(av) and fs(c) are excerpted in Table 5. The table for s0(av) is 
identical in all but one entry with its equivalent in the Īlkhānī Zīj; of course, 
the latter zīj does not have a table for fs(c).

The revised process for computing Mercury’s latitudes is the 28th of al-Kāshī’s 
advertised improvements over the Īlkhānī Zīj. Our recomputations verify that 
al-Kāshī’s method alters the latitude values by an average of about 2 minutes, 
and reaches a maximum difference of around 10 minutes. This is again in 
accord with our previous observations that al-Kāshī sought an improvement 
in the precision of calculations of planetary positions down from the level of 
minutes of arc to that of seconds.

Using the five tables described above, given values of c and av the user of 
al-Kāshī’s single-argument tables may now determine a value for the planet’s 
latitude as follows:

2
11

∙
ρ c − 57
69 − 57

=
2
11

∙
ρ c − 57

12
(18)

β3 c av = s0 av ∙ 1 −
2
11

∙
ρ c − 57

12
∙ cos c (19)

fs c = 1 −
2
11

∙
ρ c − 57

12
∙ cos c 44 (20)

β(c, av) = β1(c) + d(av) ∙ fd(c) + s0(av) ∙ fs(c). (21)

2

Avoiding approximations with a spherical epicycle

Throughout the process of computing the latitudes of the inferior planets, 
al-Kāshī has been following the essence of Ptolemy’s procedures while altering 
them in several places to remove some of Ptolemy’s more significant approx-
imations. In the next section of his zīj he proposes a new approach to com-
puting the positions of the inferior planets that takes a more dramatic stance, 
eliminating most of the approximations altogether and returning to something

43 Strictly speaking 57 is the value of ρ at the point opposite the apogee; due to the pe-
culiarities of Mercury’s model the perigee is not directly opposite the apogee. See Pedersen, 
A Survey, p. 383, and Toomer, Ptolemy’s Almagest, p. 630.

44 Al-Kāshī illustrates the process for the example c = 30°. He states that ρ(30°) = 66;20 
but does not offer a supporting calculation.
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Argument Slant Interpolation

0 0; 0 49
1 0; 2 49
2 0; 4 49
3 0; 6 49
⋮ ⋮ ⋮

15 0;30 47
⋮ ⋮ ⋮

30 1;00 44
⋮ ⋮ ⋮

45 1;30 38
⋮ ⋮ ⋮

60 1;55 26
⋮ ⋮ ⋮

75 2;16 13
⋮ ⋮ ⋮

90 2;34 0
⋮ ⋮ ⋮

105 2;44 −15
⋮ ⋮ ⋮

120 2;44 −31
⋮ ⋮ ⋮

135 2;30 −44
⋮ ⋮ ⋮

150 1;57 −53
⋮ ⋮ ⋮

165 1;5 −58
⋮ ⋮ ⋮

179 0;5 −60
Table 5: Slant tables for Mercury. The interpolation coefficients are expressed in minutes. 

close to geometric argument.45 He accomplishes this by replacing the epicyclic 
circle with an epicyclic sphere. In Figure 8, the original epicycle is enclosed as 
a great circle within a sphere. The deviation is modeled using a great circle on 
this sphere (the circle of deviation) that wobbles sinusoidally with respect to the 
epicycle. The slant is modeled via a great circle (the circle of slant) wobbling 
sinusoidally with respect to the circle of deviation. Finally, the planet travels 
on the circle of slant. The embedding of the deviation and slant on the surface 
of a sphere gives al-Kāshī the ability to apply spherical trigonometry to the 
problem. This allows him to avoid having to assume that the planetary longi-
tude, the deviation, and the slant must be treated independently. In fact they 
do affect each other to some degree, and this new approach makes it possible

45 Treatise 3, Section II.8; fol. 104v–108v in the India Office MS. We performed a detailed 
study of this section in Van Brummelen, ‘Taking Latitude with Ptolemy’.
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Figure 8: Al-Kashi’s spherical epicycle for inferior planets.

for these interactions to be accounted for. He refers to this new method as the 
29th on his list of 70 improvements over the Īlkhānī Zīj.

Al-Kāshī illustrates his approach with an example computation of the posi-
tion of Venus, but he never claims that he used his new method in his tabula-
tions. In fact, we shall see that he did not.

The double-argument latitude tables

The user’s goal is to find β in terms of av and c, so the best possible solu-
tion is to give a double-argument table, rather than requiring the user to piece 
together the three effects from single-argument tables. However, Ptolemy and 
almost all of his successors avoided the mammoth task of tabulating this dou-
ble-argument function. There were at least two exceptions, the first by thir-
teenth-century Moroccan astronomer Ibn Isḥāq in the Tunisian Zīj, the second 
by al-Kāshī.46  There is no indication or reason to believe that al-Kāshī was in 
any way aware of Ibn Isḥāq or the Tunisian Zīj.47 As we have seen, although 
al-Kāshī set out to provide double-argument latitude tables for all the planets, 
he completed only the Mercury table and part of the table for Venus (see Fig-
ure 9). The gridlines for the tables of the other planets are present in all man-
uscripts, but are blank. Perhaps assuming that he would complete the job some

46 One finds another double-argument table of planetary latitudes in the Huihui lifa, a 
thirteenth-century Chinese table inspired by the Islamic tradition. See van Dalen, ‘Tables of 
Planetary Latitude’.

47 For discussions of double-argument planetary latitude tables in the European and Chi-
nese traditions, see also Goldstein and Chabás, ‘Ptolemy, Bianchini, and Copernicus’, pp. 456–
57; Chabás and Goldstein, ‘Early Alfonsine Astronomy’; Husson, ‘Remarks on Two Dimen-
sional Array Tables’, and Li Liang, ‘Tables with “European” Layout’.
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Figure 9: The second of the three pages of the Venus double-argument latitude table. For the 
first page, see Plate 11; for the third page, see p. 36. © The British Library Board, MS India 
Office 430, fol. 154r.
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Figure 10: A graph of the double-argument table for Mercury.

day, he included his tables (which he calls ‘simplified’, thinking of the user) as 
the 33rd on his list of 70 improvements over the Īlkhānī Zīj.

The tables are edited in the appendix to this article. For Mercury the entries 
are tabulated with increments of 6° for both arguments, for a total of 3600 
entries. For Venus the increment for c is 10°, and for av 5°; this would pro-
duce 2592 entries, but only about half of the table is completed. The tabulated 
function β(av,c) is graphed for Mercury in Figure 10; the graph for Venus looks 
similar. In the case of Venus a positive value for β in our graphs and analyses 
indicates north of the ecliptic and a negative value indicates south; for Mercury 
a positive value indicates south and a negative value indicates north. In the 
tables themselves al-Kāshī signifies that a column of values implies the north- 
erly direction by writing the letter ش (for shimāl, or ‘northern’) above it, while
south is indicated by the letter ج (for janūb, or ‘southern’).

One confusion regarding al-Kāshī’s description of his double-argument 
latitude tables is that he instructs the user to enter the table using the mean 
anomaly and centrum as arguments rather than the true anomaly and centrum, 
but in marginal notes on both tables in the India Office manuscript the user 
is instructed to use the true anomaly and centrum.48 It is not difficult to see 
that the true, not the mean, arguments are intended.49 The difference between 
entries in a table with mean versus true arguments is greatest for centrum val-
ues around 90° and 270°. If the true arguments are intended, the values in

48 Treatise 3, Section I.6; fol. 80v in the India Office MS. The marginal notes are on 
fol. 153v and fol. 155r.

49 Presumably a sophisticated historical user of the tables would have been able to make a 
similar deduction. It remains unclear (for this and other tables) how many users there were, 
what they used the tables for, and how familiar they were with the underlying theory.
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Figure 11: In the column for centrum 90° in the Mercury double-argument table, the dif-
ference between al-Kāshī’s values and entries computed with mean arguments, minus the 
difference between al-Kāshī’s values and entries computed with true arguments. The strong 
skew toward positive values in this histogram indicates that true arguments were used.

these two columns reduce to just ±d(av) (since when c = 0, β1 = β2 = β3 = 0). 
This is not the case if mean arguments are intended.50 For Mercury, al-Kāshī’s 
entries in these columns fit the values with true centrum as argument much 
more closely than they fit the values with mean centrum as argument, and 
they reveal the symmetries that apply only when the true arguments are used 
(see Figure 11). Similar results apply for the other columns in the table. We 
shall see later that the Venus table even more clearly uses true arguments rather  
than mean.

Another curiosity of the two tables is that the two arguments are reversed. 
For Venus the anomaly is given along the columns while the centrum is given 
along the rows; for Mercury it is the other way around. Al-Kāshī gives no indi-
cation of this, either in the tables themselves or in the instructions for their 
use.51 One wonders, then, how a user could possibly obtain correct values. This 
effect can be seen most easily by observing the table for the same arguments  
we considered in the previous paragraph: when c = 90° or 270°, the latitude 
function reduces to ±d(av). In the Venus table the two rows corresponding to 
arguments 90° and 270° are close matches to the table for d(av) in Table 3; 
for Mercury the two columns for 90° and 270° are close matches to the table  
for d(av).

50 For instance, if the argument is the true anomaly, then d(90°) = d(270°) = 0; and indeed 
these entries are zero. The recomputation of the column described in this paragraph might be 
performed in several different ways, but they all produce similar results.

51 The first page of the Venus table in the Cairo MS has the word ‘center’ written at the 
top of the column of arguments, but the arguments are not specified anywhere else in any of 
the manuscripts.
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The entries in the double-argument tables provide some clues concerning 
how al-Kāshī calculated them. In the case of Venus, one fact is clear imme-
diately. Recall that the table for d(av), copied from al-Ṭūsī, contains a large 
anomaly: the entries for av > 90° are much larger than they should be (up to 
more than 2°), as if they are calculated using a much larger parameter value, 
leading to a graph with a corner at av = 90° (Figure 6, left). The double-argu-
ment table exhibits the same anomaly. This narrows the possibilities to two: 
either al-Kāshī used the table for d(av) and therefore also the other single-ar-
gument tables according to (21), or his unknown computation process includes 
the same anomaly that led to al-Ṭūsī’s table. The former would seem far more 
likely. However, one fact gives us pause: the entries in the rows for av = 90° 
and 270°, although within a couple of minutes of the entries in the table for 
d(av), are not identical.

In the case of Mercury, the possibilities fall into three categories:

1. The entries of β(av,c) were computed, using av and c as arguments, from 
the geometric definitions of the three latitude effects in some way.

2. The entries were computed using al-Kāshī’s spherical epicycle method 
described above.

3. The entries were computed using the single-argument tables, simply 
following the method that a user would employ to combine the three 
latitude effects.

We may eliminate option 2 immediately. For a given pair of arguments the 
spherical epicycle method produces the longitude and latitude simultaneously, 
using a method that al-Kāshī considered to be superior to any other. However, 
only the Venus and Jupiter tables of longitudes – not the Mercury table – have 
been completed. Also, al-Kāshī does not present anywhere a geometric method 
for the spherical epicycle that handles the peculiarities of the Mercury model.

Option 1 contains within it a number of possible choices that al-Kāshī 
might have made. These include:

• For the inclination β1, he could choose either the correct formula (6) or 
its approximation (3).

• For the deviation β2, he could use either the Ptolemaic value of the 
parameter jmax = 6;15° or the ‘modern’ value jmax = 7°.

• For the slant β3, he could use the table of p(av,0) given earlier in the zīj, 
or he could compute the values of p from scratch.

• Also for β3, he could choose either the more precise (15) or the less 
precise (13).

• Finally for β3, he could use Ptolemy’s (16) and (17), or his own improve-
ment (19).
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Other possible decisions may be considered, but these five are the most significant.
With five choices to make, we generated 25 = 32 different tables, which pro-

duce several clear results. Firstly, it is evident that al-Kāshī used jmax = 6;15° 
rather than jmax = 7°: the average difference between the entries in the sixteen 
recomputed tables that use jmax = 6;15° and the entries in al-Kāshī’s table is 
2.91′, while the difference for the entries that use jmax = 7° is 9.08′, more than 
three times larger.52 So we may discard the sixteen tables that use jmax = 7°. Sec-
ondly, we find strong confirmation that al-Kāshī’s improvement (19) and the 
associated interpolation function were used: the entries in the tables using the 
improvement differ from al-Kāshī’s entries on average by 2.22′, as opposed to 
an average difference of 3.60′ with the entries in the tables that do not use it. 
After this, we find very little to choose between the various remaining options; 
these recomputations give results that are much closer to each other than they 
are to the tables’ values themselves. Therefore, whatever the remaining discrep-
ancies between table and recomputation are, they are not caused by the effects 
of the various options outlined here.

These conclusions are compatible with the hypothesis that al-Kāshī generated 
the double-argument table directly from his single-argument tables. Indeed, the 
average difference between the entries in the double-argument table and those 
that we compute directly from the single-argument tables is 2.40′, about the 
same as the best of the recomputations above. So in summary, we may assert 
that however he worked, al-Kāshī used jmax = 6;15° and his new interpolation 
method for the slant. Beyond this he might have used the single-argument 
tables, but these data are not conclusive.

Indeed, there may be reasons to believe that he did not, at least, not entirely. 
Certain columns and rows of the double-argument table take on simplified val-
ues when the arguments av and c are multiples of 90°. For instance, as we saw 
with the Venus table, when c = 90° or 270° the latitude function simplifies 
to ±d(av). Although all the entries in these two columns again come within a 
couple of minutes of the entries in al-Kāshī’s table of d(av), they do not match 
perfectly – a difficult phenomenon to explain if the single-argument tables had 
been used. Similar results are obtained for the other columns corresponding to 
arguments that are multiples of 90°.

Finally, a glance at the pattern of filled-in entries in the Venus table (Fig-
ure 9) suggests the possibility that interpolation was being used to complete 
the tables after certain rows and columns had been calculated. However, our 
analyses on both the Mercury and Venus tables reveals no evidence in favour 
of this hypothesis. It should be noted that if al-Kāshī used his single-argument 
tables, direct calculation would have been at least as easy as interpolation.

52 A statistical test determining parameters embedded within historical astronomical tables 
exists; see van Dalen, ‘A Statistical Method’. However, the results here are so strong and the 
number of tabular entries so large that a statistical procedure is unnecessary.
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The relation with the latitude tables in Ulugh Beg’s Sult.ānī Zīj

Al-Kāshī likely was still in Kāshān when he completed the Khāqānī Zīj, but he 
spent the last part of his career in Samarqand at Ulugh Beg’s observatory. The 
latter’s Sulṭānī Zīj was completed after al-Kāshī’s death, but traces of al-Kāshī’s 
influence on the later zīj have already been found.53 Thus comparing the 
respective latitude tables will be useful. Now, the Sulṭānī Zīj does not include 
double-argument tables, and its single-argument tables for the superior planets 
are based on newly determined parameter values, so they are not related to 
al-Kāshī’s equivalents.54

The single-argument tables for the inferior planets, however, may be com-
pared. Indeed, all ten tables (five for Venus, five for Mercury) are identical 
to al-Kāshī’s, other than the odd scribal error in a couple of entries here and 
there. Recall that most of these tables in turn had been taken from al-Ṭūsī.  
However, we do find intact in Ulugh Beg’s zīj an entirely new set of tables for 
computing the slant of Mercury, including the new interpolation function.

Conclusions

Our study of al-Kāshī’s latitude tables for the inferior planets has yielded the 
following results:

• His single-argument tables (other than the tables for the slant of Mer-
cury) were taken from al-Ṭūsī’s Īlkhānī Zīj, and later found their way 
into Ulugh Beg’s Sulṭānī Zīj.

• He innovated with a new scheme to calculate Mercury’s slant. His 
improvement on Ptolemy was to allow a parameter relating to the 
distance between the Earth and the center of the epicycle, which for 
Ptolemy took on the two values 0.9 and 1.1, to vary continuously. The 
result was an improvement on the determination of Mercury’s latitude 
by an average of 2′, and occasionally up to 10′. Al-Kāshī’s table for this 
effect was adopted wholesale by Ulugh Beg in the Sulṭānī Zīj.

• The double-argument tables for Venus and Mercury reverse the roles of 
the arguments with respect to rows and columns, with no indication of 
this curious fact in the text or in the tables. This would have given an 
unsophisticated user only a 50% chance to extract a correct value.

• The Mercury double-argument table uses the Ptolemaic value of the 
parameter jmax rather than the modern value mentioned in the zīj; it 

53 For instance, Kim Plofker, Clemency Montelle, and I will soon publish a study of an 
early eighteenth-century Sanskrit text on various methods of calculating sin 1° inspired by al-
Kāshī; in this work, Ulugh Beg’s contributions are featured prominently.

54 See Mozaffari, ‘Planetary Latitudes’, pp. 522, 525, 535–38.
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also employs al-Kāshī’s innovative scheme for computing the slant. This 
makes the double-argument table a close, but not perfect fit with com-
putation from the single-argument tables.

• The Venus double-argument table exhibits the same anomalous pattern 
that has been noticed previously in the single-argument deviation table, 
a sudden change in the slope of the function when d(av) changes sign.

• We have identified several instances where al-Kāshī points out approx-
imations made in the Almagest and either accepts or rejects them for 
something better. In each case al-Kāshī makes a consistent and com-
petent judgment: when he accepts an approximation, we find that the 
resulting error is smaller than the level of seconds of arc; and when he 
rejects an approximation, his replacement improves the fit between the 
geometric model and the computation on the level of seconds or minutes.

It will be an enormous task to identify and bring forward all the other novel 
aspects of the Khāqānī Zīj, which may be countless. Once this is done, I sus-
pect it will be recognized as perhaps the most mathematically creative zīj 
ever written, and a significant source of inspiration for the astronomers of 
the Samarqand observatory and their successors. This paper is a small step in  
that direction.
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Appendix: Editions of Mercury and Venus Double-Argument Tables

Our edition is based on the three principal manuscripts:

IO: London, British Library, MS India Office 430 (Ethé 2232)
AS: Istanbul, Süleymaniye Library, MS Ayasofya 2692

C: Cairo, Dār al-Kutub, MS TR 149
In C the Venus table is rendered on four pages, with each page containing 90° 
intervals of the horizontal argument av; the other two manuscripts (and C for 
Mercury) represent the tables over three pages, each containing 120° sections 
of the horizontal argument. All three pages of the Mercury table in AS display 
the gridlines but the entries are blank. The first of the three pages in the AS 
table for Venus likewise displays gridlines but is otherwise blank. C contains 
an extra blank page of gridlines after the Venus table in the format appropri-
ate for Venus; the first page of the Mercury table appears after pages two and 
three, not before. The other two manuscripts follow the same layout but occa-
sionally leave certain cells blank.55 All three manuscripts contain almost pre-
cisely the same pattern of incomplete entries in the Venus table. A few entries 
are blank in all manuscripts. The tables are represented here to fit within the 
page constraints of this volume, namely with 90° of the horizontal argument 
per page and the Mercury table furthermore split into their upper and bottom 
halves.

Entries are represented as northward or southward using the symbols  ش 
and ج  (the first letters of the Arabic words for ‘northern’ and ‘southern’, 
shimāl and janūb). A string of consecutive entries within a column represents 
southward if it has a ج written above it; similarly with ش for northward. Occa-
sionally the letter is omitted, but it is usually easy to tell from context which 
entries indicate northward and which indicate southward. The Venus table has 
north/south indicators at the top of each column, which we translate here as 
‘N’ and ‘S’;56 the Mercury table does not. Here, for Venus we represent south-
ward entries in italics; for Mercury we represent northward entries in italics. 
As is typical in zījes, if a sequence of entries working down a column shares 
the same leading digit, that digit is usually written only in the first of these 
entries. Here we fill in the unwritten digits for clarity. Occasionally dots above 
letters in the manuscripts are accidentally added or omitted (again a common 
occurrence), for instance changing a ‘13’ into a ‘53’ or vice versa. These errors 
are silently corrected. Al-Kāshī usually groups the arguments in segments of 

55 In the C manuscript, the word ‘centrum’ appears in the cell above the first column in 
the first page of the Venus table.

56 In the C and AS manuscripts, some of these indicators are missing.
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30° and labels them by astrological signs (although in the Venus table the rows 
are indicated by sign numbers rather than names).

Manuscript variants of entries are given in the apparatus below each page 
of the table. Each variant is indicated first by the row argument, then by the 
column argument. Thus for the Mercury table ‘ 6°,  0°: IO 1;33’ denotes 
that the entry in the IO manuscript corresponding to av =  6°, c =  0° is 
1;33. For the Venus table ‘1,20°,  20°: C 0;53’ denotes that the entry in the 
C manuscript corresponding to c = 1,20° (= 50°) , av =  20° is 0;53.
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Simplification of the Latitude of Venus (first quarter)

  
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
N N N N N N N N N N N N N N N N N N

 0,00 0;10 0;17 0;23 0;30 0;37 0;45 0;51 0;58 1;05 1;12 1;18 1;23 1;30 1;37 1;44 1;49 1;54 1;59
 0,10 0;20 0;27 0;33 0;40 0;47 0;53 1;00 1;06 1;12 1;18 1;23 1;29 1;35 1;40 1;45 1;50 1;55 1;58
 0,20 0;29 0;36 0;42 0;48 0;54 1;00 1;06 1;11 1;16 1;21 1;26 1;31 1;36 1;40 1;44 1;48 1;52 1;56
 1,00 0;38 0;44 0;49 0;55 1;01 1;06 1;11 1;15 1;19 1;23 1;27 1;31 1;34 1;37 1;40 1;43 1;45 1;47
 1,10 0;45 0;50 0;55 1;00 1;05 1;10 1;14 1;17 1;20 1;23 1;26 1;28 1;30 1;32 1;33 1;34 1;35 1;36
 1,20 0;51 0;55 0;59 1;03 1;07 1;11 1;14 1;16 1;18 1;20 1;22 1;23 1;24 1;24 1;23 1;23 1;22 1;22
 2,00 0;56 0;59 1;02 1;05 1;08 1;11 1;13 1;14 1;14 1;15 1;15 1;16 1;16 1;15 1;13 1;11 1;09 1;07
 2,10 1;00 1;02 1;03 1;05 1;07 1;08 1;09 1;08 1;07 1;06 1;05 1;04 1;03 1;01 0;59 0;57 0;53 0;49
 2,20 1;02 1;02 1;02 1;03 1;03 1;04 1;04 1;02 1;00 0;58 0;56 0;53 0;50 0;46 0;42 0;38 0;33 0;28
 3,00 1;02 1;02 1;01 1;01 1;00 0;59 0;58 0;55 0;52 0;49 0;46 0;42 0;38 0;33 0;28 0;22 0;16 0;09
 3,10 1;02 1;01 0;59 0;57 0;55 0;53 0;51 0;47 0;43 0;39 0;34 0;29 0;24 0;18 0;12 0;05 0;02 0;09
 3,20 1;01 0;58 0;55 0;52 0;49 0;46 0;43 0;38 0;33 0;28 0;22 0;16 0;10 0;03 0;04 0;11 0;18 0;26
4,00 0;58 0;53 0;49 0;45 0;41 0;37 0;33 0;27 0;21 0;15 0;09 0;03 0;04 0;12 0;20 0;28 0;36 0;44

 4,10 0;53 0;48 0;43 0;38 0;33 0;28 0;23 0;17 0;10 0;03 0;04 0;11 0;18 0;26 0;34 0;42 0;50 0;59
 4,20 0;47 0;41 0;35 0;29 0;23 0;17 0;11 0;04 0;03 0;10 0;17 0;24 0;32 0;40 0;48 0;56 1;05 1;14
 5,00 0;40 0;33 0;27 0;20 0;14 0;07 0;01 0;06 0;13 0;20 0;27 0;35 0;43 0;51 0;59 1;07 1;15 1;23
5,10 0;31 0;25 0;19 0;12 0;05 0;02 0;09 0;16 0;23 0;30 0;38 0;46 0;54 1;01 1;08 1;16 1;24 1;32

 5,20 0;21 0;15 0;08 0;01 0;06 0;13 0;20 0;27 0;34 0;42 0;49 0;56 1;03 1;10 1;17 1;24 1;31 1;38
 6,00 0;10 0;03 0;03 0;10 0;17 0;25 0;31 0;38 0;45 0;52 0;58 1;03 1;10 1;17 1;24 1;29 1;34 1;39
 6,10 0;01 0;6 0;12 0;21 0;26 0;33 0;40 0;46 0;52 0;58 1;04 1;10 1;15 1;20 1;25 1;30 1;35 1;40
 6,20 0;13 0;19 0;25 0;31 0;37 0;43 0;49 0;54 0;59 1;04 1;09 1;14 1;18 1;22 1;26 1;30 1;34 1;36
 7,00 0;26 0;32 0;36 0;42 0;47 0;52 0;57 1;01 1;05 1;08 1;11 1;15 1;19 1;22 1;25 1;27 1;29 1;31
 7,10 0;37 0;41 0;45 0;50 0;55 0;59 1;03 1;06 1;09 1;12 1;14 1;16 1;18 1;19 1;19 1;20 1;21 1;22
 7,20 0;45 0;49 0;52 0;56 0;59 1;03 1;06 1;07 1;08 1;09 1;10 1;11 1;12 1;13 1;14 1;14 1;12 1;10
 8,00 0;54 0;56 0;58 1;00 1;02 1;04 1;06 1;06 1;06 1;05 1;05 1;04 1;04 1;03 1;01 0;59 0;57 0;55
 8,10 0;59 1;00 1;01 1;02 1;03 1;04 1;05 1;04 1;03 1;01 0;59 0;57 0;55 0;53 0;50 0;47 0;43 0;39
 8,20 1;02 1;02 1;02 1;01 1;01 1;01 1;01 0;59 0;57 0;54 0;51 0;48 0;45 0;41 0;35 0;32 0;27 0;22
 9,00 1;02 1;01 1;00 0;59 0;58 0;57 0;56 0;52 0;48 0;44 0;40 0;36 0;35 0;29 0;24 0;19 0;14 0;07
 9,10 1;02 1;00 0;58 0;56 0;54 0;51 0;48 0;43 0;38 0;33 0;28 0;23 0;18 0;13 0;07 0;00 0;07 0;15
 9,20 0;58 0;55 0;52 0;49 0;45 0;41 0;37 0;32 0;27 0;21 0;15 0;09 0;03 0;04 0;11 0;19 0;27 0;35
10,00 0;51 0;47 0;43 0;38 0;33 0;28 0;23 0;17 0;11 0;05 0;02 0;09 0;16 0;24 0;32 0;40 0;48 0;56
10,10 0;43 0;38 0;33 0;28 0;23 0;18 0;12 0;05 0;02 0;09 0;16 0;23 0;30 0;38 0;46 0;54 1;03 1;12
10,20 0;33 0;28 0;22 0;16 0;10 0;04 0;02 0;09 0;16 0;23 0;30 0;37 0;45 0;53 1;01 1;10 1;19 1;28
11,00 0;22 0;16 0;10 0;04 0;02 0;09 0;16 0;23 0;30 0;37 0;44 0;52 1;00 1;08 1;16 1;24 1;32 1;40
11,10 0;11 0;05 0;02 0;09 0;16 0;23 0;30 0;37 0;44 0;51 0;58 1;06 1;14 1;21 1;28 1;36 1;44 1;52
11,20 0;00 0;06 0;12 0;19 0;26 0;33 0;40 0;47 0;54 1;01 1;08 1;15 1;23 1;30 1;36 1;44 1;51 1;58

0,20°,  20°: C illegible.   2,20°,  5°: C 0;16.   5,10°,  20°: C 1;26.   6,20°,  25°: IO 
1;37.   7,0°,  10°: IO 0;37.   7,10°,  0°: IO 0;36.   8,20°,  10°: C 0;52.   11,20°,  
5°: IO blank.
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Continuation of the Simplification of the Latitude of Venus  (second quarter)

  
0 5 10 15 20 25 0 5 0 0 0 0 0 0 10 15 20 25
N N N N N N N N N N N N N N N N N N

 0,00 2;07 2;12 2;16 2;22 2;27 2;32 2;35 2;37 2;32 2;32 2;32 2;32 2;32 2;32 2;11 1;51 1;26 0;50
 0,10 2;05 2;09 2;12 2;15 2;17 2;19 2;21 2;18 1;44 1;44 1;44 1;44 1;44 1;44 1;5 0;39 0;06 0;33
 0,20 2;00 2;03 2;05 2;05 2;05 2;04 2;02 1;54 0;56 0;56 0;56 0;56 0;56 0;56 0;03 0;29 1;07 1;51
 1,00 1;49 1;49 1;48 1;46 1;44 1;41 1;37 1;29 0;00 0;00 0;00 0;00 0;00 0;00 1;12 1;50
 1,10 1;37 1;37 1;34 1;28 1;23 1;17 1;09 0;58 0;58 0;58 0;58 0;58 0;58 0;58 3;04
 1,20 1;21 1;19 1;11 1;04 0;56 0;48 0;39 0;25 1;48 1;48 1;48 1;48 1;48 1;48 4;11
 2,00 1;05 1;00 0;51 0;39 0;29 0;20 0;09 0;06 2;38 2;38 2;38 2;38 2;38 2;38 4;15 5;7 5;53 6;39
 2,10 0;44 0;35 0;23 0;11 0;00 0;11 0;23 0;38 3;29 3;29 3;29 3;29 3;29 3;29 6;04
 2,20 0;23 0;13 0;01 0;14 0;27 0;40 0;54 1;10 4;10 4;10 4;10 4;10 4;10 4;10 6;45
 3,00 0;02 0;12 0;25 0;38 0;53 1;06 1;21 1;42 4;39 4;39 4;39 4;39 4;39 4;39 6;15 7;12 8;01 8;31
 3,10 0;16 0;29 0;33 0;58 1;13 1;28 1;43 2;03 4;57 4;57 4;57 4;57 4;57 4;57 7;16
 3,20 0;34 0;44 0;55 1;18 1;33 1;48 2;03 2;22 5;10 5;10 5;10 5;10 5;10 5;10 7;14
 4,00 0;53 1;04 1;16 1;35 1;45 2;02 2;20 2;41 5;12 5;12 5;12 5;12 5;12 5;12 6;22 6;57
 4,10 1;08 1;19 1;32 1;48 2;04 2;19 2;32 2;48 5;03 5;03 5;03 5;03 5;03 5;03 6;26
 4,20 1;23 1;33 1;45 2;00 2;13 2;26 2;39 2;54 4;41 4;41 4;41 4;41 4;41 4;41 5;42
 5,00 1;32 1;43 1;54 2;05 2;17 2;29 2;40 2;52 4;16 4;16 4;16 4;16 4;16 4;16 4;52
 5,10 1;40 1;49 1;58 2;07 2;14 2;26 2;35 2;43 3;40 3;40 3;40 3;40 3;40 3;40 3;53
 5,20 1;45 1;52 1;59 2;06 2;13 2;20 2;27 2;30 2;54 2;54 2;54 2;54 2;54 2;54 2;37
 6,00 1;47 1;52 1;57 2;03 2;07 2;12 2;15 2;17 2;12 2;12 2;12 2;12 2;12 2;12 1;51 1;31 1;06 0;30
 6,10 1;45 1;48 1;51 1;54 1;56 1;58 2;00 1;58 1;25 1;25 1;25 1;25 1;25 1;25 0;22
 6,20 1;40 1;41 1;42 1;42 1;41 1;40 1;40 1;37 0;33 0;33 0;33 0;33 0;33 0;33 0;57
 7,00 1;32 1;31 1;29 1;27 1;24 1;21 1;17 1;10 0;19 0;19 0;19 0;19 0;19 0;19 2;08
 7,10 1;23 1;20 1;16 1;11 1;05 0;59 0;53 0;44 1;00 1;00 1;00 1;00 1;00 1;00 3;07
 7,20 1;08 1;04 0;58 0;50 0;43 0;35 0;27 0;15 1;50 1;50 1;50 1;50 1;50 1;50 4;11
 8,00 0;53 0;49 0;41 0;30 0;21 0;11 0;00 0;15 2;39 2;39 2;39 2;39 2;39 2;39 5;03
 8,10 0;34 0;27 0;19 0;08 0;02 0;15 0;29 0;46 3;15 3;15 3;15 3;15 3;15 3;15 5;43
 8,20 0;16 0;08 0;03 0;14 0;27 0;40 0;54 1;11 3;45 3;45 3;45 3;45 3;45 3;45 6;11
 9,00 0;01 0;11 0;24 0;36 0;49 1;03 1;19 1;35 4;12 4;12 4;12 4;12 4;12 4;12 5;45 6;35 7;31 8;18
 9,10 0;23 0;33 0;45 0;58 1;12 1;27 1;42 2;00 4;32 4;32 4;32 4;32 4;32 4;32 6;48
 9,20 0;44 0;55 1;07 1;20 1;34 1;48 2;03 2;21 4;46 4;46 4;46 4;46 4;46 4;46 6;50
10,00 1;05 1;16 1;28 1;41 1;55 2;09 2;23 2;40 4;53 4;53 4;53 4;53 4;53 4;53 6;37 7;15 7;34
10,10 1;21 1;31 1;43 1;55 2;09 2;23 2;38 2;54 4;48 4;48 4;48 4;48 4;48 4;48 6;13
10,20 1;37 1;48 2;00 2;12 2;24 2;36 2;48 3;02 4;39 4;39 4;39 4;39 4;39 4;39 5;43
11,00 1;49 1;59 2;09 2;19 2;29 2;40 2;51 3;03 4;16 4;16 4;16 4;16 4;16 4;16 4;54
11,10 2;00 2;08 2;17 2;25 2;34 2;43 2;52 3;00 3;45 3;45 3;45 3;45 3;45 3;45 3;56
11,20 2;05 2;12 2;19 2;26 2;33 2;40 2;47 2;53 3;13 3;13 3;13 3;13 3;13 3;13 2;58

0,10°,  10°: C 2;3.   1,0°,  0°: AS illegible.   1,0°,  5°: IO 0;30.   1,20°,  20°: C 
0;53.   2,0°,  25°: all MS’s 0;20 (N/S marker above rather than below the entry).   2,20°, 
 10°: IO 1;34.   2,20°,  15°: AS 6;47.   3,0°,  0°: C 4;29.   3,10°,  25°: AS 4;9.   4,0°, 
 5°: IO blank.   4,0°,  10°: IO blank.   4,20°,  15°: IO 2;5.   5,10°,  25°: IO 2;29.   
6,0°,  10°: C 1;52.   6,0°,  15°: C 2;2.   8,0°,  5°: IO 0;45.   10,0°,  20°: IO blank.   
10,0°,  25°: IO blank.   10,20°,  5°: IO 3;12.   10,20°,  25°: AS, IO 4;16.   
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Continuation of the Simplification of the Latitude of Venus  (third quarter)

  
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
N S S S S S S S S S S S S S S S S S

 0,00 0;10 0;30 1;06 1;31 1;51 2;4 2;12 2;16 2;19 2;20 2;19 2;17 2;15 2;12 2;07 2;02 1;57 1;52
0,10 1;21 2;38 2;53 2;41 2;27

 0,20 2;42 3;38 3;27 2;59 2;34
 1,00 4;10 4;38 4;00 3;12 2;35
 1,10 5;30 5;31 4;27 3;23 2;36
 1,20 6;33 6;5 4;40 3;20 2;26
 2,00 7;25 7;28 7;09 6;29 5;55 5;21 4;47 4;16 3;46 3;16 2;51 2;31 2;17
 2,10 8;10 6;48 4;44 3;04 2;01
 2,20 8;32 6;48 4;32 2;45 1;42
 3,00 8;40 8;15 7;28 6;35 5;44 4;58 4;12 3;27 2;49 2;21 1;57 1;35 1;19 1;03 0;50 0;36 0;23 0;11
 3,10 8;27 5;51 3;45 1;55 0;54
 3,20 8; 8 5;41 3;13 1;26 0;27
 4,00 7;31 4;59 2;35 0;52 0;05
 4,10 6;37 4;03 1;47 0;14 0;33
 4,20 5;26 2;57 0;55 0;25 1;04
 5,00 4;16 1;54 0;05 1;00 1;30
 5,10 2;48 0;36 0;51 1;34 1;56
 5,20 1;13 0;42 1;45 2;12 2;20
 6,00 0;10 0;50 1;26 1;51 2;11 2;24 2;32 2;36 2;39 2;40 2;39 2;37 2;35 2;32 2;27 2;22 2;17 2;12
 6,10 1;41 2;57 3;14 3;02 2;47
 6,20 3;16 4;08 3;58 3;23 2;53
 7,00 4;42 5;06 4;30 3;34 2;54
 7,10 5;50 5;52 4;51 3;38 2;49
 7,20 6;57 6;34 5;11 3;38 2;40
 8,00 7;47 7;01 5;16 3;30 2;26
 8,10 8;20 7;16 5;12 3;15 2;05
 8,20 8;31 7;16 4;57 2;54 1;43
 9,00 8;37 8;34 8;04 7;12 6;17 5;28 4;39 3;53 3;9 2;33 2;7 1;42 1;21 1;07 0;53 0;39 0;25 0;13
 9,10 8;26 6;45 4;10 2;03 0;54
 9,20 8;00 6;06 3;31 1;31 0;25
10,00 7;19 5;13 2;44 0;54 0;03
10,10 6;27 4;19 2;00 0;21 0;28
10,20 5;28 3;17 1;10 0;16 0;57
11,00 4;12 2;06 0;18 0;49 1;19
11,10 2;48 0;47 0;40 1;26 1;44
11,20 1;33 0;19 1;24 1;52 2;01

0,0°,  10°: C 1;56.   1,10°,  15°: IO and AS 2;23.   2,0°,  10°: C 3;16.   3,0°,  
 10°: C 2;19.   3,20°,  0°: C 0;26.   4,0°,  0°: C 0;4.   4,20°,  0°: C 1;5.   10,0°,  5°: 
AS spurious entry 8;18.
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Continuation of the Simplification of the Latitude of Venus  (fourth quarter)

  
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
S S S S S S S S S S S S S S S S S N

 0, 0 1;47 1;39 1;34 1;29 1;24 1;17 1;10 1; 3 0;58 0;52 0;45 0;38 0;31 0;25 0;17 0;10 0; 3 0; 3
 0,10 1;45 1; 3 0;20
 0,20 1;42 0;56 0;12
 1, 0 1;33 0;44 0;0
 1,10 1;26 0;35 0;10
 1,20 1;12 0;22 0;20
 2, 0 0;59 0;10 0;29
 2,10 0;42 0; 5 0;39
 2,20 0;23 0;18 0;48
 3, 0 0; 0 0; 7 0;13 0;19 0;24 0;29 0;33 0;38 0;44 0;49 0;52 0;54 0;56 0;57 0;59 1; 0 1; 1 1; 2
 3,10 0;16 0;45 1; 1
 3,20 0;36 0;58 1; 7
 4, 0 0;57 1;10 1;11
 4,10 1;16 1;20 1;14
 4,20 1;33 1;28 1;13
 5, 0 1;46 1;33 1;11
 5,10 1;58 1;36 1; 7
 5,20 2; 5 1;35 1; 0
 6, 0 2; 7 1;59 1;54 1;49 1;44 1;37 1;30 1;23 1;18 1;12 1; 5 0;58 0;51 0;45 0;37 0;30 0;23 0;17
 6,10 2; 5 1;23 0;40
 6,20 1;58 1;12 0;27
 7, 0 1;46 0;57 0;13
 7,10 1;33 0;42 0; 1
 7,20 1;16 0;26 0;16
 8, 0 0;57 0; 7 0;29
 8,10 0;36 0; 8 0;41
 8,20 0;16 0;23 0;51
 9, 0 0; 0 0; 8 0;14 0;21 0;26 0;31 0;36 0;41 0;46 0;50 0;53 0;56 0;58 0;59 1; 0 1; 1 1; 2 1; 2
 9,10 0;23 0;50 1; 4
 9,20 0;42 1; 1 1; 7
10, 0 0;59 1;10 1; 7
10,10 1;12 1;15 1; 6
10,20 1;26 1;19 1; 2
11, 0 1;33 1;18 0;56
11,10 1;42 1;18 0;48
11,20 1;45 1;15 0;40

6,0°,  15°: C 1;19, AS 1;29.   6,20°,  0°: IO 1;2. 
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Table of the Simplification of the Latitude of Mercury 
(first quarter, top half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 0;45 0;55 1;03 1;14 1;19 1;26 1;31 1;35 1;38 1;41 1;43 1;44 1;45 1;46 1;46
6 0;55 1;06 1;14 1;22 1;28 1;34 1;38 1;41 1;45 1;46 1;47 1;48 1;47 1;47 1;46

12 1;05 1;15 1;23 1;30 1;36 1;42 1;45 1;48 1;50 1;51 1;51 1;51 1;48 1;48 1;47
18 1;15 1;24 1;32 1;39 1;45 1;50 1;52 1;54 1;56 1;57 1;55 1;53 1;51 1;48 1;45
24 1;25 1;33 1;41 1;48 1;53 1;57 1;59 2;00 2;01 2;00 1;58 1;55 1;51 1;46 1;44



0 1;35 1;42 1;50 1;57 2;01 2;04 2;05 2;05 2;03 2;03 2;00 1;56 1;50 1;45 1;41
6 1;44 1;51 1;59 2;05 2;08 2;09 2;09 2;08 2;06 2;04 1;59 1;55 1;48 1;42 1;36

12 1;53 2;00 2;08 2;13 2;15 2;15 2;12 2;10 2;07 2;03 1;58 1;52 1;44 1;37 1;30
18 2;06 2;09 2;16 2;20 2;21 2;19 2;15 2;12 2;08 2;02 1;56 1;48 1;39 1;31 1;24
24 2;11 2;17 2;23 2;26 2;25 2;21 2;17 2;13 2;09 2;01 1;53 1;44 1;34 1;25 1;17



0 2;19 2;25 2;28 2;30 2;28 2;23 2;18 2;14 2;08 1;59 1;49 1;39 1;28 1;18 1;08
6 2;26 2;32 2;33 2;33 2;30 2;25 2;19 2;13 2;05 1;56 1;45 1;33 1;21 1;10 0;59

12 2;33 2;38 2;37 2;35 2;31 2;26 2;18 2;10 2;01 1;51 1;39 1;26 1;13 1;01 0;49
18 2;40 2;42 2;40 2;37 2;32 2;25 2;16 2;07 1;57 1;46 1;33 1;19 1;04 0;51 0;38
24 2;47 2;46 2;43 2;39 2;33 2;24 2;13 2;03 1;52 1;40 1;26 1;10 0;53 0;39 0;26



0 2;51 2;49 2;46 2;40 2;32 2;22 2;10 1;58 1;46 1;32 1;17 1;00 0;44 0;26 0;12
6 2;55 2;51 2;47 2;40 2;30 2;18 2;05 1;51 1;37 1;25 1;06 0;48 0;29 0;11 0;03

12 2;58 2;52 2;46 2;38 2;27 2;12 1;58 1;42 1;27 1;11 0;53 0;36 0;14 0;02 0;18
18 2;59 2;53 2;45 2;34 2;20 2;04 1;48 1;32 1;14 0;58 0;39 0;19 0;01 0;16 0;33
24 3;00 2;51 2;41 2;28 2;13 1;55 1;37 1;20 1;02 0;43 0;24 0;02 0;16 0;34 0;50



0 2;59 2;48 2;36 2;21 2;04 1;45 1;26 1;07 0;47 0;28 0;6 0;16 0;36 0;54 1;10
6 2;57 2;44 2;30 2;13 1;54 1;34 1;14 0;58 0;30 0;11 0;12 0;35 1;02 1;16 1;31

12 2;50 2;37 2;21 2;02 1;42 1;21 0;59 0;36 0;12 0;09 0;32 0;57 1;38 1;52
18 2;42 2;27 2;09 1;49 1;27 1;04 0;41 0;16 0;06 0;30 0;54 1;18 1;39 2;00 2;14
24 2;33 2;15 1;55 1;33 1;09 0;43 0;18 0;06 0;29 0;53 1;18 1;42 2;03 2;21 2;35



0 2;21 2;00 1;39 1;15 0;50 0;21 0;03 0;29 0;53 1;16 1;41 2;5 2;26 2;43 2;52
6 2;06 1;43 1;20 0;55 0;28 0;00 0;27 0;53 1;16 1;41 2;04 2;27 2;48 3;04 3;17

12 1;48 1;24 0;59 0;34 0;06 0;22 0;50 1;17 1;41 2;4 2;26 2;48 3;08 3;25 3;36
18 1;28 1;04 0;37 0;12 0;17 0;45 1;13 1;39 2;3 2;26 2;46 3;06 3;26 3;42 3;51
24 1;07 0;42 0;15 0;11 0;39 1;07 1;35 2;00 2;22 2;45 3;04 3;23 3;40 3;53 4;00

 6°,  0°: IO 1;33.    12°,  12°: all MS’s 1;27.    12°,  0°,: IO 1;38.   

 



 THE TABLES OF PLANETARY LATITUDES 323

Table of the Simplification of the Latitude of Mercury
(first quarter, bottom half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 0;45 0;19 0;7 0;33 1;00 1;28 1;54 2;17 2;40 3;00 3;18 3;35 3;49 3;58 4;03
6 0;21 0;03 0;28 0;53 1;19 1;45 2;10 2;33 2;52 3;10 3;27 3;40 3;52 4;00 4;03

12 0;02 0;23 0;47 1;11 1;35 1;59 2;22 2;44 3;00 3;16 3;29 3;41 3;51 3;56 3;58
18 0;18 0;41 1;04 1;26 1;48 2;10 2;31 2;50 3;04 3;19 3;30 3;39 3;46 3;49 3;47
24 0;35 0;57 1;18 1;38 1;58 2;17 2;36 2;52 3;03 3;18 3;27 3;33 3;37 3;37 3;32



0 0;50 1;09 1;29 1;47 2;04 2;21 2;37 2;51 2;59 3;12 3;19 3;23 3;24 3;21 3;15
6 1;03 1;20 1;36 1;52 2;07 2;22 2;35 2;46 2;53 3;02 3;06 3;08 3;07 3;03 2;56

12 1;15 1;28 1;41 1;55 2;08 2;21 2;31 2;39 2;47 2;51 2;53 2;53 2;50 2;45 2;37
18 1;20 1;34 1;45 1;56 2;07 2;17 2;25 2;31 2;34 2;39 2;39 2;37 2;33 2;27 2;18
24 1;26 1;37 1;47 1;56 2;04 2;11 2;17 2;22 2;23 2;26 2;21 2;20 2;15 2;08 1;58



0 1;29 1;38 1;46 1;53 1;59 2;04 2;08 2;11 2;10 2;12 2;09 2;03 1;57 1;49 1;38
6 1;30 1;37 1;43 1;48 1;52 1;55 1;58 1;59 1;56 1;58 1;54 1;47 1;39 1;30 1;19

12 1;30 1;34 1;38 1;41 1;44 1;45 1;46 1;46 1;44 1;43 1;39 1;31 1;22 1;11 1;00
18 1;30 1;30 1;33 1;34 1;35 1;36 1;35 1;33 1;32 1;28 1;24 1;15 1;05 0;54 0;42
24 1;29 1;26 1;27 1;27 1;26 1;26 1;23 1;20 1;19 1;13 1;08 0;59 0;49 0;38 0;26



0 1;26 1;21 1;20 1;19 1;17 1;16 1;12 1;08 1;05 0;59 0;52 0;44 0;34 0;23 0;12
6 1;15 1;15 1;13 1;10 1;07 1;04 1;00 0;56 0;49 0;45 0;37 0;29 0;19 0;10 0;01

12 1;09 1;07 1;04 1;01 0;57 0;53 0;48 0;43 0;36 0;31 0;23 0;14 0;05 0;03 0;14
18 1;03 0;59 0;55 0;51 0;46 0;39 0;36 0;31 0;23 0;18 0;10 0;01 0;08 0;16 0;27
24 0;56 0;51 0;46 0;40 0;35 0;28 0;24 0;19 0;09 0;05 0;03 0;12 0;20 0;29 0;39



0 0;49 0;42 0;37 0;30 0;25 0;18 0;12 0;06 0;01 0;08 0;15 0;24 0;32 0;41 0;50
6 0;41 0;33 0;27 0;21 0;14 0;07 0;00 0;07 0;16 0;20 0;27 0;35 0;43 0;51 1;00

12 0;33 0;23 0;17 0;11 0;03 0;04 0;12 0;19 0;25 0;32 0;39 0;46 0;53 1;01 1;09
18 0;25 0;14 0;07 0;00 0;07 0;15 0;23 0;30 0;35 0;43 0;50 0;56 1;03 1;10 1;17
24 0;16 0;05 0;03 0;11 0;19 0;27 0;34 0;41 0;45 0;53 1;00 1;06 1;12 1;18 1;24



0 0;06 0;05 0;13 0;21 0;30 0;38 0;45 0;52 0;56 1;03 1;09 1;12 1;20 1;25 1;30
6 0;05 0;15 0;24 0;33 0;41 0;48 0;55 1;02 1;07 1;12 1;16 1;20 1;26 1;31 1;35

12 0;15 0;25 0;34 0;43 0;51 0;58 1;05 1;11 1;16 1;20 1;24 1;28 1;32 1;36 1;39
18 0;25 0;35 0;44 0;53 1;01 1;08 1;14 1;20 1;24 1;28 1;31 1;37 1;37 1;42 1;42
24 0;35 0;45 0;54 1;02 1;10 1;17 1;23 1;28 1;31 1;35 1;38 1;40 1;42 1;43 1;44

 18°,  24°: IO 3;39.    12°,  0°: IO 1;27.   



324 GLEN VAN BRUMMELEN

Continuation of the Simplification of the Latitude of Mercury
(second quarter, top half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 1;46 1;46 1;45 1;44 1;44 1;42 1;41 1;38 1;35 1;31 1;27 1;19 1;12 1;04 0;55
6 1;45 1;44 1;42 1;40 1;38 1;36 1;33 1;29 1;25 1;21 1;16 1;09 1;01 0;52 0;43

12 1;44 1;41 1;38 1;35 1;32 1;29 1;25 1;20 1;12 1;11 1;06 0;58 0;49 0;40 0;31
18 1;42 1;38 1;34 1;30 1;26 1;21 1;16 1;12 1;06 1;00 0;54 0;46 0;37 0;28 0;19
24 1;40 1;35 1;29 1;25 1;19 1;13 1;07 1;01 0;55 0;49 0;42 0;36 0;25 0;16 0;07



0 1;36 1;29 1;23 1;17 1;10 1;04 0;57 0;50 0;43 0;37 0;32 0;21 0;12 0;03 0;05
6 1;30 1;23 1;16 1;08 1;00 0;53 0;45 0;38 0;31 0;24 0;17 0;08 0;01 0;10 0;18

12 1;23 1;15 1;07 0;58 0;50 0;42 0;33 0;25 0;18 0;11 0;04 0;00 0;14 0;23 0;31
18 1;16 1;07 0;57 0;48 0;39 0;30 0;21 0;13 0;05 0;02 0;09 0;18 0;26 0;35 0;43
24 1; 08 0;58 0;47 0;37 0;27 0;17 0;08 0;01 0;06 0;15 0;23 0;31 0;38 0;46 0;54



0 0;59 0;48 0;37 0;26 0;17 0;04 0;04 0;12 0;20 0;28 0;36 0;43 0;50 0;56 1;03
6 0;49 0;37 0;26 0;14 0;03 0;09 0;18 0;26 0;34 0;41 0;49 0;56 1;02 1;08 1;13

12 0;38 0;25 0;13 0;01 0;11 0;22 0;32 0;40 0;48 0;55 1;02 1;08 1;14 1;19 1;23
18 0;27 0;13 0;00 0;13 0;25 0;36 0;46 0;54 1;02 1;08 1;14 1;20 1;25 1;29 1;32
24 0;13 0;00 0;13 0;27 0;40 0;51 1;00 1;08 1;15 1;21 1;27 1;32 1;36 1;39 1;41



0 0;00 0;13 0;27 0;42 0;55 1;06 1;15 1;22 1;28 1;34 1;39 1;43 1;46 1;48 1;49
6 0;14 0;28 0;42 0;58 1;10 1;21 1;30 1;37 1;42 1;47 1;50 1;53 1;55 1;56 1;54

12 0;31 0;45 0;59 1;14 1;26 1;36 1;45 1;51 1;55 1;59 2;01 2;02 2;03 2;02 2;00
18 0;48 1;03 1;18 1;31 1;42 1;51 1;59 2;08 2;03 2;10 2;11 2;11 2;10 2;07 2;03
24 1;06 1;21 1;37 1;49 1;59 2;06 2;14 2;18 2;21 2;21 2;21 2;19 2;16 2;11 2;05



0 1;26 1;40 1;54 2;06 2;17 2;21 2;28 2;31 2;33 2;34 2;29 2;25 2;21 2;14 2;08
6 1;46 1;59 2;12 2;24 2;34 2;36 2;47 2;43 2;43 2;41 2;36 2;31 2;24 2;16 2;06

12 2;06 2;18 2;31 2;44 2;50 2;54 2;54 2;53 2;51 2;48 2;41 2;33 2;25 2;15 2;02
18 2;27 2;38 2;50 2;59 3;05 3;06 3;05 3;02 2;58 2;52 2;43 2;33 2;22 2;09 1;54
24 2;47 2;58 3;07 3;15 3;18 3;17 3;14 3;09 3;03 2;54 2;43 2;30 2;15 2;00 1;44



0 3;07 3;17 3;24 3;30 3;30 3;26 3;21 3;14 3;05 2;53 2;41 2;24 2;05 1;48 1;31
6 3;26 3;33 3;38 3;42 3;40 3;34 3;25 3;15 3;03 2;49 2;33 2;12 1;54 1;34 1;14

12 3;42 3;46 3;49 3;50 3;47 3;39 3;26 3;14 2;59 2;42 2;22 2;01 1;39 1;17 0;55
18 3;54 3;56 3;54 3;53 3;47 3;40 3;22 3;8 2;50 2;32 2;08 1;45 1;21 0;57 0;33
24 4;02 4;01 3;59 3;52 3;44 3;30 3;15 2;57 2;37 2;13 1;48 1;26 0;59 0;33 0;08

 24°,  6°: IO 1;39.   18°,  6°: IO 0;18.   



 THE TABLES OF PLANETARY LATITUDES 325

Continuation of the Simplification of the Latitude of Mercury
(second quarter, bottom half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 4;05 4;03 4;00 3;49 3;35 3;18 3;00 2;40 2;18 1;54 1;28 1;00 0;33 0;07 0;19
6 4;02 3;57 3;50 3;40 3;24 3;03 2;41 2;18 1;54 1;30 1;03 0;34 0;07 0;21 0;47

12 3;54 3;46 3;38 3;25 3;06 2;45 2;20 1;55 1;29 1;04 0;36 0;07 0;21 0;48 1;14
18 3;34 3;32 3;19 3;03 2;45 2;23 1;58 1;31 1;03 0;37 0;09 0;19 0;47 1;14 1;39
24 3;16 2;59 2;42 2;21 1;59 1;33 1;06 0;38 0;14 0;16 0;44 1;12 1;38 2;1



0 3;04 2;54 2;38 2;19 1;57 1;33 1;07 0;40 0;13 0;13 0;40 1;08 1;35 2;00 2;21
6 2;47 2;34 2;16 1;55 1;34 1;07 0;41 0;15 0;11 0;37 1;03 1;31 1;56 2;19 2;39

12 2;27 2;13 1;54 1;31 1;08 0;44 0;16 0;08 0;33 0;59 1;26 1;51 2;14 2;35 2;54
18 2;06 1;51 1;34 1;09 0;45 0;21 0;06 0;30 0;54 1;19 1;44 2;08 2;29 2;49 3;6
24 1;46 1;29 1;10 0;48 0;24 0;00 0;25 0;50 1;13 1;36 1;59 2;21 2;42 3;00 3;15



0 1;27 1;09 0;50 0;28 0;03 0;19 0;43 1;06 1;29 1;51 2;11 2;31 2;51 3;08 3;21
6 1;06 0;51 0;32 0;10 0;14 0;37 0;59 1;21 1;42 2;03 2;22 2;40 2;58 3;12 3;23

12 0;48 0;34 0;16 0;08 0;31 0;53 1;13 1;33 1;53 2;12 2;30 2;47 3;02 3;14 3;23
18 0;28 0;17 0;00 0;23 0;45 1;06 1;25 1;44 2;03 2;20 2;37 2;52 3;05 3;15 3;22
24 0;14 0;00 0;17 0;37 0;58 1;18 1;36 1;54 2;11 2;27 2;42 2;56 3;07 3;15 3;20



0 0;00 0;15 0;32 0;50 0;09 1;28 1;45 2;01 2;17 2;32 2;46 2;58 3;06 3;14 3;18
6 0;13 0;28 0;45 1;02 0;19 1;36 1;53 2;08 2;22 2;36 2;48 2;58 3;05 3;11 3;13

12 0;26 0;40 0;56 1;12 0;28 1;44 1;59 2;13 2;25 2;37 2;47 2;56 3;02 3;06 3;7
18 0;38 0;51 1;05 1;20 0;36 1;49 2;04 2;16 2;26 2;37 2;45 2;52 2;57 3;00 2;59
24 0;49 1;01 1;14 1;27 0;41 1;54 2;07 2;18 2;29 2;36 2;42 2;48 2;52 2;53 2;51



0 0;59 1;10 1;22 1;34 0;46 1;58 2;09 2;19 2;28 2;34 2;39 2;44 2;46 2;46 2;42
6 1;08 1;18 1;29 1;40 0;51 2;01 2;10 2;19 2;26 2;32 2;36 2;39 2;40 2;33 2;35

12 1;16 1;25 1;34 1;45 0;55 2;03 2;11 2;18 2;25 2;29 2;32 2;33 2;33 2;29 2;26
18 1;23 1;32 1;39 1;49 0;57 2;04 2;11 2;17 2;22 2;25 2;27 2;27 2;25 2;20 2;16
24 1;30 1;37 1;44 1;51 0;58 2;04 2;10 2;15 2;18 2;20 2;21 2;19 2;16 2;11 2;5



0 1;36 1;41 1;47 1;52 0;58 2;03 2;07 2;11 2;13 2;14 2;12 2;10 2;07 2;02 1;54
6 1;40 1;44 1;49 1;53 2;00 2;03 2;05 2;06 2;04 2;05 2;02 1;57 1;51 1;43

12 1;42 1;46 1;49 1;52 1;57 1;58 1;59 1;59 1;58 1;56 1;51 1;46 1;39 1;31
18 1;44 1;46 1;48 1;50 1;53 1;53 1;53 1;52 1;49 1;46 1;40 1;35 1;28 1;19
24 1;45 1;46 1;47 1;48 1;48 1;47 1;46 1;44 1;40 1;37 1;30 1;24 1;16 1;7

 24°,  0°: all MS’s 3;26.   



326 GLEN VAN BRUMMELEN

Continuation of the Simplification of the Latitude of Mercury
(third quarter, top half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 0;45 0;34 0;24 0;09 0;05 0;20 0;30 0;46 0;58 1;09 1;19 1;28 1;37 1;48 1;45
6 0;33 0;22 0;11 0;02 0;15 0;30 0;44 0;56 1;07 1;16 1;25 1;33 1;40 1;49 1;46

12 0;21 0;10 0;00 0;13 0;23 0;40 0;53 1;05 1;15 1;23 1;31 1;38 1;43 1;46 1;46
18 0;09 0;01 0;12 0;24 0;37 0;49 1;01 1;11 1;20 1;29 1;36 1;42 1;44 1;46 1;45
24 0;03 0;13 0;24 0;35 0;47 0;58 1;08 1;17 1;25 1;33 1;39 1;43 1;45 1;44 1;44



0 0;15 0;25 0;35 0;45 0;56 1;06 1;15 1;23 1;30 1;36 1;41 1;44 1;44 1;41 1;41
6 0;26 0;37 0;46 0;55 1;04 1;13 1;21 1;28 1;34 1;38 1;42 1;43 1;42 1;41 1;37

12 0;39 0;48 0;56 1;04 1;12 1;19 1;26 1;30 1;37 1;40 1;42 1;41 1;40 1;37 1;31
18 0;50 0;58 1;05 1;12 1;19 1;25 1;30 1;35 1;39 1;41 1;41 1;39 1;36 1;32 1;24
24 1;00 1;07 1;13 1;19 1;25 1;30 1;34 1;37 1;40 1;40 1;39 1;36 1;32 1;26 1;16



0 1;09 1;15 1;21 1;26 1;30 1;34 1;37 1;39 1;40 1;39 1;36 1;32 1;26 1;18 1;09
6 1;18 1;23 1;28 1;31 1;34 1;36 1;39 1;40 1;39 1;37 1;34 1;26 1;19 1;10 1;00

12 1;27 1;30 1;34 1;36 1;37 1;38 1;38 1;38 1;36 1;34 1;27 1;21 1;11 1;01 0;50
18 1;35 1;37 1;39 1;40 1;40 1;39 1;36 1;35 1;32 1;28 1;21 1;13 1;03 0;51 0;39
24 1;43 1;43 1;44 1;44 1;41 1;40 1;34 1;32 1;28 1;21 1;14 1;02 0;53 0;40 0;24



0 1;49 1;49 1;48 1;47 1;43 1;39 1;30 1;28 1;21 1;12 1;05 0;54 0;42 0;28 0;14
6 1;54 1;57 1;50 1;47 1;42 1;36 1;27 1;22 1;13 1;05 0;54 0;42 0;29 0;15 0;01

12 1;57 1;55 1;50 1;45 1;38 1;31 1;23 1;14 1;04 0;54 0;42 0;29 0;15 0;00 0;16
18 1;59 1;54 1;48 1;41 1;33 1;24 1;14 1;04 0;53 0;42 0;29 0;15 0;00 0;17 0;33
24 2;00 1;52 1;45 1;36 1;26 1;15 1;03 0;52 0;40 0;28 0;14 0;01 0;17 0;34 0;50



0 1;59 1;49 1;39 1;29 1;13 1;05 0;51 0;38 0;25 0;12 0;03 0;19 0;36 0;53 1;09
6 1;56 1;45 1;33 1;21 1;08 0;53 0;38 0;23 0;08 0;06 0;23 0;39 0;56 1;13 1;33

12 1;49 1;38 1;24 1;09 0;54 0;38 0;22 0;05 0;11 0;26 0;44 1;01 1;18 1;36 1;51
18 1;39 1;26 1;11 0;54 0;37 0;19 0;02 0;17 0;33 0;50 1;07 1;23 1;40 1;56 2;12
24 1;27 1;10 0;53 0;35 0;17 0;04 0;21 0;39 0;56 1;13 1;30 1;46 2;03 2;19 2;34



0 1;12 0;52 0;33 0;12 0;05 0;23 0;44 1;03 1;21 1;38 1;55 2;11 2;27 2;42 2;55
6 0;54 0;31 0;10 0;11 0;28 0;46 1;10 1;28 1;46 2;03 2;22 2;36 2;50 3;04 3;15

12 0;32 0;09 0;20 0;34 0;53 1;10 1;37 1;54 2;11 2;28 2;43 2;59 3;12 3;23 3;33
18 0;07 0;16 0;38 0;59 1;21 1;38 2;03 2;20 2;36 2;52 3;04 3;19 3;31 3;41 3;49
24 0;19 0;43 1;05 1;26 1;48 2;05 2;28 2;45 3;00 3;13 3;24 3;37 3;46 3;54 3;59

 0°,  6°: C 0;35.    0°,  24°: IO illegible.    6°,  18°: IO 1;44.    6°,  
6°: C 1;22.    6°,  12°: IO 1;16.    18°,  24°: IO 0;55.   



 THE TABLES OF PLANETARY LATITUDES 327

Continuation of the Simplification of the Latitude of Mercury
(third quarter, bottom half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 0;45 1;09 1;31 1;53 2;14 2;34 2;52 3;08 3;21 3;32 3;42 3;50 3;57 4;01 4;03
6 1;11 1;34 1;56 2;18 2;38 2;56 3;12 3;25 3;36 3;46 3;54 4;00 4;03 4;04 4;03

12 1;37 1;59 2;20 2;39 2;57 3;13 3;28 3;38 3;46 3;55 3;59 4;02 4;02 4;01 3;59
18 2;02 2;22 2;42 3;00 3;15 3;24 3;38 3;47 3;54 3;58 4;05 4;01 3;58 3;53 3;48
24 2;24 2;45 3;00 3;15 3;28 3;34 3;46 3;54 3;57 3;58 3;56 3;53 3;49 3;42 3;33



0 2;42 3;01 3;16 3;27 3;38 3;41 3;55 3;55 3;54 3;54 3;49 3;43 3;37 3;29 3;18
6 2;57 3;13 3;26 3;36 3;44 3;49 3;52 3;53 3;51 3;46 3;38 3;31 3;22 3;11 2;59

12 3;09 3;22 3;33 3;42 3;48 3;52 3;50 3;48 3;44 3;36 3;28 3;18 3;06 2;53 2;39
18 3;19 3;30 3;38 3;45 3;48 3;49 3;45 3;41 3;35 3;25 3;15 3;03 2;49 2;35 2;19
24 3;27 3;35 3;41 3;45 3;46 3;44 3;39 3;31 3;23 3;13 3;01 2;46 2;32 2;16 2;00



0 3;30 3;34 3;42 3;40 3;42 3;37 3;30 3;21 3;10 2;59 2;46 2;31 2;14 1;57 1;41
6 3;31 3;33 3;38 3;37 3;35 3;29 3;20 3;09 2;57 2;45 2;30 2;14 1;56 1;36 1;22

12 3;29 3;34 3;33 3;31 3;27 3;19 3;08 2;56 2;43 2;29 2;14 1;56 1;39 1;21 1;04
18 3;27 3;28 3;27 3;24 3;19 3;08 2;56 2;43 2;29 2;14 1;58 1;40 1;22 1;04 0;48
24 3;24 3;28 3;21 3;16 3;09 2;57 2;44 2;30 2;15 1;59 1;43 1;24 1;06 0;48 0;31



0 3;19 3;28 3;12 3;04 2;58 2;46 2;32 2;17 2;01 1;45 1;28 1;09 0;50 0;32 0;15
6 3;13 3;19 3;06 2;56 2;47 2;34 2;19 2;04 1;47 1;31 1;14 0;54 0;35 0;17 0;00

12 3;05 3;03 2;56 2;47 2;35 2;21 2;06 1;51 1;34 1;16 0;59 0;40 0;21 0;03 0;13
18 2;57 2;53 2;45 2;34 2;22 2;08 1;53 1;37 1;20 1;02 0;44 0;26 0;08 0;09 0;25
24 2;48 2;43 2;37 2;22 2;09 1;54 1;40 1;22 1;07 0;48 0;32 0;13 0;05 0;21 0;36



0 2;39 2;33 2;23 2;10 1;56 1;42 1;27 1;10 0;53 0;35 0;16 0;00 0;14 0;33 0;46
6 2;30 2;22 2;11 1;58 1;43 1;28 1;13 0;57 0;40 0;22 0;03 0;13 0;29 0;44 0;57

12 2;20 2;11 1;59 1;46 1;31 1;15 1;00 0;44 0;27 0;09 0;9 0;26 0;40 0;55 1;06
18 2;09 2;00 1;47 1;34 1;19 1;03 0;47 0;31 0;14 0;03 0;20 0;36 0;50 1;04 1;15
24 1;58 1;48 1;35 1;22 1;07 0;51 0;35 0;18 0;01 0;15 0;31 0;46 1;00 1;12 1;23



0 1;46 1;36 1;23 1;10 0;54 0;39 0;23 0;06 0;10 0;26 0;41 0;56 1;09 1;19 1;29
6 1;34 1;28 1;11 0;57 0;42 0;27 0;11 0;06 0;21 0;36 0;50 1;03 1;16 1;25 1;37

12 1;21 1;10 0;58 0;44 0;29 0;14 0;01 0;15 0;31 0;45 0;58 1;22 1;31 1;38
18 1;09 0;58 0;45 0;32 0;17 0;02 0;12 0;25 0;40 0;53 1;06 1;16 1;28 1;36 1;41
24 0;57 0;46 0;33 0;20 0;06 0;09 0;23 0;36 0;49 1;01 1;13 1;23 1;33 1;40 1;43

 0°,  24°: IO 3;28.    24°,  12°: IO 2;34 or 2;37.    18°,  12°: IO 1;27.   
 0°,  18°: IO 3;15.    0°,  6°: IO 0;5.    6°,  6°: all MS’s 1;13.    12°,  
6°: IO 1;48, C 1;18.   



328 GLEN VAN BRUMMELEN

Continuation of the Simplification of the Latitude of Mercury
(fourth quarter, top half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 1;46 1;45 1;43 1;37 1;28 1;19 1;08 0;57 0;46 0;33 0;19 0;05 0;09 0;20 0;34
6 1;45 1;43 1;40 1;33 1;25 1;14 1;02 0;50 0;38 0;26 0;12 0;03 0;18 0;32 0;44

12 1;44 1;41 1;36 1;29 1;21 1;09 0;55 0;43 0;30 0;18 0;04 0;12 0;27 0;42 0;54
18 1;42 1;38 1;33 1;24 1;15 1;03 0;48 0;35 0;22 0;09 0;05 0;22 0;36 0;52 1;04
24 1;40 1;34 1;28 1;19 1;08 0;55 0;40 0;26 0;13 0;01 0;16 0;32 0;48 1;02 1;14



0 1;36 1;29 1;22 1;12 1;00 0;46 0;31 0;16 0;03 0;11 0;27 0;43 0;59 1;13 1;24
6 1;30 1;23 1;14 1;04 0;51 0;36 0;20 0;06 0;08 0;22 0;38 0;54 1;10 1;24 1;34

12 1;23 1;15 1;05 0;54 0;41 0;25 0;09 0;05 0;19 0;34 0;50 1;06 1;21 1;34 1;44
18 1;16 1;06 0;55 0;43 0;30 0;14 0;02 0;16 0;31 0;46 1;02 1;17 1;32 1;44 1;54
24 1;8 0;57 0;45 0;32 0;18 0;02 0;13 0;28 0;49 0;58 1;14 1;28 1;42 1;54 2;03



0 0;59 0;47 0;34 0;20 0;05 0;10 0;25 0;40 0;55 1;10 1;25 1;39 1;52 2;03 2;14
6 0;49 0;36 0;23 0;09 0;06 0;22 0;37 0;52 1;04 1;22 1;36 1;50 2;02 2;11 2;21

12 0;38 0;25 0;12 0;02 0;18 0;34 0;50 1;05 1;21 1;34 1;47 2;00 2;11 2;21 2;30
18 0;27 0;13 0;00 0;14 0;30 0;43 1;03 1;19 1;33 1;46 1;58 2;10 2;21 2;30 2;37
24 0;13 0;01 0;13 0;27 0;48 1;01 1;18 1;34 1;46 1;58 2;10 2;21 2;31 2;38 2;43



0 0;00 0;13 0;27 0;42 0;58 1;15 1;32 1;48 1;59 2;10 2;21 2;31 2;40 2;46 2;49
6 0;14 0;28 0;42 0;57 1;13 1;30 1;46 2;01 2;12 2;22 2;31 2;40 2;48 2;53 2;54

12 0;31 0;44 0;58 1;13 1;29 1;45 2;00 2;14 2;24 2;33 2;41 2;49 2;55 2;59 2;59
18 0;43 1;02 1;16 1;30 1;42 2;01 2;15 2;27 2;36 2;49 2;51 2;57 3;02 3;03 3;03
24 1;04 1;21 1;35 1;48 2;03 2;18 2;30 2;41 2;49 2;55 3;00 3;04 3;08 3;08 3;05



0 1;26 1;38 1;54 2;02 2;21 2;34 2;45 2;54 3;01 3;06 3;9 3;11 3;13 3;11 3;07
6 1;46 1;59 2;13 2;27 2;38 2;49 2;59 3;7 3;13 3;16 3;18 3;18 3;17 3;13 3;06

12 2;06 2;19 2;31 2;43 2;54 3;03 3;12 3;19 3;23 3;24 3;24 3;22 3;19 3;12 3;03
18 2;27 2;39 2;49 2;59 3;09 3;17 3;24 3;25 3;30 3;30 3;27 3;23 3;16 3;08 2;57
24 2;46 2;58 3;07 3;12 3;24 3;29 3;34 3;36 3;35 3;33 3;29 3;22 3;13 3;01 2;48



0 3;07 3;18 3;25 3;31 3;34 3;38 3;42 3;41 3;38 3;34 3;28 3;18 3;06 2;58 2;37
6 3;26 3;36 3;41 3;44 3;45 3;46 3;48 3;44 3;40 3;32 3;24 3;12 2;58 2;43 2;25

12 3;42 3;49 3;53 3;54 3;52 3;53 3;51 3;46 3;39 3;29 3;17 3;03 2;47 2;30 2;10
18 3;54 3;57 3;59 3;58 3;57 3;54 3;50 3;42 3;34 3;20 3;6 2;50 2;33 2;14 1;52
24 4;02 4;03 4;04 4;01 3;55 3;50 3;43 3;33 3;23 3;08 2;54 2;33 2;14 1;54 1;32

 18°,  6°: all MS’s 1;13.    6°,  18°: IO 2;42.    12°,  0°: IO 2;49.   
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Continuation of the Simplification of the Latitude of Mercury
(fourth quarter, bottom half )

  
0 6 12 18 24 0 6 12 18 24 0 6 12 18 24



0 4;05 4;03 4;01 3;57 3;50 3;42 3;34 3;21 3;10 2;52 2;37 2;14 1;53 1;31 1;09
6 4;02 3;59 3;55 3;49 3;40 3;29 3;17 3;04 2;50 2;34 2;15 1;54 1;30 1;07 0;45

12 3;54 3;46 3;43 3;35 3;24 3;12 2;58 2;44 2;29 2;13 1;53 1;31 1;08 0;45 0;25
18 3;42 3;32 3;29 3;16 3;04 2;50 2;36 2;21 2;05 1;48 1;29 1;09 0;47 0;25 0;04
24 3;26 3;17 3;07 2;55 2;42 2;26 2;13 1;58 1;41 1;24 1;06 0;46 0;26 0;05 0;13



0 3;04 2;56 2;45 2;33 2;19 2;04 1;49 1;34 1;18 1;02 0;44 0;26 0;06 0;13 0;31
6 2;44 2;35 2;23 2;10 1;56 1;41 1;25 1;11 0;56 0;40 0;23 0;06 0;14 0;29 0;46

12 2;27 2;13 1;59 1;47 1;32 1;18 1;03 0;49 0;35 0;20 0;05 0;11 0;28 0;44 1;00
18 2;06 1;51 1;37 1;24 1;10 0;56 0;42 0;28 0;15 0;01 0;18 0;27 0;42 0;56 1;07
24 1;46 1;31 1;17 1;03 0;49 0;35 0;22 0;10 0;02 0;15 0;28 0;41 0;53 1;03 1;15



0 1;25 1;12 0;58 0;44 0;30 0;15 0;02 0;07 0;17 0;29 0;40 0;52 1;02 1;11 1;20
6 1;06 0;52 0;39 0;26 0;12 0;02 0;12 0;22 0;31 0;41 0;50 0;59 1;08 1;16 1;23

12 0;48 0;34 0;22 0;10 0;03 0;15 0;26 0;35 0;43 0;50 0;58 1;05 1;12 1;18 1;25
18 0;31 0;18 0;05 0;06 0;17 0;28 0;38 0;46 0;53 0;59 1;05 1;10 1;15 1;20 1;27
24 0;15 0;02 0;10 0;21 0;31 0;41 0;49 0;06 1;01 1;06 1;11 1;14 1;17 1;20 1;27



0 0;00 0;12 0;23 0;34 0;44 0;52 0;59 1;04 1;08 1;12 1;15 1;17 1;19 1;20 1;26
6 0;13 0;25 0;35 0;45 0;54 1;02 1;07 1;11 1;14 1;19 1;18 1;19 1;19 1;18 1;24

12 0;25 0;38 0;46 0;55 1;03 1;09 1;14 1;17 1;19 1;21 1;20 1;19 1;17 1;15 1;22
18 0;36 0;49 0;57 1;03 1;10 1;15 1;19 1;21 1;22 1;22 1;19 1;17 1;14 1;11 1;07
24 0;46 0;59 1;07 1;12 1;17 1;21 1;23 1;24 1;23 1;22 1;17 1;15 1;11 1;07 1;01



0 0;57 1;08 1;15 1;20 1;23 1;31 1;27 1;26 1;24 1;21 1;16 1;12 1;07 1;01 0;55
6 1;06 1;17 1;23 1;26 1;28 1;33 1;29 1;27 1;23 1;19 1;15 1;08 1;01 0;54 0;46

12 1;15 1;24 1;29 1;31 1;32 1;34 1;30 1;28 1;23 1;17 1;11 1;03 0;55 0;47 0;40
18 1;23 1;30 1;32 1;36 1;35 1;35 1;31 1;27 1;21 1;14 1;07 0;58 0;49 0;40 0;33
24 1;29 1;35 1;38 1;39 1;37 1;34 1;31 1;26 1;19 1;11 1;02 0;53 0;43 0;33 0;25



0 1;34 1;39 1;41 1;41 1;38 1;32 1;30 1;24 1;16 1;06 0;56 0;46 0;35 0;25 0;16
6 1;38 1;42 1;43 1;42 1;39 1;29 1;28 1;20 1;11 1;00 0;49 0;38 0;27 0;16 0;05

12 1;41 1;44 1;44 1;42 1;38 1;27 1;24 1;15 1;05 0;54 0;42 0;30 0;18 0;6 0;05
18 1;43 1;45 1;44 1;41 1;36 1;25 1;20 1;10 0;59 0;47 0;34 0;22 0;9 0;4 0;15
24 1;45 1;46 1;44 1;39 1;32 1;24 1;14 1;04 0;53 0;40 0;26 0;14 0;0 0;13 0;24

 24°,  6°: IO 0;10.    18°,  0°: 0;25.    0°,  6°: 0;17.    6°,  24°: IO 
1;16.    6°,  6°: IO illegible.   
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Equation Tables in the Dṛggaṇita of Parameśvara

Sho Hios

1. Introduction

Parameśvara (c. 1360–1460) was an astronomer in Kerala who made signif-
icant contributions to astronomy in second millennium India. He was the
author of many original works and commentaries on a range of astronomical
topics. In 1431–32 c he composed the Dṛggaṇita (literally ‘Observation and
Computation’; hereafter DG) which was intended to improve the parameters
underlying the planetary computations of his predecessors. A significant part
of the work is made up of planetary equation tables which are presented in
versified form. I will examine these tables in detail, comparing them with the
rules and parameters for finding such equations presented earlier in Parameś-
vara’s text and use these reconstructions, along with variant readings from the
manuscripts, to discuss how this numerical data may have been generated and
how this can help us with the critical editing process.

2. Background

2.1. Versified tables

In Sanskrit treatises on mathematics or astronomy, single entry tables, such
as Sine1 tables, can be expressed as verses where numbers are replaced by
words or sets of syllables. One system that proved to be popular was the
kaṭapayādi system which emerged in the south Indian region of Kerala. This
system uses the consonant next to the vowel to be taken as a digit (Table 1),
thus enabling the composer to describe a number with varieties of meaningful
words.2 Because each digit is associated with several different consonants, the
same value could be expressed by different words in this system. The first text
that is known to use the kaṭapayādi is the Grahacāranibandhana (c. 690 c)
by Haridatta.3 This treatise gives various constants for astronomical computa-
tion in the kaṭapayādi form. It includes a set of versified tables of planetary

1 Capitalized to distinguish it from the modern notion of the sine where R = 1. Sin θ =

R sin θ.
2 See Sarma, ‘From My Grandfather’s Chest’, for details on the kaṭapayādi system.
3 Critical edition in K. V. Sarma, Grahacāranibandhana.
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Table 1: Correspondence between consonants and numbers in the kaṭapayādi system

k = 1 kh = 2 g = 3 gh = 4 ṅ = 5
c = 6 ch = 7 j = 8 jh = 9 ñ = 0
ṭ = 1 ṭh = 2 ḍ = 3 ḍh = 4 ṇ = 5
t = 6 th = 7 d = 8 dh = 9 n = 0
p = 1 ph = 2 b = 3 bh = 4 m = 5
y = 1 r = 2 l = 3 v = 4 ś = 5
ṣ = 6 s = 7 h = 8 ḷ = 9

vowel without consonant = 0

equations corresponding to mean anomalies at intervals of 3◦45′ (Grahacāra-
nibandhana 2.1–15 and 3.35–36). Haridatta calls (in 1.34 and 3.34) these
verses vākyas (literally ‘sentence’). Versified tables employing kaṭapayādi be-
came very common in Kerala and are frequently referred to as vākyas, espe-
cially when the text is made up exclusively of versified tables.
An important feature of versified tables are that linguistic or metric struc-

tures, instead of spacial alignment, indicate the format of the data. The fol-
lowing is a verse from the Dṛggaṇita which we shall look at in the next sec-
tion. The Sanskrit words in bold are kaṭapayādi. I have first translated them
literally (whether they make sense for the modern reader or not) and then
converted them into numbers.

jāto balāya na naraś4 cacāra nīlāṅgi ruddhaguḥ śramavit |
suniśā sumarma punitād dhūliṣu dhūrteṣu dhījitau vinasaḥ |
sūnārthī kṣitisūnoḥ ṣaḍaṃśajā māndajā imā jīvāḥ ||2.26||

A man is born not for power (eight-six, three-three-one, zero-zero-two). A sup-
pressed cow that knows exertion having black limbs has moved (six-six-two, zero-
three-three, two-nine-three, two-five-four).
A good night, having good organs, because it has been purified (seven-zero-five,
seven-five-five, one-zero-six). The noseless is in the dust, in the rust and victori-
ous with knowledge (nine-three-six, nine-six-six, nine-eight-six, four-zero-seven).
One who desires for a son (seven-zero-seven). These are the Sines produced from
the ‘slow’ [anomalies] of Mars, arising for six degree [intervals].

The reader can separate the fifteen entries listed in this verse from one an-
other since an independent word corresponds to a number. The consonants
j and t in the first word jāto, literally ‘born’, indicate eight and six respec-
tively. They are placed from the lower position to the higher, and thus we
find sixty-eight. Likewise, balāya ‘for power’ denotes one hundred and thirty-
three.

4 The edition by K. V. Sarma, which uses Devanagari, puts nanaraś unseparated to read
zero-zero-two or two hundred as a kaṭapayādi. But grammatically na (negation) and nara
(man) are separate words.
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The verse includes non-number descriptions, but there are cases (such as
the Grahacāranibandhana) where a whole verse is made of kaṭapayādi words.
The texts themselves do not always indicate whether a phrase or an entire
verse is in kaṭapayādi, but it is usually easy for the reader to recognize them,
as words in kaṭapayādi generally create phrases that are distinctively different
from the astronomical context.
Sometimes the words may be carefully chosen so that they form a sentence

as a whole. However, it is unclear whether the entries in versified tables were
always supposed to be meaningfully connected.5 Likewise, in the kaṭapayādi
verses of the Dṛggaṇita, I could only sporadically find meaningful passages.
Otherwise the stanzas could be somehow construed syntactically but defied
semantic analysis, as can be seen in the previous ‘translation’. Hereafter I shall
focus on the numbers represented by kaṭapayādi, and leave the task of ana-
lyzing the words semantically for the future.

2.1.1. The possibility of variants without changing the value
While our main interest is the numerical values themselves, we must keep in
mind that in the kaṭapayādi system the same digit could be indicated with
different letters (e.g., g, ḍ, b and l all mean 3). Furthermore, whenever mul-
tiple consonants are conjuncted before a vowel, only the last one followed
by the vowel is interpreted as a digit and others are ignored. Thus the same
number can be represented with different words. To give an example that oc-
curs in the Dṛggaṇita,6 one thousand nine hundred and fifty-eight is expressed
by durmadhupo (bad honey-drinker/bee) in one manuscript while others read
himābdhaye (for the cold lake/ocean).
This type of variant cannot be produced by a simple scribal error; it sug-

gests that numbers were transmitted on their own or computed independently
before being compiled into kaṭapayādi. And indeed we will see that this seems
to be the case in the Dṛggaṇita.

2.1.2. Other ways of representing numbers
While the versified equation tables that we focus on is entirely in kaṭapayādi,
other methods existed in Sanskrit traditions, and I would like to refer to two
of them which are relevant in our scope.

5 Plofker, Mathematics in India, p. 246, analyzes a versified table attributed to Mādhava
and comments: ‘The meaning of these phrases as ordinary Sanskrit verse is secondary, and
not totally coherent. … A truly learned commentator could doubtless provide a meaningful
literary interpretation for the entire verse collection, but a reader concerned primarily with its
mathematical meaning would probably not care.’

6 This is verse 2.28 that has been used in this study and that appears in p. 19 of K. V.
Sarma’s edition.
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Table 1: Correspondence between consonants and numbers in the kaṭapayādi system

k = 1 kh = 2 g = 3 gh = 4 ṅ = 5
c = 6 ch = 7 j = 8 jh = 9 ñ = 0
ṭ = 1 ṭh = 2 ḍ = 3 ḍh = 4 ṇ = 5
t = 6 th = 7 d = 8 dh = 9 n = 0
p = 1 ph = 2 b = 3 bh = 4 m = 5
y = 1 r = 2 l = 3 v = 4 ś = 5
ṣ = 6 s = 7 h = 8 ḷ = 9

vowel without consonant = 0

equations corresponding to mean anomalies at intervals of 3 45 (Grahacāra-
nibandhana 2.1–15 and 3.35–36). Haridatta calls (in 1.34 and 3.34) these
verses vākyas (literally ‘sentence’). Versified tables employing kaṭapayādi be-
came very common in Kerala and are frequently referred to as vākyas, espe-
cially when the text is made up exclusively of versified tables.
An important feature of versified tables are that linguistic or metric struc-

tures, instead of spacial alignment, indicate the format of the data. The fol-
lowing is a verse from the Dṛggaṇita which we shall look at in the next sec-
tion. The Sanskrit words in bold are kaṭapayādi. I have first translated them
literally (whether they make sense for the modern reader or not) and then
converted them into numbers.

jāto balāya na naraś4 cacāra nīlāṅgi ruddhaguḥ śramavit |
suniśā sumarma punitād dhūliṣu dhūrteṣu dhījitau vinasaḥ |
sūnārthī kṣitisūnoḥ ṣaḍaṃśajā māndajā imā jīvāḥ ||2.26||

A man is born not for power (eight-six, three-three-one, zero-zero-two). A sup-
pressed cow that knows exertion having black limbs has moved (six-six-two, zero-
three-three, two-nine-three, two-five-four).
A good night, having good organs, because it has been purified (seven-zero-five,
seven-five-five, one-zero-six). The noseless is in the dust, in the rust and victori-
ous with knowledge (nine-three-six, nine-six-six, nine-eight-six, four-zero-seven).
One who desires for a son (seven-zero-seven). These are the Sines produced from
the ‘slow’ [anomalies] of Mars, arising for six degree [intervals].

The reader can separate the fifteen entries listed in this verse from one an-
other since an independent word corresponds to a number. The consonants
j and t in the first word jāto, literally ‘born’, indicate eight and six respec-
tively. They are placed from the lower position to the higher, and thus we
find sixty-eight. Likewise, balāya ‘for power’ denotes one hundred and thirty-
three.

4 The edition by K. V. Sarma, which uses Devanagari, puts nanaraś unseparated to read
zero-zero-two or two hundred as a kaṭapayādi. But grammatically na (negation) and nara
(man) are separate words.
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The bhūtasaṃkhyā system, or word-numeral system, was popular in both
north and south India. In this system, various nouns are used to stand for
a number with which it can be associated visually, through myths or in any
other way. The number can be a single digit (e.g., ‘eye’, ‘twin’, etc., for 2)
or two digits (e.g., ‘sun’, ‘zodiacal sign’, etc., for 12), and for large numbers
the words are listed in compounds, starting from the lowest place (e.g., ‘sky-
sky-sun’ for ‘zero-zero-twelve’, i.e., 1200). Versified tables can also be com-
posed with this system, although this requires more syllables than kaṭapayādi.
The readers must know the correspondence between words and numbers, and
there is almost no syntax between individual words that would help them.
Bhūtasaṃkhyā is employed in the first half of the Dṛggaṇita. Thus the pa-
rameters for generating the equations, explained in Section 3, are in bhū-
tasaṃkhyā.
One may be curious to know whether the versified tables also circulated

in formatted tables using Indo-Arabic numerals. Such tradition of table texts
known as koṣṭhakas did exist in north and west India, due to influence by the
Islamic tradition, since at least the 12th century.7 However, table texts found
in south India are rare and belong to much later periods.8 We cannot find
any tabulated data in the manuscripts of the Dṛggaṇita. Thus, based on what
we have, I assume that the equation number sets were transmitted basically
in kaṭapayādi.

2.2. TheDṛggaṇita
The Dṛggaṇita (literally ‘Observation and computation’; hereafter DG) was
intended to improve the parameters for planetary computations previously
introduced by Haridatta in the Grahacāranibandhana. Table 2 lists the con-
tents of the DG. The entire treatise is divided into two parts, and the second
part is predominantly a restatement of the first part. Parameśvara mentions
in the first verse of the second part that he will give a ‘clearer version of the
Dṛggaṇita in kaṭapayādi for the benefit of studies during childhood’.9 By con-
trast, numbers in the first part are in bhūtasaṃkhyā. It seems that kaṭapayādi
was recognized as an easier system.
Apart from the number systems, the most significant difference in the two

parts is the treatment of planetary equations. The third chapter of the first
part focuses on the procedure for correcting the mean planet in order to
find the true planet, most of which are rules and parameters for computing

7 Pingree, Jyotiḥśāstra, pp. 41–46.
8 The Navagrahapadakāni compiled around 1798–1833 in Tanjore, Tamil Nadu is one

example; see Pingree, ‘The Fragments’, p. 38.
9 spaṣṭīkartuṃ dṛggaṇitaṃ vakṣye kaṭapayādibhiḥ … bālābhyāsahitaṃ (DG 2.1).
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Part Chapter Verses Topic
1 1 1 Invocation

2–6 Claims on comparison with previous treatises
7–9 Finding the time elapsed since the epoch
10–24 Computing mean planets

2 1–6 Dhruvas (initial position of planets at the epoch)
7–8 Corrections for observer’s location

3 1–2 ‘Slow’ apogees
3–4ab ‘Fast’ apogees

∗ 4cd–5ab The ‘base’, ‘upright’ and great Sines
∗ 5cd–9ab The divisors for the ‘Slow’ equation
∗ 9cd–12ab The divisors for the ‘Fast’ equation
∗ 12cd The ‘base’ and ‘upright’ equations
∗ 13–15ab Computing the arc of the equations
∗ 15cd–18ab Methods for finding the radial distance

18cd–22 Computing true planets
4 ∗ 1–8 Parameters for computing the divisors

∗ 9–10 Computing the arc corresponding to a Sine
11 Reference to further corrections

2 ∗ 1 Introduction
2–12ab Computing mean planets
12cd–15 Dhruvas
16–17 ‘Slow’ apogees
18 ‘Fast’ apogees
19–24 Computing true planets

∗ 25–43 Table of equations
44–45 Interpolation for the Sine
46 Conclusion
47–50 Correction to be applied

in the treatise Grahaṇamaṇḍana
Table 2: Contents of the Dṛggaṇita (sections relevant to this article are marked with ∗)

the equation from the mean anomaly (DG 1.3.4cd–18ab). The set of pa-
rameters, which I shall hereafter refer to as ‘divisors (represented by a)’ and
‘corrections (represented by b)’ in the text,10 are listed in bhūtasaṃkhyā. In-
terestingly, there is yet another set of parameters in the DG that generate the
divisors and corrections (DG 1.4.1–8).

The second part does not include descriptions of the derivations of equa-
tions, but lists the precomputed equations for six degree intervals (DG 2.25–
43). They are versified tables in kaṭapayādi. While there are some studies
which compare values in these tables with other texts,11 their origins, partic-

10 Further explanation on these parameters will be given in the following passages and
especially in Section 3.5.

11 See, for example, Pingree, ‘History’, p. 613.
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The bhūtasaṃkhyā system, or word-numeral system, was popular in both
north and south India. In this system, various nouns are used to stand for
a number with which it can be associated visually, through myths or in any
other way. The number can be a single digit (e.g., ‘eye’, ‘twin’, etc., for 2)
or two digits (e.g., ‘sun’, ‘zodiacal sign’, etc., for 12), and for large numbers
the words are listed in compounds, starting from the lowest place (e.g., ‘sky-
sky-sun’ for ‘zero-zero-twelve’, i.e., 1200). Versified tables can also be com-
posed with this system, although this requires more syllables than kaṭapayādi.
The readers must know the correspondence between words and numbers, and
there is almost no syntax between individual words that would help them.
Bhūtasaṃkhyā is employed in the first half of the Dṛggaṇita. Thus the pa-
rameters for generating the equations, explained in Section 3, are in bhū-
tasaṃkhyā.
One may be curious to know whether the versified tables also circulated

in formatted tables using Indo-Arabic numerals. Such tradition of table texts
known as koṣṭhakas did exist in north and west India, due to influence by the
Islamic tradition, since at least the 12th century.7 However, table texts found
in south India are rare and belong to much later periods.8 We cannot find
any tabulated data in the manuscripts of the Dṛggaṇita. Thus, based on what
we have, I assume that the equation number sets were transmitted basically
in kaṭapayādi.

2.2. TheDṛggaṇita
The Dṛggaṇita (literally ‘Observation and computation’; hereafter DG) was
intended to improve the parameters for planetary computations previously
introduced by Haridatta in the Grahacāranibandhana. Table 2 lists the con-
tents of the DG. The entire treatise is divided into two parts, and the second
part is predominantly a restatement of the first part. Parameśvara mentions
in the first verse of the second part that he will give a ‘clearer version of the
Dṛggaṇita in kaṭapayādi for the benefit of studies during childhood’.9 By con-
trast, numbers in the first part are in bhūtasaṃkhyā. It seems that kaṭapayādi
was recognized as an easier system.
Apart from the number systems, the most significant difference in the two

parts is the treatment of planetary equations. The third chapter of the first
part focuses on the procedure for correcting the mean planet in order to
find the true planet, most of which are rules and parameters for computing

7 Pingree, Jyotiḥśāstra, pp. 41–46.
8 The Navagrahapadakāni compiled around 1798–1833 in Tanjore, Tamil Nadu is one

example; see Pingree, ‘The Fragments’, p. 38.
9 spaṣṭīkartuṃ dṛggaṇitaṃ vakṣye kaṭapayādibhiḥ … bālābhyāsahitaṃ (DG 2.1).
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ularly their relations with the procedure in the first part, have not yet been
deeply studied. The layer of parameters in the first part should enable us to
infer how the tables of equations in the second part were made, and also to
evaluate their correctness and analyze the manuscript tradition.

The DG was edited by K. V. Sarma using five manuscripts.12 I have exam-
ined four of them (A, C, D and E) but not in full detail.13 This study is based
on the texts in the printed edition. Further inspections on the manuscripts
themselves are yet to be done.

It is generally accepted that the ‘dṛk system’ of astronomical computations
based on the DG was very popular in Kerala and replaced, in some domains,
the system of Haridatta which was known as the ‘Parahita’. For example,
Sarma, A History, p. 10 remarks:

… a large number of manuals have come to be composed following the dṛk system,
both in Sanskrit and in Malayalam. The results obtained through this system be-
ing more accurate, this system was used for horoscopy (jātaka), astrological query
(praśna) and the computation of eclipses (grahaṇa), while the Parahita continued
to be used for fixing auspicious times for rituals and ceremonies (muhūrta).

But the paradox is that manuscripts of the Dṛggaṇita itself are scarce. Before
the five manuscripts were gathered for the critical edition, the text had even
been considered lost.14 How could a ‘system’ survive without the text? Our
study on tables of equations may provide an insight.

3. Generating the table

3.1. Two types of epicycles

Before analyzing the equation tables, let us first look at the computations be-
hind them. Such procedures can be found in the third chapter of the first
part of the DG. The explanations are brief, but they are probably based
on the planetary theories of the Āryabhaṭīya (499 c, hereafter Ābh) by
Āryabhaṭa, a treatise that was influential especially in southern India.15 The
Grahacāranibandhana follows the Ābh, and so do most of the other astro-
nomical texts in Kerala (Sarma, A History, pp. 6–9). While the DG does not
refer to the Ābh explicitly, the author Parameśvara frequently cites Āryabhaṭa

12 Sarma, Dṛggaṇita.
13 Read in the University of Kerala Oriental Research Institute and Manuscripts Library

(ORI&MSS) in September 2014. A and E (in the same bundle) were too damaged to scruti-
nize. Manuscript C was also in a bad condition, and some portions that had been readable in
K. V. Sarma’s time seemed to have crumbled away. Manuscript D was in a fairly good con-
dition, and apparently there was no significant difference nor lacking information in Sarma’s
critical edition.

14 Sarma, Dṛggaṇita, p. ix.
15 Critical edition by Shukla and K. V. Sarma in Āryabhaṭīya of Āryabhaṭa.
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Figure 1: This diagram shows the mean planet VM on the deferent (centered on O) and the
true planet V on the ‘slow’ epicycle. The true planet does not revolve on this epicycle, and
thus the orbit of the true planet is an eccentric circle with a fixed apogee Uμ and centered
on O′ such that OO′

= VVM. When λ̄ is the longitude of the mean planet and λμ that of
the ‘slow’ apogee, κμ = λ̄ − λμ is the mean ‘slow’ anomaly.

as an authority elsewhere, including his commentary on the Ābh.16 I assume
that the basis for computing equations in the DG were the methods of the
Ābh, which I shall explain in the following sections.

In general, Indian astronomical texts compute planetary equations for
two different epicycles called the ‘slow’ (manda) and ‘fast’ (śīghra). The
true planet on the ‘slow’ epicycle is either fixed or revolves slowly whereas
its rate of revolution on the ‘fast’ epicycle is faster than that of the
mean planet on the deferent, hence their names. The orbit of the true
planet on an epicycle can also be represented with an eccentric circle
whose center is separated from the Earth towards the apogee at a dis-
tance equivalent to the radius of the epicycle. From the modern viewpoint,
the ‘slow’ epicycle (Figure 1) whose apogee does not move accounts for
the eccentricity of the orbits while the ‘fast’ epicycle (Figure 2) transfers
the heliocentric motions of planets to a geocentric orbit. The sun and
moon only have the ‘slow’ epicycle while Mars, Mercury, Jupiter, Venus
and Saturn also have the ‘fast’ epicycle. DG 1.3.1–4ab gives the rules to
find the ‘slow’ and ‘fast’ apogees. The ‘slow’ and ‘fast’ equations (phala),
i.e., the difference in longitude between the mean and true planets for the

16 Critical edition by Kern in The Âryabhaṭîya.

336 SHO HIROSE

ularly their relations with the procedure in the first part, have not yet been
deeply studied. The layer of parameters in the first part should enable us to
infer how the tables of equations in the second part were made, and also to
evaluate their correctness and analyze the manuscript tradition.

The DG was edited by K. V. Sarma using five manuscripts.12 I have exam-
ined four of them (A, C, D and E) but not in full detail.13 This study is based
on the texts in the printed edition. Further inspections on the manuscripts
themselves are yet to be done.

It is generally accepted that the ‘dṛk system’ of astronomical computations
based on the DG was very popular in Kerala and replaced, in some domains,
the system of Haridatta which was known as the ‘Parahita’. For example,
Sarma, A History, p. 10 remarks:

… a large number of manuals have come to be composed following the dṛk system,
both in Sanskrit and in Malayalam. The results obtained through this system be-
ing more accurate, this system was used for horoscopy (jātaka), astrological query
(praśna) and the computation of eclipses (grahaṇa), while the Parahita continued
to be used for fixing auspicious times for rituals and ceremonies (muhūrta).

But the paradox is that manuscripts of the Dṛggaṇita itself are scarce. Before
the five manuscripts were gathered for the critical edition, the text had even
been considered lost.14 How could a ‘system’ survive without the text? Our
study on tables of equations may provide an insight.

3. Generating the table

3.1. Two types of epicycles

Before analyzing the equation tables, let us first look at the computations be-
hind them. Such procedures can be found in the third chapter of the first
part of the DG. The explanations are brief, but they are probably based
on the planetary theories of the Āryabhaṭīya (499 c, hereafter Ābh) by
Āryabhaṭa, a treatise that was influential especially in southern India.15 The
Grahacāranibandhana follows the Ābh, and so do most of the other astro-
nomical texts in Kerala (Sarma, A History, pp. 6–9). While the DG does not
refer to the Ābh explicitly, the author Parameśvara frequently cites Āryabhaṭa

12 Sarma, Dṛggaṇita.
13 Read in the University of Kerala Oriental Research Institute and Manuscripts Library

(ORI&MSS) in September 2014. A and E (in the same bundle) were too damaged to scruti-
nize. Manuscript C was also in a bad condition, and some portions that had been readable in
K. V. Sarma’s time seemed to have crumbled away. Manuscript D was in a fairly good con-
dition, and apparently there was no significant difference nor lacking information in Sarma’s
critical edition.

14 Sarma, Dṛggaṇita, p. ix.
15 Critical edition by Shukla and K. V. Sarma in Āryabhaṭīya of Āryabhaṭa.
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Figure 2: The true planet V does revolve on the ‘fast’ epicycle (note that we are not taking
the ‘slow’ epicycle into account here). We can draw the eccentric orbit of the true planet if
we fix its center O′ and apogee Uσ . κσ = λ̄ − λσ is the mean ‘fast’ anomaly.

corresponding epicycles, are computed independently according to the rules
given in DG 1.3.4cd–18ab. In the following subsections I shall explain how
the equation is derived from the mean anomaly with its associated divisor
and correction according to DG and Ābh.

The two equations are combined in the following manner. In the first two
steps, half the equations of the ‘slow’ and ‘fast’ epicycles are applied to the
mean planet (which comes first depends on the treatise). Then, starting from
this half-and-half corrected longitude, the two equations are applied again,
this time in whole, to obtain the true planet. Although this scheme might
have been founded on a geometrical model of Greek origin,17 Sanskrit sources
do not attempt to ground the procedure geometrically.

3.2. Definition of segments produced by the mean anomaly

DG 1.3.4cd–5ab defines the Sines (jyā) of the ‘base (dos or bhujā)’ and the
‘upright (koṭi)’.

A quadrant is three signs. If [the mean anomaly] is in an odd [quadrant], the ‘base’
and the ‘upright’ are the portions elapsed and to come respectively. Opposite when

17 See Duke, ‘The Equant in India’.
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Figure 3: The ‘base’ Sine AVM and ‘upright’ Sine OA and their corresponding ‘results’ BV
and VMB.

it is in an even [quadrant]. The [Sine] of a ‘base’ or an ‘upright’ produced by the
mean anomaly should be understood as a Great Sine. (DG 1.3.4cd–5ab)18

In Figure 3, U is the direction of the apogee, VM is the mean planet and
therefore

>

UVM is the arc of the mean anomaly κ. Here VM is in the first
quadrant

>

UD counted from the apogee.
>

UVM and
>

VMD are the ‘base’ and
‘upright’ and AVM = Sin κ and OA = Sin(90◦ − κ) are their Sines. The def-
initions are different when VM is in another quadrant, but in any case the
two Sines are always Sin κ and Sin(90◦−κ) except for the fact that they are
always treated as positive values.
Āryabhaṭa uses R = 3438 as the Radius of the great circle when computing

Sines, which is an integer approximation when the circumference of the circle
is 21600 (360◦×60′). However, Parameśvara refers to a mahājyā, ‘Great Sine’.
This term appears in the Sine table by Mādhava (Table 3) quoted in texts
such as Nīlakaṇṭha’s commentary on the Ābh19 and is generally interpreted
as a reference to its 24 entries.20 The entries in Mādhava’s Sine table are up
to the order of the second sexagesimal, and R = 3437;44,48. This suggests
that Parameśvara might also be using the same table. At least he must be
computing ‘base’ and ‘upright’ Sines with fractional parts.

DG 1.3.5cd–12ab give a set of parameters called ‘divisors (hara or hāra)’,
hereafter represented by a, and unnamed parameters which I shall name ‘cor-

18 rāśitrayaṃ padaṃ syād oje doḥkoṭike gataiṣyāṃśau ||1.3.4||
yugme ’nyathā mahājyā grāhyā kendrotthayor bhujākoṭyoḥ |

19 Śāstrī, The Āryabhaṭīya of Āryabhaṭācārya, p. 55.
20 Sarma, A History, p. 26.
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Figure 2: The true planet V does revolve on the ‘fast’ epicycle (note that we are not taking
the ‘slow’ epicycle into account here). We can draw the eccentric orbit of the true planet if
we fix its center O and apogee Uσ . κσ λ λσ is the mean ‘fast’ anomaly.

corresponding epicycles, are computed independently according to the rules
given in DG 1.3.4cd–18ab. In the following subsections I shall explain how
the equation is derived from the mean anomaly with its associated divisor
and correction according to DG and Ābh.

The two equations are combined in the following manner. In the first two
steps, half the equations of the ‘slow’ and ‘fast’ epicycles are applied to the
mean planet (which comes first depends on the treatise). Then, starting from
this half-and-half corrected longitude, the two equations are applied again,
this time in whole, to obtain the true planet. Although this scheme might
have been founded on a geometrical model of Greek origin,17 Sanskrit sources
do not attempt to ground the procedure geometrically.

3.2. Definition of segments produced by the mean anomaly

DG 1.3.4cd–5ab defines the Sines (jyā) of the ‘base (dos or bhujā)’ and the
‘upright (koṭi)’.

A quadrant is three signs. If [the mean anomaly] is in an odd [quadrant], the ‘base’
and the ‘upright’ are the portions elapsed and to come respectively. Opposite when

17 See Duke, ‘The Equant in India’.
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Table 3: The Mahājyās of Mādhava, according to Nīlakaṇṭha’s commentary on the Ābh

arc Sine arc Sine arc Sine
3◦45′ 224;50,22 33◦45′ 1909;54,35 63◦45′ 3083;13,17
7◦30′ 448;42,58 37◦30′ 2092;46,03 67◦30′ 3176;03,50
11◦15′ 670;40,16 41◦15′ 2266;39,50 71◦15′ 3255;18,22
15◦ 889;45,15 45◦ 2430;51,15 75◦ 3320;36,30
18◦45′ 1105;01,39 48◦45′ 2584;38,06 78◦45′ 3371;41,29
22◦30′ 1315;34,07 52◦30′ 2727;20,52 82◦30′ 3408;20,11
26◦15′ 1520;28,35 56◦15′ 2858;22,55 86◦15′ 3430;23,11
30◦ 1718;52,24 60◦ 2977;10,34 90◦ 3437;44,48

rections’21 and denote as b. They are combined in the form h = a+ Sin κ
b which

is referred to as the ‘corrected divisor (saṃskṛtahāra)’ or simply ‘divisor’. In
order to distinguish h from a I shall hereafter call the former ‘corrected di-
visors’.
The corrected divisor and the ‘base’ and ‘upright’ Sines are used to com-

pute what are called ‘results (phala)’. The same Sanskrit term phala can also
indicate the equation, but I shall distinguish them in the translation.
The ‘upright’ and ‘base’ Sines multiplied by ten and divided by the [corrected]
divisor become the ‘upright’ and ‘base’ results. (DG 1.3.12cd)22

The DG itself does not mention the geometrical meaning of these results, but
we can find explanations in other texts including Parameśvara’s commentary
on the Ābh. In Figure 3, when V is the true planet on the epicycle and
B is the foot of a perpendicular dropped on OVM, pB = BV is the ‘base’
result and pU = VMB is the ‘upright’ result. The two results form a right
triangle with the radius of the epicycle VMV. Since VVM ∥ AO, corresponding
angles ̸ VVMB and ̸ VMOA are equal. Furthermore, ̸ VMBV = ̸ OAVM =

90◦, therefore △VMBV∼△OAVM. Thus the two results are proportional to
the two Sines.
Therefore, if r is the radius of the epicycle, and we define h =

10R
r , the

‘base’ and ‘upright’ results can be denoted as follows:

BV=
VVM ·AVM
VMO

pB =
r Sin κ

R
=
10 Sin κ

h
(1)

21 Later in the text, as shall be shown in Section 3.6, a set of dividends and divisors that
yield this parameter is introduced. There the divisor is called the ‘divisor for the correction
(saṃskṛtihara)’. Thus I have chosen the term ‘correction’.

22 digghne koṭibhujajye harabhakte koṭidoḥphale bhavataḥ ||1.3.12||
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VMB=
VVM ·OA
VMO

pU =
r Sin(90◦ − κ)

R
=
10 Sin(90◦ − κ)

h
. (2)

By comparing this with the verse, we can see that h is what Parameśvara
calls the [corrected] divisor. According to DG 1.3.5cd–12ab, the divisors of
the sun and moon’s ‘slow’ epicycles are represented by a single value a while
those for the epicycles of the other five planets involve the correction b and
are given by h = a+ Sin κ

b . While the DG does not tell us why the corrected
divisor h changes with the anomaly, it can be explained from the theory of
epicycles found in the Ābh.

3.3. Size of the epicycle

A unique feature of the Ābh is that the epicycles change their size accord-
ing to the mean anomaly.23 We can find the circumferences of the epicycles
in verses 1.8–9 of the Ābh.24 These circumferences are measured in ‘degrees’,
that is to say, their length when the circumference of the deferent (radius
R) is 360 degrees. In other words, when the radius and circumference of the
epicycle are r and c respectively, r : c = R : 360, and thus

c =
360r

R
. (3)

However, Āryabhaṭa condenses his verses by dividing these ‘degrees’ by 9
2 (the

greatest celestial latitude of the moon). In other words, to find the circum-
ference c of an epicycle from the value c′ appearing in Ābh 1.8–9, we must
multiply c ′ by 9

2 (c =
9
2 c ′). Its radius r would then be

r =
Rc
360

=
Rc ′

80
. (4)

In Table 4 the values c ′ that actually appear in Ābh 1.8–9 are given in paren-
theses and the circumference in degrees computed by c = 9

2 c ′ are written out-
side the parentheses. Hereafter the term ‘circumference’ will only refer to c
in degrees and not c ′.

23 Apart from direct followers of the Ābh, the Sūryasiddhānta also adopts this idea but
with values considerably different from those of Āryabhaṭa (Burgess and Whitney, ‘Translation
of the Sûrya-Siddhânta’, pp. 205–06)

24 The numbering of verses in the first chapter differ among commentators. Here I follow
the numbering by Parameśvara.
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Table 3: The Mahājyās of Mādhava, according to Nīlakaṇṭha’s commentary on the Ābh

arc Sine arc Sine arc Sine
3 45 224;50,22 33 45 1909;54,35 63 45 3083;13,17
7 30 448;42,58 37 30 2092;46,03 67 30 3176;03,50
11 15 670;40,16 41 15 2266;39,50 71 15 3255;18,22
15 889;45,15 45 2430;51,15 75 3320;36,30
18 45 1105;01,39 48 45 2584;38,06 78 45 3371;41,29
22 30 1315;34,07 52 30 2727;20,52 82 30 3408;20,11
26 15 1520;28,35 56 15 2858;22,55 86 15 3430;23,11
30 1718;52,24 60 2977;10,34 90 3437;44,48

rections’21 and denote as b. They are combined in the form h a Sin κ
b which

is referred to as the ‘corrected divisor (saṃskṛtahāra)’ or simply ‘divisor’. In
order to distinguish h from a I shall hereafter call the former ‘corrected di-
visors’.
The corrected divisor and the ‘base’ and ‘upright’ Sines are used to com-

pute what are called ‘results (phala)’. The same Sanskrit term phala can also
indicate the equation, but I shall distinguish them in the translation.
The ‘upright’ and ‘base’ Sines multiplied by ten and divided by the [corrected]
divisor become the ‘upright’ and ‘base’ results. (DG 1.3.12cd)22

The DG itself does not mention the geometrical meaning of these results, but
we can find explanations in other texts including Parameśvara’s commentary
on the Ābh. In Figure 3, when V is the true planet on the epicycle and
B is the foot of a perpendicular dropped on OVM, p BV is the ‘base’
result and p VMB is the ‘upright’ result. The two results form a right
triangle with the radius of the epicycle VMV. Since VVM AO, corresponding
angles VVMB and VMOA are equal. Furthermore, VMBV OAVM
90 , therefore VMBV OAVM. Thus the two results are proportional to
the two Sines.
Therefore, if r is the radius of the epicycle, and we define h 10R

r , the
‘base’ and ‘upright’ results can be denoted as follows:

BV
VVM AVM
VMO

p
r Sin κ

R
10 Sin κ

h
(1)

21 Later in the text, as shall be shown in Section 3.6, a set of dividends and divisors that
yield this parameter is introduced. There the divisor is called the ‘divisor for the correction
(saṃskṛtihara)’. Thus I have chosen the term ‘correction’.

22 digghne koṭibhujajye harabhakte koṭidoḥphale bhavataḥ ||1.3.12||



342 SHO HIROSE298 SHOHIROSE

Table 4: Circumference of epicycles in odd (co) and even (ce) quadrants in ‘degrees’.

planet ‘slow’ ‘fast’
co ce co ce

Sun 13;30 (3) —
Moon 31;30 (7) —
Mars 63 (14) 81 (18) 238;30 (53) 229;30 (51)
Mercury 31;30 ( 7) 22;30 ( 5) 139;30 (31) 130;30 (39)
Jupiter 31;30 ( 7) 36 ( 8) 72 (16) 67;30 (15)
Venus 18 ( 4) 9 ( 2) 265;30 (59) 256;30 (57)
Saturn 40;30 ( 9) 58;30 (13) 40;30 ( 9) 36 ( 8)

There are two entries for the ‘slow’ and ‘fast’ epicycles of the five planets
which correspond to their sizes when the mean anomaly is at the beginning
of an odd (first or third) or even (second or fourth) quadrant. According to
some commentators, the size of the circumference when the mean anomaly is
in the middle of a quadrant should be linearly interpolated. Parameśvara also
describes a linear interpolation which can be expressed as follows:25

c = co +
ce − co

R
Sin κ . (5)

Here c is the circumference of an epicycle at a given mean anomaly κ, co
is its circumference when the mean anomaly is at the beginning of an odd
quadrant and ce at the beginning of an even quadrant. The radius would then
be

r =
Rco

360
+

ce − co

360
Sin κ . (6)

3.4. Link between the circumference, divisor and correction

In the cases of the sun or the moon, the relation between the divisor a = h
and the circumference c is as follows:

a =
10R

r
=
10R · 360

cR
=
3600

c
. (7)

The values in Tables 4 and 5 satisfy this formula.
Meanwhile, if we assume that the radii of the epicycles of other planets

are represented by formula 6, the divisor h = a + Sin κ
b can be represented as

follows:

h = a+
Sin κ

b
=

3600R
Rco +(ce − co) Sin κ

. (8)

25 Kern, The Âryabhaṭîya, p. 68.
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There is no such a and b that satisfy this formula for every κ. Thus, I have
assumed that the DG employs a model where the size of an epicycle changes
non-linearly within a quadrant. The following for the circumference would
reproduce a divisor with the format a+ Sin κ

b :

c =
ce co

ce +
co−ce

R Sin κ
. (9)

Then the radius would be

r =
Rco ce

360ce +
360(co−ce)

R Sin κ
, (10)

and thus

a+
Sin κ

b
=
3600

co
+
3600(co − ce)

Rco ce
Sin κ , (11)

where a = 3600
co

and b = Rco ce
3600(co−ce)

.
If we compute a and b using the values of circumferences in the Ābh

(right-hand side of Table 5), a of the ‘slow’ epicycles of Jupiter and Venus (in
the variant reading) as well as those of the ‘fast’ epicycles of Mars and Jupiter
agree with DG. Others are slightly different (within ±10%), which suggests
that Parameśvara is modifying the parameters. In the case of b, only the ‘fast’
epicycle of Jupiter matches DG, and there are some cases (such as the ‘slow’
epicycles of Mercury and Saturn) where the values are strikingly different.
This is possible because the denominator co − ce in b may change the result
greatly. However, it is too far-fetched to assume that Parameśvara replaced the
sizes of circumferences in the Ābh in order to compute the divisors and their
corrections. While it is almost certain that Āryabhaṭa’s theory of epicycles
with varying sizes is behind the procedure, the parameters themselves could
have been chosen with different reasons.26

26 Parameśvara is not the only Indian astronomer who proposed a rule for equations that
would necessitate a non-linear change in the epicycle’s size. In his Tantrasaṅgraha, Nīlakaṇṭha,
a student of Parameśvara and his son Dāmodara, explains that the ‘base’ result for the ‘slow’
epicycle of Venus is the ‘base’ Sine divided by 14+ Sin κ

240 (Ramasubramanian and Sriram,
Tantrasaṅgraha, pp. 128–29). This is identical with Parameśvara’s theory apart from the param-
eters a and b. However, according to the Tantrasaṅgraha, for other epicycles the ‘base’ Sine
is to be multiplied by a + Sin κ

b (or by a constant value for the ‘slow’ epicycles of Mercury
and Saturn), which can be explained by linear interpolation for the epicycles’ circumference.
Nīlakaṇṭha does not explain how he established his rules and whether they had geometrical
reasons are yet to be studied. However, considering the scholarly connection between Parameś-
vara and Nīlakaṇṭha, this exceptional rule for the ‘slow’ epicycle of Venus could be linked with
the methods of DG.
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Table 4: Circumference of epicycles in odd (co) and even (ce) quadrants in ‘degrees’.

planet ‘slow’ ‘fast’
co ce co ce

Sun 13;30 (3) —
Moon 31;30 (7) —
Mars 63 (14) 81 (18) 238;30 (53) 229;30 (51)
Mercury 31;30 ( 7) 22;30 ( 5) 139;30 (31) 130;30 (39)
Jupiter 31;30 ( 7) 36 ( 8) 72 (16) 67;30 (15)
Venus 18 ( 4) 9 ( 2) 265;30 (59) 256;30 (57)
Saturn 40;30 ( 9) 58;30 (13) 40;30 ( 9) 36 ( 8)

There are two entries for the ‘slow’ and ‘fast’ epicycles of the five planets
which correspond to their sizes when the mean anomaly is at the beginning
of an odd (first or third) or even (second or fourth) quadrant. According to
some commentators, the size of the circumference when the mean anomaly is
in the middle of a quadrant should be linearly interpolated. Parameśvara also
describes a linear interpolation which can be expressed as follows:25

c co
ce co

R
Sin κ (5)

Here c is the circumference of an epicycle at a given mean anomaly κ, co
is its circumference when the mean anomaly is at the beginning of an odd
quadrant and ce at the beginning of an even quadrant. The radius would then
be

r
Rco

360
ce co

360
Sin κ (6)

3.4. Link between the circumference, divisor and correction

In the cases of the sun or the moon, the relation between the divisor a h
and the circumference c is as follows:

a
10R

r
10R 360

cR
3600

c
(7)

The values in Tables 4 and 5 satisfy this formula.
Meanwhile, if we assume that the radii of the epicycles of other planets

are represented by formula 6, the divisor h a Sin κ
b can be represented as

follows:

h a
Sin κ

b
3600R

Rco ce co Sin κ
(8)

25 Kern, The Âryabhaṭîya, p. 68.
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3.5. Values of divisors and corrections

For each planet, the divisor a is given up to the first order sexagesimal.
Parameśvara calls the integer part ‘minutes (liptā)’ and the fractional part
‘seconds (viliptā)’.

The sun’s divisor in minutes should be two hundred and sixty-six and forty seconds.
(DG 1.3.5cd)27

Meanwhile, the moon’s divisor in minutes is one hundred and fourteen and seven-
teen seconds. (DG 1.3.6ab)28

Fifty-five, one hundred and twenty-five, one hundred and fourteen, one hundred
and seventy-one (variant: four hundred) and eighty-four are the divisors of the ‘slow’
[epicycles] in minutes of [the planets] beginning with Mars. There, the seconds are
ten, twenty-three, seventeen, zero and thirteen in this order. (DG 1.3.6cd–7)29

Quotients in minutes of the [planets’] own ‘base’ Sine divided by five hundred and
fifty-six, four hundred and fifty-one, three hundred and eleven, fifteen (variant: sixty)
and one thousand five hundred and eighty-six [respectively] are to be added to the
divisors of Mercury and Venus, and are to be subtracted from the divisors of Mars,
Jupiter and Saturn. (DG 1.3.8–9ab)30

In the case of ‘fast’ [epicycles], the divisors in minutes of [the planets] beginning
with Mars should be fifteen, twenty-five, fifty, thirteen and ninety. In that order,
the seconds are six, forty-nine (variant: zero), zero, forty-four and thirteen. (DG
1.3.9cd–10)31

The quotient in minutes of the [planet’s] own ‘fast base’ Sine divided by six thou-
sand seven hundred and one, two thousand and sixty, one thousand and thirty-one,
three times ten thousand, and three hundred should be added to the divisor.32

27 bhānor hārakalāḥ syuḥ ṣaḍrasadasrāḥ khavedavikalāś ca ||1.3.5||
28 candrasya tu manucandrā hārakalāḥ saptacandravikalāś ca |
29 iṣubāṇā dviśaraikā manucandrā bhūmisaptacandrās ca ||1.3.6||

kṛtavasavo bhaumāder māndahārakalā viliptikās tatra |
daśa vikṛtiḥ saptaikā śūnyaṃ viśve ca tāḥ krameṇeti ||1.3.7||

The edition adopts vyomaśūnyavedāś (four hundred) in place of bhūmisaptacandrāś. My reading
is an alteration of the variant in manuscript B, bhūmicandrasaptāś (one hundred and seventy-
one).

30 ṣaḍbāṇeṣubhir ekaprāṇakṛtaiś candrabhūmirāmaiś ca |
tithibhī rasāhitithibhir labdhā liptāḥ svakīyadorjyātaḥ ||1.3.8||
budhasitaharayoḥ kṣepyāḥ, śodhyā bhaumeḍyaravijahāreṣu |

The edition adopts ṣaṣṭyā (sixty) in place of tithibhī (fifteen). I have corrected the reading
tithibhiḥ in manuscript B.

31 śaughre hārakalāḥ syur bhaumādeḥ śarabhuvaḥ śarayamāś ca ||1.3.9||
śūnyeṣavaś ca viśve khāṅkā evaṃ krameṇa vikalās tu |
aṅgāni go’bdhayaṃ khaṃ kṛtavedā rāmabhūmayaś ceti ||1.3.10||

The edition adopts the variant śūnyam abhraṃ (zero, zero) instead of the reading go’bdhayaṃ
khaṃ (forty-nine, zero) in manuscript B.

32 kukhanagaṣaḍbhiḥ khāṅkakhayamaiḥ kuguṇakhakubhir ayutanihataguṇaiḥ |
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Table 5: Divisors (a) and corrections (b) given in the DG (left) and computed using values
in the Ābh (right)

DG Ābh (computed)
planet ‘slow’ ‘fast’ ‘slow’ ‘fast’

a b a b a b a b
Sun 266;40 — — 266;40 — —
Moon 114;17 — — 114;17 — —
Mars 55;10 −556 15; 6 6701 57; 8 −271 15; 6 5808
Mercury 152;23 451 25;49 2060 160; 0 75 25;48 1932
(variant) (25;0)
Jupiter 114;17 −311 50; 0 1031 114;17 −241 50; 0 1031
Venus 171; 0 15 13;44 30000 400; 0 17 13;34 7226
(variant) (400;0) (60)
Saturn 84;13 −1586 90;13 300 88;53 −126 88;53 309

The values are listed in Table 5. I have modified five values from K. V. Sarma’s
edition (hereafter ‘edition’), based on the reading in manuscript B, as I have
indicated in the footnotes. They are the values a and b for Venus’ ‘slow’
epicycle, a for Mercury’s ‘fast’ epicycle and b for the ‘fast’ epicycles of Mars
and Mercury. With this modification, every value of equations in DG 2.26–
42 (which follow manuscript B in general) can be accounted for, as we will
see later in Section 4.

However, three out of five original readings in the edition (a and b for
Venus’ ‘slow’ epicycle and a for Mercury’s ‘fast’ epicycle) turned out to pro-
duce variant readings (from manuscript C) in the table of equations. Thus the
reading in the edition is also listed in Table 5 with parentheses. The other
two proved to be meaningless and thus have been discarded.

3.6. Further parameters for generating the divisors and corrections

There is yet another set of parameters which are also referred to as ‘divisors’
against constant dividends (either 48000 or 60R) that give a or b as their

Table 6: Parameters related to equations in DG
Parameter dividend & divisor divisor a & correction b equations
Verse no. DG 1.4.1–7 ⇒ DG 1.3.5cd–11 ⇒ DG 2.26–42
In this paper Table 7 Table 5 Tables 8–13

khakharāmair labdhakalā yojyā hāre svaśīghradorjyataḥ ||1.3.11||
The edition adopts the variant kukhanakhaṣaḍbhiḥ khāgakhayamaiḥ … (sixty thousand and
one, two thousand and seventy). I have chosen the reading in manuscript B.

344 SHO HIROSE

3.5. Values of divisors and corrections

For each planet, the divisor a is given up to the first order sexagesimal.
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The edition adopts ṣaṣṭyā (sixty) in place of tithibhī (fifteen). I have corrected the reading
tithibhiḥ in manuscript B.

31 śaughre hārakalāḥ syur bhaumādeḥ śarabhuvaḥ śarayamāś ca ||1.3.9||
śūnyeṣavaś ca viśve khāṅkā evaṃ krameṇa vikalās tu |
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Table 7: Dividends and divisors for finding a and b

‘slow’ epicycle
a b

planet dividend divisor dividend divisor
Sun 60R 773;33 –
Moon 60R 1805 –
Mars 48000 870 60R 371
Mercury 48000 315 60R 457
Jupiter 48000 420 60R 663
Venus 48000 281 60R 13752

(120) (3438)
Saturn 48000 570 60R 130

‘fast’ epicycle
a b

planet dividend divisor dividend divisor
Mars 48000 3180 60R 30;47
Mercury 48000 1859 60R 100;8

(1920)
Jupiter 48000 960 60R 200;4
Venus 48000 3495 60R 6;52,34
Saturn 48000 532 60R 687;36

quotient (Table 7). They are given in DG 1.4.1–7 as follows:

For clarification, the computation of the divisors that have been mentioned are
stated.33

Forty-eight thousand [divided] by eight hundred and seventy, three hundred and
fifteen, four hundred and twenty, two hundred and eighty-one (variant: one hundred
and twenty) and five hundred and seventy should be the divisors for the ‘slow’
[equation of the planets in the order] from Mars.34

Forty-eight thousand [divided] by three thousand one hundred and eighty, one
thousand and fifty-nine (variant: one thousand nine hundred and twenty), nine
hundred and sixty, three thousand four hundred and ninety-five and five hundred

33 spaṣṭārthaṃ hārāṇām ānayanaṃ cocyate tv ihoktānām |
34 khādryahibhir bāṇavidhutribhir nakhajaladhibhiḥ kuvasudasraiḥ ||1.4.1||

khādriśarair māndaharā bhaumāt syuḥ khakhakhanāgavedebhyaḥ |
The edition adopts bāṇavasutribhir (three hundred and eighty-five) in place of bāṇavidhu-
tribhir (three hundred and fifteen). I have chosen the reading that appears in manuscripts A,
B and C. It also adopts khasūryaiś ca (one hundred and twenty) instead of kuvasudasraiḥ (two
hundred and eighty-one), which I have put as a variant reading and selected the reading in
manuscript B instead.
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and thirty-two become the divisors for the ‘fast’ [equation] of those beginning with
Mars. Now for the divisors for their corrections.35

Sixty times the Radius [divided] by three hundred and seventy-one, four hundred
and fifty-seven, six hundred and sixty-three, thirteen thousand seven hundred and
fifty-two (variant: three thousand four hundred and thirty-eight) and one hundred
and thirty should be the divisors for the corrections in the case of the ‘slow’ [equa-
tion].36

Thirty, one hundred, two hundred, six and six hundred and eighty-seven with sec-
onds of forty-seven, eight, four, fifty-three and thirty-six added to them [respec-
tively;] the Radius multiplied by sixty [and divided by each of these numbers]
should be the divisors for the corrections with the ‘base’. However, in the case
of Venus, the value is decreased by tatparas (sixtieths of a second) of twenty-six.
Thus are the divisors for the corrections with the ‘base’ in the case of the ‘slow’
[equation] of those beginning with Mars.37

The sun’s divisor is [the Radius multiplied by sixty and divided by] seven hundred
and seventy-three plus seconds of thirty-three. The moon’s divisor is the Radius
multiplied by sixty [and divided by] one thousand eight hundred and five.38

The meanings of these dividends and divisors are unclear. The dividend 48000
could be divided into 10, 60 and 80, where 10 is the coefficient as seen in
DG 1.3.12cd (formulas 1 and 2), 60 is the number of minutes in a degree
and 80 is the divisor when we compute the radius of an epicycle from the
value c ′ given in Ābh 1.8–9 (formula 4).
Unfortunately, these dividends and divisors add more mystery than clues

on how a and b had been found, since we cannot find any convincing mean-

35 vyomāhibhūmirāmaiḥ gośaradhṛtibhir nabho’ṅgagobhiś ca ||1.4.2||
iṣugo’bdhyagnibhir aśvitriśaraiḥ khābhrābhranāgavedebhyaḥ |
bhaumādeḥ śīghraharā bhavanti tatsaṃskṛtiharās tu ||1.4.3||

The edition adopts khāśvinavaikair (one thousand nine hundred and twenty) in place of
gośaradhṛtibhir (one thousand and fifty-nine). I have chosen the reading in manuscript B.

36 kvadriguṇaiḥ svarabāṇābdhibhis trirasarasaiḥ dviśaranagaviśvaiḥ |
khaguṇaikaiḥ ṣaṣṭighnāt triguṇān mānde tu saṃskṛtiharaḥ syuḥ ||1.4.4||

The edition adopts trirasaṣaḍbhiḥ ahiguṇābdhiguṇaiḥ (six hundred and sixty-three, three thou-
sand four hundred and thirty-eight) in place of trirasarasaiḥ dviśaranagaviśvaiḥ (six hundred
and sixty-three, thirteen thousand seven hundred and fifty-two). I have chosen the reading in
manuscript B.

37 khaguṇaiḥ khābhraśaśāṅkaiḥ khakhayamalaiṣ ṣaḍbhir adrivasuṣaḍbhiḥ |
vikalānāṃ nagavedair vasubhir vedaiś ca rāmavāṇaiś ca ||1.4.5||
ṣaṭtriṃśātā ca yuktair etaiḥ ṣaṣṭyā hatāt triguṇāt |
doḥsaṃskṛtihārāḥ syuḥ kaves tu rasadasratatparonais taiḥ |
śaighre bhaumādīnāṃ doḥsaṃskṛtihārakā bhavanty evam ||1.4.6||

38 guṇasaptādribhir agnitrayavikalāsaṃyutai raver hāraḥ |
candrasyeṣukhadhṛtibhir hāraḥ ṣaṣṭyā hatāt triguṇāt ||1.4.7||
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a b

planet dividend divisor dividend divisor
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a b
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Mars 48000 3180 60R 30;47
Mercury 48000 1859 60R 100;8

(1920)
Jupiter 48000 960 60R 200;4
Venus 48000 3495 60R 6;52,34
Saturn 48000 532 60R 687;36

quotient (Table 7). They are given in DG 1.4.1–7 as follows:

For clarification, the computation of the divisors that have been mentioned are
stated.33

Forty-eight thousand [divided] by eight hundred and seventy, three hundred and
fifteen, four hundred and twenty, two hundred and eighty-one (variant: one hundred
and twenty) and five hundred and seventy should be the divisors for the ‘slow’
[equation of the planets in the order] from Mars.34

Forty-eight thousand [divided] by three thousand one hundred and eighty, one
thousand and fifty-nine (variant: one thousand nine hundred and twenty), nine
hundred and sixty, three thousand four hundred and ninety-five and five hundred

33 spaṣṭārthaṃ hārāṇām ānayanaṃ cocyate tv ihoktānām |
34 khādryahibhir bāṇavidhutribhir nakhajaladhibhiḥ kuvasudasraiḥ ||1.4.1||

khādriśarair māndaharā bhaumāt syuḥ khakhakhanāgavedebhyaḥ |
The edition adopts bāṇavasutribhir (three hundred and eighty-five) in place of bāṇavidhu-
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manuscript B instead.
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Figure 4: Computing the ‘slow’ equation Sin μ

ing behind the values. Nonetheless they can help us verify the readings in
the manuscripts.
Several variant readings of the divisors were found in manuscripts. We

have examined whether divisions with these variant divisors can reproduce
the variant readings of a and b and found three such cases. They are the
divisors corresponding to a and b of Venus’s ‘slow’ epicycle and the divisor
for a of Mercury’s ‘fast’ epicycle. We have indicated them in parentheses in
Table 7.

3.7. ‘Slow’ (manda) equation
In the case of the ‘slow’ equation, they call it the ‘base’ result’s arc because it is the
‘base’ result made into an arc.39

As is the case with other texts following the Ābh, Parameśvara states that
the arc of the ‘base’ result is also the ‘slow’ equation Sin μ itself. Thus if the
mean anomaly from the ‘slow’ apogee is κμ,

Sin μ = pB =
10

a+ Sin κμ
b

Sin κμ . (12)

Geometrically, we can interpret that the true planet deviates from the ‘slow’
epicycle as shown in Figure 4. The true planet is relocated from V′ to V.
When Vμ is the intersection of OV with the deferent and O′ is the center of
the eccentric circle, V is chosen so that Vμ is on O′V′. When H is the foot of

39 mande doḥphalacāpas tv iti kathitaṃ cāpitaṃ hi bāhuphalam ||1.3.13||



 EQUATION TABLES IN THE DṚGGAṆITA OF PARAMEŚVARA 349EQUATIONTABLES IN THEDṚGGAṆITAOF PARAMEŚVARA 305

O

U

Vσ

V

V
M

H

B

σ

σ

A

κσ

Figure 5: Computing the ‘fast’ equation Jσ

a perpendicular drawn from Vμ to OVM, VμH = Sin κμ. Since OO′ ∥ VMV′

and OO′
= VMV′, the quadrilateral OO′V′VM is a parallelogram and thus

OVM ∥ O′V′. VμH = V′B because they are both equivalent to the distance
between OVM and O′V′. Therefore Sin μ = pB.

>

VμVM = μ is the arc of the
equation, and DG 1.3.13 explicitly says that the segment is converted to an
arc:

μ = arcSin

(

10

a+ Sin κμ
b

Sin κμ

)

. (13)

3.8. ‘Fast’ (śīghra) epicycle
In the case of the ‘fast’ [equation, it is] the ‘base’ result multiplied by the Radius,
divided by the radial distance and made into an arc. (DG 1.3.14ab)40

Unlike the ‘slow’ epicycle, the true planet stays on the ‘fast’ epicycle. There-
fore we need to take into account its distance from the Earth, or ‘radial
distance (karṇa)’ in order to find the ‘fast’ equation. This is demonstrated in
Figure 5.
First of all, we compute the ‘base’ result pB = VB from the ‘base’ Sine of

the mean anomaly Sin κσ = VMA as previously.

VB=
VMV′ ·VMA

OVM

pB =
r Sin κσ

R
. (14)

40 śaighre trijyāguṇitaṃ karṇahṛtaṃ cāpitaṃ ca bāhuphalam |
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Figure 4: Computing the ‘slow’ equation Sin μ

ing behind the values. Nonetheless they can help us verify the readings in
the manuscripts.
Several variant readings of the divisors were found in manuscripts. We

have examined whether divisions with these variant divisors can reproduce
the variant readings of a and b and found three such cases. They are the
divisors corresponding to a and b of Venus’s ‘slow’ epicycle and the divisor
for a of Mercury’s ‘fast’ epicycle. We have indicated them in parentheses in
Table 7.

3.7. ‘Slow’ (manda) equation
In the case of the ‘slow’ equation, they call it the ‘base’ result’s arc because it is the
‘base’ result made into an arc.39

As is the case with other texts following the Ābh, Parameśvara states that
the arc of the ‘base’ result is also the ‘slow’ equation Sin μ itself. Thus if the
mean anomaly from the ‘slow’ apogee is κμ,

Sin μ p
10

a Sin κμ
b

Sin κμ (12)

Geometrically, we can interpret that the true planet deviates from the ‘slow’
epicycle as shown in Figure 4. The true planet is relocated from V to V.
When Vμ is the intersection of OV with the deferent and O is the center of
the eccentric circle, V is chosen so that Vμ is on O V . When H is the foot of

39 mande doḥphalacāpas tv iti kathitaṃ cāpitaṃ hi bāhuphalam ||1.3.13||
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When Vσ is the intersection of OV with the deferent and H the foot of a
perpendicular drawn from it on OVM, VσH = Sin σ is the Sine of the ‘fast’
equation. For computing it we use the similar triangles △VBO ∼△VσHO.
They are similar because both are right triangles sharing an acute angle. Since
OV=Rσ is the radial distance,

VσH=
VB ·OVσ
OV

Sin σ =
pBR
Rσ

. (15)

The next task is to find the radial distance. First Parameśvara describes a
procedure using the Pythagorean theorem.
When in [the quadrants] beginning with Cancer and Capricorn, the ‘upright’ result
is subtracted from or added to the Radius. Its square added with the square of the
‘base’ result; its square root becomes the radial distance. (DG 1.3.15cd–16ab)41

This can also be explained from Figure 5. BO in the right triangle △VBO
can be found by adding or subtracting the ‘upright’ result pU = BVM to or
from the Radius R = VMO. The ‘upright’ result is subtractive when the mean
anomaly is in the 2nd or 3rd quadrant and additive in the 1st or 4th quad-
rant. Therefore the radial distance is

OV=

√

VB2+BO2
=

√

VB2(VMO∓BVM)2

Rσ =

√

p2
B
+(R∓ pU)2 , (16)

where pB and pU can be computed using formulas 1 and 2.
Parameśvara also gives an alternative method which does not involve square

root computation.
The ‘base’ result multiplied by half of itself [is divided] by the Radius diminished
by or increased by the ‘upright’ result. The quotient should be added to the divisor.
The quotient, taken separately, multiplied by the half of itself and increased by a
thirty-fourth of itself, [is divided] by the corrected divisor. The quotient should be
subtracted from this divisor. This, alternatively, is the radial distance. (DG 1.3.16cd–
18ab)42

41 koṭiphalenonayutā karkimṛgādyos trirāśijyā ||1.3.15||
tadvargabāhuphalakṛtiyogasya padaṃ bhavati karṇaḥ |

42 koṭiphalenonayutatrijīvayā svārdhanihatabāhuphalāt ||1.3.16||
labdhaṃ kṣepyaṃ tasminn eva tu hāre pṛthaksthitāl labdhāt |
tasmāt svārdhavinighnān nijacaturagnyaṃśasaṃyuktāt ||1.3.17||
saṃskṛtahāreṇāptaṃ viśodhayet taddharāt sa vā karṇaḥ |
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The word divisor in this verse refers not to a, but to the divisor in the first
division, i.e., the Radius diminished by or increased by the ‘upright’ result.
Let us denote this as d = R∓ pU . The quotient q1 in this division is

q1 =
pB · pB

2
R∓ pU

=
p2
B

2d
. (17)

By adding the quotient to the divisor we obtain the ‘corrected divisor’ d+q1.
This is used in the next division, which yields another quotient q2:

q2 =

q2
1

2 +
q1
34

d+ q1

and finally,
Rσ = d+ q1 − q2 . (18)

I have not been able to find the origin of this formula, or similar rules in
other texts. This is a good approximation when the ‘fast’ equation σ (not Rσ
itself ) is small. However, as σ increases the approximate method (formula 18)
yields a smaller σ than formula 16, and when σ is larger than around 2000′

their difference exceeds 1′. As I shall explain in the next section, I assume
that the approximate method is more likely the one adopted for producing
the equation values in DG 2.26–42.

In any case, the radial distance thus obtained is involved in the computa-
tion of the Sine equation as shown in formula 15. But since DG 1.3.14ab
states that this is ‘made into an arc’, the final result is the ‘fast’ equation σ
as an arc:

σ = arcSin
(

pBR
Rσ

)

. (19)

4. Tables of equations

DG 2.26–42 are planetary equations in kaṭapayādi. The verses themselves are
in the Appendix while their values are listed in Tables 8–13. As previously
quoted on page 332, DG 2.26 tells us that they are Sines of equations that
correspond to anomalies in six-degree intervals. Some of the following verses
also refer to the values as Sines ( jyā or jīva), but in fact they are arc lengths,
as will be explained in Section 4.1.

Each verse corresponds to a quadrant, and includes fifteen entries (6◦ ×

15 = 90◦). There are three verses for each planet: one verse for the ‘slow’
equations which are symmetrical about both axes (smallest at κ = 0◦ and
180◦, and largest at κ = 90◦ and 270◦) and two verses for the ‘fast’ equations,
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When Vσ is the intersection of OV with the deferent and H the foot of a
perpendicular drawn from it on OVM, VσH Sin σ is the Sine of the ‘fast’
equation. For computing it we use the similar triangles VBO VσHO.
They are similar because both are right triangles sharing an acute angle. Since
OV σ is the radial distance,

VσH
VB OVσ
OV

Sin σ
p R

σ
(15)

The next task is to find the radial distance. First Parameśvara describes a
procedure using the Pythagorean theorem.
When in [the quadrants] beginning with Cancer and Capricorn, the ‘upright’ result
is subtracted from or added to the Radius. Its square added with the square of the
‘base’ result; its square root becomes the radial distance. (DG 1.3.15cd–16ab)41

This can also be explained from Figure 5. BO in the right triangle VBO
can be found by adding or subtracting the ‘upright’ result p BVM to or
from the Radius R VMO. The ‘upright’ result is subtractive when the mean
anomaly is in the 2nd or 3rd quadrant and additive in the 1st or 4th quad-
rant. Therefore the radial distance is

OV VB2 BO2 VB2 VMO BVM 2

σ p2 R p 2 (16)

where p and p can be computed using formulas 1 and 2.
Parameśvara also gives an alternative method which does not involve square

root computation.
The ‘base’ result multiplied by half of itself [is divided] by the Radius diminished
by or increased by the ‘upright’ result. The quotient should be added to the divisor.
The quotient, taken separately, multiplied by the half of itself and increased by a
thirty-fourth of itself, [is divided] by the corrected divisor. The quotient should be
subtracted from this divisor. This, alternatively, is the radial distance. (DG 1.3.16cd–
18ab)42

41 koṭiphalenonayutā karkimṛgādyos trirāśijyā ||1.3.15||
tadvargabāhuphalakṛtiyogasya padaṃ bhavati karṇaḥ |

42 koṭiphalenonayutatrijīvayā svārdhanihatabāhuphalāt ||1.3.16||
labdhaṃ kṣepyaṃ tasminn eva tu hāre pṛthaksthitāl labdhāt |
tasmāt svārdhavinighnān nijacaturagnyaṃśasaṃyuktāt ||1.3.17||
saṃskṛtahāreṇāptaṃ viśodhayet taddharāt sa vā karṇaḥ |
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each corresponding to the semicircle beginning with the sign Capricorn ♑
(270◦) and that beginning with Libra ♎ (90◦); i.e., the 4th & 1st quadrants
and the 2nd & 3rd quadrants. Equations in the two quadrants within each
of these semicircles are symmetrical, but the two semicircles are asymmetrical.

Only three manuscripts (C, D and E) out of five contain DG 2.26–42 (A
does not include the second part and B is broken before these verses). Among
the three, readings in C tend to be distinct from D and E. In general, the
variant readings still give the same number in kaṭapayādi. However, there
are three verses where even the numbers are different, namely DG 2.30–31
which cover the two hemispheres of Mercury’s ‘fast’ equations and DG 2.35
which gives the ‘slow’ equations of Venus. Interestingly, manuscript D, which
follows the reading of E in general, shares the same set of values with C for
DG 2.35 and probably also for DG 2.30–31.43 The edition adopts the table
in E. I follow this and denote the values in C and D as ‘variants’, but this is
not to suggest any difference in their weight.

For each value in the table I also give the difference from values com-
puted using the parameters and procedures as shown in the previous section
(+ when the values in the table are larger than computed values, − when
smaller). For the ‘fast’ equations, I have computed the radial distance using
a square root (formula 16) as well as with the approximate method (for-
mula 18). I have used Mādhava’s Sine table (Table 3) for finding Sines from
arcs and vice versa, with linear interpolation. Fractions were kept until the
final step, at which I rounded off the values of the equations to integers.

4.1. Sines or arcs?

Despite the statements in the verses, the kaṭapayādi values are arcs and not
Sines. The Sine can only be approximated by the arc when their value is
smaller than approximately 300′. For instance, the ‘slow’ equation of Mars at
90◦ is 707′ in integers whereas its Sine is 702. The computed ‘fast’ equation
of Mars is 1959′, not far from the table value 1858, while the Sine is 1854.

DG 1.3.13 and 1.3.14ab clearly state that the Sines of equations should be
converted to an arc. Indeed the arc and not the Sine is required for calcu-
lating the true planet, and a table of Sine equations would be less practical.

The equation tables in the Grahacāranibandhana are also interpreted as
Sines by some historians,44 but there is actually nothing in the text itself that
refers to the entries as such. Only the captions in the edition by Sarma say
‘Sines ( jyā)’. On the other hand, there are cases where equations in versified

43 Manuscript D lacks the folio that includes DG 2.30. The next folio begins with the last
line of DG 2.31, where the reading (and of course the values) mostly coincides with C.

44 For example, Pingree, ‘History’, p. 596.
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Table 8: Table of equations for Mars (DG 2.26–28)

‘slow’ ‘fast’ ♑ ‘fast’ ♋
κ edition diff. edition diff. edition diff.
6 68a +2 143 0 680 0
12 133 0 285 0 1256 −1
18 200 0 426 −1 1697 +2
24 266 0 566 −1 2001 0
30 330 −1 706 0 2201 −5 (−4)
36 392 −1 843 0 2328 +1 (+2)
42 452 0 978 −1 2388 −4 (−3)
48 507 0 1113 +1 2414 +1 (+3)
54 557 0 1245 +1 2401 0 (+1)
60 601 0 1372 0 2364 −1 (0)
66 639 +1 1498 +1 2308 0 (+2)
72 669 +2 1622 +3 2236 0 (+1)
78 689 0 1738 0 2154 +1
84 704 +2 1851b 0 2059 0
90 707 0 1958 −1 1958 −1
aMs.C: 66 bMs.C: 1351

Table 9: Table of equations for Mercury (DG 2.29–31)

‘slow’ ‘fast’ ♑ ‘fast’ ♋
κ edition diff. edition diff. variant diff. edition diff. variant diff.
6 23 0 101 +1 100b −2 223 0 237 +2
12 46 0 199 0 204 +1 435 +1 456 0
18 69 0 296 0 308 +5 624 0 656 +1
24 90 0 390 −1 401 +1 791 0 830 +1
30 110 0 483 −1 495 0 931 −1 973 −1
36 129 0 573 −1 587 0 1044 −2 1091 0
42 146 0 660 −1 679c +2 1134 −2 1183 +1
48 162 0 744 −1 765 +2 1200 −3 1255 +6
54 175 0 824 −1 847 +1 1245 −3 1291 −3
60 187 0 900a −1 924 0 1274 −2 1321 +1
66 198 +1 971 −2 998 0 1283 −3 1330 +2
72 205 0 1037 −3 1067 +1 1276 −6 1323 +1
78 210 0 1097 −3 1129 0 1262 −3 1327 +24
84 214 0 1151 −2 1184 −1 1233 −4 1273 0
90 215 0 1197 −3 1234 0 1197 −3 1234 0
aMs.E: 890 bMs.C: 130 cMs.C: 749
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each corresponding to the semicircle beginning with the sign Capricorn ♑
(270 ) and that beginning with Libra ♎ (90 ); i.e., the 4th & 1st quadrants
and the 2nd & 3rd quadrants. Equations in the two quadrants within each
of these semicircles are symmetrical, but the two semicircles are asymmetrical.

Only three manuscripts (C, D and E) out of five contain DG 2.26–42 (A
does not include the second part and B is broken before these verses). Among
the three, readings in C tend to be distinct from D and E. In general, the
variant readings still give the same number in kaṭapayādi. However, there
are three verses where even the numbers are different, namely DG 2.30–31
which cover the two hemispheres of Mercury’s ‘fast’ equations and DG 2.35
which gives the ‘slow’ equations of Venus. Interestingly, manuscript D, which
follows the reading of E in general, shares the same set of values with C for
DG 2.35 and probably also for DG 2.30–31.43 The edition adopts the table
in E. I follow this and denote the values in C and D as ‘variants’, but this is
not to suggest any difference in their weight.

For each value in the table I also give the difference from values com-
puted using the parameters and procedures as shown in the previous section
( when the values in the table are larger than computed values, when
smaller). For the ‘fast’ equations, I have computed the radial distance using
a square root (formula 16) as well as with the approximate method (for-
mula 18). I have used Mādhava’s Sine table (Table 3) for finding Sines from
arcs and vice versa, with linear interpolation. Fractions were kept until the
final step, at which I rounded off the values of the equations to integers.

4.1. Sines or arcs?

Despite the statements in the verses, the kaṭapayādi values are arcs and not
Sines. The Sine can only be approximated by the arc when their value is
smaller than approximately 300 . For instance, the ‘slow’ equation of Mars at
90 is 707 in integers whereas its Sine is 702. The computed ‘fast’ equation
of Mars is 1959 , not far from the table value 1858, while the Sine is 1854.

DG 1.3.13 and 1.3.14ab clearly state that the Sines of equations should be
converted to an arc. Indeed the arc and not the Sine is required for calcu-
lating the true planet, and a table of Sine equations would be less practical.

The equation tables in the Grahacāranibandhana are also interpreted as
Sines by some historians,44 but there is actually nothing in the text itself that
refers to the entries as such. Only the captions in the edition by Sarma say
‘Sines ( jyā)’. On the other hand, there are cases where equations in versified

43 Manuscript D lacks the folio that includes DG 2.30. The next folio begins with the last
line of DG 2.31, where the reading (and of course the values) mostly coincides with C.

44 For example, Pingree, ‘History’, p. 596.
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Table 10: Table of equations for Jupiter (DG 2.32–34)

‘slow’ ‘fast’ ♑ ‘fast’ ♋
κ edition diff. edition diff. edition diff.
6 32 0 59 −1 89 0
12 64 0 118 0 175 0
18 96 0 176 +1 256 +1
24 127 0 231 0 330 0
30 158 0 284 0 398 0
36 187 −1 335 0 458 0
42 215a 0 384 0 510 0
48 241 0 429 0 553 0
54 265 +1 472 0 589 +1
60 285 0 511 0 615 0
66 303 +1 546 +1 634 0
72 316 0 576 0 646 +1
78 326 0 601 −1 649 0
84 331 −1 621 −1 646 0
90 333 −1 637 0 637 0
aMss.C,D,E: 227

Table 11: Table of equations for Venus (DG 2.35–37)

‘slow’ ‘fast’ ♑ ‘fast’ ♋
κ edition diff. variant diff. edition diff. edition diff.
6 18 0 9 0 152 0 927 +6
12 33 0 17 0 303 0 1657 +2
18 48 +4 25 0 454 0 2162 +5
24 53 0 33 0 604 0 2466 −4 (−2)
30 60 0 40 0 753 −1 2645 −12 (−7)
36 66 0 46 −1 901 −1 2753 +4 (+11)
42 71 0 52 0 1051 +2 2783 0 (+8)
48 75 0 57 −1 1197 +2 2788 +16 (+23)
54 78a 0 62 0 1341 +2 2734 +4 (+11)
60 81 0 66 0 1483 0 2667 0 (+5)
66 83 0 70 0 1623 +1 2579 −6 (−2)
72 84 0 72 0 1761 +1 (+2) 2483 −6 (−4)
78 85 0 75 +1 1893b −1 2383 −2 (0)
84 85 −1 75 0 2024 +1 2269 −1 (0)
90 86 0 75 0 2150 −1 2150 −1
aMs.E: 04 bMss.C,D: 1986
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Table 12: Table of equations for Saturn (DG 2.38–40)

‘slow’ ‘fast’ ♑ ‘fast’ ♋
κ edition diff. edition diff. edition diff.
6 43 0 36 +1 44 0
12 85 0 70 0 87 +1
18 127 0 104 +1 127 +1
24 168 0 135 +1 163 0
30 207 0 164 0 197 0
36 244 0 192 0 227 0
42 278 0 218 0 255 +1
48 309 −1 242 0 277 0
54 337 −1 263 0 297 +1
60 362 0 282 −1 313 +1
66 383 0 299 0 325 +1
72 398 −1 313 0 333 +1
78 410 −1 325a +1 338 +1
84 417 −1 332b 0 338 −1
90 420 0 337 0 337 0
aMss.C,D,E: 315 bMss.C,D,E: 312

Table 13: Table of equations for the sun and the moon (DG 2.41,42)

Sun — ‘slow’ Moon — ‘slow’
κ edition diff. edition diff.
6 13 0 31 0
12 27 0 63 0
18 40 0 93 0
24 52 0 122 0
30 64 −1 150 −1
36 76 0 177 0
42 86 0 201 0
48 96 0 224 0
54 104 0 243 0
60 112 0 261 0
66 118 0 275 0
72 123 0 286 0
78 126 0 294 −1
84 128 0 299 −1
90 129 0 301 0
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tables are undeniably arcs, such as the table of ‘fast’ equations in Brāhma-
sphuṭasiddhānta 25.47–56ab by Brahmagupta.45

4.2. Possible causes for the differences

However, there are two tables where arcs do seem to have been approximated
by Sines, namely the ‘slow’ equations of the sun and the moon. All four
entries that are smaller than the computed arcs do agree with the Sines when
rounded off to integers.

This seems not to be the case elsewhere. Other small differences in the
range of ±2 may be due to rounding off in the middle of the procedure,
but I could not locate such step that would thoroughly explain the errors in
every table.

The differences between the ‘fast’ equations of Mercury according to the
edition and those computed from a = 25;49 and b = 2060 are systematic.
I have also computed them using a = 25;48 and b = 1932, which can be
derived from the circumferences given in the Ābh, and found that they agree
better with the table values (Table 14). This is the only case where values
from the Ābh could account for the differences. Perhaps the equations were
computed by someone who did not know the parameters given in the DG,46

and the equations were left unnoticed since the difference is relatively subtle.
Discrepancies are also recognizable in the ‘fast’ equation of Mercury in

group 2. In this case, scribal errors seem to be playing a bigger role. The fact
that this table is significantly corrupted in comparison with others suggest
that, as was the case with group 1, this table may have a different origin
and/or history.

Large deviations can also be found in the ‘fast’ equations of Mars and
Venus, especially when the values are larger than 2000. This is also the point
when the difference between results from the approximation method for the
radial distance and from square root (non-approximation) computation be-
come perceptible. The latter produces slightly better values, but is far from

45 Dvivedī, Brāhmasphuṭasiddhānta, pp. 436–42.
46 It is reasonable to think that anyone using the circumference values of the Ābh would

deploy a method based on linear interpolation for the size of the epicycle (and is thus different
from the DG). However such a method does not agree any better with the table values. When
rounded off to integers, 16 out of 30 values obtained from the DG method with a = 25;48
and b = 1932 (shown in Table 14) agree with the table values, 12 more are within ±1, 1 is
off by +2 and another by −2. On the other hand, when the size of the epicycle is linearly
interpolated, 14 match the table values, 13 are different by ±1, 2 of them were 3 minutes
larger than the table and 1 was 4 minutes smaller. Thus I assume it more likely that the DG
method had been used, although it remains a question how the parameters a and b had been
derived in that case.
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Table 14: ‘Fast’ equations of Mercury compared with computed values using a and b derived
from the Ābh and those using a and b in the DG

hemisphere ♑ hemisphere ♋
κ edition Ābh DG edition Ābh DG
6 101 100.0 100.0 223 223.5 223.4
12 199 198.6 198.6 435 433.6 433.8
18 296 295.6 295.7 624 623.8 624.4
24 390 390.4 390.7 791 789.8 791.0
30 483 483.2 483.7 931 930.2 932.1
36 573 573.1 573.9 1044 1043.8 1046.4
42 660 660.0 661.0 1134 1132.8 1135.9
48 744 743.9 745.3 1200 1199.4 1203.0
54 824 823.8 825.5 1245 1244.5 1248.4
60 900 899.5 901.6 1274 1271.9 1276.0
66 971 970.7 973.2 1283 1281.6 1285.8
72 1037 1036.7 1039.6 1276 1277.8 1282.0
78 1097 1096.5 1099.6 1262 1261.2 1265.3
84 1151 1149.7 1153.2 1233 1233.3 1237.3
90 1197 1196.4 1200.2 1197 1196.4 1200.2

perfect. It is possible that an approximation different from my interpretation
is being used here.

4.3. Variant equation sets and their correspondence with variant parameters

As previously mentioned, there are two different sets of values for the ‘fast’
equation of Mercury and the ‘slow’ equation of Venus. The values labeled
‘edition’ in the previous tables, found in manuscript E and adopted in the
edition, agree in general with equations computed from the divisors a and
corrections b in manuscript B. As mentioned in Section 4.2, the ‘fast’ equa-
tions of Mercury seem to have been computed from slightly different param-
eters, and thus we cannot match the values in manuscripts E and B perfectly.
Nonetheless, taking into account their distance from the other group, I shall
categorize them as group 1.
Meanwhile the ‘variants’ of equations in manuscripts C and D correspond

to a and b in manuscripts A, C and D (and the edition), which I have shown

Table 15: The two groups of values in the manuscripts

A B C D E (edition)
Divisor and correction 2 1 2 2 - 2

Equations - - 2 2 1 1
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tables are undeniably arcs, such as the table of ‘fast’ equations in Brāhma-
sphuṭasiddhānta 25.47–56ab by Brahmagupta.45

4.2. Possible causes for the differences

However, there are two tables where arcs do seem to have been approximated
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as variants in Section 3.5. I shall call them group 2. The result is given in
Table 15. Unfortunately the edition has conflated the two groups.
It is remarkable that manuscripts A and E which are in the same bundle

(L.1248-E and L.1248-J of the ORI&MSS) belong to different groups. This
suggests that the two parts of the DG could be distributed separately at times.

5. Conclusion

While vākyas are thought to have been widely used in south India for com-
puting calendars and casting horoscopes, explanations on how these values
were computed by contemporary astronomers as well as modern historians
have been lacking. This chapter is a first attempt to crack the vākyas of the
DG, one of the most famed astronomical manuals in Kerala.
The verses in the second part of the DG refer to the equations, which are

actually arc lengths, as Sines. This is such a significant mistake that it makes
us doubt whether the entries had really been computed by the composers of
the verses themselves. A possible scenario is that these arc values were first
stored in a non-versified form, after which someone who misunderstood them
as Sines, versified the values and incorporated them into the DG. However,
this is countered by the fact that some variants in the table of equations can
be explained by variants in a and b. Computations for generating the tables
have been done more than twice, and it is difficult to imagine that every
historical mathematician overlooked the difference between Sines and arcs.
The variants in a and b could have been the results of either the correction

by Parameśvara himself or alterations (either accidental or intentional) in the
transmission. Concerning the first scenario, it is worth considering the claim
by Sarma that manuscript C might have been ‘derived from a preliminary
draft’, on the basis of its readings.47 Improvements from this draft did not
involve modifications in the parameters, because the same values of divisors
and equations appear in other manuscripts. This opens the possibility that the
table of equations as found in the edition was the result of changes made by
someone else. If so, we must investigate other texts that are assumed to have
adopted the ‘dṛk system’ in order to reassess the influence of this text.
Our study has shown that parameters underlying the table play an impor-

tant role when working on equations. The next step is to investigate other
texts that are assumed to have adopted the ‘dṛk system’. We should consider
which of the tables or parameters were essential in the ‘system’, and also re-
assess the impact of the DG itself.

47 Sarma, Dṛggaṇita, p. xviii.
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as variants in Section 3.5. I shall call them group 2. The result is given in
Table 15. Unfortunately the edition has conflated the two groups.
It is remarkable that manuscripts A and E which are in the same bundle

(L.1248-E and L.1248-J of the ORI&MSS) belong to different groups. This
suggests that the two parts of the DG could be distributed separately at times.

5. Conclusion

While vākyas are thought to have been widely used in south India for com-
puting calendars and casting horoscopes, explanations on how these values
were computed by contemporary astronomers as well as modern historians
have been lacking. This chapter is a first attempt to crack the vākyas of the
DG, one of the most famed astronomical manuals in Kerala.
The verses in the second part of the DG refer to the equations, which are

actually arc lengths, as Sines. This is such a significant mistake that it makes
us doubt whether the entries had really been computed by the composers of
the verses themselves. A possible scenario is that these arc values were first
stored in a non-versified form, after which someone who misunderstood them
as Sines, versified the values and incorporated them into the DG. However,
this is countered by the fact that some variants in the table of equations can
be explained by variants in a and b. Computations for generating the tables
have been done more than twice, and it is difficult to imagine that every
historical mathematician overlooked the difference between Sines and arcs.
The variants in a and b could have been the results of either the correction

by Parameśvara himself or alterations (either accidental or intentional) in the
transmission. Concerning the first scenario, it is worth considering the claim
by Sarma that manuscript C might have been ‘derived from a preliminary
draft’, on the basis of its readings.47 Improvements from this draft did not
involve modifications in the parameters, because the same values of divisors
and equations appear in other manuscripts. This opens the possibility that the
table of equations as found in the edition was the result of changes made by
someone else. If so, we must investigate other texts that are assumed to have
adopted the ‘dṛk system’ in order to reassess the influence of this text.
Our study has shown that parameters underlying the table play an impor-

tant role when working on equations. The next step is to investigate other
texts that are assumed to have adopted the ‘dṛk system’. We should consider
which of the tables or parameters were essential in the ‘system’, and also re-
assess the impact of the DG itself.

47 Sarma, Dṛggaṇita, p. xviii.
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Appendix: Versified tables of equations

For the sake of brevity, I shall only list the Sanskrit verses with variant read-
ings that give different numbers. Note that many variant readings, notably in
manuscript C, that are different words but give the same number, are not in-
dicated. For more details, the reader is advised to consult Sarma, Dṛggaṇita,
pp. 18–25. The kaṭapayādi words are in bold.
Mars: ‘slow’ epicycle

jāto balāya nanaraś cacāra nīlāṅgi ruddhaguḥ śramavit |
suniśā sumarma punitād dhūliṣu dhūrteṣu dhījitau vinasaḥ |
sūnārthī kṣitisūnoḥ ṣaḍaṃśajā māndajā imā jīvāḥ ||2.26||

Mars: ‘fast’ epicycle (4th and 1st quadrants)
gavayo madirā taruvit kṣitimāṃ stenārthī lavaja dāsārdhāḥ |
gokaṭakaṃ śivarūpaṃ rathālaye dugdhavṛṣṭi khuratāpam |
jalasevyaṃ karmajyaṃ himābdhaye bhaumajā mṛgādibhavāḥ ||2.27||

Mars: ‘fast’ epicycle (2nd and 3rd quadrants)
nādārta stṛṇarūpe sindhutaṭe kānanendra yānakharaḥ |
harigātre dehagurau vṛkabhadre yānavairi vittaguruḥ ||
hīnagara stailakharo vaṃśakarī dharmanetri hemadhiyaḥ |
karkyādibhavā evaṃ bhūmisutasya prakīrtitā jīvāḥ ||2.28||

Mercury: ‘slow’ epicycle
gātre kṣobhaṃ dhūrte nāḷaṃ nayakṛd dharāḍhya tadvaśyau |
raktapa māṃsapa sūdapa dugdhapa mānāri nṛkari bhūputraḥ |
śaṅkara etā jīvā māndabhavā śaśisutasya pañcadaśa ||2.29||

Mercury: ‘fast’ epicycle (4th and 1st quadrants)
yānapa dhūḷipa taddhari nidhigaṃ gajavad bisāśi nakṣāntaḥ |
vivasu rvaradan [nanaḷaḥ]48 kusudhīḥ saṅgānakṛt sudhājñatya |
niśipuṇyaṃ sādhupuṭaṃ śaśijasya mṛgādijā imā jīvāḥ ||2.30||

(Variant in Manuscript C)
[ānava]49 vānara henila kunavā mudhuvit sudeśa [dhīsākṣī]50 |
mokṣārthī saṃvādaṃ bhadrābdhir gandhadhīḥ sutajño’yam |
dhātrīpuṭaṃ bhujapuṭaṃ bhogaripur jñasya caivam eṇādau ||2.30||

Mercury: ‘fast’ epicycle (2nd and 3rd quadrants)
gururāḍmṛgavad bharato yuddhārthī yogadhī bhavānnāyam |
bhṛgupuṇyaṃ nanurūpaṃ śivarūpaṃ vatsarasya gajarūpam |
tithirapi ratirapi gaṅgārūpaṃ sudhiyo’pi śaśijakarkyādau ||2.31||

48 Suggested emendation by Sarma. Manuscripts read naḷadaḥ (zero-nine-eight).
49 Suggested by Sarma. Manuscript reads ālaya (zero-three-one).
50 Suggested by Sarma. Manuscript reads dhāsvārthī (nine-four-seven).
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(Variant in Manuscript C)
sagara stṛṇavit sitamitaṃ nīlābjaṃ gosudhā kaḷānīkaḥ |
gajapo’yaṃ śiśurūpaḥ kuḷīrapa pauraloka nagalokau |
gurulokaḥ suraloko gathāpriya bhṛguripū jñakarkyādau ||2.31||

Jupiter: ‘slow’ epicycle
rāgī vitte stabdhaḥ surapo homasya sañjayaḥ [śukarād]51 |
kumbhāriḥ śītāri rmadirā līnāṅgi cadula tārāṅgī |
kubalaṃ balāṅgi jīvā imā guror māndajāḥ kramaśaḥ ||2.32||

Jupiter: ‘fast’ epicycle (4th and 1st quadrants)
dhīmān jayāya tithipaḥ kugirau bhūdātri śabala bhojāṅgam |
dhīreva strīsevā karkaśi tadvaṃśi tatsamaṃ punātu |
puruṣe saṅgatir etā jīvasya mṛgādijā bhavanti jyāḥ ||2.33||

Jupiter: ‘fast’ epicycle (2nd and 3rd quadrants)
dhījin māṃsapa timiraṃ nṛbalaṃ dugdhāṅgi homavin niyamaḥ |
lomaśa dhīdṛśi śakṛtā vigataṃ tadvṛtti dhībhṛtaṃ kṣubhitaḥ |
saṅgatir etā jīvāḥ karkyādibhavāḥ surendrapūjyasya ||2.34||

Venus: ‘slow’ epicycle
dīpa balaṃ java bāṇā netā kṣāntiḥ kathaṃmitho [dāsāḥ]52 |
pāde guhā bhuja madaṃmudā tadā śukramandajīvāḥ syuḥ ||2.35||

(Variant in Manuscripts C and D)
dhenuḥ sevyā mitrair bāla navau stambha rāma soma ratāḥ |
kṣiti nāthau rasa māsau māse māse sitasya mandajyā ||2.35||

Venus: ‘fast’ epicycle (4th and 1st quadrants)
śrīśuki līnagu vaśabhṛd vinatā gomāṃsi kunidhi narmanaṭī |
sindhupuṭe navaloke guhavṛki gorakṣayā pitṛsthasya |
gandhodaki53 vīranare narmapure iti bhṛgor mṛgādijyāḥ ||2.36||

Venus: ‘fast’ epicycle (2nd and 3rd quadrants)
sakrodhi sāmatuṣṭā prītikarī cūtavakri śivacārī |
bāṇasukhaṃ guhasatre dehasukhaṃ valgusūtri sutacārī ||
dhīsamare gajabhadre lohagurau dhūrtaraudri narmapure |
bhṛgusūnoḥ karkyādau jīvā etāḥ krameṇoktāḥ ||2.37||

Saturn: ‘slow’ epicycle
garbhaṃmahat sukhāḍhyaṃ dūtāyāḥ sunakhi vivari dāsāreḥ |
dhanagaḥ sthalago ratigo gajago dugdhāṅgi nākavit sukaviḥ |
naravid [iti] sūryasutasya54 jīvā mandodbhavāḥ kramādetāḥ ||2.38||

51 Suggested by Sarma. Manuscripts read surarād (seven-two-two).
52 Suggested by Sarma. Manuscripts read bhānoḥ (four-zero).
53 Manuscript C reads tundāḷika and D reads tundāḷaki (both six-eight-nine-one)
54 Manuscripts read naravit sūryasutasya which lacks two syllables. Sarma inserts hi after

sūryasutasya which is still insufficient. Thus I suggest inserting iti instead.
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Appendix: Versified tables of equations

For the sake of brevity, I shall only list the Sanskrit verses with variant read-
ings that give different numbers. Note that many variant readings, notably in
manuscript C, that are different words but give the same number, are not in-
dicated. For more details, the reader is advised to consult Sarma, Dṛggaṇita,
pp. 18–25. The kaṭapayādi words are in bold.
Mars: ‘slow’ epicycle

jāto balāya nanaraś cacāra nīlāṅgi ruddhaguḥ śramavit |
suniśā sumarma punitād dhūliṣu dhūrteṣu dhījitau vinasaḥ |
sūnārthī kṣitisūnoḥ ṣaḍaṃśajā māndajā imā jīvāḥ ||2.26||

Mars: ‘fast’ epicycle (4th and 1st quadrants)
gavayo madirā taruvit kṣitimāṃ stenārthī lavaja dāsārdhāḥ |
gokaṭakaṃ śivarūpaṃ rathālaye dugdhavṛṣṭi khuratāpam |
jalasevyaṃ karmajyaṃ himābdhaye bhaumajā mṛgādibhavāḥ ||2.27||

Mars: ‘fast’ epicycle (2nd and 3rd quadrants)
nādārta stṛṇarūpe sindhutaṭe kānanendra yānakharaḥ |
harigātre dehagurau vṛkabhadre yānavairi vittaguruḥ ||
hīnagara stailakharo vaṃśakarī dharmanetri hemadhiyaḥ |
karkyādibhavā evaṃ bhūmisutasya prakīrtitā jīvāḥ ||2.28||

Mercury: ‘slow’ epicycle
gātre kṣobhaṃ dhūrte nāḷaṃ nayakṛd dharāḍhya tadvaśyau |
raktapa māṃsapa sūdapa dugdhapa mānāri nṛkari bhūputraḥ |
śaṅkara etā jīvā māndabhavā śaśisutasya pañcadaśa ||2.29||

Mercury: ‘fast’ epicycle (4th and 1st quadrants)
yānapa dhūḷipa taddhari nidhigaṃ gajavad bisāśi nakṣāntaḥ |
vivasu rvaradan [nanaḷaḥ]48 kusudhīḥ saṅgānakṛt sudhājñatya |
niśipuṇyaṃ sādhupuṭaṃ śaśijasya mṛgādijā imā jīvāḥ ||2.30||

(Variant in Manuscript C)
[ānava]49 vānara henila kunavā mudhuvit sudeśa [dhīsākṣī]50 |
mokṣārthī saṃvādaṃ bhadrābdhir gandhadhīḥ sutajño’yam |
dhātrīpuṭaṃ bhujapuṭaṃ bhogaripur jñasya caivam eṇādau ||2.30||

Mercury: ‘fast’ epicycle (2nd and 3rd quadrants)
gururāḍmṛgavad bharato yuddhārthī yogadhī bhavānnāyam |
bhṛgupuṇyaṃ nanurūpaṃ śivarūpaṃ vatsarasya gajarūpam |
tithirapi ratirapi gaṅgārūpaṃ sudhiyo’pi śaśijakarkyādau ||2.31||

48 Suggested emendation by Sarma. Manuscripts read naḷadaḥ (zero-nine-eight).
49 Suggested by Sarma. Manuscript reads ālaya (zero-three-one).
50 Suggested by Sarma. Manuscript reads dhāsvārthī (nine-four-seven).
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Saturn: ‘fast’ epicycle (4th and 1st quadrants)
tailaṃ nārthe vinayaḥ śailāḍhye varṣake praḷaye |
hayarāṭ prabhurāḍ gatirāḍ rājaśrī rdhīdharo lipigaḥ |
[śubhrāṅgī rāgāṅgī]55 subalo jīvāḥ56 śaner mṛgādibhavāḥ ||2.39||

Saturn: ‘fast’ epicycle (2nd and 3rd quadrants)
bhāvaṃ sehe surapo gatikṛt sandhārya satkharaḥ śiśiram |
satsūtraṃ siddhāgre lipigaḥ śarago balago helāṅgī |
jālāṅgī sābālā jīvāḥ karkyādijāḥ śaner etāḥ ||2.40||

Sun: ‘slow’ epicycle
kole sukhī nava ramā varṣe tīrthe tadā kṣudhā vinayaḥ |
priyakṛd jayakṛd gurukṛt cirāya haraye dharāḍhya ravijīvāḥ ||2.41||

Moon: ‘slow’ epicycle
kula gati gandhaṃ kharapo nṛmānya satsevya kunakhi vīraśrīḥ |
gobhadre kīrtiśrī rmatsūtrī tajjarā vidhurā |
dhīdhāri yānagaur iti ṣaḍaṃśajā jyāḥ krameṇa śītaruceḥ ||2.42||

55 Suggested by Sarma. Manuscripts read śukāṅgī rākāṅgī (five-one-three, two-one-three).
56 Sarma suggests jīvā[ś ca] but this does not fit the meter.



Cracking the Tabulae permanentes of John of Murs 
and Firmin of Beauval with Exploratory Data Analysis

Richard L. kreMer

Introduction

Historians of mathematics have developed, over the past generation, very effec-
tive statistical methods to ‘squeeze’ unknown parameters from astronomical 
tables whose underlying mathematical algorithms are known. Other techniques 
have been invented to determine the dependency of one table on another, for 
example, the dependency of a table of solar declinations on a particular table 
of sines. The challenge, in both instances, is to assure that the assumptions 
required for modern probability theory are met when sampling historical tables 
with relatively few entries, unknown computational errors, and many layers 
of scribal errors or physical deterioration of successive manuscript witnesses. 
Nonetheless, by using such techniques historians of early and medieval astron-
omy have been able to map through space and time, in considerable detail, the 
spread of parameters, tabular algorithms and tabular content, both within and 
among various cultural traditions.1

Some astronomical tables, however, exhibit irregularities that might reveal 
interesting computational practices that modern statistical methods would erase 
or not detect. Consider, for example, a table whose differing sections were com-
puted with different parameters; or a table in which every nth entry was com-
puted and the intervening entries found by interpolation or smoothing by eye; 
or a table whose basic algorithm is unknown. In such cases, simple application 
of least squares or Monte Carlo methods might not elucidate how the tables 
were composed by historical actors. In such cases it may often prove more effec-
tive to apply ‘exploratory data analysis’ (EDA), a set of techniques developed 
in the 1960s at Bell Telephone Laboratories and formalized by the Princeton 
mathematician John W. Tukey in a well-known textbook that first appeared in 
the late 1960s. EDA looks for patterns in ‘messy’ data and precedes the appli-
cation of confirmatory inference and testing procedures rooted in probability 
theory. EDA methods seek to resist ‘wild’ values of localized ‘misbehavior’ in 
data; to look for patterns in residuals between data and a potential fit (i.e., a 

1 Cf. Van Brummelen and Butler, ‘Determining the Interdependence’; van Dalen, Islamic 
Astronomical Tables. For a much earlier discussion, see Kennedy, ‘The Digital Computer’.

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 363–422
© F  H  G  10.1484/M.PALS-EB.5.127703
t H i s  i s  a n  o p e n  ac c e s s  c H a p t e r  D i s t r i b u t e D  u n D e r  a  c c  b y- n c - n D  4 . 0  i n t e r n at i o n a l  l i c e n s e
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known algorithm); to re-express data in scales or axes that uncover symmetries 
or other structures; and to reveal patterns by visual displays of each step of an 
analysis. These four tools – resistance, residuals, re-expression and revelation 
– can often contribute much to data analysis before one turns to more robust 
statistical tools to test hypotheses.2

In this paper, I will employ techniques from EDA, especially visual patterns 
in residuals, to seek the algorithm that was used by two astronomers of the 
early Alfonsine era, John of Murs and Firmin of Beauval, to compute a new 
double-entry table for finding the time correction between mean and true syz-
ygy of the luminaries. Although they wrote a brief canon that explains how to 
use the table, the authors provided no hints about how they had constructed 
their table (most canons to medieval astronomical tables do not describe how 
said tables were constructed). Earlier true syzygy tables had been developed; yet 
none had reduced the problem to a function of solar and lunar anomaly, i.e., 
one enters the table with these two variables. Indeed, the structure of John’s 
and Firmin’s table is unlike anything discussed in the Almagest or any known 
Arabic zij. ‘Cracking’ the Tabulae permanentes (henceforth TP) thus may 
require tools other than least squares.

The TP (see Plate 12) are a large table, filling between 6 and 24 pages in 
the manuscript witnesses I have examined.3 All 15 known witnesses identically 
lay out the table with 60 columns for the solar anomaly (angular distance of 
the mean Sun from its apogee or aux) at 6° intervals from 0° to 354° and 31 
rows for the lunar anomaly (angular distance of the Moon from its mean apo-
gee of the epicycle) at 6° intervals from 0° to 180° (the second half of the lunar 
anomalies, from 180° to 360°, are symmetrical to the first half and thus were 
never copied in the manuscripts). The double-entry table has a total of 1860 
entries. Each sexagesimal entry specifies the time correction in hours and min-
utes, listed in adjacent columns. The column and row headers are generally 
specified by the number of physical signs of 30° and the number of degrees 
(only one manuscript uses natural signs of 60°, the basic format of the Parisian 
Alfonsine Tables, henceforth PAT). Hence, the top row and left column head-
ers describe entries, respectively, for solar anomaly from 0s 0° to 11s 24° and 
lunar anomaly from 0s 0° to 6s 0°; the bottom row and right column headers, 
respectively, for solar anomaly from 12s 0° to 0s 6° and lunar anomaly from 
12s 0° to 6s 0° (where the sign of the entries is reversed). Signs of the entries are 
marked with ‘m’ for values less than zero, with ‘a’ for values greater than zero.

2 Cf. Tukey, Exploratory Data Analysis; Hoaglin et al., Understanding Robust and Explor-
atory Data Analysis, pp. 2–4.

3 In the manuscript of the Servitenkloster depicted in Plate 12, the table is copied in red 
and black ink with tabulated differences for both rows and columns. It has headings for Argu-
mentum solis at top and bottom, and for Argumentum lune at left and right sides.
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Mastering these layers of content in the TP must not have been obvious; 
most of the manuscripts include a set of canons or instructions that describe 
the formatting features of the tables. Most of the manuscripts use red and 
brown (or black) ink, successively by column, presumably to enhance legibility. 
Some, but not all, of the manuscripts also include rows and columns of tabu-
lated differences (in minutes of time) between the successive entries. Tabulated 
differences might enable scribes to control for errors as they copied the tables; 
and they surely reduce computation required for double-interpolation. Three 
of the manuscripts tabulate differences only for the first column; presumably 
their scribes decided the benefit of that information was not worth the labor 
of adding it to their manuscript.

Once a user understood the format, handling the TP required only three 
steps: i) by means of a separate table of mean syzygies for the luminaries, find 
the date and time of mean syzygy and the values of the solar and lunar anoma-
lies at that time (all quantities presumably given to minutes, the usual precision 
of Ptolemaic and Alfonsine astronomy); ii) with these latter two values enter 
the TP and extract the four contiguous entries that border the ‘exact’ values of 
the anomalies; iii) double-interpolate to extract the ‘exact’ value (to minutes of 
time) for the time correction.4

The TP and their canons have previously been edited.5 In 2001, Porres and 
Chabás published an edition of the Latin canons, based on 8 manuscripts, with 
an English translation. As noted above, the canon provides no hints about the 
construction of the TP so we need not here consider that text. Porres’s 2003 
unpublished dissertation presents an edition of the TP, collating 5 manuscripts 
and including tabulated differences as well as the entries. Lacking knowledge 
of the algorithm, however, Porres could not control her edition for errors; it 
contains at least 59 deviations that do not appear in her 5 manuscripts nor the 
additional 10 examined here. Thus I have prepared a new edition of the TP, 
collating the 15 known manuscripts (see the Appendix).

Our investigation will proceed in several steps. Our first section situates the 
TP in early Alfonsine astronomy and tentatively suggests a date for its compo-
sition. The second section reviews slightly earlier methods for finding true syz-
ygy, as offered in the Toledan Tables and by other Alfonsine astronomers, and 
will quantitatively compare the results of those methods with the entries found 
in the TP. By employing techniques of exploratory data analysis, we will move 
toward John’s and Firmin’s algorithm and will identify the sub-tables they 
incorporated into that algorithm. A third section (and the Appendix) presents 

4 For an epistemological analysis of the procedures needed to use the TP, see Husson, Les 
domaines d ’application, pp. 203–20.

5 Porres and Chabás, ‘John of Murs’s Tabulae permanentes’; Porres, Les tables astrono-
miques, pp. 395–406.
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a new edition of the TP and comments on some of the scribal practices exhib-
ited in the manuscript witnesses.

We will conclude that the TP represent yet another example, within the 
Alfonsine astronomical tradition, of seeking ‘user-friendly’ tabular formats to 
reduce computational labor for astronomers using the PAT to calculate eclipses 
or cast weather-predicting horoscopes for times of true syzygy.6 Yet unlike 
many other Alfonsine user-friendly innovations, the TP introduce approxima-
tions into the computation that, as we will see, slightly degrade the precision 
of the results.

Finally, let me clarify several conventions used in this paper. First, I refer 
to individual entries in the TP by the notation ‘solar anomaly:lunar anom-
aly’. For example, ‘294:24’ refers to the entry for a solar anomaly of 294° and 
a lunar anomaly of 24°. Second, in counting what I shall call scribal errors, 
I consider each sexagesimal digit recorded in the table. Hence, if the vulgate 
entry 8h 45m is written 7h 45m, I record one scribal error; if it is written 
7h 38m, I record two scribal errors. Errors for row or column slippage are sim-
ilarly counted by sexagesimal digit. Third, all computation for this study has 
been realized via Microsoft Excel spreadsheets and their internal trigonometric 
functions. I have not tried to implement computational techniques that four-
teenth-century Alfonsine astronomers would have employed. To a precision of 
minutes, my computations and theirs will generally agree. I have not found, 
for example, any sine table in medieval Latin manuscripts whose values differ, 
in minutes of arc, from my sine table. We may differ in how we round inter-
nal computations but their procedures remain opaque to us and any variations 
would rarely exceed ±1 minute of arc or ±1 minute of time.

Situating the TP in Early Alfonsine Astronomy

Given the task of this essay, we need not join the historiographical quest to 
fit together ever more biographical tessera for our two authors.7 A native of 

6 The concept of ‘user-friendliness’ in Alfonsine astronomy has been proposed and exten-
sively explored by Chabás and Goldstein. Cf. Chabás and Goldstein, ‘Computing Planetary 
Positions’.

7 Scholarship on John of Murs is vast and not always consistent in its claims. The initial 
surveys by Duhem, Le Système Du Monde, vol. IV, pp. 30–38, 54–60, and Thorndike, A His-
tory of Magic, vol. VII, pp. 294–324, must be used with caution. More recently, cf. Gushee, 
‘New Sources’; Michels, Die Musiktraktate; Busard, ‘Die “Arithmetica speculativa”’; Poulle, 
‘John of Murs’; Beaujouan, ‘Observations et calculs’; Poulle, ‘Jean de Murs et les tables al-
phonsines’; L’Huillier, Le Quadripartitum numerorum; Saby, ‘Mathématique et métrologie’; 
Gack-Scheiding, Johannes de Muris Epistola; Schabel, ‘John of Murs and Firmin of Beauval’s 
Letter’; Gushee, ‘Jehan des Murs and His Milieu’; Hentschel, ‘Johannes de Muris’; Chabás and 
Goldstein, The Alfonsine Tables of Toledo, pp. 277–81; Lejbowicz, ‘Présentation de Jean de 
Murs’; Poulle, ‘Les astronomes parisiens’, pp. 5–35. For the latest surveys, cf. Desmond, Music 
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Normandy, John of Murs wrote works dating from about 1321 to 1347, during 
which he spent much time in Paris at the Sorbonne where he may have earned 
a magister atrium as early as 1321.8 Yet in 1319, he measured solar altitudes 
during a stay in Évreux (Normandy). In 1326–27, he made astronomical obser-
vations at the royal abbey of Fontevraud at the behest of its abbess Alienor de 
Bretagne. From 1338 to 1342, he was a clerk of Philippe III d’Évreux, king 
of Navarre. In the 1340s, he was called to Avignon by Pope Clement VI to 
work on calendar reform; from 1342 to 1344, he served as canon of Mézières-
en-Brenne in the diocese of Bourges. Clearly, the milieu of his career extended 
beyond Paris.

In addition to widely copied, elementary texts on music and mathematics, 
John wrote ten known astronomical works:9

1321 Expositio tabularum Alfonsi regis Castelle10

1321 Kalendarium solis et lune11

late 1320s Tabule principales (‘Tables of 1321’)12

1329–32 Kalendarium et patefit (‘Patefit Tables’)13

1332 Sermo de regulis computistarum14

1339 Canones tabularum Alfonsii (i.e., for the PAT)15

1345 Epistola super reformatione antique kalendarii, Tractatus de reformatione kalen-
darii (with Firmin of Beauval)16

1345 Prognosticatio super coniunctione Saturni (triple conjunction of 1345)17

and the moderni, pp. 70–114, 246–47, 259–61; Nothaft, Scandalous Error, pp. 205–34; and 
the dedicated issue of Erudition and the Republic of Letters 4 (2019), edited by Nothaft, Des-
mond and Husson.

8 Laure Miolo recently has hypothesized that John later became a hospes (a magister who 
rooms at the Sorbonne) rather than a socius (a fellow who teaches). See Miolo, ‘In Quest of 
Jean de Murs’s Library’, pp. 17–18.

9 I follow Nothaft in rejecting the long-held attribution of a 1317 computistic text with 
a sixteenth-century explicit, finis kalendarii Ioannis de Muris de observantia termini pascalis, 
to John of Murs. Cf. Nothaft, ‘The Chronological Treatise’; Nothaft, ‘John of Murs and the 
Treatise’.

10 Edited by Poulle, ‘Jean de Murs et les tables alphonsines’. Cf. Husson, ‘L’astronomie al-
phonsine’.

11 Excerpted by Chabás and Goldstein, ‘John of Murs Revisited’.
12 Excerpted by Chabás and Goldstein, ‘John of Murs’s Tables of 1321’. I accept Lejbowicz’s 

and Desmond’s dating (see note 7).
13 Canons edited by Plassard, Projets de réforme, text 3, a work I have not seen. Cf. Kremer, 

‘John of Murs, Wenzel Faber’; Chabás and Goldstein, ‘John of Murs’s Tables of 1321’, pp. 313–
17.

14 Edited by Plassard, Projets de réforme, text 4.
15 Extant in two versions, neither edited. See Nothaft, ‘Jean des Murs’s Canones’.
16 Edited by Schabel, ‘John of Murs and Firmin of Beauval’s Letter’.
17 Edited by Pruckner, Studien zu den astrologischen Schriften, pp. 222–26. English transla-

tion in Goldstein and Pingree, ‘Levi Ben Gerson’s Prognostication’, pp. 35–39.
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1347? Epistola magistri Iohannis de Muris ad Clementen sextum (conjunctions of 
1357 and 1365)18

late 1340s Tabulae permanentes (with Firmin de Beauval)19

Less is known about Firmin of Beauval, born in the diocese of Amiens and 
later canon at its cathedral.20 In 1343, Pope Clement VI granted him a ben-
efice in the diocese of Cambrai. In addition to collaborating with John of 
Murs on calendar reform and the TP, he independently authored a prognos-
tication for the 1345 triple conjunction. He was widely known for his 1338 
compendium of meteorological astrology, De mutatione aeris (Th/K 1220), a 
work that would be printed (without attribution) in 1485 by Erhard Ratdolt in 
Venice and in 1529 (with attribution) by J. Kerver in Paris.21 Borrowing from 
at least 23 ancient Arabic and Latin authorities, with al-Kindī (28 references), 
Ptolemy (25), Albumasar (20), and Haly (17) most frequently cited, De mutati-
one aeris offers a comprehensive, clearly-written overview of its topic. Since the 
work draws on so many specialized sources, historian Gustav Hellmann has 
suggested that Firmin, while drafting the text, must have spent time in Paris 
with its large libraries. John of Murs also loaned Firmin astrological works, on 
the lunar mansions (Th/K 1095?) and others by al-Kindī on weather (Th/K 
1364, 1383, 1385, 1515), topics treated extensively in De mutatione aeris. Pre-
sumably, the two men had worked together since at least the mid 1330s.

In any case, knowledge of the TP emerged rather late in the historiography 
of John of Murs. The early studies by Duhem and Thorndike (cf. note 7) do 
not mention the TP. Ernst Zinner’s 1925 catalog of astronomical manuscripts 
lists 3 codices containing unnamed ‘tables’ with the incipit Omnis utriusque 
sexus armonium (my sigla BMeM) but does not attribute them to John and 
Firmin even though both men are named in the explicits of all three man-
uscripts. By 1937 Thorndike/Kibre listed Zinner’s manuscripts and added V1 
but with no attribution; in 1948 Thorndike quoted from the explicit (Canones 
pemanentium) but wrote nothing about the structure of the tables and did not 
attribute the work to anyone. As far as I know, the TP were first attributed to 
John and Firmin (albeit with ‘?’) in the 1963 revised edition of Th/K.22

18 Edited in Boudet, ‘La papauté d’Avignon’, pp. 281–84. French translation in Duhem, Le 
système du monde, vol. IV, pp. 35–37.

19 Canons edited in Porres and Chabás, ‘John of Murs’s Tabulae permanentes’; tables edited 
in Porres, Les tables astronomiques, pp. 395–406.

20 Hellmann, ‘Die Wettervorhersage’; Thorndike, A History of Magic, vol. III, pp. 268–80, 
304–05; Boudet, Le recueil des plus célèbres, vol. I, pp. 511–12; Miolo, ‘In Quest of Jean de 
Murs’s Library’, pp. 27, 37.

21 Thorndike and Kibre, Catalogue of Incipits, rev. and augmented ed. (henceforth Th/K), 
col. 1220.

22 Zinner, Verzeichnis, p. 343, nos 11196–98; Thorndike and Kibre, Catalogue of Incipits, 
1st ed., col. 469; Thorndike, ‘Some Little Known’, p. 43; Th/K, col. 1004.
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The first detailed biographical study of John of Murs, by Gushee in 1969, 
does not refer to the TP. Not until 1970 would the musicologist Ulrich 
Michels publish a chronological list of John’s works including the TP that he 
dated to 1347–48. Michels justified this date by reference to John’s collabo-
ration with Firmin on the calendar, which is firmly dated to 1344–45. To 
strengthen his dating, Michels cited a short treatise Contra tabulatores tabula-
rum Alphonsi, dated 1348 and attributed to John of Murs in one manuscript, 
that, he claimed, was a ‘Traktat einer Gegengruppe’, a vague reference I cannot 
understand. However, the content of this text is not related to the TP and the 
Contra tabulatores is no longer attributed to John.23 Nonetheless, Michels was 
the first scholar to propose a date for the TP.

Subsequently, historians of astronomy have struggled to date the TP. As 
we will see below, the tables are indeed ‘permanent’ and contain no radices 
or quantitative information that could internally suggest a date. And none of 
the 15 currently known manuscripts presents a date. Poulle in 1973 briefly 
described the work but suggested no date. In 1977, John D. North, without 
justification, dated the TP to ‘a. 1320/1’. Twenty years later, Chabás and Gold-
stein found our tables in several manuscripts (VC), but attributed them to John 
of Gmunden, dated to 1440 in the explicit for Gmunden’s canon in V. In 2001 
Porres and Chabás attributed the TP to John and Firmin, guessing the work 
was completed in 1321 along with John’s (dated) Tabula tabularum (the text 
cited by Michels) and that both were intended to be part of his (dated) Tables 
of 1321.24 Equally vaguely, Poulle in 2005 suggested that the TP ‘perhaps’ were 
composed between 1321 and 1327. But in this same article, Poulle parsed the 
explicit in the TP canons and wondered whether the TP might better be dated 
toward the end of John’s career, i.e., in the 1340s.25

As can be seen above, I propose to date the TP to the late 1340s, perhaps 
after the 1345 collaborative treatise on calendar reform. This speculation relies 
solely on contextual evidence. First, as I will describe below, John of Murs from 
the beginning expressed interest in formulating astronomical tables around the 

23 Gushee, ‘New Sources’; Michels, Die Musiktraktate, p. 15; Poulle, ‘John of Murs’, p. 133; 
Nothaft, ‘Critical Analysis’.

24 As Desmond, Music and the moderni, pp. 86–87 noticed, this early dating apparently 
derives from several misreadings. In his transcription of the canons to the Tabula tabularum, 
Poulle, ‘Jean de Murs et les tables alphonsines’, p. 144, mistakenly read ‘calogia (sic)’ for ‘ge-
nealogia’ in the list of four works John says he had composed in 1321 (on musical notation, 
squaring the circle, an expositio tabularum Alfonsi and a genealogia astronomie). And Porres 
and Chabás, ‘John of Murs’s Tabulae permanentes’, pp. 65–66, mistakenly assigned the TP to 
one of these four works.

25 Poulle, ‘John of Murs’, p. 130; North, ‘The Alfonsine Tables in England’, p. 298; Chabás 
and Goldstein, ‘Computational Astronomy’, pp. 99–100; Poulle, ‘Les astronomes parisiens’, 
pp. 22, 28–30.
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phenomena of syzygies. His Tables of 1321 offer a novel method for computing 
true planetary and lunar longitudes from the times of their mean conjunctions 
with the Sun (as far as I know, no other astronomer ever employed this ‘con-
tratabula’ approach, and John’s tables are known from only two manuscripts).26 
Second, his so-called Patefit Tables explore two methods for finding times of 
true syzygy of the luminaries, one requiring the computation of separate solar 
and lunar corrections, the other employing lunar velocities (that he borrows 
from al-Battānī or the Toledan Tables). Both procedures start with a list of 251 
dated consecutive mean syzygy times, beginning in 1321; both procedures are 
cumbersome, computationally, when compared to the TP.27 Third, in his com-
putation of the solar eclipses of 1333 and 1337 (presumably performed in those 
two years), John found the times of true syzygy using computational proce-
dures outlined in John of Saxony’s 1327 canons to the PAT.28 Fourth, Firmin’s 
1338 De mutatione aeris contains two sections on the astrology of true syzygies 
of the luminaries (nearly one-quarter of the text). Fifth, John’s 1339 very short 
canons to the PAT describe an iterative method for finding true syzygy, much 
more complex than that presented in the TP. Finally, for their proposed calen-
dar reform, John and Firmin computed mean syzygy times for a full 19-year 
cycle, recently demonstrated by Nothaft to have been calculated for the years 
1349–1367.29 Given these circumstances, it seems highly unlikely that the TP, 
had they been constructed in 1321, would not have been mentioned in the 
Patefit Tables or John’s canons of 1339 or the calendar treatise. It seems much 
more likely that John and Firmin composed the TP after (or during) their 
time together in Avignon from 1344–45. My supposition agrees, that is, with 
Michels’s 1970 dating of the TP.

Finally, the explicit to the TP canons, found in six manuscripts, sheds fur-
ther light on the collaborative projects of John and Firmin. The explicit appears 
as an elegiac distich, a literary form not displayed in other explicits in their 
works, or for that matter, in any other text I know of Alfonsine astronomy:

Expliciunt canones tabularum permanencium.

Ista Johannes equat, cepit Firminus et implet
Lux gaudet, reprobat livor, amicus habet.

John calculates them, Firmin began and finishes them
Light [knowledge] rejoices, envy rejects them, a friend cherishes them.

26 North, ‘The Alfonsine Tables in England’, pp. 284–85; Poulle, ‘The Alfonsine Tables 
and Alfonso X’, pp. 3–4; Chabás and Goldstein, ‘John of Murs’s Tables of 1321’.

27 Kremer, ‘John of Murs, Wenzel Faber’, pp. 148–55.
28 Husson, ‘Exploring the Temporality’.
29 Nothaft, ‘The Astronomical Data’, pp. 118–21.
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John and Firmin undoubtedly based this distich on two lines found in the 
twelfth-century epic poem, Tobias, by the French author Matthew of Vendôme, 
composed in hexameter couplets:

Transfert Hieronymus, exponit Beda, Matthaeus
Metrificat, reprobat livor, amicus habet.

Jerome translates, Bede explains, Matthew
versifies, envy rejects them, a friend cherishes them.

Much of Matthew’s heavily didactic verse was intended for the schools and 
would have been widely known to schoolboys across France. The opening sen-
tences of John’s and Firmin’s canon describe the ‘science of predicting conjunc-
tions and oppositions’ as something important for everyone, common people 
(vulgares), men and women (omnis utrisque sexus). John and Firmin apparently 
saw in the poetry of Matthew of Vendôme a rhetorical frame to help situate 
the new TP in this public space.30

The Toledan Tables and True Syzygy

Translated from Hispano-Arabic materials into Latin during the twelfth cen-
tury, the Toledan Tables circulated widely in medieval Europe. With canons 
extant in three versions and tables for most tasks faced by mathematical astron-
omers, the Toledan Tables strongly shaped the context in which Alfonsine 
astronomy would emerge, first in late thirteenth-century Castile and then in 
1320s Paris. To explore the construction of the Tabulae permanentes, therefore, 
we begin with the Toledan Tables and their procedures for finding times of 
true syzygy.31 We know that John of Murs and other Parisian astronomers of 
the 1320s were well aware of the Toledan Tables. Interestingly, their modern 
editor denigrated the true syzygy methods found in the Toledan Tables as ‘triv-

30 Müldener, Matthaei Vindocinensis Tobias, p. 22, lines 53–54; Porres and Chabás, ‘John 
of Murs’s Tabulae permanentes’, pp. 67, 71. Among John’s 24 known works in music, mathe-
matics and astronomy, five include what musicologist Karen Desmond has called ‘puzzle-like 
explicits in verse format’. His earliest work, the Notitia artis musicae, c. 1320, offers clever 
Leonine hexameters: Nomen factoris signat deca signa doloris munda / Nec est mirum quia de 
cognomina firmum (‘The author’s name signifies fittingly the ten signs of sorrow, it is not sur-
prising for the name is firm’). As explicated by Michels, the tenth letter in the Latin alphabet 
is ‘j’; the exclamation of pain is ‘o’, i.e., the abbreviation for ‘Johannes’. The ‘firm name’ is de 
Muris, i.e., strengthened by walls. See Desmond, Music and the moderni, pp. 32–33; Michels, 
Johannes de Muris, Notitia, pp. 107, 110; Gushee, ‘New Sources’, p. 22.

31 The methods of Ptolemy, ‘slightly more unlike the truth but easier’, and al-Battānī, 
‘more laborious indeed but more similar to the truth’, are also discussed in the Almagesti mi-
nor, an early thirteenth-century commentary on Ptolemy’s treatise. See Zepeda, The First Latin 
Treatise, pp. 446–55.
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ial’, a judgment that may or may not be true; nonetheless, those methods would 
be considered carefully by Alfonsine astronomers of the fourteenth century.32

The canons to the Toledan Tables describe three different procedures 
for finding true syzygy, albeit without identifying the historical roots of the 
methods. The canon identified by Pedersen as version Ca presents what was 
undoubtedly the best-known medieval method, borrowed from the Almag-
est VI.4.33 Assuming that the ratio of the lunar to solar velocity, on average, 
is 13 to 1 and that these velocities remain constant over the time interval 
between mean and true syzygy, Ptolemy offered an iterative solution to find 
the interval between mean and true syzygy (Δt):

 

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt(t) =
−13η(t)
12υm(t)
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= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

where t is the time of mean syzygy, η is the elongation between the luminaries 
at t or the difference of the corrections cm − cs at t, and υm(t) is the lunar veloc-
ity at that time.34 One enters this algorithm with the time of mean syzygy, 
computes Δt and then, for t+Δt, again computes η. If not zero (to whatever 
desired degree of precision, i.e., arcminutes or arcseconds), one then computes 
Δt at time t+Δt and iterates the computation until the true distance between 
the luminaries (η) is reduced to zero.

As Chabas and Goldstein noted, Ptolemy’s method converges quickly; to 
achieve a precision of one arcminute of longitude, one rarely needs more than 
two or three iterations. In Table 1, I compute for the 12 new moons of 1336 
the time from mean to true syzygy, using the solar and lunar equations and 
velocities of the Toledan Tables (very similar to al-Battānī’s equations and 
velocities).35 After one iteration, the Ptolemaic method gets to within ±0;19h 
of the time of true syzygy; after two iterations, it gets close to the desired 
value. The computed true elongations after the second iteration are within 1 
arcminute of longitude (one case of 2 arcminutes). But Ptolemy’s algorithm is 
laborious; each iteration requires computation of the solar and lunar equations 
followed by sexagesimal multiplication and division.

32 John of Murs annotated a copy of the Toledan Tables now in Paris, BnF, lat. 16211, 
fols 22r–98r, and in annotating other works referred to those tables. See Hentschel, Sinnlich-
keit und Vernunft, pp. 271–78; Desmond, Music and the moderni, p. 54; Miolo, ‘In Quest of 
Jean de Murs’s Library’, pp. 20–21, 26–27, 35–36; and Pedersen, The Toledan Tables, vol. I, 
p. 76.

33 Pedersen, The Toledan Tables, vol. I, pp. 274–75; vol. II, pp. 450–51.
34 See Chabás and Goldstein, ‘Nicholaus de Heybech’, pp. 93–94.
35 See Suter, Die astronomischen Tafeln, pp. 175–80; Pedersen, The Toledan Tables, vol. IV, 

p. 1412; Goldstein, ‘Lunar Velocity in the Middle Ages’, p. 90. Velocity tables of Alkhwarizmi 
also circulated with the Toledan Tables, but al-Battānī’s appear much more frequently in ex-
tant manuscripts. Cf. Pedersen, The Toledan Tables, vol. IV, pp. 1410, 1417, 1419.
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TT TT Ptol Ptol−TT Kam−TT Batt − TT
Date t (h) Δt (h) Δt (h) Δt (m) Δt (m) Δt (m)

13.01 21;30 −10;19                 10;10  +0;09 −0 0−7 0−6
12.02 10;14 −13;24                 13;19  +0;04 −1 0−4 0−5
12.03 22;58 −13;20                 13;29  −0;08 −1 −06 −04

11.04 11;42 −10;26                  10;45  −0;18 −1 −14 −13

11.05 00;26 −05;39                  5;50  −0;10 −1 −08 −08

09.06 13;10 0−0;12               −0;11  +0;00 −1 −01 −01

09.07 01;54 0−6;00               −6;11  +0;13 −2 0−8 0−6
07.08 14;38 −10;43   −11;01  +0;18 −0 −13 0−9
06.09 03;22 −13;30  −13;38   +0;08 −0 0−6 −02

05.10 16;06 −13;26  −13;18  −0;07 −1 −07 −14

04.11 04;50 −10;14    −10;01  −0;11 −2 −09 −12

03.12 17;34 0−4;37              −4;29  −0;08 −0 −06 −06

Table 1 : Times and time corrections for mean and true conjunctions of the luminaries for 
1336, computed for the meridian of Toledo to a precision of minutes, computed with equations 
and velocities of the Toledan Tables (TT). Col. 3 gives ‘exact’ time corrections that reduce η to 
zero, rounded to arcmins. Col. 4 shows time corrections from the first and second iteration of 
Ptolemy’s method. Col. 5 compares Ptolemy’s and the ‘exact’ corrections; col. 6 compares the 
second method in the TT canons (Ibn al-Kammād) and the ‘exact’ corrections; col. 7 compares 
the third method in the TT canons (al-Battānī) and the ‘exact’ corrections.

A slightly less laborious method was proposed early in the twelfth century by 
the Andalusian astronomer Ibn al-Kammād, which uses the actual rather than 
averaged solar and lunar velocities and could be deployed in a tabular format 
to reduce computational labor.36 As with Ptolemy’s method, the velocities are 
assumed to remain constant over Δt. This method is described in canons Ca 
and Cc of the Toledan Tables.37 As rendered by Chabas and Goldstein:
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Double-entry tables, based on Ibn al-Kammād’s method, perform the division, 
for arguments of η from 0;30 to 12;00 in half-degree steps and differences in 
velocity in 30 arcsec/hour steps from 0;27,30 to 0;33,30. But users of these 
tables still must compute, for the time of mean syzygy, solar and lunar correc-
tions, look up the solar and lunar velocities, and then interpolate in the dou-
ble-entry table to achieve a precision of minutes. As can be seen in Table 1, 

36 Chabás and Goldstein, ‘Computational Astronomy’, pp. 94–96.
37 Pedersen, The Toledan Tables, vol. I, pp. 274–75, vol. II, pp. 642–43.
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(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη
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Ibn al-Kammād’s method can misestimate the times of true syzygy by up to 
one-quarter of an hour.

A third method, that I shall call al-Battānī’s, appears in canons Cb and Cc 
of the Toledan Tables.38 Described, respectively, as ‘a more refined and a surer 
manner’ and ‘more precise than any other’, this method computes true elonga-
tion at the time of mean syzygy and then adds 13/12 of half of this amount 
to the lunar argument at the time of mean syzygy (

Individual symbols:

ᾱ η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt
2
=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12

2e
R − e

2η
180

= 1980 arcsecs/hr
12

20 38
39 22

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

). This corrected lunar 
argument is then used to find the corrected lunar velocity, to be employed in 
an Ibn al-Kammād division to get the time correction. In other words, rather 
than setting the (ever-changing) lunar velocity at time t, the rate of lunar veloc-
ity is set at the midpoint of the interval between mean and true syzygy, pre-
sumably a rate closer to the average rate of the velocity over that entire interval. 
Although not explicated as such in the canons, we can easily demonstrate the 
assumptions behind this algorithm.

As per Ptolemy’s method:

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt(t) =
−13η(t)
12υm(t)

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

, where 

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η(t) = cm(t) − cs(t). (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

Half of this time interval is:

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt(t)
2

=
−13η(t)
24υm(t)

. (4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

Now, the Toledan Tables’ lunar argument moves in the epicycle at a fixed rate 
of 0;32,39,45°/hour; the lunar longitude, viewed from the Earth, moves at an 
average rate of 0;32,56,27°/hour. To find the amount moved by the lunar argu-
ment in 

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt
2
=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12

2e
R − e

2η
180

= 1980 arcsecs/hr
12

20 38
39 22

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

, we compute:

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

ᾱcorr(t) = ᾱ(t) + 0;32,39,45 ∙
−13η
24υm

= ᾱ(t) +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ ᾱ(t) −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

The Toledan Tables canons do not attribute this method to anyone. But as 
Pedersen noted, its basic outlines can be found in Chapter 42 of al-Battānī’s zij.39

38 Ibid., pp. 452–53, 708–09.
39 Ibid., p. 76; Nallino, Al-Battānī sive Albatenii, vol. I, p. 96, lines 10–17, where al-Battānī 

says the corrected lunar anomaly is selected for a time ‘inter’ (but not the midpoint) mean 
and true syzygy. Interestingly, al-Battānī (vol. I, p. 93, line 38 – p. 94, line 3 and p. 95, line 
33 – p. 96, line 2) also proposed that the lunar anomaly be corrected by a factor of 7/24 rather 
than 13/24. He did not clearly justify this value, but Schiaparelli (in Nallino, Al-Battānī sive 
Albatenii, vol. I, pp. 273–74) showed how it can be derived from Ptolemy’s final lunar model 
and parameters and application of the small-angle approximation, tan(x) = x. Al-Battānī also 
briefly described Ptolemy’s method (see Nallino, Al-Battānī sive Albatenii, vol. I, p. 94, lines 
26–34). The authors of the Toledan Tables canon thus selected from among various methods 
in al-Battānī’s zij.
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α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm
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∙
−13η
24
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24

(5)
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180 (8)
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υ2 =

d2
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υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
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Δυ 2η = υ α
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R − e ∙
2η
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= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)
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One further correction, also not justified in the canons, is described. After 
the correction of Eq. 5, one enters a small auxiliary table for the ‘seconds of 
difference’, provided in many but not all Toledan Tables manuscripts (also in 
al-Battānī’s zij), that corrects the lunar velocity, set as a function of the cor-
rected lunar argument, by one arcsec of longitude/hour less than the degrees 
(from 1 to 7) of absolute value of the true elongation at t.40 Hence:

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr(ᾱcorr(t)) = υm(ᾱcorr(t)) ± 0;00,01(|η(t)| − 1◦), (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

where the final value in Eq. 6 is positive for the lower half of the epicycle 90° <  
Individual symbols:

ᾱ η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt
2
=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12

2e
R − e

2η
180

= 1980 arcsecs/hr
12

20 38
39 22

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

 < 270°) and negative for the upper half. If |η(t)| < 1°, no correction is made. 
Neither the canons to the Toledan Tables nor al-Battānī’s zij justify this cor-
rection; both simply describe the procedure for using the auxiliary table. The 
al-Battānī method, in the Toledan Tables, thus becomes:

Individual symbols:

α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt(t) =
−η(t)

υmcorr(ᾱcorr(t)) − υs(t)
. (7)

Δd 2η = 20;38
(

2η
180

)

(8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12 ∙ 2e

R − e ∙
2η
180

= 1980 arcsecs/hr
12 ∙ 20 3839 22 ∙

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

As suggested by Giovanni Schiaparelli in his notes to Nallino’s edition of 
al-Battānī, the auxiliary table compensates for the second lunar anomaly, i.e., 
for the fact that as time passes between mean and true syzygy, the lunar epicy-
cle does not remain at the aux (solar apogee), where the lunar equation of cen-
ter is null. As the epicycle leaves the aux, its distance from Earth decreases and 
the apparent lunar velocity, viewed from the Earth, proportionally increases. 
This idea of correcting the apparent lunar velocity is very similar to Ptolemy’s 
general treatment of epicycles changing their distance from the Earth by tabu-
lating the maximal or minimal distances and then using the method of propor-
tional parts to find the intermediate distances.41

In Ptolemy’s (and al-Battānī’s) lunar model, the eccentricity (e) is 10;19 
parts, the radius of the deferent (R) is 49;11 parts, and the radius of the epicy-
cle (r) is 5;15 parts. The maximal Earth-epicycle distance is R + e, the minimal 
distance is R − e. As the center of the epicycle moves 180° from apogee to 
perigee, the Earth-epicycle distance thus varies by 20;38 parts. The angle being 
swept out, from the Earth, in this motion is double the mean elongation or 

Individual symbols:

α η 2η̄ κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt
2
=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15

60 or υ 2η ≈ υ α
12 (10)

Δυ 2η = υ α
12

2e
R − e

2η
180

= 1980 arcsecs/hr
12

20 38
39 22

2η
180

= 0 96η ≈ η arcsecs/hr (11)

τ = −η
dη

.  

40 Al-Battānī’s version, as edited in Nallino, Al-Battānī sive Albatenii, vol. II, p. 88., pres-
ents entries one arcsec larger than those in the Toledan Tables, as edited by Pedersen, The Tole-
dan Tables, vol. IV, p. 1414. The auxiliary table is frequently recorded in the Toledan corpus.

41 For a useful analysis of Ptolemy’s approach to varying epicycle distances, see North, Rich-
ard of Wallingford, vol. III, pp. 185–92. As North shows, the method of proportional parts 
assumes that the parameter in question varies linearly between its exactly determined minimal 
and maximal values and, as such, generally introduces errors (deviations from the geometry of 
the Ptolemaic models) of several arc minutes into the final longitudes being computed. For 
other analyses of such approximations, see Petersen, ‘The Three Lunar Models’; Van Brum-
melen, ‘Lunar and Planetary Interpolation’; Husson, Les domaines d ’application, pp. 267–70.
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α η 2η κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt t
2

=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45 ∙
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

∙
−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t
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Δυ 2η = υ α
12 ∙ 2e

R − e ∙
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2η
180
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Δt t =
−13η t
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αcorr t = α t + 0;32,39,45 ∙
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∙
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24
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24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)
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The change in distance, starting from the apogee, as 

Individual symbols:

α η 2η̄ κ 1
2Δt υ α

Δt t =
−13η t
12υm t

(1)

Δt t =
−η t

υm t − υs t
(2)

Δt t =
−13η t
12υm t

, where η t = cm t − cs t (3)

Δt
2
=
−13η t
24υm t

(4)

αcorr t = α t + 0;32,39,45
−13η
24υm

= α t +
0;32,39,45
0;32,56,27

−13η
24

≈ α t −
13η
24

(5)

υmcorr αcorr t = υm αcorr t ± 0;00,01 η t − 1 (6)

Δt t =
−η t

υmcorr αcorr t − υs t
(7)

Δd 2η = 20;38 2η
180 (8)

υ1
υ2 =

d2
d1 (9)

υ 2η
υ α = 5;15
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 increases from 0 to 
180°, is thus:
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Viewed from the center of the epicycle, the lunar anomaly (radius vector in the 
epicycle) moves at a rate of about 33 arcmins/hour or 1980 arcsecs/hour [
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]. 
With the epicycle fixed at the apogee, the apparent lunar velocity viewed from 
the Earth [υ(
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)] is reduced because of the greater distance between the center 
of the epicycle and the Earth (R + e). The ratio of the velocities is inversely 
proportional to the distances from the centers:
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For the situation at apogee in Ptolemy’s lunar model:
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As the epicycle moves toward perigee, its distance from the Earth decreases 
and the apparent lunar velocity, v(
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), proportionally increases. The change in 
apparent lunar velocity, as a function of 
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, is thus given by the velocity at 
maximal distance multiplied by the change in distance, as a function of 
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, 
divided by the minimal distance:
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This derivation is based on Ptolemy’s final lunar model, in which the distance 
of the epicycle from the Earth is a function of 2η. Yet our canon Cb instructs 
us to enter Eq. 11 with the true elongation, 2η, at the time of mean syzygy. 
The auxiliary table thus selects a velocity correction for the time of true syz-
ygy, when 2η will have moved from the aux roughly the same amount as 2η 
had at the time of mean syzygy, although the method selects the average lunar 
velocity for the midpoint in the time interval between mean and true syzygy. 
Whoever formulated this method fully understood Ptolemy’s terse discussion 
(Almagest V.7) of the method of proportional minutes and its simplifying 
approximations and was willing to combine what look to us as inconsistent 
techniques in an effort to estimate the changing lunar velocity over the time 
between mean and true syzygy. This method clearly reflects a more sophisti-
cated understanding of the problem of approximating a changing lunar velocity 
than those revealed in Ptolemy’s and Ibn al-Kammād’s methods.

On the other hand, a comparison of time corrections computed with Ibn 
al-Kammād’s uncorrected and al-Battānī’s corrected lunar velocities (Table 1, 
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columns 6 and 7) shows that the effects of the latter are small, shifting the 
Δt values by no more than 8 minutes of time and not necessarily closer to the 
‘correct’ values. Two iterations of Ptolemy’s method yield Δt corrections closer 
to the ‘correct’ values than do either of the other two methods presented in the 
canons of the Toledan Tables. We might guess that whoever formulated the 
third method thought carefully about the geometry of Ptolemy’s lunar model 
but did not seek to evaluate the efficacy of the approximations by direct com-
putation of true syzygy time corrections, such as we have offered in Table 1.

Early Alfonsine Astronomers and True Syzygy

In addition to the Toledan Tables, John and Firmin surely had access to early 
Alfonsine materials as they formulated the Tabulae permanentes. As is well 
known, only the canons of the Castilian Alfonsine Tables have survived. Chap-
ter 30 of this text discusses conjunctions and oppositions of the luminaries.42 
It mentions tables that provide, for collected years and months, the dates and 
hours of mean syzygies and for those times the mean longitudes of the lumi-
naries, lunar arguments of anomaly and lunar arguments of latitude.43 And it 
describes Ptolemy’s method for computing true syzygy, using solar and lunar 
equation tables to find the true elongation at the time of mean syzygy and 
then dividing 13/12  of this amount by the ‘hourly lunar velocity’ not other-
wise specified. The canons do not attribute the method to anyone and do not 
explain its rationale. The Castilian canons offer nothing not already found in 
the Toledan Tables on the true syzygy question.

The Tables of 1322, compiled in Paris probably near that date by John of 
Lignères, are devoted primarily to eclipses. John borrowed most of this material 
(28 of the 32 tables) directly from the Toledan Tables. Several chapters of the 
canons treat true syzygies, describing the methods of Ptolemy and Ibn al-Kam-
mād much as they had been presented in the Toledan Tables. Interestingly, 
John includes the small table for correcting the lunar velocity as a function of 
elongation, implying that it should be used for both methods; but he did not 
describe al-Battānī’s method, where the lunar correction table had originated, 
as found in the Toledan Tables.44

John of Lignère’s Tabule magne, compiled in Paris c. 1325, include two 
tables and a canon for finding true syzygy, presenting now only the method of 
Ibn al-Kammād, i.e., dividing the true elongation at mean syzygy by the super-
atio (the term had originated in the Toledan Tables) or difference between the 

42 Chabás and Goldstein, The Alfonsine Tables of Toledo, pp. 56–57, 188–89.
43 For an example of such tables, long found in zijes, see Pedersen, The Toledan Tables, 

vol. IV, pp. 1327–40.
44 Erfurt, UFB, CA Q377, fol. 44v; Saby, Les canons de Jean de Lignères, pp. 221–25, 426. 

An edition of these tables and canons is currently being prepared by M.-M. Saby and J. Chabás.
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lunar and solar velocities at that time. A single-entry table gives the solar and 
lunar equations and velocities as functions of the solar and lunar anomalies 
at mean syzygy. A double-entry table gives the time correction (to seconds!) 
as a function of the superatio (from 0;27, 0;28 … to 0;34°/hr) and the true 
elongation. To reduce the labor of interpolation, John broke the latter table 
into two parts, one with entries for elongations of 1, 2, …, 8 degrees, the other 
with entries for elongations of 1, 2, …, 36 minutes (for arguments greater than 
36 minutes, one must enter this table twice; perhaps he employed this format 
so that the minutes table could be written into a single folio?). Ibn al-Kam-
mād had included a similar table in his twelfth-century zij, which was trans-
lated into Latin in 1260. But such a table had not circulated with the Toledan 
Tables and it is unknown whether John of Lignères knew about Ibn al-Kam-
mād’s table.45 The Tabule magne thus reveal a Parisian astronomer crafting (or 
reformatting) a double-entry table for true syzygy.

Not surprisingly, the earliest and most widely copied canons to the PAT, 
John of Saxony’s 1327 Tempus est mensura motus primi mobilis (editio princeps, 
1483), also include a chapter on true syzygy.46 John outlined a three-step proce-
dure that does not require any dedicated tables. First, using the corrected lunar 
argument and correcting the lunar velocity with an algorithm he describes in 
words rather than introducing the small table (Eq. 5 and 6), one computes the 
time correction (τ), following al-Battānī’s method. Second, one computes the 
elongation at time t + τ and again at time t + τ + 0;01 day. He then computes 
a final time correction:
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τ∗ = −η∗
dη ,

where η* is the true elongation at t + τ, and dη is the change in true elongation 
over 1/60th of a day or 24 minutes. Rather than using approximated hourly 
lunar velocities as in the first step, now the exact elongations are found for a 
24-minute interval. The time of true syzygy is given by t + τ + τ*. Previously I 
have shown that John’s procedure invariably yields time corrections that agree, 
to the nearest minute, with times generated by brute-force computation of true 

45 See the article by Husson in this volume; Chabás and Goldstein, ‘Andalusian Astrono-
my’, p. 3.

46 Two earlier studies examined John of Saxony’s method, but neither fully understood 
its procedures or its relation to al-Battānī’s method as presented in the Toledan Tables. See 
Chabás and Goldstein, ‘Nicholaus de Heybech’, pp. 269–71; Kremer, ‘Thoughts on John of 
Saxony’s Method’. Both of these studies were hampered by accepting the text of the editio 
princeps as authoritative, although its printer, Erhard Ratdolt, presumably used only one, late 
manuscript that at times had been inconsistently reworded by scribes. In a later publication, 
I will offer a critical edition of John’s true syzygy chapter, collating the early and more reliable 
manuscripts to construct a text closer to John’s original.
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elongations at one-minute intervals with the PAT.47 Thus, by 1327, Alfonsine 
astronomers had available a computation technique that yielded ‘exact’ results 
to minutes and required no dedicated tables. Yet John’s method is very labo-
rious; one computes the true elongation and divides by the velocities not once 
but three times. The TP would reduce this labor considerably.

Finally, we must mention John of Murs’s 1339 Canones tabularum Alfonsii. 
They tersely describe the true syzygy problem, in only 134 words. As expli-
cated by Nothaft, this canon merely summarizes John of Saxony’s iterative 
method without fully describing all the steps. Only an ‘expert-level reader’, well 
practiced in John of Saxony’s method, could have followed the 1339 canon, 
concluded Nothaft.48 Evidently, by 1339 John of Murs had not yet invented 
the TP.

Cracking the Tabulae permanentes

Rather than simply announcing the algorithm behind the Tabulae permanen-
tes, I will instead summarize the steps I followed diachronically in seeking that 
algorithm. Tracing this ‘exploratory data analysis’ will enable us more fully 
to compare the various methods available, in the early fourteenth century, to 
find true syzygy. Lacking sources, we have no way of knowing, of course, what 
‘exploratory’ steps John of Murs himself followed as he worked on the problem.

To visualize the performance of the various algorithms, I will present only 
the residuals, in minutes of time, between their results. I will not deploy sta-
tistical tools but rather show the differences at 30° intervals in the two argu-
ments of the TP, viz., the solar and lunar anomalies (
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). Because the 
time interval is symmetrical around 180° of lunar anomaly, we shall consider 
the performance of the algorithms only for 0° ≤ 
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 ≤ 180°. 
This limited display of the data adequately illustrates the performance of the 
various algorithms for our purposes. Given our dating of the TP, we will ini-
tially assume that John of Murs took his solar and lunar equations from the 
PAT and velocity tables of John of Genoa (formulated at least by 1332).49

We begin with the Tabulae permanentes themselves, the tables whose algo-
rithm we are seeking (see the Appendix for our edition of the full set of tables).

47 Kremer, ‘Wenzel Faber’s Table’, p. 14; Kremer, ‘Thoughts on John of Saxony’s Method’, 
pp. 271–76.

48 Nothaft, ‘Jean de Murs’s Canones’, p. 116.
49 The PAT equations are given at one-degree intervals, John of Genoa velocities at six-de-

gree intervals. In both cases, I linearly interpolate as required and do not round intermediate 
results. I began with John of Genoa velocities, as edited from Paris, BnF, lat. 7282, fols 129r-v 
by Goldstein, ‘Lunar Velocity in the Ptolemaic Tradition’, pp. 12–13, since Nothaft recently 
has shown how John of Murs in his canons of 1339 may have been influenced by John of Ge-
noa’s Canones eclipsium of 1332. Cf. Nothaft, ‘Jean de Murs’s Canones’, pp. 117–22, and the 
forthcoming study of John of Genoa’s oeuvre by Laure Miolo.
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Fig. 1: TP in minutes of time. From Porres and Chabás, ‘John of Murs’s Tabulae’, p. 64.

Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 0;00 -2;19 -4;04 -4;47 -4;14 -2;29 0;00  2;29  4;14  4;47  4;04  2;19

 30 4;59 2;42 0;58 0;17 0;49 2;34 5;01  7;26  9;10  9;4”  8;59  7;15

 60 8;31 6;21 4;41 4;01 4;33 6;14 8;34 10;54 12;33 13;03 12;22 10;42

 90 9;40 7;38 6;40 5;27 5;57 7;32 9;44 11;55 13;28 13;56 13;18 11;44

120 8;15 6;19 4;50 4;16 4;44 6;13 8;18 10;21 11;50 12;1” 11;40 10;11

150 4;42 2;51 1;26 0;53 1;19 2;45 4;44  6;42  8;07  8;33  7;59  6;34

180 0;00 -1;49 -3;13 -3;46 -3;20 -1;57 0;00  1;57  3;20  3;46  3;13  1;49

Table 2 : Abridged TP in hours, for 0 < 
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 > 360°.

Table 2 abridges my edition to 30° intervals. As can be seen, the time correc-
tions range from 0 to ±14 hours of time. Fig. 1 offers a graphical representa-
tion of the tables, in minutes of time.

Seeking John of Murs’s algorithm, I began with Ptolemy’s method, widely 
known by both Arabic and Latin astronomers and well described in the Tole-
dan Tables and John of Lignères’s Tables of 1322. As can be seen in Table 3, 
Ptolemy’s results, in their first iteration, differ systematically from the TP, with 
deviations reaching a maximum of 10 minutes of time. Given that the maximal 
time interval is 14 hours, we might assume that a match to 10 minutes could 
capture the underlying algorithm of the TP; i.e., we do not know at what level 
of precision John of Murs was working. However, the distribution of the resid-
uals is systematic, not random, and we must suspect that Ptolemy’s algorithm 
misses some of John’s algorithm. And iterating Ptolemy’s algorithm a second 
time nicely reduces the true elongations to less than one arcminute of longitude 
but increases the deviations from the TP to more than 12 minutes of time.
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Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 0 1 1 2 2 2 0 -2 -2     -2 -1 -1

 30 -1 0 0 -1 0 -1 -3 -3 -3     -2 -1 -1

 60 2 0 0 0 -1 -1 -1 0 1  2 3 3

 90 7 4 3 1 1 1 3 5 8  9 9 8

120 7 5 4 2 2 3 4 7 8 10 10 9

150 4 2 2 0 1 1 2 5 6  6 6 5

180 0 -2 -2 -2 -2 -1 0 1 2  2 2 2

Table 3: Residuals, Ptolemy’s method minus TP, in minutes of time.

Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 0 0 0 0 0 0 0 0 0 0 0 0

 30 0 0 0 -1 0 0 0 1 1 1 1 1

 60 2 0 1 1 1 1 2 3 4 4 4 3

 90 4 2 1 1 1 2 4 6 8 8 7 5

120 2 1 1 0 0 1 2 5 4 5 4 4

150 1 0 1 0 0 0 0 2 2 2 1 0

180 0 0 1 0 0 0 0 0 0 0 -1 0

Table 4: Residuals, Ibn al-Kammād’s method minus TP, in minutes of time.

Ibn al-Kammād’s method requires slightly more work as it adds the solar 
velocity to the computation (Eq. 2). As can be seen in Table 4, this method 
also differs systematically from the TP, although by several minutes of time 
less than Ptolemy’s deviations. Incorporating the solar velocity, rather than esti-
mating this value as did Ptolemy, improves, but only slightly, our fit to the TP. 
A comparison of Tables 3 and 4 shows how well Ptolemy estimated the relative 
velocities of the luminaries with his 13/12 factor.

The third method described in the Toledan Tables sets the lunar anomaly at 
the midpoint rather than the beginning of the time interval between mean and 
true syzygy and corrects the lunar velocity for the second lunar anomaly (Eq. 5).  
We begin by considering the size of the adjustment of the lunar anomaly (
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).  
As can be seen in Table 5, correction to the middle of the time interval can 
shift the lunar anomaly by up to 4 degrees, with the magnitude of the shift 
directly proportional to true elongation between the luminaries.

If we use this corrected lunar anomaly in the Ibn al-Kammād algorithm (i.e., 
the third method of the Toledan Tables but without correcting the lunar veloc-
ity in Eq. 6) we find a much improved fit to the values of the TP (see Table 6).
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Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 0 -1 -1 -1 -1 -1 0 1 1 1 1 1

 30 1 -1 -0 -0 -0 -1 1 2 2 2 2 2

 60 2 -2 -1 -1 -1 -2 2 3 3 3 3 3

 90 3 -2 -2 -1 -2 -2 3 3 4 4 4 3

120 2 -2 -1 -1 -1 -2 2 3 3 4 3 3

150 1 -1 -0 -0 -0 -1 1 2 2 3 2 2

180 0 -1 -1 -1 -1 -1 0 1 1 1 1 1

Table 5: Caption of Table 5: ᾱcorr minus ᾱ

Caption of Table 6: αcorr minus TP

υm α = 0;32,56 − 0;41,49 ∙ cm α + 1 − cm α (12)

Δt t =
−η t

υm αcorr t − υs t
where (13)

αcorr t = α t − 13η t
24 (14)

2

, in degrees.

Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 -0 -0 0 -0 0 0 -0 0 0 0 -0 0

 30 -1 -0 0 -1 0 0 -1 1 0 0 -0 0

 60 -0 -1 0 -0 0 0 -0 0 0 0 -0 0

 90 -1 -0 0 -0 0 0 -0 1 1 0 -0 0

120 -0 -0 1 -1 0 0 -0 1 0 0 -0 0

150 -0 -0 1 -0 0 0 -0 1 0 0 -1 0

180 -0 -0 1 -0 0 0 -0 0 0 0 -1 0

Table 6: Residuals, Ibn al-Kammād’s method with 

Caption of Table 5: αcorr minus α

Caption of Table 6: ᾱcorr minus TP

υm α = 0;32,56 − 0;41,49 ∙ cm α + 1 − cm α (12)

Δt t =
−η t

υm αcorr t − υs t
where (13)

αcorr t = α t − 13η t
24 (14)

2

, in minutes of time.

Indeed, this procedure matches, to the nearest minute of time, eighty per-
cent of the entries in our abridged table; residuals for the remaining 16 entries 
amount to only ±1 minute of time. These residuals show no obvious symme-
tries around 180° of the solar anomaly or 90° of the lunar anomaly. Clearly, we 
have moved much closer to John of Murs’s algorithm for the TP.

We next complete the third method by including the corrected lunar veloc-
ity in our computation, a correction presented in John of Lignères’s Tables of 
1322 and John of Saxony’s canons of 1327 (Eq. 6). Table 7 indicates the mag-
nitude of these corrections, rounded to arcsecs/hour of lunar velocity, as spread 
across the arguments of the TP. As a function of the true elongation, this cor-
rection will never exceed 6 arcsecs/hour for Ptolemy’s geometrical models and 
the parameters of the PAT.

Table 8 presents the residuals between the TP and the fully implemented 
third method of the Toledan Tables, i.e., adding the small corrections to the 
lunar velocity. Comparison of Tables 6 and 8 suggests that John of Murs did 
not correct the lunar velocities in his algorithm; as the size of the lunar velocity 
corrections grows, so do the residuals between our algorithm and the TP. We 
conclude that John of Murs simplified the third method by ignoring the small 
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Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 0 -0 -1 -1 -1 -0 0 0 1 1 1 0

 30 1 -0 -0 -0 -0 -0 1 2 3 3 3 2

 60 3 -2 -1 -1 -1 -2 3 4 5 5 5 4

 90 4 -3 -2 -2 -2 -3 4 5 6 6 6 5

120 3 -2 -2 -1 -2 -2 3 5 5 6 5 4

150 2 -1 -0 -0 -0 -1 2 3 4 4 4 3

180 0 -2 -3 -3 -3 -2 0 0 1 1 1 0

Table 7: Corrections to lunar velocity, in arcsecs/hour.

Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 0 0 0 0 -1 0 0 0 1 0 0 0

 30 0 0 0 -1 0 0 0 1 1 1 1 0

 60 1 0 0 0 0 0 1 2 2 2 2 1

 90 -1 -1 0 -1 -1 -1 -1 -1 -2 -2 -3 -2

120 -1 -1 0 -1 -1 0 -1 -1 -2 -2 -2 -1

150 0 0 1 0 0 0 0 0 -1 -1 -1 -1

180 0 0 0 0 0 0 0 0 0 0 -1 0

Table 8: Residuals, third method minus TP, in minutes of time.

table presented in al-Battānī’s zij and the Toledan Tables and described by both 
John of Lignères and John of Saxony.

To test this finding, I next examined the performance of my algorithm, 
replacing the equations of the PAT with those of the Toledan Tables (maxi-
mum solar equation of 1;59,10 rather than 2;10,00 and maximum lunar equa-
tion of argument of 5;01,00 rather than 4;56,00) and with other velocity tables 
for the luminaries that appear in fourteenth-century manuscripts. We need not 
rehearse the particulars of these explorations. As we might expect, using the 
Toledan equations introduces systematic shifts of more than ±30 minutes of 
time in the results of the algorithm and destroys its close match to the values 
of the TP. Inserting the lunar velocities of the Toledan Tables (essentially those 
of al-Battānī), which range from 0;30,18 to 0;36,04 °/h, increases the differ-
ences in Table 8 to ±13 minutes of time. Inserting lunar velocities attributed 
in a single manuscript to John of Lignères,50 that essentially truncate to two 

50 Apparently, the solar and lunar velocity tables in Oxford, BL, Canon. Misc. 499, 
fols 41v–42r, 154v–155r, were first attributed to John of Lignères by Rosińska, Scientific Writ-
ings, p. 408, based on two marginal annotations by a later hand in this manuscript. Goldstein, 
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significant digits the velocities of John of Genoa and correct significant errors 
in the two final values of the latter (see Table 9), slightly worsens the fit to 
the TP, especially for the lunar anomaly of 180°. I have found no other lunar 
velocity table, circulating in Paris the first third of the fourteenth century, that 
improves the fit in Table 6.

To complete this exploratory analysis, I considered finally the performance 
of my proposed algorithm against the full TP with 1860 entries. Using my ini-
tial version of John of Genoa’s velocities, my algorithm matched, to the nearest 
minute of time, 1400 of the entries. The residuals, mostly ±1 minute of time, 
were randomly scattered across the table; however, for lunar arguments of 96° 
and 102°, deviations of 1–2 minutes of time appear for nearly every entry (a 
pattern not seen in my earlier analysis using the abbreviated 30-degree intervals 
of the table). Clearly one component of my algorithm, a function of the lunar 
anomaly, was not behaving properly.

Two components of the algorithm are functions of the lunar anomaly, viz., 
the lunar equations of PAT and the lunar velocities of John of Genoa. Pre-
sumably the former are well known. Some years ago, Goldstein showed that 
the latter include some discrepant values. Goldstein proposed an algorithm for 
John of Genoa’s lunar velocities, based on Ptolemy’s final lunar model, i.e., tak-
ing into account both anomalies:

Caption of Table 5: αcorr minus α

Caption of Table 6: αcorr minus TP

υm(α) = 0;32,56 − 0;41,49 ∙ [cm(α + 1) − cm(α)] (12)

Δt t =
−η t

υm αcorr t − υs t
where (13)

αcorr t = α t − 13η t
24 (14)

2

where cm are the lunar equations of PAT and the velocity is a function of the true 
rather than mean lunar anomaly (however, at mean syzygy, the mean and true 
lunar anomalies are equal).51 Using Eq. 12, I found four significantly discrepant 
values in John of Genoa’s lunar velocities at 6° intervals. And I began to collate 
additional copies of these lunar velocities, expanding beyond Goldstein’s single 
witness and confirming the four discrepant values he had identified (see Table 9).52

‘Lunar Velocity in the Ptolemaic Tradition’, pp. 11–14, accepted this attribution and noted 
that the same velocity table is found in an early printed edition of the Tabulae resolutae. This 
velocity table, however, does not appear in the two sets of tables firmly attributed to John of 
Lignères (the Tabule magne and the Tables of 1322). In a talk at the Paris Observatoire in 
September 2018, Alena Hadravova argued that Oxford, BL, Canon. Misc. 499, is associated 
with several other manuscripts (Toruń, University Library, 74; Prague, National Library, X.B.3 
and Cracow, Biblioteka Jagiellońska, 610), all originating in Prague around 1450. I would guess 
that the abridged (only to seconds) and corrected version of John of Genoa’s lunar velocities, 
found in Oxford, BL, Canon. Misc. 499, originated in Prague around 1450 and was copied 
into some manuscripts containing the Tabulae resolutae. At some point well after 1450, an 
anonymous annotator attributed the tables to John of Lignères, a claim I find dubious. We 
have yet to find another scribe who repeated the attribution in Oxford, BL, Canon. Misc. 499.

51 Goldstein, ‘Lunar Velocity in the Ptolemaic Tradition’, pp. 8–9.
52 Using PAT equations and factors of 0;32,56,28 and 0;41,48,00 in Eq. 12, my computed 

lunar velocities match, to the nearest third, the values in my working edition collating 14 man-
uscripts, except for one case with a deviation of 1 third. Laure Miolo, currently editing John 
of Genoa’s astronomical works, kindly provided me with a list of relevant manuscripts. I have 

Caption of Table 5: αcorr minus α

Caption of Table 6: αcorr minus TP

υm α = 0;32,56 − 0;41,49 ∙ cm α + 1 − cm α (12)
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) Mss value Computed value

096 0;33,08,31 0;33,05,31

102 0;33,30,36 0;33,23,36

174 0;36,53,15 0;36,51,15

180 0;36,58,54 0;36,53,20

Table 9: Deviations in John of Genoa’s table of lunar velocities. 

Interestingly, if I insert the recomputed ‘correct’ values into John of Murs’s 
algorithm for lunar arguments of 96° and 102°, I increase the number of exact 
fits in the TP for those rows from 6 to 84 (of the 120 entries). But the ‘correct’ 
velocities for lunar arguments of 174° and 180° decreases the number of exact 
fits from 106 to 89 (of the 120 entries). It appears as if John of Murs used a 
copy of John of Genoa’s lunar velocities with ‘correct’ values for lunar arguments 
96° and 102° and ‘incorrect’ values for lunar arguments 174° and 180°. Of my 
14 witnesses for John of Genoa’s velocities, the two Oxford manuscripts give 
the ‘correct’ values for lunar arguments 102° and 174°. I have not found a copy 
of John of Genoa’s velocity tables that lists ‘correct’ values for lunar arguments 
96° and 102° and ‘incorrect’ values for lunar arguments 174° and 180°. But 
apparently John of Murs had such a table as he computed entries for the TP.53

In any case, if we ‘correct’ John of Genoa’s lunar velocities only for lunar 
arguments 96° and 102°, my algorithm matches the values of the TP to the 
nearest minute of time in 1504 of the 1860 cases (81 percent) cases (Table 10). 
The deviations of ±1 minute of time are scattered randomly across the table, a 
claim from exploratory data analysis that I ground not in statistics but simply 
from observing that the sums of the non-zero cases by row and by column  
are fairly uniform and the distribution of the black and shaded cells across the table 
reveals no obvious patterns. The non-zero residuals in Table 10 reflect ‘noise’ in 
John’s computational procedures (rounding, interpolation, truncation, etc.) and 
not any systematic variation arising from differences between his and my algo-
rithm. Only in two cases do John’s results differ by 2 minutes of time from mine.

collated Paris, BnF, lat. 7282, fol. 129r; BnF, lat. 7286C, fol. 56v; BnF, lat. 7295A, fol. 137r; 
BnF, lat. 7284, fol. 55r; Vatican, BAV, Reg. lat. 1241, fol. 152v; Vatican, BAV, Pal. lat. 446, 
fol. 93r; Vatican, BAV, Pal. lat. 1374, fol. 47r; Vatican, BAV, Ott. lat. 1826, fol. 148v; Cra-
cow, Biblioteka Jagiellońska, 459, fol. 30v; Cracow, Biblioteka Jagiellońska, 563, 93r; BJ 613, 
fol. 60r; Prague, National Library, XIII-C-17, fol. 169r (all fifteenth century) and Oxford, BL, 
Hertford 4, fol. 148r; Oxford, BL, Digby 97, fol. 130v (both fourteenth century).

53 Interestingly, John of Gmunden computed a table of lunar velocities at 1° intervals to 
thirds, with factors very close to those used by John of Genoa. His values vary by no more 
than several thirds from John’s. Edited by Porres, Les tables astronomiques, pp. 329–33. John 
of Gmunden’s velocities frequently appear in codices also bearing the TP (BPSVUV2). If I use 
John of Gmunden’s velocities in my algorithm, I match to the nearest minute 1471 entries (75 
percent), only slightly fewer than when I use John of Genoa’s velocities with two ‘incorrect’ 
values. We might wonder whether any early users of the 6 manuscripts holding both the TP 
and John of Gmunden’s velocities ever used the latter to explore the former.
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Argumentum solis

Arg lune 0 30 60 90 120 150 180 210 240 270 300 330

  0 -0 -0 0 -0 -0 0 -0 0 0 -0 -0 -0

 30 -1 -0 0 -1 -0 0 -1 0 0 -1 -0 -0

 60 -0 -1 0 -0 -0 0 -0 0 4 -3 -4 -1

 90 -1 -0 0 -0 -0 0 -0 6 5 -5 -5 -5

120 -0 -0 1 -1 -0 0 -0 1 4 -4 -4 -0

150 -0 -0 1 -0 -0 0 -0 1 0 -0 -1 -0

180 -0 -0 0 -1 -1 0 -0 0 1 -1 -0 -0

Table 11: Time correction residuals, ‘computed directly’ minus TP, in minutes of time. 
Cf. Table 5.

Finally, we might ask how closely the approximative algorithm of the TP repro-
duces the time correction for true syzygies computed directly (i.e., no velocity 
tables required) with the PAT, i.e., manually varying the time correction by 
one-minute intervals until the true elongation is less than one minute of longi-
tude (Table 11). These directly computed time corrections consistently match 
those of the abridged TP to ±1 minute of time for corrections less than about 
11 hours. For corrections exceeding 11 hours, the TP corrections differ from 
the directly computed values by up to 6 minutes of time. Hence, if Alfonsine 
astronomers had sought to compute to a precision of minutes, the approxima-
tions in the algorithm of the TP would have thwarted their goal for about two 
or three of the 24 or 25 syzygies in any given year. Only the more laborious 
methods of Ptolemy or John of Saxony could have achieved a precision of min-
utes for all PAT syzygy computations.

Peurbach and the Tabulae permanentes

Georg Peurbach in the 1450s prepared an expanded version of the TP, decreas-
ing the intervals of solar argument from 6 to 2 degrees and the intervals of 
lunar arguments from 6 to 1 degrees. Peurbach’s version thus increases the size 
of the table from John of Murs’s 1860 to 32,400 entries. With smaller dis-
tances between respective entries, Peurbach’s version makes it easier for users 
to interpolate in the double-entry table. However, the differences between suc-
cessive entries can still exceed 10 minutes of time and this user, at least, cannot 
perform the double interpolations simply with mental arithmetic.54

Many manuscript copies of Peurbach’s expanded version are known, includ-
ing:

54 For a pioneering study of interpolation procedures for double-entry tables of the early 
fourteenth century, see Husson, ‘Ways to Read a Table’.
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Nuremberg, SB, Cent. V 57, fols 112v–136r. Includes Peurbach’s eclipse 
canon (Th/K 1562) and tables. Regiomontanus autograph (‘Tabula 
eclipsium M. Georgii Peurbach preceptoris mei’, fol. 108r), Vienna, dated 
1460–1461. Also contains Regiomontanus’s autograph of Giovanni 
Bianchini’s astronomical tables.55

Paris, BnF, lat. 7288, fols 17r–40r. Includes Peurbach’s eclipse canon (Th/K 
1562) and tables.

Munich, BSB, Clm 19550, fols 163v–187r. Includes Peurbach’s eclipse 
canon (Th/K 1562) and tables, John of Saxony’s canon and parts of 
the PAT. Mid 15th c., Tegernsee.56

Vienna, ÖNB, lat. 5412, fols 186v–211r. Includes Peurbach’s eclipse canon 
(Th/K 1562), explicit dated 1501, and tables, in same hand.57

Venice, Biblioteca Nazionale Marciana, lat. 342. Peurbach’s autograph 
eclipse canon (Th/K 1562) and tables for the meridian of Grosswardein 
(Tabulae Waradienses), dated 1460.58

Vienna, ÖNB, lat. 5291, fols 100–63. Includes Peurbach’s eclipse canon 
and tables for Grosswardein. Regiomontanus autograph.

Editio princeps, 1514, sig. a3v-d3r.59 Part of Peurbach’s eclipse canon and 
tables.

Did Peurbach know John of Murs’s algorithm and compute the additional 
entries in the expanded version? Or did he simply create the additional values 
by linear interpolation from the entries at six-degree intervals in John’s table? 
Comparison of the two versions indicates that Peurbach carefully copied all 
the values John had provided; even if Peurbach knew John’s algorithm, he cer-
tainly did not independently recompute the values John had provided.60

55 Neske, Die Handschriften der Stadtbibliothek, pp. 90–91.
56 Porres, Les tables astronomiques, p. 79.
57 Porres and Chabás, ‘John of Murs’s Tabulae permanentes, p. 65, date this copy of the 

true syzygy table to 1444. That date appears in this codex, in the explicit of a copy of John of 
Gmunden’s treatise on the albion (fol. 154v), but the quires containing Peurbach’s canon and 
expanded version of the TP clearly were copied in 1501.

58 I have not seen this manuscript that was, according to Valentinelli, Bibliotheca Manu-
scripta, vol. II, pp. 265–66, owned by Bessarion, who wrote on the flyleaf: Tabulae eclypsium 
solis et lunae, noviter compositae per non minus philosophum quam doctum, doctissimum tamen 
virum Georgium de Peuerbach.

59 Tanstetter, Tabulae eclypsium.
60 I have found only three instances where Peurbach’s times differ from those of the TP. 

For entry 126:138, three manuscripts and the printed version read 3;17h for the correct 3;07h 
(Vienna, ÖNB, lat. 5412 gives the correct value); for 300:156, four manuscripts and the print-
ed version read 7;05h for the correct 7;04h; and all four manuscripts and the printed version 
make a two-place column slip at 354:60. None of these differences match those I find in the 
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To explore whether Peurbach interpolated or recomputed the additional 
entries we can compare his values against those computed, by linear interpo-
lation, from the TP and against those computed according to the algorithm 
we have found for John of Murs’s tables. To avoid complications of trying to 
determine which scheme for double-entry interpolation may have been used, 
I limit this analysis to interpolations within a single column in the table, i.e., 
to single-entry interpolation.61 Since gaps between entries are largest at the ends 
rather than middle of a column, I consider three columns from Peurbach’s 
table, for solar arguments of 0°, 6° and 108° and lunar arguments in one-de-
gree intervals from 0° to 42°. If I linearly interpolate between John’s values at 
6° intervals, I match Peurbach’s values (to the nearest minute of time) for our 
three test columns in 67, 77, and 72 percent of the 43 cases. If I recompute the 
columns with John’s algorithm, I match Peurbach’s values in 54, 42 and 86 
percent of the same cases. These results do not conclusively prove that Peur-
bach interpolated or recomputed. But since I consider it quite improbable for 
Peurbach to have known about John of Genoa’s lunar velocities, it seems likely 
that Peurbach interpolated rather than recomputed his expanded table. Perhaps 
he smoothed the interpolations with mental rather than pencil-and-paper oper-
ations, which might explain why about one-third of his cases vary from my 
exact interpolation by 1 minute of time.62

The Manuscript Witnesses

At present, the Tabulae permanentes are found in fifteen manuscripts, all dat-
ing from the middle third of the fifteenth century (see the Appendix for full 
descriptions and details).63 No other astronomical work by John of Murs has so 
many surviving witnesses.64 As can be seen from Table 12, the manuscripts fall 
into several groups. The earliest witness (B), from the 1430s and offering the 
most mathematically consistent version of the tables (i.e., fewest scribal errors), 
is an autograph by the early fifteenth-century Viennese astronomer, John of 
Gmunden. Another five manuscripts (SPUVG) embed the TP within copies of 
Gmunden’s tables, date from the 1430–50s, have relatively few scribal errors, 
and in all cases but one tabulate differences between successive entries in both

15 manuscript witnesses for the TP, so I cannot add the Peurbach manuscripts to my stemma 
in Fig. 2.

61 Cf. Husson, ‘Ways to Read a Table’.
62 I will offer further analysis of Peurbach’s interpolation techniques in a later publication.
63 Porres and Chabás, ‘John of Murs’s Tabulae permanentes’, pp. 64–65. E was first identi-

fied by Husson, Les domaines d ’application, p. 242. I thank José Chabás for generously helping 
to identify additional manuscripts not listed in these earlier studies.

64 John’s Musica speculativa, written at the Sorbonne in 1323 and revised in 1325, survives 
in 58 copies according to Desmond, Music and the moderni, p. 100. For critical editions of this 
text, see Falkenroth, Die ‘Musica speculativa’; Fast, Johannes de Muris Musica.
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MS
sigla

Canon Placement in codex Date
Scribal 
errors

Tabulated 
differences

B Omnis (explicit) within Gmunden’s tables 1433–1437  1 yes

S no within Gmunden’s tables 1437  2 yes

P Omnis (explicit) within Gmunden’s tables 1436–1439 14 yes

V Sciendum within Gmunden’s tables 1440–1443  9 no

U Omnis abbreviated within Gmunden’s tables 1444 11 yes

G Omnis within Gmunden’s tables 1458  8 yes

Pa no with JL’s Tables of 1322 1442  9 yes

E no with JL’s Tabule magne 1446 32 no

Me Omnis (explicit) with Hermann of Saxony’s 
tables

1450 54 yes

N Omnis with Oxford Tables 1452 31 yes

C no with Bianchini’s tables 1452 21 yes

V3 no with JL’s Tables of 1322 1450 41 first col.

M Omnis (explicit) within Oxford Tables 1450 62 first col.

V2 Omnis (explicit) within Oxford Tables 1458 25 first col.

V1 Omnis (explicit) with mean syzygies 1463–1464 25 no

Table 12: Overview of the fifteen manuscripts containing the TP.

rows and columns. With the explicit referring to John of Murs and Firmin 
appearing only in B and P, scribes copying the ‘Gmunden manuscripts’ may 
well have assumed that Gmunden had authored the TP (as did some twenti-
eth-century historians).

A seventh manuscript (N), copied by Regiomontanus in 1452, is not bound 
with Gmunden’s tables. But Regiomontanus, who had matriculated at the 
university of Vienna in 1450 and in 1452 copied Gmunden’s tables in a sepa-
rate codex, surely was well acquainted with Gmunden’s works and must have 
encountered a copy of the TP in Vienna. Interestingly, Regiomontanus, known 
to be a very fastidious computer of ephemerides, introduced relatively many 
scribal errors into his autograph; only one of his deviations, however, corre-
sponds with those in other manuscripts, so presumably his original was close 
to B or S.

A second group of manuscripts (PaMeE), written in the 1440s, uniquely 
have two scribal deviations in common; PaMe have another 3 deviations in 
common. These 5 deviations differ by only ±1 minute from my vulgate edition 
based on B in the Gmunden family. Pa alone contains another two ±1 min-
ute deviations from my edition, which prompts us to ask whether this group 
of manuscripts might be closer to John of Murs’s original version than is the 
Gmunden family with its Viennese roots. Of the seven ±1 minute deviations 
in this group, only four match my computed values; I hesitate to conclude, 
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therefore, that the second group of witnesses is ‘closer’ to the original than is 
the Gmunden group.

The provenance of the manuscripts in this group is also uncertain. E was 
copied in Erfurt in 1446. The large collection of astronomical manuscripts, 
assembled by Amplonius Rating de Berka and donated to Erfurt’s university 
library in 1410, includes nothing by Gmunden.65 The source of E is a mystery. 
The quire bearing the TP in Me is written on paper dating to c. 1450 from 
Metz (current location of Me) and to c. 1440 from Vienna; Me also has the 
canon with explicit. Perhaps a student from Metz, studying in Vienna, made 
this copy during his sojourn in the latter city?

A third group of manuscripts (MV1V2V3) was produced in the 1450s by 
scribes at the St Emmeram cloister in Regensburg, where, as is well known, 
interest in astronomy, mathematics and geography had surged in that decade 
due to the efforts of two monks, Friedrich Amann and Hermann Pötzlinger. 
The latter in 1439 had earned a baccalaureate degree in Vienna and was an 
avid bibliophile, bequeathing at his death in 1469 more than 100 manuscripts 
to St Emmeram. He surely could have conveyed Gmunden material, including 
a copy of the TP, from Vienna to Regensburg.66 The ‘Regensburg manuscripts’ 
have more scribal errors in the table (generally not tabulating differences), yet 
consistently include the canon with explicit.

Despite the flourishing of Alfonsine astronomy in fifteenth-century Italy, 
only one witness (C), now bound with the astronomical tables of Giovanni 
Bianchini, is known today in Italian libraries. C apparently was copied around 
1452 in Italy. Its rubric, alone among all the witnesses, states that the TP 
were ‘composita’ (compiled or arranged) in Erfurt. I have found no evidence 
that corroborates such a claim. Of our 15 witnesses, only C presents the argu-
ments in natural signs of 60 degrees; the others all use physical signs of 30°. 
As is well known, copies of the PAT by the end of the fourteenth century 
increasingly revise the mean motions from sexagesimal days to collected years 
and from physical to natural signs. Apparently the Erfurt source for C used 
physical signs; the Vienna source for B and the Gmunden manuscripts used  
physical signs.

An analysis of variant entries in the 15 witnesses broadly corroborates the 
groupings we have suggested on codicological grounds. In these copies, I have 
identified 253 variant entries (14 percent of the total 1860 entries), of which

65 Cf. Schum, Beschreibendes Verzeichniss.
66 For example, Munich, BSB, Clm 14583, largely an autograph by Amann written from 

1447–1454, is filled with Gmunden’s astronomical texts and tables, some reworked for the me-
ridian of Regensburg. Munich, BSB, Clm 14111 also contains much astronomical material in 
the hands of Amann and Pöltzinger. Cf. Folkerts, ‘Fridericus Amann’; Rumbold, ‘The Library 
of Hermann Pötzlinger’; Rumbold, ‘Lehren und Lernen’.
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Manuscripts Number

BPVUMV3GV1V2, writing ‘10’ for ‘19’ 1

PMEV3V1V2, writing ‘16’ for ‘56’ 1

PMV3V1V2 6

MV3V1V2, writing ‘59’ for ‘49’ 1

PMMeE 2

UCN, writing ‘32’ for ‘22’ 1

UGC, writing ‘49’ for ‘41’ 1

V1V2 6

MV3, writing ‘9’ for ‘8’ 1

MePa 5

MeE 3

MeV3, writing ‘2’ for ‘3’ 1

MeV1, writing ‘57’ for ‘59’ 1

VM, writing ‘48’ for ‘44’ 1

Table 13: Numbers of shared variant entries among the fifteen manuscripts. Sets in bold font 
cannot be directly explained by my proposed stemma.

208 are variations that occur in only one manuscript.67 The remaining 49 
variants occur in 2 or more witnesses (see Table 13). Given the relatively large 
changes in value between successive entries in either rows or columns of the 
TP, it seems unlikely that different scribes would enter identical variant values 
unless they were working from a common source. A conscientious scribe, on 
the other hand, might refer to the tabulated differences listed in his source and 
correct errors in his copy.68 The 49 common variants thus can at best suggest 
only a tentative genealogy for the manuscripts (see Fig. 2).69

67 Statistical analyses of scribal errors in astronomical tables remains a desideratum for 
scholarly research. But cf. the chapter by Husson in this volume and Chabás, ‘The Astronom-
ical Tables of Jacob Ben David Bonjorn’, p. 281, who found in the late fifteenth-century tables 
of Jacob ben David Bonjorn a scribal error rate of 1.15 percent (1227 errors in 100,000 en-
tries). Error rates in our witnesses range from less than 0.05 percent (B) to 3.2 percent (M).

68 Our proposed stemma requires that MeE corrected one, V1V2 corrected one, and V3 two 
values. Another five shared sets of variants cannot easily be explained by our stemma.

69 Note (Table 1) that the differences some scribes placed between successive entries in 
both rows and columns did not necessarily reduce variants; yet most of the low-variant man-
uscripts do display differences and most of the high-variant manuscripts do not, with several 
exceptions.
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Fig. 2: Tentative stemma of the TP manuscripts. ‘x’ refers to the original copy by John and 
Firmin. Transmission to unknown copies in Erfurt (α, with natural signs) and Vienna (β, with 
physical signs) cannot be traced. Filled circles signify the ‘Gmunden group’ of manuscripts, 
squares the ‘Regensburg group’. Triangles share relatively few variants with other manuscripts.

Readers might wonder about differentiating between scribal and computa-
tional ‘errors’. However, the algorithm I propose for the TP can reproduce, to 
±1 minute of time, all 1860 values recorded in witness B, except for two cases 
where the residuals reach −2 minutes of time and one case (294:24) where B 
joins eight other manuscripts in writing 8;10 hours for the ‘correct’ 8;19 hours. 
If my algorithm is correct, we can assume that B records the computationally 
‘correct’ values with a single exception (the correct 8;10 hours appears in the 
remaining six manuscripts). Since it seems highly unlikely that another medie-
val author recomputed the TP, we can thus consider all variants from B to be 
scribal in nature.

The six ‘Gmunden manuscripts’ contain relatively few scribal errors and 
these rarely overlap among the set. We might surmise that the Gmunden set 
were copied, independently, from a ‘good’ original in Vienna (B shows 1 scribal 
error, S has 2). The four ‘Regensburg manuscripts’, on the other hand, have con-
siderably more deviations, with 8 in common and another in three (V1, V2, V3) 
of the four witnesses. V1 and V2 further share 6 common errors; surely one was 
copied from the other. Only one error (294:24) occurs in all the ‘Regensburg 
manuscripts’ and five of the ‘Gmunden manuscripts’ (not in S); this suggests 
that both sets shared a common progenitor with that error. It seems unlikely 
that scribes writing the other four manuscripts (Me, E, C, and N) caught and 
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corrected that error in their source; their progenitors may have been α and β, 
one generation earlier than B. These deviations suggest a stemma for our 15 
manuscripts (see Fig. 2). It remains mysterious how a copy as good as B could 
have reached Vienna nearly a century after John and Firmin authored the text 
in northern France. Perhaps Gmunden understood the TP well enough to have 
expunged scribal errors from his source (e.g., by smoothing entries ‘by eye’)?

As indicated in Table 12, two canons circulated with the TP. Those 
attributed to John of Murs and Firmin in the explicit appear in nine of the 
manuscripts, with the incipit: Omnis utrisque sexus armoniam … (Th/K 1004). 
In 1440, John of Gmunden abbreviated this canon, dropping some sentences 
and expanding instructions for using the double-entry table, with the incipit: 
Sciendum quod in hiis tabulis per supponintur tempus medie … This version 
appears, however, only in one of the ‘Gmunden manuscripts’. Five of the manu-
scripts lack canons; but given the vagaries of binding, we cannot conclude that 
these copies of the TP originally circulated without instructions.

All fifteen of our manuscripts are astronomical miscellany; some include 
more or less complete sets of eclipse tables. Evidently, the TP by the middle of 
the fifteenth century had become a useful tool for astronomers computing true 
syzygies (required for monthly astrological weather prediction) and eclipses. 
Peurbach by 1459 would complete a new set of eclipse tables which feature an 
expanded version of the TP, reducing the intervals between successive entries 
and thereby making double interpolation easier. Since we have no copies of the 
TP written after the 1450s, we might guess that by this date, Peurbach’s ver-
sion, to be printed in 1514, had quickly replaced the TP for most working 
astronomers.

Finally, the 253 variant entries in the manuscripts reveal insights into scribal 
practices of copying astronomical tables in the final decades before the advent 
of European printing with moveable type. As can be seen in Table 12, 198 of 
these variants (78 percent) occur in manuscripts that do not tabulate differ-
ences between successive entries. Apparently the extra labor required to record 
differences reduced the number of scribal errors; whether the scribes themselves 
realized this, however, is another question.

About 88 percent of all the scribal errors (Table 14) involve miscopying a 
single digit in an entry. The most common errors appear in the first digit of 
the minutes of an entry, generating errors of 10, 20, etc. minutes in total value 
(85 cases). Roughly half this number of errors (51 cases) appear in the hours of 
an entry, creating errors of 1, 2, etc. hours (surely a more recognizable error for 
scribes or users of the tables). Another 106 cases involve miscopying the final 
digit of the minutes, generating errors of 1 to 9 minutes in the total absolute 
value. Among these single digit errors, the most frequent replacements are writ-
ing a ‘3’ for a ‘2’ (39 cases), a ‘2’ for a ‘3’ (23 cases), a ‘5’ for a ‘4’ (13 cases), a ‘4’ 
for a ‘5’ (9 cases), a ‘1’ for a ‘2’ (10 cases) and a ‘2’ for a ‘1’ (7 cases). Summing
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Absolute 
value

Number
Absolute 

value
Number

10ʹ 66 1ʹ 43

20ʹ  8 2ʹ 18

30ʹ  5 3ʹ 10

40ʹ  5 4ʹ  9

1h 47 5ʹ  7

3h  2 6ʹ  6

4h  2 8ʹ  8

9ʹ  5

Table 14: Frequency of scribal errors in the 15 manuscripts, sorted by absolute value of the 
scribal error.

the total number of cases in which a given digit appears in a single-digit scribal 
error yields similar results. The digit ‘2’ is involved in 96 cases, ‘3’ in 81 cases, 
‘4’ in 59 cases, ‘5’ in 38 cases, and ‘1’ in 35 cases. Scribes of mid fifteenth-cen-
tury astronomical tables appear to have shared difficulties in recognizing given 
numerical digits.

Scribal errors involving two or three incorrect sexagesimal digits in a given 
entry appear far less frequently than the single-digit errors. Scribes occasion-
ally transposed digits (e.g., writing 11;04 for 11;40). More generally, multi-digit 
errors result from what we might call ‘column slippage’, i.e., the successive val-
ues in a column have been correctly copied, relative to each other, but shifted 
up or down by several rows or columns in the table. These vertical slippages 
strongly suggest that scribes copied successive entries moving down the folio, 
writing the numbers column-by-column and not row-by-row.

N, an autograph of Regiomontanus, contains an example of column slip-
page at solar argument 126°, starting at lunar argument 0° and continuing 
until lunar argument 72° (13 entries in the minutes column). The first or top 
minutes entry in the column should be ‘58’; but Regiomontanus placed the 
next entry ‘55’ in the top position, thereby shifting each minutes entry up one 
row until writing the entry 5;58h at lunar argument 72°. He then returned to 
the correct place in his original and wrote 5:58h again at lunar argument 78° 
and wrote correctly the final two entries in the column. Regiomontanus also 
correctly wrote all the differences in this column, obviously not checking his 
entries against the differences.

Similarly, the scribe of V3 erroneously repeated a minutes entry and then 
returned to his original, thereby shifting the minutes down one row for the 
next 13 entries. He then skipped an entry and returned to placing entries in 
their proper rows for the remainder of the column.70

70 V fol. 57r, 102:48 to 102:126.
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Fig. 3: Me, fol. 82r detail, showing column slippage. All entries within the black outline are 
erroneous. The erroneous minutes entries from 45 to 8 are shifted downward from the previ-
ously written column as are the erroneous hours entries 11, 11, 10.

Our third example combines both column and row slippage in Me, a man-
uscript showing 52 total errors, the second highest number among our wit-
nesses. This scribe correctly copied all entries in the columns for solar argu-
ments 306° and 312° down to lunar argument 102° (312:102 = 12;06h). As 
can be seen in Fig. 3, he had just written the digit ‘12’ six times sequentially; 
he then erroneously inserted the digit ‘12’ for five additional rows before 
returning to his original and copying correctly the sequence ‘11 11 10 10’. 
He then skipped 5 entries for the hours and correctly completed the column 
by copying ‘5 4 3 2 1’. The column for hours thus contains five extra ‘12’s 
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and lacks the sequence ‘9 8 8 7 6’. The minute entries for this section show a 
different slippage, now from the previous row. After correctly copying 12;06, 
he then recorded the next 7 minutes entries from the previous column of his 
original, shifted up 4 rows, writing successively ‘47 45 38 25 5 40 8’ rather 
than the correct ‘47 22 51 15 36 51 3’. He records correct minutes for the 
remaining 6 minutes entries of the column, including the first two that have 
erroneous hours. Our scribe also recorded the ‘correct’ differences between suc-
cessive entries in this column, i.e., presumably correctly following his original 
manuscript. The only way to explain this pattern of slippage, I think, is to 
assume that the scribe of Me copied digits sequentially by column, the hours 
(brown ink), minutes (brown), and differences (red), and that he did not use 
the differences to control for errors in successive entries down the column.

Given our identification of scribal errors by using B and our proposed algo-
rithm for the TP, we are thus able to i) suggest a stemma for the surviving 15 
manuscripts and sort them into groups by provenance; ii) gain new insights 
into the types of scribal errors that populate mid-fifteenth-century astronom-
ical tables; and iii) argue that at least some scribes wrote successive entries by 
moving down the columns and not across the rows of each folio. And it appears 
that the tabulated differences sometimes, but not always, reduced scribal errors; 
we might hypothesize that the primary function of the differences was not to 
help scribes but rather to aid users in double-entry interpolation.71

Conclusion

Based on this exploratory data analysis, I conclude that the TP were computed 
with the following algorithm:

Caption of Table 5: αcorr minus α

Caption of Table 6: αcorr minus TP

υm α = 0;32,56 − 0;41,49 ∙ cm α + 1 − cm α (12)

Δt(t) =
−η(t)

υm(ᾱcorr(t)) − υs(t)
, where (13)

ᾱcorr(t) = ᾱ(t) − 13η(t)
24 , (14)

2

and t = the time of mean syzygy, η(t) = cm(t) – cs(t) with the PAT equations, 
and the solar and lunar velocities are John of Genoa’s, with ‘correct’ values for 
lunar arguments 96° and 102° and ‘incorrect’ values for lunar arguments 174° 
and 180°. With this algorithm, I match to ±1 minute of time 1858 of the 1860 
entries of the TP; in 1535 cases (83 percent), the algorithm exactly matches the 
TP entries of my edition.

71 Occasionally errors appear that demonstrate that scribes did attend to the tabulated dif-
ferences. Me 48:66 reads 5;05h, an erroneous entry because the scribe (incorrectly) subtracted 
the listed difference of 28 minutes rather than adding it to the previous entry of 5;36h. The 
correct value should be 5;36h plus 28 minutes or 6;04h.
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As we have argued, this algorithm is a compromise. It implements al-Bat-
tānī’s correction of the lunar anomaly to the midpoint of the time interval 
between mean and true syzygy, as described in the Toledan Tables and in 
John of Saxony’s 1327 canon. But it does not include al-Battānī’s next step of 
correcting the apparent lunar velocity as the distance between the Earth and 
the lunar epicycle shifts. Unlike many cases in which Alfonsine astronomers 
constructed user-friendly formats that obtain identical quantitative results with 
‘easier’ computations, the TP represent a case where an increase in user-friend-
liness is accompanied by approximations that decrease the quantitative preci-
sion of the results.72

In earlier publications, I showed that the TP, in the expanded form of Peur-
bach, generally match the results of John of Saxony’s iterative method to ±1 
minute of time; however, when the time correction is large, more than about 
12 hours, the TP (by neglecting to correct for shifting Earth-lunar epicycle 
distance) can differ from the iterative method by 4 to 6 minutes of time.73 
Had John of Murs realized this behavior in his algorithm and concluded that 
a precision of ±6 minutes was adequate for the practice of Alfonsine computa-
tion? Or had he concluded that the small correction (reaching a maximum of 
only 6 arcsecs/hour in lunar velocity) could be ignored? No sources allow us 
to answer this question. However, in the Escorial manuscript filled with John 
of Murs’s annotations and computations, we find in John’s hand a copy of the 
small al-Battānī/Toledan table for correcting the lunar velocity, written beside 
a set of solar and lunar velocities that are known only from two earlier Islamic 
zijes but not in any Latin manuscripts.74 This suggests that John of Murs knew 
the al-Battānī lunar velocity correction table but decided not to insert it into 
the TP algorithm. To save computational labor, John of Murs apparently was 
willing to introduce approximation into the syzygy problem.

In any case, John and Firmin were quite proud of the TP. As their liter-
ary-minded readers might have recognized, the explicit to the TP canons ele-
vates their work to the plane of Jerome’s Vulgate, Bede’s scriptural commen-
taries, and Matthew of Vendôme’s elegiac poetry. Not bad company for two 
astronomer-astrologer-computists of the 1340s.

72 For another example of an Alfonsine astronomer increasing user-friendliness by intro-
ducing approximations that reduce quantitative precision, see Kremer, ‘Abbreviating the Al-
fonsine Tables’.

73 Kremer, ‘John of Murs, Wenzel Faber’, pp. 155–57.
74 Escorial, RBMSL, O.II.10, fol. 204v. The lunar velocities range from 0;30,20–0;36,01, 

very close to the 0;30,21–0;36,01 found in the zijes of Ibn Isḥāq (fl. early thirteenth century) 
and Ibn al-Raqqām (d. 1315), both active in Tunis. Interestingly, both these zijes give the max-
imal lunar equation as 4;55,59°, very close to that found in the PAT of 4;56°. Cf. Goldstein, 
‘Lunar Velocity in the Middle Ages’, pp. 184, 190. See also Husson and Miolo, ‘Tables in the 
Margin’. Another early Parisian manuscript, BnF, lat. 7286C, fol. 49r, also includes the small 
table for adjusting the lunar velocity.
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Appendix: A new edition of the TP

This edition, collating all currently known witnesses of the TP, reproduces 
the 1860 entries of the TP. It does not include the tabulated differences cop-
ied into some of the manuscripts and does not describe differing formats of 
labeling the solar arguments (horizontal axis) and lunar arguments (vertical 
axis) found in the manuscripts. Porres de Mateo’s 2003 edition does incorpo-
rate the differences and the axes.75 But she collated only five of the ‘Gmunden 
manuscripts’ (BPSVU) and introduced at least 59 deviations which appear in 
none of those manuscripts nor in the additional nine I have examined. Hence, 
a new edition of the TP, controlled by B and my recomputation of the table, 
is required. But my edition seeks to capture the numerical content of the table, 
not all the details of its format.76

Manuscript sigla and description

(B) Vienna, ÖNB, 5268, fols 45v–48r (table), 48v (canon, Omnis utri-
usque sexus, Th/K 1004). Bound (139 fols) with John of Gmunden’s 
Tabulae maiores (second version, 3r–34r, 41r–45r, 49r-v, including 
Gmunden’s velocities, 27r) and canons (39r–40v, 50r–83v), incom-
plete and reordered in an early restoration; Gmunden’s treatises on 
sines and chords (84r–97v), the albion (99r–130r), and the equato-
ria of Campanus (131r–139r); Gmunden’s table of mean syzygies for 
1433, 1473, …, 2433, for the meridian of Vienna, i.e., 80 minutes of 
time east of Toledo (6v–7r); and John of Murs’s table of proportions, 
the Tabula tabularum (35r–36v) with canon (Th/K 1461, 37r–39r): 
Explicit canon tabule tabularum edite a magistro Johanne de Muris 
anno domini 1321 et scriptus et finitus per magistrum Johannem de 
Gmunden in die cineris anno Domini 1433 (39r). A Gmunden auto-
graph, dated 1433–1437; annotated by the Hungarian mathematician, 
Johannes de Epperies, who in 1520 updated a list of astrolabe stars 
in the manuscript (122r).77 Paper (fols 45, 47, 48) Dreiburg im Kreis, 

75 Porres, Les tables astronomiques, pp. 395–406.
76 Digital scans of the entire manuscripts are openly accessible for PaMMeV1V2V3.
77 Academia Caesarea Vindobonensis, Tabulae codicum, vol. IV, p. 80; Porres, Les tables 

astronomiques, pp. 118–23, 133, 137, reproduces fol. 48v as Fig. 18. For an edition of John 
of Gmunden’s table of mean syzygies, see ibid., pp. 157–60. Interestingly, a later annotator, 
Johannes de Epperies, who in 1520 converted some of Gmunden’s star positions to equatorial 
coordinates (fol. 122r), added a note on the front flyleaf (fol. 1r) describing a laborious, itera-
tive procedure for finding the time of true syzygy. Did he not know about (or understand) the 
Tabulae permanentes copied in the codex? See ibid., pp. 547–49, Fig. 18; Busard, Der Traktat 
De sinibus; Ábel, ‘Eperjesi János’; Rupprich, Der Briefwechsel, pp. 93–95, 387; Kremer, ‘How 
Did the Turketum’; Bell and Kremer, ‘An Early Sixteenth-Century Drawing’.
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DE2520-PO-153644, dated 1436, Heilsbronn Abbey, near Nurem-
berg.78

(S) Innsbruck, ULB Tirol, Servitenkloster I.b. 62, tables (pp. 74–79). 
Bound (175 pp.) with Gmunden’s Tabulae maiores (1–107, including 
Gmunden’s velocities, 61) and canons (113–65); Gmunden’s treatise 
on sines and chords; Gmunden’s table of mean syzygies for 1433, 
1473, …, 2433 (7–8). Dated Vienna, 1437 (165).79

(P) London, BL, Add. 24070, fols 52r–54v (tables), fols 55r, 57v (canon, 
Omnis utriusque sexus). Bound (77 fols) with Gmunden’s calendar 
(1–7) and Tabulae maiores (8–51, 70–75, including Gmunden’s veloc-
ities, 44r); John of Murs’s Tabula tabularum (63r) with canon dated 
1321 (64r–67r) and Gmunden’s canon to the same table (67v–69v); 
Gmunden’s table of mean syzygies for 1433, 1473, …, 2433 (11r-v). 
Mostly in the hand of Georg Prunner of Lower Ruspach, a student 
of Gmunden’s and scribe at the Klosterneuburg, dated 1436–39 (7v, 
67r).80

(U) Munich, UB, 4° 737, fols 121v–133r (table), fol. 136r-v (abbreviated 
canon, Omnis utriusque sexus81). Bound (149 fols) in an astronomical 
miscellany that includes Gmunden’s Tabulae breviores (third version, 
1–73, Gmunden’s velocities incomplete, 37r) with radices for Vienna, 
dated 1440 complete, and canon (75–116, Th/K 46); Gmunden’s table 
of mean syzygies for 1433, 1473, …, 2433 (133v–135r); Johannes Swab 
de Wutzbeich, Practica eclipsium solis et luna, a. 1412 (139r–148r, 
Th/K 1225). Copied 1444 in Vienna, mostly by one hand, annotated 
by several hands including the first owner’s.82

78 I identify watermarks using the Wasserzeichen-Informationssystem, available at www.
wasserzeichen-online.de/wzis/index.php.

79 Porres, Les tables astronomiques, pp. 80–84.
80 Prunner, a student of Gmunden’s in Vienna, is known to have copied several other 

astronomical manuscripts now at Klosterneuburg. See Bond, Catalogue of Additions, vol. II, 
pp. 6–7; Porres, Les tables astronomiques, pp. 22, 80, 87–91.

81 Includes sentences 7–33 of the Omnis canon, as edited by Porres and Chabás, ‘John of 
Murs’s Tabulae permanentes’, pp. 67–72, with slightly different opening and closing phrases.

82 Keller, Katalog der lateinischen Handschriften, pp. 217–18; Reuter, Die lateinischen mit-
telalterlichen Handschriften, pp. 186–89; Porres, Les tables astronomiques, pp. 80, 94–97. Ex 
libris (fol. 1r) magister Matthias Rem de Weinsberg (d. 1495), 1433 matriculated Vienna (Bacc 
1436, Mag 1444), 1444 professor of arts Heidelberg, 1454 doctor theology Vienna, from 1454 
preacher at the Chorherrenstift Gumbertus in Ansbach, near Nuremberg. Repertorium Aca-
demicum Germanicum, s.v. ‘Matthias Rem’, www.rag-online.org/gelehrter/id/1413222073 (ac-
cessed July 2017).
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(V) Vienna, ÖNB, 5151, fols 119v–122r (table), 117v–119r (Gmunden’s 
expanded version of John of Murs’s canon,83 Tempus distancie inter 
coniunccionem aut opposicionem veram et mediam solis et lune per 
tabulas ad hoc factas invenire. Sciendum quod in hiis tabulis … Iste 
canon editus et scriptus est wienne per magistum Johannem de Gmun-
den die 20 mensis maii anno Domini 1440 currente, autograph). 
Bound (168 fols) with the first version of Gmunden’s tables with 
60° signs (1–62, 104–17, Gmunden’s velocities, 13v–14v) and can-
ons (63–103); Gmunden’s tables of mean syzygies for 1433, 1473, …, 
2433 (111r–113v); and excerpts from the Oxford Tables (131v–146r) 
with Gmunden’s canon (130r-v). Colophons frequently dated Vienna, 
1440–1443.84

(G) Munich, BSB, Cgm 739, fols 105v–117r (table), fol. 118r-v (Omnis 
utriusque sexus, lacks sentences 33–34). Bound (167 fols) in an astro-
nomical-computus-mathematical miscellany with Gmunden’s calendar 
and three cycles of mean syzygies for 1439–1496 for Vienna (5–22); 
Gmunden’s text on the astrolabe (80–100, Th/K 1294); miscellaneous 
tables (21 of the 47 are from Gmunden’s Tabulae breviores with radi-
ces for Vienna for 1440, some updated to 1456, in several hands (102–
45); table of mean syzygies ad meridiem Ertfordensem, computed for 
62 minutes east of Toledo (142v); Gmunden’s table of mean syzygies  
for 1433, 1473, …, 2433 (103v–105r, same hand as 105v–117r); Nicho-
laus de Heybech’s tables for true syzygy (145v–147v); an anonymous 
text on an astronomical equatorium (148r–155r, Hirnach volgt der 
allersubtilist weg dy tholicen zw machen auff ainen newen sin). No 
eclipse tables. Schneider dates the manuscript mid-fifteenth century, 
the paper of quire fols 103–18 (all same hand) is Waage, dated to 
Nuremberg 1458.85

(N) Nuremberg, SB, Cent. VI 23, fols 99v–111r (table), fols 114r–116r 
(Omnis utriusque sexus, lacks sentences 33–34). Bound (122 fols) 

83 Porres, Les tables astronomiques, p. 112, calls this text a ‘version agrégée’ of John of 
Murs’s canon. Gmunden deleted John’s introduction (sentences 1–8), copied about half of 
John’s remaining text verbatim and considerably expanded the instructions for using tables of 
proportion to solve the double-entry interpolations.

84 Academia Caesarea Vindobonensis, Tabulae codicum, vol. IV, p. 41; Porres, Les tables 
astronomiques, pp. 80, 111–15, 130. Since several colophons in this manuscript are dated to 
within the same five days in 1440, Unterkircher, Katalog der datierten Handschriften, vol. II, 
p. 176, has suggested that these dates are ‘doubtful’.

85 Schneider, Die deutschen Handschriften, pp. 203–09; Riezler, Geschichte Baierns, vol. III, 
p. 458; Porres, Les tables astronomiques, pp. 73, 666, 669. Most of these quires were collected 
by Ulrich Greimolt (1413–1495), a Master of Arts from Weilheim who in 1452 became tutor 
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with a partial set of the Oxford Tables (1v–97v), no mean motion or 
eclipse tables. Regiomontanus autograph, copied c. 1452 in Vienna.86

(C) Rome, Biblioteca Casanatense, 1673, fols 89v–92r (table with 60° 
signs, Composita Erfordie Duringie). Bound (120 fols) with Giovanni 
Bianchini’s canons (1r–10v) and a partial set of his tables (20r–89r); 
a planetary ephemerides beginning in 1456; a table of mean syzygies 
with a radix of 1452 complete for Vienna (93r); Jacob ben David 
Bonjorn’s syzygy tables and canons for 1361 (97r–102r); and a partial 
set of the Oxford Tables (fols 109r–120r). No eclipse tables. Recent 
binding.87

(V2) Vatican, BAV, Pal. lat. 1376, fols 389r–391v (table), fol. 392r (canon, 
Omnis utriusque sexus, dated frater fridericus 1458). Bound (410 fols) 
in an astronomical-astrological-mathematical miscellany, including 
the PAT, dated 1406 (1–18); a fragment of John of Saxony’s canon 
(221r–223v); various eclipse tables (34–40, 51–56); Gmunden’s solar 
and lunar velocity tables (57v–60r); mean syzygies for 1321, 1345, …, 
1609 (45v–46r, computed for Paris, 48 minutes east of Toledo); John 
of Lignères’s Tabule magne (102r–134v), canon for Tabulae Erford-
iensis (135r–136v) with lunar radices (128v, 129v) 62 minutes east of 
Toledo;88 the posthumous version of Gmunden’s tables (138r–170r, 
Th/K 1164); John of Lignères’s various canons (170v–177v); Johannes 
Schindel, Tractatus de quantitate trium solidorum, dated 1420 
(181r–184v, Th/K 1232); astronomical and astrological notes from 
Leopold of Austria’s De astrorum scientia and other sources (191r–193r, 
Th/K 68, 1409); star catalog for 1444 (194r–207v); Theorica plane-
tarum (212r–218v, Th/K 223); John of Saxony’s canon to the PAT 
(221r–223v); Sacrobosco’s sphere (224r–236r, Th/K 1524); Alfra-
ganus, Liber de aggregationibus scientiae stellarum (238r–253v, Th/K 
960); Alcabitius, Liber introductorius ad iudicia astrorum (256r–286r, 

to the sons of Albrecht III the Pious, Duke of Bavaria. Upon his death, Greimolt’s books went 
to the monastery in Tegernsee where they were rebound in 1504.

86 Neske, Die Handschriften der Stadtbibliothek, p. 181; Porres, Les tables astronomiques, 
p. 671.

87 Chabás and Goldstein, ‘Computational Astronomy’, pp. 99–100; Chabás and Goldstein, 
The Astronomical Tables of Giovanni Bianchini, pp. 14, 24–26; Chabás, ‘The Astronomical 
Tables of Jacob Ben David Bonjorn’; Busonero et al., I manoscritti datati, pp. 63–64; Paolo 
d’Ancona and Aeschlimann, Dictionnaire des miniaturistes, p. 159. Bianchini’s tables were cop-
ied by Nicolaus Germanus (fols 10v, 83v, 84v), known as a cartographer and miniaturist due to 
the handsome manuscript of Ptolemy’s Geography that he made in 1466 for Ludovico Casella 
in Ferrara.

88 Most glossators of the PAT located Erfurt 64 time minutes east of Toledo. See Kremer 
and Dobrzycki, ‘Alfonsine Meridians’, p. 96.
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Th/K 1078); John of Lignères’s Algorismus minutiarum (300r–308r, 
Th/K 878); Messahalla, Compositio et usus astrolabii (335r–342v, 
Th/K 1409); Prophatius Judaeus, De quadrante novo (343r–345v, 
Th/K 827); Nicholaus de Heybech’s syzygies tables and canon 
(350v–352v; Th/K 1478); Oxford Tables and canon89 (355–388v, 
Th/K 1686); tables and canon (Si verum locum lune volueris invenire, 
Th/K 1468) for finding lunar true longitude 1–30 days after mean 
syzygy (393v–408r), copied 1458 by ‘Fridericus’;90 Gmunden’s mean 
syzygies for 1433, 1473, …, 2423 (408v–409v, but times computed for 
Regensburg, 69 minutes of time east of Toledo). In the hand of Frie-
drich Amann (236r), a monk at St Emmeram, Regensburg. Various 
colophons dated 1447–58.91

(M) Munich, BSB, Clm 14783, fols 189v–195r (table), fols 198v–200v 
(canon, Omnis utriusque sexus, followed by several unidentified can-
ons on solar and lunar motion with explicit: Iste Johannes equat, cepit 
Firminus … amicus habet 1450 in die luca evangelistice. Frater Frid-
ericus professus monasterii Emmerami Ratispoenensis diocis, 203v). 
Bound (568 fols) in a masssive astronomical-mathematical-astrologi-
cal miscellany containing, among other things, Gmunden’s calendar 
with mean syzygies for two cycles 1450–1488 (2r–15r), computed for 
Regensburg 69 minutes east of Toledo; scattered tables and canons 
of Gmunden, including his table of mean syzygies for 1433, 1473, …, 
2433 (26v); mean motions and equations from the PAT (62v–91r); 
Oxford Tables (126v–198r); various eclipse tables including paral-
lax tables ad Nurembergensis (215v–217v); ‘posthumous version’ of 
Gmunden’s tables (249r–409v, Th/K 1164); Algorismus Ratisbonensis 
(411r–441v); several geometrical texts (455r–505v); astrological tables 
(523r–538v); Leopold of Austria’s De mutacione aeris (539r–547r, 
Th/K 381); tables and canon (Si verum locum lune volueris invenire, 
Th/K 1468) for finding lunar true longitude 1–30 days after mean 

89 No colophon follows the canon, but the same hand that copied the Oxford Tables added 
at the end of the text (fol. 383r) Deinde Auctor vel compositor / Iste Johannes equat cepit fir-
micus / et complet Lux gaudet reprobat / lux amicus habet, thereby linking John of Murs to the 
canon of the Oxford Tables.

90 These tables closely follow the ‘contratabula’ procedures of John of Murs’s Tables of 
1321. See Chabás and Goldstein, ‘John of Murs’s Tables of 1321’, p. 303.

91 Schuba, Die Quadriviums-Handschriften, pp. 94–102; Chabás and Goldstein, ‘Nicholaus 
de Heybech’; Gerl, ‘Fridericus Amann’; Porres, Les tables astronomiques, pp. 78–79; Folkerts, 
‘Fridericus Amann’; Juste, ‘MS Vatican, Biblioteca Apostolica Vaticana, Pal. lat. 1376’.
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syzygy (548v–562v; similar to V2, 393v–408r). Primarily in the hand 
of Friedrich Amann, colophons dated 1449–1456.92

(Pa) Paris, BnF, lat. 7285, fols 110v–112v (table). Bound (118 fols) in an 
astronomical miscellany, including daily calendars of mean motions 
for 1448 and 1451 for Paris (3v–6v); the PAT (9r–13v, 27r–29v, 
46r–60v) with radices for Paris, 48 minutes east of Toledo; John of 
Saxony’s pedagogical examples for John of Lignères’s canons on the 
primum mobile (30r–36r, Th/K 1228); John of Lignères’s Tables of 
1322 (39r, 62r–83v, lacks the eclipse tables); John of Saxony’s canon 
to the PAT (84r–90r); Theorica planetarum (90r–93r); Nicholas de 
Heybach’s canon and tables for true syzygy (93r–94r, Th/K 1478); 
Oxford Tables for planetary latitudes (94v–107r); table for the dura-
tion of pregnancy (116v–117r); sundial text (117v–118r, Th/K 753). 
Paper (fols 37, 46) unicorn, Briquet 10013, dated 1443–1445, north-
ern France; (fols 110, 112) NL0360-PO-118477, Culemborg (Nether-
lands), dated 1442.93

(Me) Metz, Bibliothéque municipale, 287, fols 80v–83r (table), fols 79v–80r 
(canon, Omnis utriusque sexus). Bound (428 fols) in an astronomi-
cal-astrological miscellany that includes John of Saxony’s canons to 
the PAT (20r–27r); horoscope dated Erfurt, 1361 (27r); table of mean 
syzygies, 1369–1609 (27v), computed for Paris, about 48 minutes east 
of Toledo; Hermann of Saxony’s Alfonsine computation of planetary 
positions for 1361 (49r–51v, Th/K 102) and his Tabulae de motibus 
stellarum, that incorporate much content from the PAT (52r–70v, 
Th/K 688);94 Haly Abenragel, De judiciis astrologiae (88r–277v); 
Bartolomeo da Parma, Breviloquium de fructu artis tocius astrono-
miae (280r–317v); Sahl ibn Bishr’s Fatidica = Liber sextus astrono-
mie, transl. Hermann of Carinthia (334r–351v);95 Leopold of Austria, 
De astrorum scientia (354r–363v), blank leaves (fols 364–428). Paper 
Waage (77) type FR5460-PO-116623, dated 1450, Metz; Dreiburg 
(79, 80, 82) type DE1935-Mscr_Dresd_P_33_124, dated c. 1440, 
Vienna.

(V1) Vatican, BAV, Pal. lat. 1354, fols 50v–53r (table), fol. 60r-v (canon, 
Omnis utriusque sexus). Bound (252 fols) in an astronomical-astrologi-
cal-medical miscellany copied by an unknown scribe at St Emmeram, 
Regensburg, c. 1463–64. Includes Nicholas de Heybech’s syzygy 

92 Vogel, Die Practica des Algorismus Ratisbonensis, pp. 10–11; Porres, Les tables astrono-
miques, pp. 79, 670.

93 Briquet, Les filigranes.
94 Thorndike, ‘Astronomy at Paris’.
95 Burnett, ‘Arabic into Latin’, pp. 13–14.
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tables (46v–47v), John of Saxony’s canons to the PAT (109r–19v), 
tables of mean syzygies for 1433, 1473, …, 1673 (46r), computed for 
Regensburg, 68 minutes of time east of Toledo, calendar of mean syz-
ygies for 1463–1547 (37r–42v), computed for Prague, 74 minutes east 
of Toledo; tables and canon (Si verum locum lune volueris invenire, 
Th/K 1468) for finding lunar true longitude 1–30 days after mean 
syzygy (61v–78v, similar to V2, 393v–408r); Leopold of Austria, De 
astrorum scientia (169r–233r).96 Bound 18th century.

(V3) Vatican, BAV, Pal. lat. 1367, fols 56v–59r (table). Bound (179 fols) in 
an astronomical-medical miscellany that includes the PAT (1r–26v), 
with radices added for the date of the Council of Basel, 1440 com-
plete, and meridians of Konstanz, Basel, Freiburg im Breisgau, as well 
as Nuremberg, Wrocław, Prague and Paris; John of Lignères’s Tables 
of 1322 (27v–40v); planetary latitudes from the Oxford Tables (49r–
56r); several tables of mean syzygies (in the same hand as 56v–59r) 
for 1433, 1473, …, 2433 (59v–60v), computed for Vienna, 80 minutes 
east of Toledo; for 1321, 1345, …, 1609, computed meridiani Parisien-
sis (61r–62r) 48 minutes east of Toledo; and for 1393, 1417, …, 1609, 
computed for orisontem pragenseni (62r-v) 74 minutes east of Toledo; 
tables and canon (Si verum locum lune volueris invenire, Th/K 1468) 
for finding lunar true longitude 1–16 days after mean syzygy (64r–
71v; similar to V2, 393v–408r).97 Also contains many short texts 
or excerpts on astrological and medical topics. Southwest Germany, 
c. 1450.98 Bound 18th century.

(E) Erfurt, UFB, Amplon. F. 388, fols 39v–42r (table). Bound (42 fols) 
with John of Lignères, Tabule magne (1r–35r), Erfurt meridian (25r, 
38r). Dated Erfurt, 1446 complete (35r).99 Paper Dreiburg mit Kreuz 
(24), DE4860-Rep_V_5_6, dated 1446, Leipzig.

96 Schuba, Die Quadriviums-Handschriften, pp. 27–33; Thorndike, ‘Some Little Known’, 
pp. 43–44; Goldstein, ‘Lunar Velocity in the Middle Ages’, p. 190; Chabás and Goldstein, 
‘John of Murs’s Tables of 1321’, p. 306.

97 These values for the three meridians are canonical within the Alfonsine corpus; see 
Kremer and Dobrzycki, ‘Alfonsine Meridians’, p. 196.

98 Schuba, Die Quadriviums-Handschriften, pp. 58–62, dates to mid-fifteenth century. The 
astronomical materials of fols 1–84 are all copied on parchment by the same hand. Ex libris 
(1r) Nikolaus Pruckner (1488–1557), an Augustinian monk who in the 1520s introduced the 
Reformation to Mulhausen, authored calendars in the 1530–40s printed in Strasbourg, and in 
1553 was named professor of astronomy at the university in Tübingen.

99 Schum, Beschreibendes Verzeichniss, pp. 273–74. This codex is not included in the 1410 
catalog of the Amploniana Collection. Donated, c. 1450, to library of the Collegium Porta 
Coeli by Peter of Cassel, vicar at the Saint Severi in Erfurt. Cf. Schum, Beschreibendes Ver-
zeichniss, pp. 798–808.
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Usually found in codices of astronomical/astrological miscellany, the TP 
are bound with some of the key works of Alfonsine astronomy: the PAT 
(PaMV1V2V3), the tables of 1322 of John of Lignères (PaV2V3), tables of Nicho-
laus de Heybech, which also are used to compute time corrections to true syzygy  
(PaGV1V2), or tables of John of Gmunden (BSPUVGV2M). In other cases, the 
TP are bound with copies of Bianchini’s astronomical tables (C) or the Oxford 
Tables (PaNVCMV2V3). Only rarely are they found with major astrological 
(Me) or medical treatises (V1V3). From their placement in codices, it appears 
as if some mid fifteenth-century astronomers considered the TP to be part of 
Gmunden’s tables, which explains Porres’s decision to include them in her edi-
tion of Gmunden’s work.

In our edition, all entries with manuscript variants are underlined. The vari-
ants are listed at the end of the edition, in order of solar argument, then lunar 
argument. I refer to individual entries by the notation ‘solar argument:lunar 
argument’. Gray-shaded values are negative, unshaded values are positive for 
lunar arguments from 0 to 180°; the signs are reversed for lunar arguments 
from 180 to 360°.
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Tabula ostendens distanciam vere coniunctionis vel oppositionis a media 

Arg Solis (degrees)

Arg Lune
(degrees)

0 6 12 18 24 30 36 42 48 54

h m h m h m h m h m h m h m h m h m h m

  0 0  0 0 28 0 57 1 25 1 53 2 19 2 43 3 6 3 27 3 47

  6 1  3 0 35 0  6 0 22 0 50 1 16 1 40 2  3 2 24 2 44

 12 2  5 1 37 1  8 0 40 0 12 0 14 0 38 1  1 1 22 1 42

 18 3  5 2 37 2  9 1 41 1 13 0 47 0 23 0  0 0 21 0 41

 24 4  3 3 35 3  7 2 39 2 12 1 46 1 22 0 59 0 38 0 18

 30 4 59 4 31 4  3 3 35 3  8 2 42 2 18 1 56 1 35 1 15

 36 5 50 5 23 4 55 4 27 4  0 3 35 3 11 2 49 2 28 2  8

 42 6 38 6 11 5 43 5 16 4 49 4 24 4  0 3 38 3 17 2 58

 48 7 21 6 54 6 26 5 59 5 33 5  8 4 44 4 22 4  2 3 43

 54 7 59 7 32 7  5 6 38 6 12 5 47 5 23 5  1 4 41 4 22

 60 8 31 8  4 7 37 7 11 6 45 6 21 5 58 5 36 5 16 4 57

 66 8 58 8 32 8 5 7 39 7 13 6 49 6 26 6  4 5 44 5 26

 72 9 18 8 52 8 26 8  0 7 34 7 10 6 48 6 27 6  7 5 49

 78 9 32 9  7 8 41 8 15 7 50 7 26 7  4 6 43 6 24 6  6

 84 9 40 9 15 8 49 8 24 7 59 7 35 7 13 6 53 6 34 6 16

 90 9 40 9 15 8 50 8 25 8  1 7 38 7 16 6 56 6 37 6 19

 96 9 36 9 11 8 46 8 21 7 57 7 34 7 12 6 52 6 34 6 17

102 9 24 9  0 8 35 8 11 7 47 7 24 7  3 6 43 6 25 6  8

108 9  7 8 43 8 19 7 55 7 31 7  9 6 48 6 28 6 10 5 53

114 8 44 8 20 7 56 7 32 7  9 6 47 6 26 6  7 5 49 5 32

120 8 15 7 51 7 27 7  4 6 41 6 19 5 59 5 40 5 22 5  5

126 7 41 7 18 6 54 6 31 6 8 5 46 5 26 5  7 4 49 4 33

132 7 3 6 40 6 16 5 53 5 30 5  9 4 49 4 30 4 12 3 56

138 6 20 5 57 5 33 5 10 4 48 4 27 4  7 3 49 3 31 3 15

144 5 33 5 10 4 47 4 24 4  2 3 41 3 21 3  3 2 45 2 29

150 4 42 4 20 3 57 3 34 3 12 2 51 2 32 2 14 1 56 1 40

156 3 49 3 27 3  4 2 42 2 20 1 59 1 39 1 21 1 4 0 48

162 2 54 2 32 2  9 1 47 1 25 1  4 0 45 0 27 0 10 0  6

168 1 57 1 35 1 12 0 50 0 28 0  7 0 12 0 30 0 47 1  2

174 0 59 0 37 0 14 0  8 0 30 0 51 1 10 1 28 1 45 2  0

180 0  0 0 22 0 45 1  7 1 29 1 49 2  8 2 26 2 43 2 59
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Arg Solis (degrees)

Arg Lune 
(degrees)

60 66 72 78 84 90 96 102 108 114

h m h m h m h m h m h m h m h m h m h m

  0 4  4 4 18 4 29 4 38 4 44 4 47 4 47 4 43 4 37 4 27

  6 3  1 3 15 3 26 3 35 3 41 3 44 3 44 3 40 3 34 3 24

 12 1 59 2 13 2 24 2 32 2 38 2 41 2 41 2 37 2 31 2 21

 18 0 58 1 12 1 23 1 31 1 37 1 40 1 40 1 36 1 30 1 20

 24 0  1 0 12 0 23 0 31 0 37 0 40 0 40 0 36 0 30 0 20

 30 0 58 0 45 0 34 0 26 0 20 0 17 0 17 0 21 0 27 0 37

 36 1 51 1 38 1 27 1 19 1 13 1 10 1 10 1 14 1 20 1 30

 42 2 41 2 28 2 17 2 9 2 3 2  0 2  0 2  4 2 10 2 20

 48 3 26 3 13 3 2 2 54 2 49 2 46 2 46 2 50 2 56 3  6

 54 4  6 3 53 3 42 3 34 3 29 3 26 3 26 3 30 3 36 3 46

 60 4 41 4 28 4 18 4 10 4  4 4  1 4  1 4  5 4 11 4 21

 66 5 10 4 57 4 47 4 39 4 34 4 31 4 31 4 35 4 41 4 50

 72 5 33 5 20 5 10 5  2 4 57 4 54 4 54 4 58 5  4 5 13

 78 5 50 5 37 5 27 5 19 5 14 5 11 5 11 5 15 5 21 5 30

 84 6  0 5 48 5 38 5 30 5 25 5 23 5 23 5 26 5 32 5 41

 90 6  4 5 52 5 42 5 34 5 29 5 27 5 27 5 30 5 36 5 45

 96 6  1 5 49 5 39 5 32 5 27 5 25 5 25 5 28 5 34 5 43

102 5 53 5 41 5 31 5 24 5 19 5 17 5 17 5 20 5 26 5 35

108 5 38 5 26 5 17 5 10 5  5 5  2 5 2 5  5 5 11 5 20

114 5 17 5  5 4 56 4 49 4 44 4 42 4 42 4 45 4 51 4 59

120 4 50 4 39 4 30 4 23 4 18 4 16 4 16 4 19 4 24 4 33

126 4 18 4  7 3 58 3 51 3 46 3 44 3 44 3 47 3 52 4  1

132 3 42 3 31 3 22 3 15 3 10 3  8 3 8 3 11 3 16 3 24

138 3  1 2 50 2 41 2 34 2 29 2 27 2 27 2 30 2 35 2 43

144 2 15 2  4 1 55 1 48 1 44 1 42 1 42 1 45 1 50 1 58

150 1 26 1 16 1 7 1  0 0 55 0 53 0 53 0 56 1  1 1  9

156 0 34 0 24 0 15 0  8 0  4 0  1 0  1 0  4 0  9 0 17

162 0 20 0 31 0 40 0 47 0 51 0 53 0 53 0 50 0 45 0 37

168 1 16 1 27 1 36 1 43 1 47 1 50 1 50 1 47 1 42 1 34

174 2 14 2 25 2 34 2 41 2 45 2 48 2 48 2 45 2 40 2 32

180 3 13 3 24 3 32 3 39 3 43 3 46 3 46 3 43 3 38 3 30
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Arg Solis (degrees)

Arg Lune
(degrees)

120 126 132 138 144 150 156 162 168 174

h m h m h m h m h m h m h m h m h m h m

  0 4 14 3 58 3 39 3 18 2 55 2 29 2  1 1 32 1  3 0 32

  6 3 11 2 55 2 36 2 15 1 51 1 25 0 57 0 29 0  0 0 31

 12 2  8 1 52 1 33 1 12 0 49 0 23 0  5 0 34 1  3 1 34

 18 1  7 0 51 0 32 0 11 0 12 0 38 1  6 1 35 2  4 2 35

 24 0  8 0  8 0 27 0 48 1 12 1 38 2  5 2 34 3  3 3 34

 30 0 49 1  5 1 24 1 45 2  8 2 34 3  1 3 30 3 59 4 30

 36 1 43 1 59 2 18 2 38 3  1 3 27 3 54 4 22 4 51 5 22

 42 2 32 2 48 3  7 3 27 3 50 4 16 4 43 5 11 5 40 6 10

 48 3 18 3 34 3 52 4 12 4 35 5  1 5 28 5 56 6 24 6 54

 54 3 58 4 14 4 32 4 52 5 15 5 40 6  7 6 34 7  2 7 32

 60 4 33 4 49 5  7 5 27 5 49 6 14 6 40 7  7 7 35 8  4

 66 5  2 5 18 5 36 5 55 6 17 6 42 7  8 7 35 8  2 8 31

 72 5 26 5 41 5 58 6 17 6 39 7  4 7 30 7 57 8 24 8 53

 78 5 43 5 58 6 15 6 34 6 56 7 20 7 46 8 12 8 39 9  7

 84 5 53 6  8 6 25 6 44 7  6 7 30 7 55 8 21 8 47 9 15

 90 5 57 6 12 6 29 6 48 7  9 7 32 7 57 8 23 8 49 9 16

 96 5 55 6  9 6 26 6 45 7  5 7 28 7 53 8 18 8 44 9 10

102 5 46 6  0 6 17 6 36 6 56 7 19 7 43 8  8 8 33 9  0

108 5 31 5 45 6  2 6 20 6 40 7  3 7 27 7 52 8 17 8 44

114 5 10 5 24 5 41 5 59 6 19 6 41 7  5 7 29 7 54 8 20

120 4 44 4 58 5 14 5 32 5 51 6 13 6 37 7  1 7 25 7 51

126 4 12 4 25 4 41 4 59 5 18 5 40 6  3 6 27 6 51 7 17

132 3 35 3 48 4  4 4 22 4 41 5  3 5 26 5 49 6 13 6 39

138 2 54 3  7 3 23 3 40 3 59 4 20 4 43 5  7 5 31 5 56

144 2  8 2 21 2 37 2 54 3 13 3 34 3 57 4 20 4 44 5  9

150 1 19 1 32 1 48 2  5 2 24 2 45 3  7 3 30 3 54 4 19

156 0 27 0 40 0 56 1 13 1 31 1 52 2 14 2 37 3  1 3 26

162 0 27 0 14 0  1 0 18 0 36 0 57 1 19 1 42 2  5 2 30

168 1 24 1 11 0 56 0 39 0 21 0  0 0 22 0 45 1  8 1 33

174 2 22 2  9 1 54 1 37 1 19 0 58 0 36 0 13 0 10 0 34

180 3 20 3  8 2 53 2 36 2 18 1 57 1 35 1 12 0 49 0 25
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Arg Solis (degrees)

Arg Lune 180 186 192 198 204 210 216 222 228 234

(degrees) h m h m h m h m h m h m h m h m h m h m

  0 0  0 0 32  1  3  1 32  2  1  2 29  2 55  3 18  3 39  3 58

  6 1  3 1 35  2  6  2 35  3  3  3 31  3 57  4 21  4 41  5  1

 12 2  5 2 37  3  8  3 37  4  5  4 33  4 59  5 23  5 44  6  3

 18 3  6 3 38  4  9  4 38  5  6  5 34  6  0  6 23  6 43  7  3

 24 4  5 4 36  5  7  5 36  6  4  6 31  6 57  7 20  7 41  8  0

 30 5  1 5 32  6  2  6 31  6 59  7 26  7 52  8 15  8 36  8 54

 36 5 53 6 24  6 54  7 22  7 50  8 17  8 43  9  6  9 26  9 44

 42 6 41 7 11  7 41  8  9  8 37  9 4  9 29  9 52 10 12 10 30

 48 7 24 7 54  8 24  8 52  9 19  9 46 10 11 10 34 10 54 11 12

 54 8  2 8 32  9  2  9 30  9 56 10 23 10 48 11 10 11 30 11 47

 60 8 34 9  4  9 34 10  2 10 28 10 54 11 19 11 41 12 0 12 17

 66 9  1 9 31 10  0 10 27 10 53 11 19 11 44 12  5 12 24 12 41

 72 9 22 9 51 10 19 10 46 11 13 11 38 12 2 12 23 12 42 12 59

 78 9 36 10  5 10 33 11  0 11 26 11 51 12 14 12 35 12 54 13 11

 84 9 44 10 12 10 40 11  6 11 32 11 57 12 20 12 41 13 0 13 17

 90 9 44 10 12 10 40 11  6 11 31 11 55 12 18 12 39 12 57 13 14

 96 9 37 10  6 10 34 11  0 11 25 11 49 12 12 12 33 12 51 13  7

102 9 28 9 55 10 22 10 47 11 12 11 36 11 58 12 19 12 37 12 53

108 9 11 9 38 10  4 10 29 10 54 11 17 11 39 11 59 12 17 12 33

114 8 47 9 14  9 40 10  5 10 29 10 52 11 14 11 34 11 52 12  8

120 8 18 8 44  9 10  9 34  9 58 10 21 10 43 11  3 11 20 11 36

126 7 44 8 10  8 36  9  0  9 24  9 47 10 8 10 27 10 44 11  0

132 7  5 7 31  7 57  8 21  8 44  9 7  9 28  9 47 10 4 10 20

138 6 22 6 48  7 13  7 37  8 0  8 22  8 43  9  2  9 19  9 35

144 5 35 6  1  6 26  6 49  7 12  7 34  7 55  8 14  8 31  8 46

150 4 44 5  9  5 34  5 57  6 20  6 42  7 3  7 22  7 39  7 54

156 3 51 4 16  4 41  5  4  5 27  5 49 6 10  6 29  6 45  7  0

162 2 55 3 20  3 45  4  8  4 31  4 53  5 13  5 32  5 49  6  4

168 1 58 2 23  2 47  3 10  3 33  3 55  4 16  4 35  4 51  5  6

174 0 59 1 24  1 48  2 11  2 34  2 56  3 17  3 36  3 52  4  7

180 0 0 0 25  0 49  1 12  1 35  1 57  2 17  2 36  2 52  3  8
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Arg Solis (degrees)

Arg Lune 240 246 252 258 264 270 276 282 288 294

(degrees) h m h m h m h m h m h m h m h m h m h m

  0  4 14  4 27  4 37  4 43  4 47  4 47  4 44  4 38  4 29  4 18

  6  5 17  5 29  5 39  5 45  5 49  5 49  5 46  5 40  5 32  5 21

 12  6 19  6 31  6 41  6 47  6 51  6 51  6 47  6 41  6 33  6 22

 18  7 19  7 31  7 41  7 47  7 50  7 50  7 47  7 41  7 33  7 22

 24  8 16  8 28  8 38  8 44  8 47  8 47  8 44  8 38  8 30  8 19

 30  9 10  9 22  9 32  9 38  9 42  9 42  9 38  9 32  9 24  9 13

 36 10 1 10 13 10 22 10 28 10 32 10 32 10 28 10 22 10 14 10  3

 42 10 47 10 59 11  8 11 14 11 18 11 18 11 14 11 8 11  0 10 49

 48 11 28 11 40 11 49 11 55 11 58 11 58 11 54 11 48 11 40 11 29

 54 12  3 12 15 12 24 12 30 12 33 12 33 12 30 12 24 12 16 12  5

 60 12 33 12 45 12 54 13 0 13 3 13 3 13 0 12 54 12 46 12 35

 66 12 57 13  9 13 18 13 24 13 27 13 27 13 24 13 18 13 10 12 59

 72 13 15 13 26 13 35 13 41 13 44 13 44 13 41 13 35 13 27 13 17

 78 13 27 13 38 13 47 13 52 13 55 13 55 13 52 13 47 13 39 13 29

 84 13 31 13 42 13 51 13 57 14 0 14 0 13 56 13 51 13 43 13 33

 90 13 28 13 39 13 48 13 53 13 56 13 56 13 53 13 48 13 40 13 30

 96 13 21 13 32 13 41 13 46 13 49 13 49 13 46 13 41 13 33 13 23

102 13  7 13 18 13 26 13 31 13 34 13 34 13 31 13 26 13 19 13  9

108 12 47 12 58 13  6 13 11 13 14 13 14 13 11 13  6 12 59 12 49

114 12 21 12 32 12 40 12 45 12 48 12 48 12 45 12 40 12 33 12 24

120 11 50 12  0 12  8 12 13 12 16 12 16 12 13 12  8 12  1 11 52

126 11 14 11 24 11 32 11 37 11 40 11 40 11 37 11 32 11 24 11 15

132 10 33 10 43 10 51 10 56 10 59 10 59 10 56 10 51 10 44 10 35

138  9 48  9 58 10  6 10 11 10 14 10 14 10 11 10  6  9 59  9 50

144  8 59  9  9  9 17  9 22  9 25  9 25  9 22  9 17  9 10  9  1

150  8  7  8 17  8 25  8 30  8 33  8 33  8 30  8 25  8 18  8 10

156  7 13  7 23  7 31  7 36  7 38  7 38  7 35  7 31  7 24  7 15

162  6 17  6 27  6 34  6 39  6 42  6 42  6 39  6 35  6 28  6 20

168  5 19  5 29  5 36  5 41  5 44  5 44  5 42  5 37  5 30  5 22

174  4 20  4 30  4 37  4 42  4 45  4 45  4 43  4 38  4 31  4 23

180  3 20  3 30  3 38  3 43  3 46  3 46  3 43  3 39  3 32  3 24



420 RICHARD L. KREMER

Arg Solis (degrees)

Arg Lune
(degrees)

300 306 312 318 324 330 336 342 348 354

h m h m h m h m h m h m h m h m h m h m

0  4  4  3 47  3 27  3  6  2 43  2 19  1 53  1 25  0 57  0 28

6  5  7  4 49  4 29  4  8  3 45  3 21  2 55  2 27  1 59  1 31

12  6  8  5 51  5 31  5 10  4 47  4 23  3 57  3 29  3  1  2 33

18  7  8  6 51  6 31  6 10  5 47  5 23  4 57  4 29  4  1  3 33

24  8  5  7 48  7 28  7  7  6 45  6 21  5 54  5 27  4 59  4 31

30  8 59  8 42  8 22  8  1  7 39  7 15  6 49  6 22  5 54  5 26

36  9 50  9 33  9 13  8 52  8 30  8 6  7 40  7 13  6 46  6 18

42 10 36 10 19  9 59  9 38  9 16  8 52  8 27  8  0  7 33  7  5

48 11 16 10 59 10 40 10 19 9 58  9 35  9 10  8 43  8 16  7 48

54 11 52 11 35 11 16 10 55 10 34 10 11  9 46  9 20  8 53  8 26

60 12 22 12  6 11 47 11 26 11 5 10 42 10 17  9 51  9 25  8 58

66 12 46 12 30 12 11 11 51 11 30 11 7 10 43 10 17  9 50  9 24

72 13 4 12 48 12 29 12 10 11 49 11 26 11  2 10 36 10 10  9 44

78 13 16 13  0 12 41 12 22 12  1 11 39 11 15 10 50 10 24  9 58

84 13 21 13  5 12 47 12 28 12  7 11 45 11 22 10 57 10 31 10  5

90 13 18 13  3 12 45 12 26 12  6 11 44 11 21 10 56 10 31 10  5

96 13 11 12 56 12 38 12 19 11 59 11 38 11 15 10 51 10 26 10  1

102 12 57 12 42 12 25 12  6 11 46 11 25 11  2 10 38 10 14  9 49

108 12 37 12 22 12  5 11 47 11 27 11 6 10 44 10 20  9 56  9 31

114 12 12 11 57 11 40 11 22 11  2 10 41 10 19  9 56  9 32  9 8

120 11 40 11 25 11  8 10 51 10 32 10 11  9 49  9 26  9  3  8 39

126 11  4 10 50 10 33 10 15  9 56  9 36  9 14  8 51  8 28  8  4

132 10 24 10 10 9 53  9 36  9 17  8 57  8 35  8 12  7 49  7 26

138  9 39  9 25  9  8  8 51  8 32  8 12  7 51  7 29  7  6  6 43

144  8 50  8 36  8 20  8  3  7 44  7 25  7  4  6 41  6 18  5 55

150  7 59  7 45  7 29  7 12  6 53  6 34  6 13  5 51  5 28  5  5

156  7  4  6 50  6 34  6 17  5 59  5 40  5 19  4 57  4 35  4 12

162  6  9  5 55  5 39  5 22  5  4  4 44  4 23  4  1  3 39  3 16

168  5 11  4 57  4 41  4 24  4  6  3 47  3 26  3  4  2 42  2 19

174  4 12  3 58  3 42  3 25  3  7  2 48  2 28  2  6  1 44  1 21

180  3 13  59  2 43  2 26  2  8  1 49  1 29  1 7  0 45  0 22
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Apparatus 

The tabular arguments are given in the form solar arg:lunar arg, the deviant 
entries in hrs;mins.

0:102 V2 9;20, 0:120 E 8;25, 0:156 E 2;49, 0:162 N 2;44 

6:42 C 8;53, 6:48 V1V2 6;57, 6:72 N 8;04, 6:78 N 9;32, 6:120 PMV3V1V2 7;41

12:114 PMEV3V1V2 7;16

18:48 E 5;50 C 5;58, 18:72 E 8;08

24:24 V1 1;12

36:18 U 0;13, 36:126 M 5;20, 36:138 M 3;47, 36:144 M 3;51

42:66 MePa 5;05, 42:90 V3 6;55

48:0 N 0;27, 48:6 N 3;24, 48:180 M 1;43

54:12 Me 1;43, 54:42 E 3;58, 54:48 E 4;43, 54:54 E 4;12, 54:72 E 6;49, 54:90 MV3V1 2;19, 
54:126 M 4;34, 54:144 V1 2;19, 54:150 V2 1;10, 54:180 Me 3;59

60:156 E 0;24, 60:180 MeE 3;12

66:180 E 3;34 C 3;23

72:18 G 1;33, 72:54 E 3;04, 72:126 U 3;48 V2 3;56, 72:132 UCN 3;32, 72:144 M 1;52, 
72:174 V3 2;24, 72:180 V2 3;22

78:48 M 2;52, 78:174 M 2;51 V3 2;42

84:12 E 2;36, 84:144 M 1;49, 84:180 MeV3 2;43

90:30 M 0;57, 90:126 M 3;24, 90:168 Me 0;50, 90:174 C 2;40

96:174 C 2;40

102:6 V2 3;30, 102:48 V3 2;04, 102:54 V3 2;05, 102:60 V3 3;30, 102:66 V3 4;05, 102:72 V3 

4;35, 102:78 V3 4;58, 102:84 V3 5;15, 102:90 V3 5;26, 102:96 V3 5;30, 102:102 V3 5;28, 
102:108 V3 5;20, 102:114 V3 4;05, 102:120 V3 4;45

108:138 V3 2;36, 108:150 E 0;01, 108:180 MV3V1V2 3;08 E 3;36

114:108 Me 5;30 V1 20;20

120:54 V1V2 3;56, 120:132 V3 3;54, 120:138 M3 3;14, 120:162 G 0;00, 120:168 C 1;27, 
120:174 C 2;24

126:0 N 3;55, 126:6 N 2;52, 126:12 N 1;51, 126:18 N 0;08, 126:24 N 0;05, 126:30 N 1;59, 
126:36 N 1;48 V 1;58, 126:42 N 2;34, 126:48 N 3;14, 126:54 N 4;49, 126:60 N 4;18, 
126:66 N 5;41, 126:72 N 5;58

132:48 M 3;53, 132:72 V1 5;56, 132:180 MePa 2;52

138:60 PMMeE 5;17, 138:102 V2 6;35

144:18 C 0;13, 144:24 G 0;12, 144:66 V2 6;57, 144:180 MePa 2;17

150:36 M 3;37, 150:96 M 7;38

156:78 V3 7;47, 156:108 M 7;47, 156:120 M 6;33, 156:180 V1 1;25

162:24 U 2;54, 162:66 E 7;34, 162:114 Me 7;22, 162:156 V1 2;27, 162:162 V3 1;41

168:42 U 5;44, 168:54 U 7;35, 168:78 V3 8;34, 168:114 Me 7;55, 168:144 Me 4;54, 168:150 
Me 3;44, 168:162 C 2;11

174:66 C 8;21, 174:174 C 0;33, 174:180 Me 0;35
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180:6 V 2;03, 180:42 N 6;51, 180:102 Me 9;18, 180:162 E 2;?? (the scribe did not enter 
minutes)

186:78 M 10;02, 186:84 P 10;14, 186:138 M 7;48, 186:168 V3 2;33, 186:180 V2 0;31

192:12 M 3;09, 192:18 M 4;08, 192:30 E 6;03, 192:60 M 9;38 Me 10;34, 192:144 V 6;36 
N 6;24, 192:162 P 3;55, 192:180 P 0;59

198:0 C 1;12, 198:36 E 7;23

204:30 MeV1 6;57, 204:60 E 10;26

210:54 M 9;23, 210:120 M 10;51, 210:126 M 9;57, 210:132 M 9;02, 210:162 M 3;57

216:30 V 7;55, Me 6;52, 216:36 Me 7;43, N 8;53, 216:42 Me 8;29 C 9;59, 216:48 Me 9;11, 
216:60 Me 10;19, 216:108 E 11;34

222:6 V3 5;23, 222:12 V3 6;23, 222:18 V37;23, 222:102 Pa 12;10

228:6 MeEPa 4;42, 228:84 M 12;00

234:36 Pa 9;45, 234:42 Pa 10;31, 234:78 M 12;11, 234:84 M 12;17, 234:90 M 12;14, 234:96 
M 12;07, 234:132 E 9;20

240:108 M 12;46, 240:132 Me 10;22, E 10;32, 240:180 E 3;30, 240:96 G 13;27

246:126 M 11;34, 246:144 N 8;09, 246:150 N 7;17, 246:156 N 6;23, 246:162 N 5;27, 
246:168 N 4;29 Me 5;20

252:0 N 4;34, 252:36 M 10;32, 252:78 C 13;57, 252:96 M 13;51, 252:102 M 13;36

258:0 M 4;42, 258:36 M 10;38, 258:72 Me 13;01, 258:84 S 14;57, 258:114 M 12;25, 
258:144 C 9;23, 258:156 Me 7;26

264:54 M 12;32, 264:66 V3 13;37, 264:156 Me 7;36, 264:162 V2 6;32, 264:168 VM 5;48

270:114 P 12;38, 270:156 PMV3V1V2 7;37, 270:168 M 5;34

276:30 M 9;48, 276:48 Me 11;56, 276:84 V3 13;52

282:36 E 10;32, 282:48 C 11;44

288:30 G 9;34, 288:138 M 10;59, 288:156 Me 7;34, 288:162 Me 6;20

294:24 BPVUMV3V1V2 8;10, 294:60 E 12;25, 294:72 S 12;17, 294:96 PMV3V1V2 13;33 U 
13;13, 294:138 M 10;50, 294:180 U 3;23 V1V2 3:34

300:42 V1V2 10;38, 300:126 V2 11;40, 300:138 V3 9;34

306:12 E 6;51, 306:36 Me 9;38, 306:54 Me 12;35, 306:72 Me 13;48

312:54 Me 11;03, 312:138 V 9;20, 312:144 V 8;39, 312:156 C 6;36, 312:162 V1 5;29, 
312:180 U 2;42

318:36 MV3 9;52, 318:54 PMMeE 11;55, 318:108 Me 12;47, 318:114 M 11;42 Me 12;45, 
318:120 Me 12;38 V3 11;51, 318:126 Me 12;25, 318:132 Me 12;05, 318:138 Me 11;40, M 
8;56, 318:144 Me 11;08, 318:150 Me 10;12, 318:156 Me 10;17 V 6;19

324:0 V1V2 3;43, 324:30 PM V3V1V2 7;49, 324:60 N 11;50, 324:72 G 11;41, 324:156 C 5;49

330:90 Me 11;34, 330:126 Me 9;35 N 10;36, 330:144 M 7;35

336:24 N 5;44, 336:30 PM V3V1V2 6;59, 336:120 Me 9;41, 336:174 P 2;38

342:42 Pa 8;04, 342:54 MV3V1V2 9;22, 342:144 UGC 6;49

348:78 Me 10;34, 348:84 MeEPa 10;32, 348:162 Me 3;37

354:66 V1 9;34, 354:84 M 10;56
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Computing with Manuscripts: Time between Mean and 
True Syzygies in John of Lignères’ Tabule magne∗

Matthieu Husson

Introduction

General questions

When performing computations, ancient and medieval astronomers worked 
with astronomical tables accessible to them in manuscripts. Not only did they 
perform their computations ‘by hand’, but also the numbers they manipulated 
were ‘read’ from handwritten documents, with all the potential complexity of 
this act. Manuscript transmission produces variability in many ways, but, for 
the purposes of our research, we will treat it here primarily on two different lev-
els. On one level, scribal variants can occur when numbers are copied or when 
the rows and columns of tables are inadvertently shifted. On a second, more 
structural, level, variations arise, especially in Latin sources, in the ways tables 
and related canons are assembled in manuscripts. This produces not only vari-
ants in different manuscript witnesses of a given table, but also deeper variants 
in the ways tables can be combined in astronomical procedures. Computation, 
on the other hand, is sensitive to differences in numbers and procedures. Even 
small procedural variations in rounding and truncation for elementary arith-
metical operations might yield different results. How does the variability inher-
ent to manuscript transmission affect the process of computing and the results 
produced by computation? Can we build tools to isolate these effects? What 
kind of critical edition and analysis of the tabular material can be constructed 
in order to grasp these effects? How can a digital information system on astro-
nomical tables be helpful in this respect? How can such a set of tools then 
inform us on what ‘reading’ a table, ‘precision’, and ‘errors’ may have meant for 
historical actors? Is it possible, for instance, to collect supporting evidence indi-
cating that some particularly skilled ‘readers’ were able to adjust scribal variants 
in the manuscript they were using in a computation to avoid results they would 

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 425–468
© F  H  G  10.1484/M.PALS-EB.5.127704
t H i s  i s  a n  o p e n  ac c e s s  c H a p t e r  D i s t r i b u t e D  u n D e r  a  c c  b y- n c - n D  4 . 0  i n t e r n at i o n a l  l i c e n s e

* I am grateful to the many colleagues who participated in the TAMAS project. Their 
insights and our stimulating discussions shaped this work in significant ways. Clemency Mon-
telle, Benno van Dalen and Glen van Brummelen, as well as Nick Jacobson, Samuel Gessner, 
Eleonora Andriani, José Chabas and Richard Kremer, made helpful comments on drafts of the 
text. The research presented in this chapter was supported by the TAMAS project (‘Jeunnes 
chercheurs-nouvelles équipes’ PSL, 2017–2018, PI Matthieu Husson).



426 MATTHIEU HUSSON

consider inappropriate? How does the layout and presentation of a table set 
influence its possible use in computations or the frequency of specific types of 
scribal variants? What level of accuracy in computation could historical actors 
produce with their computation tools? How different can these results be when 
faced with two different manuscript versions of the ‘same’ table set? What are 
the relations between procedures described in canons and the actual astronom-
ical tables found in manuscripts? These are the kinds of questions this chapter 
asks in the context of a specific case study: determination of the time between 
mean and true syzygies1 with the computational tools presented by the known 
manuscript tradition of John of Lignères’ Tabule magne.2

Brief introduction to syzygy computations

‘Syzygy’ is a general term pointing to the conjunction or opposition of the sun 
and the moon in ecliptic longitude. Computing syzygy is thus, from a mathe-
matical perspective, a pursuit problem. Two points are moving on a given circle 
and the moment they coincide or are diametrically opposed is to be determined. 
Two aspects make this computation complex in the context of ancient astron-
omy. First, the velocities of the sun and moon are not constant. Second, the 
mathematical tools of ancient astronomy were generally designed to compute 
heavenly positions at a fixed time. Syzygy computation requires the opposite: 
find the time at which a given configuration of heavenly objects is satisfied. 
Ancient astronomers usually address these issues by decomposing the compu-
tation into two steps. In the first step, they compute what they call ‘mean syz-
ygy’, that is the point and moment of conjunction or opposition of the sun and 
moon if they are considered to move at a constant mean pace along the eclip-
tic. The second step starts from the result of the first. It takes into account 
the ‘true’ position and changing velocities of the sun and moon at the time of 
‘mean syzygy’ by considering their respective ‘equations’ (correction terms for 
the varying paces of the luminaries) and determines from this the time of ‘true 
syzygy’. Many different procedures were proposed by ancient actors to address 
this second step: some use tables of the solar and lunar motions directly, others 
rely on different types of tables specifically designed for this purpose. Most 

1 The literature on this topic is large. Cf. Chabás and Goldstein, ‘Computational Astrono-
my: Five Centuries’; Kremer, ‘Thoughts on John of Saxony’s’ Method’; Chabás and Goldstein, 
A Survey of European Astronomical Tables, pp. 139–54. My selection of syzygy computations to 
explore these general questions is inspired by this scholarship, which also analyses the mathemati-
cal properties and astronomical foundations of different historical procedures.

2 Chabás and Goldstein, The Alfonsine Tables; Chabás and Goldstein, A Survey of Europe-
an Astronomical Tables; North, ‘The Alfonsine Tables in England’; Poulle, ‘John of Lignères’; 
Saby, Les canons de Jean de Lignères; Husson, ‘Ways to Read a Table’. For an overview of the 
Tabule magne and the identification of the manuscripts containing them, see Chabás, Compu-
tational Astronomy in the Middle Ages, pp. 199–206.
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procedures are iterative and propose successive evaluations of the time of true 
syzygy. This second step is by far the more complex of the two. The present 
chapter is concerned with the way in which the manuscript tradition of John 
of Lignères’ Tabule magne framed the computation of the second step of syz-
ygy computation: finding the time between mean and true syzygy.

The Tabule magne and true syzygy computations

The Tabule magne is a set of astronomical tables with their canons. It was 
created by John of Lignères and dedicated in 1325 to Robert the Lombard, 
Dean of Glasgow, with two other texts on astronomical instruments (a saphea 
and an equatorium).3 The Tabule magne are concerned with computations of 
syzygies (mean and true) and planetary positions (mean and true). A partic-
ular feature of the Tabule magne is related to planetary positions, for which 
double-argument equation tables are used for the first time in the tradition of 
Latin sources. The Tabule magne also have a strong link to the various versions 
of the Oxford Tables and were important in the transmission of Parisian 
Alfonsine astronomy to England.

In the four known manuscript witnesses of the canons, a chapter with the 
title Tempus vere coniunctionis et oppossitionis solis et lune invenire (‘To find the 
time of the true conjunction or opposition of the sun and the moon’) is found.4 
This canon describes a method to compute the time from mean to true syzygy. 
The procedure in this canon instructs the reader to compute two astronomical 
quantities at the time of mean syzygy: first the distance between the true sun 
and the true moon; and second the difference between the velocities of the 
sun and the moon (the superatio). In order to compute these quantities, one 
needs to rely on tables that are not specified and only implied in the context 
of this particular chapter. Then these two quantities are used as the arguments 
of a specific table. This table is described in the canons with the name tabula 
longitudinis horarum (‘table of the longitudes of hours’). It simply tabulates the 
quotient of the first argument by the second.5 The result of the reading of this 
table is then taken as an approximation of the time between mean and true 
syzygy. The process is to be iterated until one estimates that the true sun and 
true moon are equal.

3 Husson, Les domaines d ’application.
4 Cambridge, Gonville and Caius College, MS 110, pp. 1–5; Erfurt, UFB, Amplon. Q 

366, 28r–32v (see for a digital copy: https://dhb.thulb.uni-jena.de/receive/ufb_cbu_00022114); 
Paris, BnF, MS 7281, 201v–205v (see for a digital copy: https://gallica.bnf.fr/ark:/12148/btv1b52 
5030045); Paris, BnF, lat. 10263, 70r–78r (see for a digital copy: https://gallica.bnf.fr/ark:/ 
12148/btv1b9072582f).

5 Tables of this type for the computation of true syzygies are related to a tradition that can 
be traced back to the twelfth-century Andalusian astronomer Ibn al Kammād (Chabás and 
Goldstein, A Survey of European Astronomical Tables, pp. 145–46).
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Scholarship has identified fifteen manuscript witnesses of the tables of the 
Tabule magne.6 Six witnesses include specific tables for the computation of true 
syzygy.7 Among these, five contain the same group of four tables presenting 
respectively the solar and lunar equations and velocities. This group is always 
presented in a single grid8 and allows one to carry out the first part of the pro-
cedure described by the canons.9 In this paper I will refer to it as the ‘equations 
and velocities grid’. Two among the six witnesses present the division table 
described in the canons.10 However, the format of the table in the manuscripts 
does not correspond exactly to the description of the table in the canons. The 
canon’s description implies that the table is presented in a single grid, where 
the table’s arguments and entries have no specific order of magnitude. Only 
the procedure in the canons fixes the rule according to which these orders of 
magnitude are determined. In the manuscripts, the table is divided into two 
distinct grids: one in which the first argument (i.e., the distance between the 
sun and the moon) is in degrees, the other where the first argument is in min-
utes. In both cases the units of the entries are also specified directly in the grid 

6 Paris, BnF, Latin 7300A, 94v–112r (https://gallica.bnf.fr/ark:/12148/btv1b100271684); 
Bernkastel-Kues, Cusanusstift, MS 210, 89v, 103r–117r; Bernkastel-Kues, Cusanusstift, 
MS 212, 91v–92r and 93r (tables for radices and syzygies); Cambridge, Gonville and Caius 
College, MS 110, pp. 7–18; Erfurt, UFB, Amplon. F 376, 30v–53v; Erfurt, UFB, Amplon. 
F 388, 1r–42v; Lisbon, Biblioteca da Ajuda, MS 52-XII-35, 67r–92v; London, British Li-
brary, Add. 24070, 24v–42v; Paris, BnF, lat. 7286C, 10v–11r, 23v–24r (see for a digital  
copy: https://gallica.bnf.fr/ark:/12148/btv1b10035226k); Paris, BnF, lat. 10264, 1r–28v (see 
for a digital copy: https://gallica.bnf.fr/ark:/12148/btv1b10036926k); Segovia, Biblioteca de la 
Catedral, MS 84, pp. 680–91; Vatican, BAV, Pal. lat. 1367, 60v–62r (see for a digital copy: 
https://digi.ub.uni-heidelberg.de/diglit/bav_pal_lat_1367); Vatican, BAV, Pal. lat. 1374, 26r–27v,  
51v (see for a digital copy: https://digi.ub.uni-heidelberg.de/diglit/bav_pal_lat_1374); Vatican,  
BAV, Pal. lat. 1376, 46r, 102r–130r (see for a digital copy: https://digi.ub.uni-heidelberg.de/
diglit/bav_pal_lat_1376); Vatican, BAV, Pal. lat. 1412, 102r–116v (see for a digital copy: 
https://digi.ub.uni-heidelberg.de/diglit/bav_pal_lat_1412). Note that table sets are often very 
mixed in manuscripts from the Latin tradition. I here give extensive folio ranges in which 
tabular material from the Tabule magne are found along with tabular material from different 
origins.

7 Cambridge, Gonville and Caius College, MS 110; Erfurt, UFB, Amplon. F 388; Paris, 
BnF, lat. 10264; Vatican, BAV, Pal. lat. 1367; Vatican, BAV, Pal. lat. 1374; Vatican, BAV, Pal. 
lat. 1376, 46r, 102r–130r; Vatican, BAV, Pal. lat. 1412.

8 In this paper I use the word ‘table’ in order to point to a set of arguments and entries 
(mathematically) related to each other, and I use the word ‘grid’ to point to the particular lay-
out in which tables are written. A single table can be displayed in several grids. Several tables 
can be grouped into a single grid.

9 This arrangement is probably linked directly to John of Lignères and a very similar type 
of tables arrangement is found in his tables of 1321 (Saby, Les canons de Jean de Ligneres), 
except with argument every 6° instead of every 1°.

10 Cambridge, Gonville and Caius College, MS 110; Paris, BnF, lat. 10264.
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displaying the table. Finally, three manuscript witnesses among the six pres-
ent a double-argument table by John of Murs relying on a completely different 
logic for the computation of true syzygies.11 While the canons of the Tabule 
magne describe a unique and quite simple procedure to compute true syzygy, 
the manuscript tradition of the table set shows that users of the Tabule magne 
did not feel compelled by the canons, and made the computations along diverse 
and different lines.12

This situation, which was quite typical for the respective traditions of canons 
and table sets, demonstrates that the relation between the tables described or 
implied by the canons and those actually found in table sets was not straight-
forward. It also shows that the relation between the procedures described in 
the canons and those that can actually be performed with the tables found in 
table sets is likewise not straightforward. This complexity of course has a doc-
umentary aspect: it depends heavily on what is usually described as the ‘acci-
dent of transmission’. This points to the history of each individual manuscript, 
which can, to some extent, be analysed and partly recovered from a careful 
examination of the document’s material, graphical and intellectual dimensions. 
Like scribal variants, some of these ‘accidents’ are completely unintended or 
the result of events that occurred long after the manuscripts were actually used 
by medieval astronomers. However, some aspects of these ‘accidents’ are con-
sequences of the status of these writings and the way they were used, among 
other things in computations, by historical actors. In any case, the complexity 
also reflects, at least partially, the conditions under which these actors could 
perform computations.

In light of this complexity I will focus here on the equation and velocity 
grid and on the Tabula longitudinis horarum as they are found in the manu-
scripts. I will study their mathematical properties in the context of the algo-
rithm described by the related canon in the Tabule magne. In particular, I will 
not explore the full range of possibilities the tables offer for syzygy compu-
tations, which could rely also on other tables or on other procedures. This 
focused approach has two main steps. First, I will offer a critical edition of 
the true syzygy tables in John of Lignères’ Tabule magne. I will transcribe and 
study each manuscript witness and then conduct an astronomical and mathe-
matical analysis of the tables. Second, I will use this critical edition to propose 
tools that can help address general issues of computing with manuscripts by 

11 Erfurt, UFB, Amplon. F 388, Vatican, BAV, Pal. lat. 1367, and Vatican, BAV, Pal. lat. 
1376, 46r, 102r–130r contain a copy of John of Murs’ Tabule permanentes. The Erfurt manu-
script includes this in the same set of folios bearing the Tabule magne. The Tabule permanen-
tes are another set of tables designed for the same purpose and produced also in Paris by John 
of Murs; see Richard Kremer’s contribution to this volume.

12 It will be shown that numerical performance may also be an important aspect of the 
limited success of the Tabula longitudinis horarum among Latin astronomers.
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hand by reconstructing the computations of medieval astronomers with these 
tables and analysing their properties of convergence and robustness within the 
procedure described by the canons.13

Critical edition of the tables

Figure 1 lists the five manuscripts that contain the equation and velocity grid 
and the tabula longitudinis horarum. Their details and sigla are as follows:

• C: Cambridge, Gonville and Caius College, MS 110

• P: Paris, BnF, Latin 10264

• V1: Vatican, BAV, Pal. lat. 1367

• V2: Vatican, BAV, Pal. lat. 1374

• V3: Vatican, BAV, Pal. lat. 1412

There are many ways to build critical editions from this material. A common 
aim of a critical edition is to propose a version of the table as close as possi-
ble to what could have been the intention of its original compiler. This usu-
ally requires a careful study of variants in order to build a stemma on which 
the critical edition will rely. In this study, my aim is different. I need to build 
a critical edition that supports an analysis of the practice of computing with 
manuscripts. In particular, I want to understand how scribal agency is related 
to the uses of tables for computation. The way to achieve this begins with a 
careful description of the presentation of the tables in the different manuscripts. 
I also want to identify scribal variants in witnesses that have different kinds of 
numerical effects on the computational procedure or its result. The main tool 
for this will be a mathematical and astronomical analysis of the tables. Man-
uscript descriptions, mathematical and astronomical analysis of tables, and the 
critical edition are the three main parts of this section.

Description of the manuscripts

Scribal variants in a copy and, more generally, the way a given manuscript can 
be used in a computation depend on different diplomatic features of the copy. 
By diplomatic features, I mean those aspects of the copy that depend mainly 
on scribal agency, intentional or not, constrained by the context of scribal 
work. Exactly which diplomatic features may have an impact on the table copy 
as a computational tool remains a new and mostly open set of questions in 
research.14 I will take the opportunity of this edition to explore these issues 
and hope to contribute the beginnings of answers as well as more accurate for-
mulations of the questions involved.

13 Husson, ‘Astronomers’ Elementary Computations’.
14 See the articles by Montelle and van Dalen in this volume.
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Tables                                   \ Sigla C P V1 V2 V3

Solar equation X X X X X

Lunar equation X X X X X

Solar velocity X X X X X

Lunar velocity X X X X X

Tabula longitudinis horarum X X

Figure 1: The different versions of the tables to be critically edited. 

For these purposes I am relying on a general distinction between ‘digit’, ‘num-
ber’ and ‘quantity’ that can be most easily understood in a specific instance. In 
the equation and velocity grid the maximum value of the solar equation can 
be read as 2;10 arc degrees for arguments 92 to 95. This is a specific astro-
nomical quantity. Among other things, it is expressed using the units ‘degree’ 
and ‘minute’ and the number ‘2;10’. This number in turn is expressed with the 
digits ‘2’ and ‘10’. The ways these different elements are related and presented 
on the page are essential features of the general layout of tables with respect to 
their use in computations. This will be a first point of attention in my descrip-
tions. A second important point of attention will be to describe those aspects 
that point to the use of a group of tables in a single procedure. These aspects 
include, for instance, the positioning of the tables on the pages and their dis-
play in different types of grid, their positioning in the manuscript quires, their 
possible titles, headings and accompanying paratexts, etc.

The manuscript tradition of the Tabule magne, at least for the tables here 
under consideration, is not very original. The scribes responsible for the copies 
I will describe below have not created new designs for grids or new ways to 
express astronomical quantities in tabular format. The purpose of my descrip-
tion is not to identify originality. It is rather to understand how, in particular 
situations, tables are presented as a tool for computation. The fact that most 
of the diplomatic features I describe here are common to many tables may 
just attest to the fact that they are part of a common body of tacit knowledge 
related to how astronomical tables are to be presented and read. It is interest-
ing to point out that on many occasions aspects of this tacit knowledge are 
shared across linguistic domains and are the object of a specific transmission 
process.15 I also hope that these descriptions will be useful in discussions about 
the diplomatic features of table copies that need to be taken into account in 
the diplomatic transcription of tables.

15 Husson, ‘Remarks on Two Dimensional Array Tables’; Li Liang, ‘Tables with “European” 
Layout’.
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Cambridge, Gonville and Caius College, MS 110

Cambridge, Gonville and Caius College, MS 110 (C) is a vellum composite 
manuscript containing five codicological units of the fourteenth and fifteenth 
centuries. Although composite, the manuscript is intellectually coherent as it 
contains only material related to astral sciences and especially to mathematical 
astronomy.16 The initial and final leaves of the manuscript are remnants of a 
fourteenth-century document. They contain astronomical material produced in 
the 1320s around the Parisian faculty of arts, viz., John of Lignères’s Tabule 
magne from pp. 1 to 18 and a fragment of John of Saxony’s almanac from 
pp. 363 to 368.17 This witness of Lignères’ Tabule magne is the only known 
one where canons and tables are found together in a set of quires that results 
from a single production act.

Several features of C’s copy of the equation and velocity tables point to their 
common use in a single computation. First, these tables are presented on two 
pages facing each other. The four tables only occupy the top three quarters of 
the page and two other sets fill the remaining space. The equation and velocity 
table is presented under a unified title Tabula equationis solis et lune et ad inve-
niendum motus solis et lune in una hora (‘Table of the equation of the sun and 
moon and for finding the motion of the sun and moon in one hour’). This 
title is repeated on pp. 16 and 17. The use of the singular for table is inter-
esting for a grid that gathers two equation and two velocity tables. A further 
feature unifying the four tables into a single computational tool in C is the 
arrangement of the arguments and entries. Similar to what is usually done for 
planetary equation tables, all four tables share the same argument headed linee 
numeri communis. Under this heading, two columns are found; the first runs 
from 1 to 30 with a step of one, the second starts symmetrically at 29 and 
runs down to 0 with a step of one. After this we read three times the same set 
of four headings: equatio solis, equatio lune, motus solis in una hora, motus lune 
in una hora. With the symmetry of the argument this covers six zodiacal signs 
on each page, thus the full zodiac on pp. 16 and 17. These column headings 
identify the astronomical quantities that are tabulated. The tabula longitudinis 
horarum is split into two grids. The first is at the bottom of page 16, the other 
on page 18 presented in a landscape format. The title of the table appears only 
at the top of the first grid on page 16. Neither on page 16 nor on page 18 do 
headings indicate the type of astronomical quantities to read for the first argu-
ment in the first row or for the second argument in the first column. The type 
of astronomical quantity that one reads in the entries is not mentioned either. 
The two grids display difference columns that are distinguished, among other 

16 James, A Descriptive Catalogue, vol. I, pp. 114–15. I am in debt also to Sebastian Falk for 
providing me with pictures of the relevant manuscript folios for my study.

17 Chabás and Goldstein, A Survey of European Astronomical Tables, pp. 91–92.
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things, by the heading differentia. Thus, the only heading of this table points 
to a mathematical property of the number presented. The use of the table and 
its interpretation can only rely on a good comprehension of the procedure of 
syzygy computation in general and in particular of the one described in the 
canons to the Tabule magne.

A second set of diplomatic features of C is related to the ways astronomi-
cal quantities are expressed by sexagesimal numbers and used in computations. 
In the equation and velocity grid, the first two columns under the heading 
linee numeri communis represent different kinds of astronomical quantities 
depending on the specific table for which they will be used as an argument. 
For instance, if read in relation to the equatio solis the number in the linee 
numeri communis refers to the mean argument of the sun; if read in relation 
to the motus solis in una hora the same number refers to the true solar lon-
gitude. In each case, however, the value is an arc of the zodiac. The zodiacal 
signs are implicitly expressed by the layout of the table on the facing pages 
16 and 17. Only the numbers of degrees are written, but no unit for them is 
explicitly mentioned. The situation with respect to the astronomical quanti-
ties displayed in the entries of the tables is different. Under each table heading 
that marks the quantities, you have either three columns (for the equatio solis 
and the equatio lune) or two columns (for the motus solis and the motus lune). 
Each of these columns stands for a particular unit of the sexagesimal numbers 
expressing the astronomical quantity. For instance, the equatio lune is expressed 
in degrees, minutes and seconds marked by their abbreviations (‘g’ for gradus, 
‘m’ for minuta, and ‘2’ for secunda) as sub-headings in the first row of the 
table. This shows that what each column means in such a table and the way 
columns work together to constitute astronomical quantities is very different 
for columns used as arguments and those used as entries.

The unit sub-headings are nicely and systematically written on p. 17 but 
with less rigor on p. 16. This variation shows that these features are truly 
‘diplomatic’, i.e., they depend on scribal agency. There is no use of colours 
in this manuscript to mark the numbers (numbers are marked in black, the 
table ruling is in red). However, the scribe used another feature to reduce his 
labour and produce a readable page. For all the tabulated astronomical quanti-
ties the first sub-column (in degrees for the two equations, in minutes for the 
two velocities) is highly repetitive. For instance, on p. 17 the first column of 
the equatio solis should have a sequence of twenty-four ‘2’s for the digit of the 
degree of the equation. The scribe decided to write only every second, third 
or fourth digit in the sequence. He used this strategy almost exclusively for 
the first column of each astronomical quantity. This produces a visual effect 
that underlines the astronomical quantities to the reader. On the other hand, 
this way to omit ‘repetitive’ numerical information in specific columns of the 
tables amplifies the risk of introducing shift variants into the copy. Because 



434 MATTHIEU HUSSON

these potential shift variants will occur in the column that has the greatest 
order of magnitude, their impact on the computation will be significant. Some 
instances of this will be identified later.

At the bottom of the columns for the equatio solis and equatio lune one 
finds the word adde to indicate how the entries are to be managed in the larger 
procedure to find the true longitude of the sun or moon. It is also related to 
the symmetry of the linee numeri communis columns. If the table is read from 
top to bottom the equations will be subtracted, if the table is read from bot-
tom to top the equations will be added.

The two grids displaying the tabula longitudinis horarum treat the argu-
ments and entries differently. The single digit arguments are not marked with 
a heading or unit. The first argument ranges from 27 to 34 in both grids. The 
second argument ranges from 1 to 8 in the first grid and from 1 to 34 in the 
second grid. Differences and actual entries are also treated in distinct ways. 
Units of the entries are expressed using abbreviations and top column headings 
similar to the grid for the equations and velocities. In the first grid on p. 16, 
these units are hours, minutes and seconds. In the second grid on p. 18, these 
units are minutes and seconds. In terms of layout, the first argument is treated 
as a kind of table heading in both grids. The differences have no explicit units. 
In the first grid on p. 16, each cell contains a two-position number, e.g., 4 46, 
which the context allows to be identified as 4 minutes 46 seconds. Thus while 
quantities are separated in different cells for the entry, they are gathered in one 
cell for the differences. Because of the very small differences between two suc-
cessive entries, this particular diplomatic feature does not appear in the second 
grid on p. 18.

Paris, BnF, Latin 10264

P is a fifteenth-century paper manuscript of 286 folios. It is closely related to 
Paris, BnF, Latin 10263 as both are linked to the fifteenth-century printer 
and humanist Arnaud of Brussels.18 This coupling of manuscripts is interesting 
because Latin 10263 is one of the four witnesses of the canons to the Tabule 
magne. The close relationship between the witnesses of the table set and of the 
canons might explain why P has, like C, a table set coherent with the canons 
concerning syzygy computations. P has an interesting intellectual profile: along 
with the Tabule magne, it contains cosmological, cosmographical and geo-
graphical texts of Alfargani and Albertus Magnus. The way the five tables are 
arranged in this manuscript is almost identical to that found in C (cf. Plate 13).  
Only three relevant variants will be mentioned here. First, the two grids of  
the tabula longitudinis horarum are copied together on fol. 30v. Thus, in this 

18 Poulle, La bibliothèque scientifique.
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Parisian witness, the two steps of the procedure correspond to two different 
openings of the manuscript. Second, in the equation and velocity grid the zodi-
acal signs are marked with numbers from 0 to 5 at the top of the grid and 
from 6 to 11 in reverse order at the bottom of the grid. Third, the scribe of 
this copy did not use the technique of omitting repetitive numbers in columns, 
as was done by the scribe of C.

Vatican, BAV, Pal. Lat. 1367

The three Vatican witnesses only have the equation and velocity grid. V1 is a 
fifteenth-century composite manuscript with the first 84 folios of parchment 
and the last 79 of paper. Despite the composite nature of the manuscript, its 
intellectual profile is coherent with texts of astronomy, astrology and medicine. 
The parchment section contains only astronomical tables. It is opened by a ver-
sion of the Parisian Alfonsine Tables as described in John of Saxony’s canons 
of 132719 and is completed with material from other sets, including parts of 
the Tabule magne. The equation and velocity grid is spread over three pages 
(70v–71v). The layout of the grid is similar to that of C but some relevant 
variants can be noted. The first striking diplomatic aspect is the use of colours. 
Black and red are linked to numerical quantity; all digits that need to be read 
together in order to form a number and signify an astronomical quantity are 
of the same colour. Colours separate the columns of the tables. The argument 
columns common to all four tables are repeated for each zodiacal sign on 70v.

Vatican, BAV, Pal. Lat. 1374

V2 is a paper manuscript of 126 folios copied in Prague in 1407. It contains 
exclusively astronomical tables. Like in V1, the equation and velocity grid is 
spread over three pages. However, the use of colours is different and not sys-
tematic in this manuscript. The integrity of quantities is not respected. For 
instance, the motus solis is written in red for the minutes and in black for the 
seconds. This use of colour enhances the possibility of shifts when copying the 
table column by column.

Vatican, BAV, Pal. Lat. 1412

The last witness, V3, is a 138-folio paper manuscript copied in Paris in 1453–
54. It is entirely concerned with mathematical astronomy and includes texts 
like the Theorica planetarum gerardi, various canons of John of Lignères and 
different tables from the Alfonsine traditions. The equation and velocity grid 
is spread over three pages. The diplomatic features that are of interest in this 

19 Poulle, Les tables alphonsines.
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study are almost identical to those of V1. One may, however, note that on 
fol. 111r the scribe has chosen to copy the linee numeri communis only once in 
the middle of the page.

Scribal agency affects the ways a given manuscript can be used in a compu-
tation. The association of tables in grids and the distribution of these grids on 
pages is one important aspect. The organisation of these grids is also relevant 
especially with respect to the relation between arguments and entries and with 
respect to the symmetry of the tables. Scribal agency also affects the way dig-
its, numbers and units are related to the astronomical quantities they express. 
The practice of avoiding the copy of repetitive numbers and use of colours that 
does not respect the integrity of astronomical quantities are two interesting 
instances. These different diplomatic features also may induce specific types of 
column shift variants in the copy. Finally, the above survey has confirmed the 
manuscript grouping that was already apparent from the contents of the man-
uscripts with respect to syzygy computation. The Cambridge and Paris manu-
scripts are distinct from the three Vatican witnesses especially with respect to 
the use of colours.

Mathematical and astronomical analysis of the tables

Astronomical and mathematical understanding of the tables is enhanced by 
‘recomputing’ the table according to historically pertinent methods. ‘Under-
standing’ here means identifying the astronomical models, parameters and 
mathematical methods on which the tables rely. Different contributions in this 
volume illustrate this type of inquiry on original tables. Recomputations can 
be done at different levels of accuracy depending on the evidence of the man-
uscript, the precision of the table, and the aim of the study. In the context of 
this chapter, I need to recompute values that will give me a point of compari-
son from which the manuscript variants can be analysed and a critical edition 
established. In particular, the recomputed values need to help me identify those 
scribal variants that could have been identified also by especially ‘skilled’ table 
users.

Note that the tables analysed here are either already fairly well known or 
mathematically simple, so that it will not be necessary for me to develop this 
part of the analysis very far. The Tabula longitudinis horarum is a division 
table. The top row argument, i.e., the superatio or velocity difference between 
the moon and the sun, is divided by the left column argument, i.e., the elon-
gation. The first grid of this table has the elongation running up to 8° (some-
what more than the maximum elongation in a half-day). The second grid of 
this table has the elongation running up to 34 arcminutes (enough to let the 
result of the division between the superatio and the elongation reach 60 min-
utes). At the level of precision required for this analysis the recomputation of 
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this table is trivial.20 The solar and lunar equations are those of the Parisian 
Alfonsine Tables as described for instance in John of Saxony’s canons of 1327 
and printed in the 1483 editio princeps. It is not necessary, for my purpose, 
to elaborate further on the existing literature on these equations.21 The solar 
and lunar velocities are also well documented.22 However, their recomputation 
presents interesting methodological aspects in a simple situation. The cases of 
the sun and moon are fairly similar. Thus, I will here present only the recom-
putation of the lunar velocity. The minimum value of the lunar velocity in the 
table is 0;30,18 and the maximum value 0;36,04. This pair of values indicates 
that the table is related to the corpus of the Toledan Tables.23 Thus the first 
logical step in exploring how this table could have been computed is to recom-
pute the lunar velocity starting from the Toledan Tables. One may apply the 
following formula, where ᾱ is the mean anomaly of the moon, ν is the lunar 
velocity, m is the mean lunar motion expressed in degrees per hour, ma is the 
mean lunar motion in anomaly in degrees per hour and c is the lunar equation 
of anomaly:24

ν(ᾱ) = m + ma(c(ᾱ + 1) − (c(ᾱ)).

Figure 2 displays the differences in seconds (the precision of the velocity tabu-
lated in the manuscripts) between the results obtained using this formula25 and 
the values in manuscript C. The results obtained with the other manuscript 
witnesses are qualitatively identical. A pattern is apparent in this diagram 
that shows that probably an interpolation grid was used in computing the  
velocity table.

20 In the recomputation I have performed an exact division and have rounded the result to 
the precision of the recomputed table. I do not study specifically the practice of division among 
astronomers of the late medieval period in the Latin tradition.

21 For a short state of the art and excellent starting point for the scholarship on the solar 
and lunar equations in European traditions, see Chabás and Goldstein, A Survey of European 
Astronomical Tables, pp. 63–73.

22 See Chabás and Goldstein, A Survey of European Astronomical Tables, pp. 95–99.
23 Pedersen, The Toledan Tables. From the point of view of astronomical theory the table 

set is not homogenous. In particular, it is not possible to derive the velocity tables from the 
equation tables as could be expected. The former rely on Alfonsine parameters while the latter 
rely on different Toledan parameters. This situation is not uncommon in table sets that circu-
lated in Latin sources during the latter part of the Middle Ages.

24 Different formulas are possible especially with respect to the use of c but it will not be 
necessary to explore them here. See Goldstein, ‘Lunar Velocity in the Ptolemaic tradition’.

25 I used the lunar equation of anomaly from Pedersen, The Toledan Tables, vol. IV, 
pp. 1453–58: 0;32,56,0 °/h for the lunar mean motion in longitude and 0;32,40,0 °/h for the 
mean motion in anomaly.
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Figure 2: Differences in seconds between C and results obtained with the first recomputation 
scenario.

The lunar velocity table usually presented in the Toledan Tables is given with 
a step of 6 degrees for the argument. A close comparison of the values of the 
tables edited by Pedersen26 and those for multiples of 6 degrees in the manu-
scripts here under consideration shows that both sets of values coincide exactly 
except in three cases:

• For argument 30, Pedersen’s edition has 30,55, while John of Lignères’ 
version reads 30,36.

• For argument 102, Pedersen’s edition has 33,17, while John of Lignères’ 
version reads 30,27.

• For argument 168, Pedersen’s edition has 35,58 while John of Lignères’ 
version reads 35,54.

Thus, the possibility that the table in our manuscripts was computed using 
interpolation in between nodes at every 6 degrees taken from the Toledan 
Tables (with the adjustments listed above) is worth exploring. Figure 3 shows 
the differences in seconds between the lunar velocity table in C and the results 
of such a recomputation. The agreement is obviously much better. And the 
results obtained with the other manuscripts are qualitatively similar. I have 
chosen to stop my recomputation effort at this point.27

26 Pedersen, The Toledan Tables, vol. IV, p. 1412.
27 Recomputed values for all tables are provided in the critical apparatus of the edition of 

the tables in Appendix A.
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Figure 3: Differences in seconds between C and the results obtained with a second recompu-
tation scenario.

Critical edition

I have two types of material for each table: first, manuscript transcriptions from 
each witness of the table; second, recomputed or expected values for each table. 
In the context of this study, the goal of the critical edition is not to restore a 
version of the table intended by John of Lignères, thus I do not need to study 
the interrelations of the manuscripts and provide a stemma. Rather, the goal of 
the edition is to provide a reference point for the analysis of manuscript vari-
ants and a tool to analyse the effect of these variants on the computations and 
their results. As a consequence of the first goal, the edition must be neutral 
with respect to the different manuscripts, because if the edition is by construc-
tion closer to one manuscript than to the others, the specificities of computing 
with this particular manuscript will not be in sufficient contrast with those of 
computing with the critical edition. The second goal of the edition implies that 
the edition must be close enough to the expected values so that computations 
made from the edition do not potentially lead to the computational effects I 
want to isolate in each particular manuscript. Finally, the computational effects 
we need to isolate are small in most cases, thus the critical edition must also 
remain close to the manuscripts. In the end, the edition needs to be a middle 
term of some sort between the different manuscript versions and the expected 
or recomputed version.

In light of these requirements, I have adopted a simple algorithmic rule to 
construct the critical edition. Each value is determined according to a major-
ity rule in which the expected values are weighted with a coefficient two and 
the manuscript witnesses are weighted with a coefficient one. This ensures that 
the expected values have more weight than any manuscript, that all the manu-
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scripts have the same weight, and, because the weights given to each source are 
close to each other, the critical edition will remain close enough to the manu-
script witnesses. Following such a procedure has the supplementary advantage 
that the resulting critical edition is entirely transparent as no ad hoc emenda-
tions are made. Since the computation of the tabule longitudinis horarum is 
trivial I have chosen to give a weight of three to the recomputed values and 
kept the two manuscript versions with a weight of one. This implies that the 
edited version is identical with the recomputed table.

In the next section, this particular choice will allow the comparison of var-
ious means of division: modern division, exact division using the algorithmic 
rules of ancient actors, division using an exact version of the table (i.e. with 
values rounded to seconds), division using the quotient tables as they appear in 
the manuscripts with their variant. More generally, the choice of the above algo-
rithmic rule to construct the critical edition will prove efficient with respect to 
our goal: it will be possible, for instance, to distinguish between ‘obvious’ vari-
ants that any ‘skilled’ user would have ‘corrected’ during or before the compu-
tation and ‘non-obvious’ variants that would silently go into the computation. 
It will also be possible to isolate various kinds of variants and their effects on 
the computation by comparing the manuscript version to the critical edition.

As, to my knowledge, this is the first time such a procedure has been used to 
generate a critical edition of a table with respect to a given research objective, it 
is not clear if the set of weights I have selected is the only or even the best to 
achieve these goals and I make no claim about this. I do note that this kind of 
weighted procedures could easily be implemented as a tool to generate a critical 
edition directly from queries to a database of astronomical tables. In this con-
text such issues could be investigated systematically. These weighted procedures 
are in principle flexible enough to fit many different kinds of research goals 
for critical editions, including the classical stemma-oriented type of critical edi-
tion. Naturally these types of ‘computer-assisted’ editions are not to replace the 
expertise of the historian. Even if he decides to use such a tool, the choice of 
the scholarly goal of the edition, the weight to be given to the various sources, 
and whether or not to follow the result of the weighted procedure in individ-
ual cases will remain up to the researcher.

A typology of scribal variants in tables

My edition of the five tables is given in Appendices A to E and the conven-
tions used to mark the variants are specified there. In order to explore how 
manuscript variants affect results of computations and practices with tables I 
distinguish two directions along which they can be analysed.28 First, some vari-

28 An interesting analysis of manuscript variants in a tradition of a table set involving Ara-
bic and Latin sources is found in van Dalen and Pedersen, ‘Re-editing the Tables’.
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ants affect one number at a time while others affect in correlated ways a group 
of numbers. These phenomena are connected in different ways to diplomatic 
choices when copying the table and may point in some cases to specific math-
ematical practices. These two categories of variants will affect the computation 
with tables differently since variants where sets of numbers are changed in cor-
related ways are likely to have a greater impact. A second manner of analysing 
variants relies on the specific way quantities are shaped from numbers in astro-
nomical tables. Quantities are expressed as a set of numbers (i.e., digits) each 
having a different order of magnitude in sexagesimal arithmetic. The numbers 
at each of these orders of magnitude will usually have different diplomatic 
properties. The number of degrees will change very slowly and thus parts of 
the column will be repetitive, the number of seconds will usually behave more 
randomly except for some arithmetical tables where cycles are likely to appear 
that will help reading and copying, etc. A variant affecting the number of sec-
onds in a quantity will presumably have a smaller impact on the computation 
than a variant affecting the number of degrees in the same quantity. Thus one 
might consider that from a computational perspective a table does not usually 
present one type of variant but has as many as there are positions in its entries.

Among variants affecting one number at a time, some remain inscrutable. 
For instance, in the table for the solar equation, V3 gives the value 2;7,18 for 
argument 104. However, all the other witnesses and the recomputation give a 
‘14’ instead of the final ‘18’. There is no obvious palaeographical or mathemat-
ical explanation for this variant. On the other hand, some variants clearly have 
a palaeographical cause. For instance, in the table for the solar equation the 
‘29’ in the number of minutes for argument 138 varies as ‘20’ in V1 and V2 
and as ‘39’ in P. These types of variants are linked to the script used to denote 
the number. They are more and more frequent as the order of magnitude of 
the digit is smaller and control of the value of the number from local parsing 
becomes more difficult. There are practically no errors of this type affecting 
the number of degrees in the table set here under analysis. Some variants affect 
the last position of a number by a value of plus or minus one. In some of those 
cases, no palaeographical explanation is available. For instance, in the table for 
the lunar velocity the value for argument 65 was most probably interpolated in 
between the values for arguments 60 and 66. All versions except V3 give the 
value ‘36’ in the last position, V3 gives ‘37’ instead. There is no simple Latin 
palaeographical explanation for a ‘7’ instead of a ‘6’, so that a ‘rounding effect’ 
is much more likely to account for this variant. This suggests that some actors 
along the transmission of the table did recompute the interpolated values and 
thus produced small variant traditions of the tables because of variations in 
their rounding practices.

There are different types of variants that affect sets of numbers in correlated 
ways. The most common type shifts a block of values vertically. For instance, 
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the table for the solar equation in V2 has a shift affecting the numbers of 
minutes and the numbers of seconds between arguments 45 and 48.29 Overall, 
this type of shift is more frequent in the three Vatican manuscripts than in 
the two others. This might be related to the specific use of colours made by 
the Vatican group of manuscripts. Some other types of variants similar to this 
block shift also occur, and they especially affect the numbers of degrees. They 
are linked to the repetitive character of the table for this order of magnitude. 
For instance, in the Cambridge manuscript, the degree column in the lunar 
equation table shows a block of ‘3’s instead of ‘2’s for arguments 146 to 150. 
Similar effects on the numbers of degrees are attested in V2 for the solar equa-
tion table for arguments 115 to 120 and arguments 151 to 153. Another curi-
ous effect of repetitive character affecting a block of values is seen in the solar 
velocity table in V3. For arguments 151 to 159 a ‘23’ replaces ‘32’ in the second 
column. Finally, some mathematical effects also produce variants that create 
block shifts. A clear instance is given in the table for the solar velocity in V3. 
For arguments 160 to 170, V3 gives ‘32’ as the number of seconds while all 
the other manuscripts give ‘33’. One might remember that for arguments 174 
and 180, which are interpolation nodes, all manuscripts read 2′32″ instead of 
the expected 2′33″. Thus in all manuscripts but V3 the solar velocity shows an 
unexpected decrease from 2′33″ to 2′32″ in the seconds’ column. One of the 
actors along the chain of transmission that produced V3 felt this was to be 
corrected. However, instead of changing the value of the two last interpolation 
nodes to 2′33″, he changed the value of the two preceding interpolation nodes 
to 2′32″ instead of 2′33″. All the values dependent on these nodes are then 
affected.

Computing ΔT with manuscript tables of the Tabule magne

Preparing the computations

In order to explore the practice of computing the time between mean and 
true syzygy (hereafter ΔT) with these manuscripts we need to consider at least 
three different types of variability that must be addressed: manuscript variabil-
ity, procedural variability, and arithmetical variability. The first sections of this 
paper were devoted to building the tools needed to manage manuscript vari-
ability especially for the critical edition of the tables.

As far as procedural variability is concerned, as noted above, the table set of 
the Tabule magne could be used to compute the position between mean and 
true syzygy in many ways. In this section I want to focus on the variability 
stemming from manuscripts’ variants. Thus, procedural variability is to be con-

29 It is not clear in this specific case how the entry for argument 49, namely 1;34,34, was 
generated: simple linear interpolation would produce 1;34,36 or 1;34,37.
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trolled rather than explored. The canons of the Tabule magne are here helpful 
because they describe only one method for computing the time between mean 
and true syzygy, which I will thus follow closely:

1. Starting from the mean anomaly of the sun and moon compute the 
difference in longitude of the true sun and true moon.

2. Compute the difference of the velocities of the sun and moon.

3. Divide the first by the second result and obtain an estimation of ΔT.
4. If the true sun and moon are at syzygy after that estimation of ΔT (i.e. 

their true positions are equal or 180° removed at the desired level of 
accuracy), stop; if not, iterate.

Following this procedure closely allows me to avoid dependence on tables that 
are not in the set I have critically edited above, and thus to keep a good control 
over manuscript variability. In particular, starting the procedure directly from 
the mean anomaly of the sun and moon allows me to avoid depending on a set 
of mean motion tables from which to derive a set of mean conjunctions and 
oppositions for the sun and moon for a time period that would also need to 
be justified. There is a second consequence of the choice to closely follow the 
canons and the table set. After the first iteration the sun and moon are not at 
mean syzygy any more. In principle the first and second lunar model are then 
not equivalent, and the second lunar model should be used to compute the 
moon’s true position and its velocity. However, there is no lunar equation of 
centre in the table set here under consideration, as would be necessary to use 
the second lunar model, and we have seen that the lunar velocity table is also 
dependent on the first lunar model drawn from the Toledan Tables. Thus com-
puting the time between mean and true syzygy according to the table proposed 
in the Tabule magne set implies that one should follow the first lunar model. 
In concrete terms, I will compute ΔT according to the above procedure for 
every pair of mean anomaly of the sun and moon in the range 0 to 360 with 
a step of 10 degrees.

I am fully conscious that it would be important and interesting to explore 
other possible procedural scenarios with the same accuracy, and to compute 
ΔT or even true syzygy times for other table sets. These other ways to use the 
tables (and to associate them with other velocity, equation and mean motion 
tables) will likely lead to different values of ΔT.30 However, I am not trying to 
compare the results found in that way to ‘exact Alfonsine results’ or to explore 
this procedural variability. My aim is only to understand what kind of variabil-
ity in the computational procedure and in its results derive from the manu-

30 The impact of this kind of alternatives on the computed time between mean and true 
syzygy has been investigated for the case of John of Saxony in Kremer, ‘Thoughts on John of 
Saxony’s Method’.



444 MATTHIEU HUSSON

script variants in this corpus. In this respect, the results obtained in this study 
are likely to be qualitatively valid also for other table sets and procedures as the 
manuscript variability will be of the same kind for other procedures and so too 
will be the arithmetical practices on which the computations rely.

The last type of variability to consider is arithmetical variability. Arithmeti-
cal practices and their variability are an important factor here because their 
order of magnitude is likely to be of the same order as that produced by man-
uscript variants. In order to control this variability I have made two different 
choices.

First, a competent table user presumably corrects some manuscript variants, 
especially those that affect the number of degrees in an entry. It is thus import-
ant to see how these skilled corrections affect the computation and its results. 
For this reason, I have repeated my computations for four different situations:

1. The table set as found in the manuscripts.

2. The table set corrected for variants that only affect degrees.31

3. The table set corrected for variants that affect degrees and minutes.

4. The critically edited table set.

A comparison of the results produced in these situations will help me under-
stand how a competent table user is able to improve the accuracy of results by 
amending some easily spotted variants in his tables.

Second, the arithmetic of historical actors is not that of modern computa-
tional software. I have thus also explored different arithmetical algorithms in 
my computations:

1. Computation with floating numbers and modern arithmetic.

2. Simulated computations of historical actors, in which all numbers are 
converted to integer multiples of the smallest sexagesimal unit used 
(here the second) and regular integer arithmetic along with a specified 
type of rounding is used.32

3. The same as situation 2) but with the use of the tabula longitudinis 
horarum for the final division.

Thus, multiple manuscript versions and their corrected versions are combined 
with different possible arithmetical algorithms in an iterative procedure. The 
space of computations explored is huge and in some cases, different scenarios 

31 Here ‘corrected’ means that the number is set to be identical to the one chosen in the 
critical edition: I eliminate the variant. Consequently, ‘corrected’ does not mean that the num-
ber is set to be equal to the one I would expect from a recomputation.

32 Husson, ‘Astronomers’ Elementary Computations’.
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lead to the same results. I will not fully describe this space here.33 Rather I 
will explore two aspects of the computation of the time between mean and 
true syzygy with this set of manuscripts. First, it is important to see if the 
computations actually produce a result. In other words, I will consider how the 
convergence of the iterative process is affected by variants in the manuscripts 
and by arithmetical practices. For this, I will consider manuscript versions one 
by one and, after each iteration, I will inspect the difference in ecliptic lon-
gitude between the true sun and true moon. If the procedure converges, this 
distance should approach zero. Once the convergence issue is clarified, I will be 
in a position to analyse how manuscript variants propagate iteration after itera-
tion, and compare the results produced by the different manuscript versions. In 
other words, I will ask the question: are the ΔT values produced by different 
manuscripts the same? And if different, by how much and why? When asking 
this second question, I will compare the actual values of ΔT produced by dif-
ferent manuscripts after different numbers of iterations. For each of these two 
questions, the properties and results of computation with the edited version 
of the table will be the paradigm against which the phenomena linked to the 
different manuscript versions are identified. All effects that I will point out are 
local: they are caused by individual variants in the manuscripts and influence 
only the ΔT found for specific solar and lunar positions.

Computing with one manuscript: convergence issues

In this section I will present three different results in order to grasp how con-
vergence occurs when computing with the tables attested in the corpus of the 
Tabule magne. The first thing is to measure the effect of arithmetic variability 
on the convergence. The second is to measure the effect of manuscript variabil-
ity on the speed of the convergence. The third and last case will be a curious 
situation of non-convergence.

In order to isolate the particular effect of arithmetic variability on the con-
vergence, three iterations of the process were made using the critically edited 
table set with the three different types of arithmetic here considered. As can be 
seen in Figure 4, the distance between the true sun and true moon after three 
iterations is zero everywhere when floating number arithmetic is used.

33 I have used spreadsheets to explore the space of computations because I needed to fol-
low each step of the computations with accuracy. These spreadsheets are available on demand. 
Soon the DISHAS platform (see the introduction of this volume) will allow researchers to 
manipulate tables and different related procedures directly in a Python environment. This will 
allow a much more efficient exploration of the space of computations created by historical ta-
bles and procedures. It will also foster collaborative research on these topics as the research 
data and procedures will be publicly available.
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 0 0 0 0 0 0 0 0 0 0 0 0

 30 0 0 0 0 0 0 0 0 0 0 0 0 0

 60 0 0 0 0 0 0 0 0 0 0 0 0 0

 90 0 0 0 0 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0 0 0 0 0 0 0

150 0 0 0 0 0 0 0 0 0 0 0 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 0 0 0 0 0 0 0 0 0 0 0

240 0 0 0 0 0 0 0 0 0 0 0 0 0

270 0 0 0 0 0 0 0 0 0 0 0 0 0

300 0 0 0 0 0 0 0 0 0 0 0 0 0

330 0 0 0 0 0 0 0 0 0 0 0 0 0

360 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4:  Distance between the true sun and true moon in arcsecs after three iterations when 
using floating number arithmetic and the critically edited tables.

If the arithmetic of an historical actor is used, this same convergence occurs 
after three iterations with residual arithmetical noise. Figure 5 shows that when 
using integer arithmetic with rounding to seconds this noise has a maximum 
magnitude of ±2 seconds. This noise persists also after six iterations.

0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 -1 -2 -1 -1 0 0 0 0 0 0 1 0

 30 1 0 0 0 0 0 1 0 1 0 0 0 1

 60 -1 -1 -2 1 0 0 0 -1 0 1 0 0 -1

 90 1 1 1 1 0 1 1 0 -1 0 -1 2 1

120 1 0 -1 0 0 0 1 0 0 0 2 0 1

150 0 0 0 0 0 0 1 0 0 0 1 1 0

180 0 0 0 0 0 -1 0 1 0 0 0 0 0

210 1 -1 -1 0 0 0 -1 0 0 0 0 0 0

240 0 0 -2 0 0 0 -1 0 0 0 1 0 -1

270 -1 -2 1 0 1 0 -1 0 0 -1 -1 -1 -1

300 0 0 0 -1 0 1 0 0 0 -1 2 1 1

330 -1 0 0 0 -1 0 -1 0 0 0 0 0 -1

360 0 -1 0 0 0 0 0 0 0 0 0 1 0

Figure 5: Distance between the true sun and true moon in arcsecs after three iterations when 
using integer arithmetic and the critically edited tables.
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0  0  0 14  6  -5 -10  0  -5 -12 -22 31 -16  0

 30  9 28 -17 -28 -28 26 21  8  -5 -27 29 -13  9

 60  -1 27  -4 -12  -8 30 15 -18 17 -16 -12 18  -1

 90 28  2 -23 29 -25  9  -8  8 29 -10  -1 -22 28

120  8 -23  1  -7 -18 -20 26  -7 29  -4  1 28  8

150 26 -21  -9 -22 -20 -24 -22 29 18  -1  -7  8 26

180  0  3  7 -4 -10  -6  0  6 10  4  -7  -3  0

210  8  -8  7  1 -18 -29 22 24 20 22  9 21 -26

240  6 -28  -1  4 -28  7 -26 20 18 7  -1 23  -8

270 -20 22  1 10 -29  -8  8  -9 25 -29 23  -2 -28

300 17 -18 12 16 -17 18 -15 -30  8 12  4 -27  1

330 25 13 -29 27  5  -8 -21 -26 28 28 17 -28  -9

360  0 16 -31 22 12  5  0  -5 -12 -22 31 -16  0

Figure 6: Distance between the true sun and true moon in arcsecs after three iterations when 
using integer arithmetic, the tabula longitudinis horarum and the critically edited tables.

However, if the tabula longitudinis horarum is used for the final division, 
the magnitude of the arithmetical noise is around fifteen times larger with a 
maximum of ±28 seconds (Figure 6). This noise remains robust even after six 
iterations. This is already a significant result because the effects of the vari-
ous arithmetical choices available to the actors show that even on arithmetical 
grounds they must have had a nuanced understanding of convergence.

These arithmetical effects are robust enough to be preserved across the 
manuscript variability. Arithmetical variability and manuscript variability do 
not compound and appear to be, in the situation analysed here, independent. 
Whatever manuscript version is used to compute ΔT, it will not be possible to 
go below the arithmetical noise that was isolated above. When using integer 
arithmetic there will always be a residual arithmetical noise of up to two arc-
secs and when using the Tabula longitudinis horarum the residual noise can be 
as large as half an arcmin. This arithmetical noise, especially as shown in the 
last case, may seem large. However, most ephemerides were computed to the 
nearest minute during the late medieval period in Europe, thus these computa-
tions met a standard that was state of the art at the time.34

Now that this arithmetical effect is known, I will give results only using 
integer arithmetic provided that it is easy to conceive what the result would 
be if other arithmetics were used. The second effect I want to consider is that 
of manuscript variability on convergence speed. In this respect, it is important

34 Personal discussion with Richard Kremer (January 2019).
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 -1 -2 -1 -1 0 0 0 0 0 0 1 0

 30 1 0 1 0 0 0 1 0 0 2 0 1 1

 60 -1 -1 -2 1 0 0 0 -1 0 1 -1 0 -1

 90 1 1 1 1 0 1 1 0 -1 0 -1 2 1

120 1 0 -1 0 0 0 1 0 0 0 2 0 1

150 0 0 1 0 0 0 1 0 0 0 1 1 0

180 0 0 0 0 0 -1 0 1 0 0 0 0 0

210 1 -1 -1 0 0 0 -1 0 0 0 -1 0 0

240 0 0 -2 0 0 0 -1 0 0 0 1 0 -1

270 -1 -2 1 0 1 0 -1 -1 0 -1 -1 -1 -1

300 0 0 1 -1 0 1 0 0 0 -1 2 1 1

330 -1 -1 0 -2 0 0 -1 0 0 0 -1 0 -1

360 0 -1 0 0 0 0 0 0 0 0 0 1 0

Figure 7: Distance between the true sun and true moon in arcsecs after three iterations when 
using integer arithmetic and manuscript P.

to understand that the first two steps of the iterative procedure proposed 
by the canons to the Tabule magne are complex processes requiring in most 
cases several readings in tables, linear interpolations and multiple elementary 
arithmetical operations on the numbers composing the astronomical quanti-
ties. Depending on the situation and the skills of the computer, adding one 
iteration to the computation will require between five to fifteen minutes of 
arithmetical work on paper. In order to isolate and illustrate this effect I com-
pare manuscripts P and V3. Figure 7 shows that after three iterations with the 
tables in manuscript P the distance between the true sun and true moon are 
everywhere within the arithmetical noise proper to the use of integer arithme-
tic. Thus with this manuscript, just as with the critical edition, we obtain a 
final value for ΔT after three iterations.

The situation is different when we use V3 instead of P. Figure 8 shows that 
after three iterations the distance between the true sun and true moon can rise 
in some cases up to almost 10 arcmins. It is only after two more iterations that 
these worst-case scenarios are finally settled, as is shown in Figure 9. In other 
words, an historical actor’s computing with V3 rather than P would in most 
cases find a stable value of ΔT in three iterations but could in some cases need 
as many as five. This certainly makes a significant difference. In this respect 
the computation of ΔT with V2 is qualitatively similar to that of V3.

It is interesting to note that the effects of manuscript variability disappear 
when the errors in the degree columns of V3 are corrected, as is shown in Fig-
ure 10. A user able to make these ‘skilled corrections’ to the tables would avoid 
the inconvenience of having to do the additional iterations.
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0  0   -1   -2 -1   -1   0  0   0  0 0  0  1 0

 30  1  0  0 0  0  33  1   0  1 0  0  0 1

 60  9   -7   -6 -9   -3 355 13  -18 -10 -8 -16 -16 9

 90  -3  2  1 1  0  70  -3   0  -1 0  -1  2 -3

120  1  0   -1 -1  0  71  1   0  0 0  2  0 1

150  0  0  0 0  0  32  1   0  0 0  1  1 0

180  0  0  0 0  0    -1  0   1  0 0  0  0 0

210  1   -1   -1 0  0   0  -1  -32  0 0  0  0 0

240  0  0   -2 0  0   0  -1  -71  0 1  1  0 -1

270  2   -2  1 0  1   0  3  -70  0 -1  -1  -2 3

300 -20 16 16 8 10  18 -13 -355  3 9  6  7 -9

330  -1  0  0 0   -1   0  -1  -33  0 0  0  0 -1

360  0   -1  0 0  0   0  0   0  0 0  0  1 0

Figure 8: Distance between the true sun and true moon in arcsecs after three iterations when 
using integer arithmetic and manuscript V3.

0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 0 0 1 0 0 0 0 0 0 0 0 0

 30 0 0 0 0 0 2 1 0 0 0 0 0 0

 60 1 0 0 0 0 1 0 0 0 0 0 0 1

 90 0 0 0 0 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 -1 0 0 0 0 0 0 0

150 0 0 0 0 0 2 0 0 0 0 1 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 -1 0 0 0 0 -2 0 0 0 0 0

240 0 0 0 0 0 0 0 1 0 0 0 0 0

270 0 0 0 0 0 0 0 0 0 0 0 0 0

300 0 0 0 0 0 0 0 -1 0 0 0 0 -1

330 -1 0 0 0 0 0 -1 -2 0 0 0 0 0

360 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9: Distance between the true sun and true moon in arcsecs after five iterations when 
using integer arithmetic and manuscript V3.

With respect to convergence speed, the case of V1 also shows an interesting 
mathematical phenomenon. The distance between the true sun and true moon 
in arc-seconds after three iterations using integer arithmetic is presented in Fig-
ure 11. It shows a set of results within the expected arithmetical noise.
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 -1 -2 -1 -1 0 0 0 0 0 0 1 0

 30 1 0 0 0 0 0 1 0 1 0 0 0 1

 60 0 -1 -1 1 0 0 0 0 -1 1 -1 1 0

 90 -3 2 1 1 0 2 -3 0 -1 0 -1 2 -3

120 1 0 -1 -1 0 0 1 0 0 0 2 0 1

150 0 0 0 0 0 0 1 0 0 0 1 1 0

180 0 0 0 0 0 -1 0 1 0 0 0 0 0

210 1 -1 -1 0 0 0 -1 0 0 0 0 0 0

240 0 0 -2 0 0 0 -1 0 0 1 1 0 -1

270 2 -2 1 0 1 0 3 -2 0 -1 -1 -2 3

300 1 -1 1 -1 1 0 0 0 0 -1 1 1 0

330 -1 0 0 0 -1 0 -1 0 0 0 0 0 -1

360 0 -1 0 0 0 0 0 0 0 0 0 1 0

Figure 10: Distance between the true sun and true moon in arcsecs after three iterations when 
using integer arithmetic and a version of manuscript V3 in which discrepancies in the degrees 
are corrected.

0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 -1 -2 -1 -1 0 0 0 0 0 0 1 0

 30 1 0 0 0 0 0 1 0 1 0 0 0 1

 60 -1 -1 -1 0 -1 0 0 -1 0 1 0 0 -1

 90 -3 1 1 1 0 2 -3 0 -1 0 -1 2 -3

120 1 0 -1 0 0 0 1 0 0 0 2 0 1

150 0 0 0 0 0 0 1 0 0 0 1 1 0

180 0 0 0 0 0 -1 0 1 0 0 0 0 0

210 1 -1 -1 0 0 0 -1 0 0 0 0 0 0

240 0 0 -2 0 0 0 -1 0 0 0 1 0 -1

270 2 -2 1 0 1 0 3 -2 0 -1 -1 -1 3

300 0 0 0 -1 0 1 0 0 1 0 1 1 1

330 -1 0 0 0 -1 0 -1 0 0 0 0 0 -1

360 0 -1 0 0 0 0 0 0 0 0 0 1 0

Figure 11: Distance between the true sun and true moon in arcsecs after three iterations when 
using integer arithmetic and manuscript V1.

However, the situation at the fourth iteration becomes even better, as shown 
in Figure 12. It remains stable at least until the sixth iteration. Thus, in the 
grid of the distance between the true sun and true moon after the third iter-
ation, some of the non-zero values are caused by the manuscript variants, but
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 0 0 -1 0 0 0 0 0 0 0 0 0

 30 0 0 0 0 0 0 -1 0 0 0 0 0 0

 60 0 1 0 0 0 0 0 -1 0 0 0 0 0

 90 0 1 0 0 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0 0 0 0 0 0 0

150 0 0 0 0 0 0 0 0 0 0 -1 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 1 0 0 0 0 0 0 0 0 0 0

240 0 0 0 0 0 0 0 0 0 0 0 0 0

270 0 0 0 0 0 0 0 0 0 0 0 -1 0

300 0 0 0 0 0 1 0 0 0 0 0 -1 0

330 1 0 0 0 0 0 1 0 0 0 0 0 0

360 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12: Distance between the true sun and true moon in arcsecs after four iterations when 
using integer arithmetic and manuscript V1.

0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 0   0    1   0 0 0 0   0    0   0 0 0

 30 0 0   1    0   0 0 1 0   0    0   0 0 0

 60 0 1   0    0   0 0 0 1   0    0   0 0 0

 90 0 0   0    0   0 0 0 0   0    0   0 0 0

120 0 0   0    0   0 0 0 0   0    0   0 0 0

150 0 0 675 1860 929 0 0 0   0    0   -1 0 0

180 0 0   0    0   0 0 0 0   0    0   0 0 0

210 0 0   1    0   0 0 0 0 -929 -1860 -675 0 0

240 0 0   0    0   0 0 0 0   0    0   0 0 0

270 -1 0   0    0   0 0 0 0   0    0   0 0 0

300 0 0   0    0   0 -1 0 0   0    0   0 -1 0

330 -1 0   0    0   0 0 -1 0   0    0   -1 0 0

360 0 0   0    0   0 0 0 0   0    0   0 0 0

Figure 13: Distance between the true sun and true moon in arcsecs after five iterations when 
using integer arithmetic and manuscript C.

these values are at the level of the arithmetical noise. Most of these are elimi-
nated by a further iteration. It should be noted that no table in V1 shows dis-
crepancies from the critical edition in the numbers of degrees. Thus, this effect 
is produced only by variants in minutes and seconds and probably difficult to 
avoid even for a ‘skilled’ user.
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0 0 0 -1 0 0 0 0 0 0 0 0 0

 30 0 0 -1 0 0 0 -1 0 0 0 0 0 0

 60 0 -1 0 0 0 0 0 -1 0 0 0 0 0

 90 0 0 0 0 0 0 0 0 0 0 0 0 0

120 0 0 0 0 0 0 0 0 0 0 0 0 0

150 0 0 -674 -1861 -929 0 0 0 0 0 1 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 0

210 0 0 -1 0 0 0 0 0 929 1861 674 0 0

240 0 0 0 0 0 0 0 0 0 0 0 0 0

270 1 0 0 0 0 0 0 0 0 0 0 0 0

300 0 0 0 0 0 1 0 0 0 0 0 1 0

330 1 0 0 0 0 0 1 0 0 0 1 0 0

360 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14: Distance between the true sun and true moon in arcsecs after six iterations when 
using integer arithmetic and manuscript C.

In the different situations presented so far, the procedure converges and the 
manuscripts produce a value for ΔT. However, this is not always the case. Fig-
ure 13 shows the distance between the true sun and moon after five iterations 
using C and integer arithmetic. Most of the values are within the arithmetical 
noise (and this was already the case at the third iteration, just as it was for P 
and V1), but six values show a distance of up to 30 arcmins.

The next iterations do not improve this situation, as shown in Figure 14. 
We get the same six outliers with the same order of magnitude, except that 
their sign is reversed. This oscillation between two sets of outliers continues 
endlessly as further iterations are performed.

Probably the most skilled users would have tried to correct the values in 
the table. This attitude would have been rewarded because the effect disap-
pears with a version of C corrected for the variants in the degrees. This in turn 
shows that this oscillation is truly an effect of manuscript variants.

This first set of results clearly shows that not all manuscript versions have 
the same arithmetical features. Some versions, because of their variants, require 
additional iterations to obtain convergence in certain cases. There are even 
cases where no result is obtained. The largest effects of manuscript variants, 
such as oscillation instead of convergence, are corrected when variants in the 
largest order of magnitude are amended, but some effects remain even when 
variants only in minutes and seconds are kept. Finally, the amplitude of the 
arithmetical noise is related to specific computational methods. This noise usu-
ally swamps the effects of manuscript variants somewhere between the third 
and fourth iteration and implies that the practical notion of convergence and
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0,00 0,00 0,00 0,00 129,42 0,00 0,00 0,00 -129,42 0,00 0,00 0,00 0,00

 30 0,00 0,00 0,00 0,00 128,04 0,00 0,00 0,00 -128,04 0,00 0,00 0,00 0,00

 60 0,00 0,00 0,00 0,00 124,50 0,00 0,00 0,00 -124,50 0,00 0,00 0,00 0,00

 90 0,00 0,00 0,00 0,00 119,14 0,00 0,00 0,00 -119,14 0,00 0,00 0,00 0,00

120 0,00 0,00 0,00 0,00 113,39 0,00 0,00 0,00 -113,39 0,00 0,00 0,00 0,00

150 0,00 0,00 0,00 0,00 108,98 0,00 0,00 0,00 -108,98 0,00 0,00 0,00 0,00

180 0,00 0,00 0,00 0,00 107,20 0,00 0,00 0,00 -107,20 0,00 0,00 0,00 0,00

210 0,00 0,00 0,00 0,00 108,98 0,00 0,00 0,00 -108,98 0,00 0,00 0,00 0,00

240 0,00 0,00 0,00 0,00 113,39 0,00 0,00 0,00 -113,39 0,00 0,00 0,00 0,00

270 0,00 0,00 0,00 0,00 119,14 0,00 0,00 0,00 -119,14 0,00 0,00 0,00 0,00

300 0,00 0,00 0,00 0,00 124,50 0,00 0,00 0,00 -124,50 0,00 0,00 0,00 0,00

330 0,00 0,00 0,00 0,00 128,04 0,00 0,00 0,00 -128,04 0,00 0,00 0,00 0,00

360 0,00 0,00 0,00 0,00 129,42 0,00 0,00 0,00 -129,42 0,00 0,00 0,00 0,00

Figure 15: Differences in minutes between ΔT produced by V2 and by the critical edition after 
one iteration using integer arithmetic.

zero distance between the sun and moon must have been nuanced for the his-
torical actors if only on arithmetical grounds.

This study also allows to propose manuscript groupings, based on computa-
tion performance. In this respect V2 and V3 are put together as less efficient 
versions requiring in specific cases five or six iterations while C, P, and V1 all 
have similar convergence speeds reasonably close to that of the edited version.35

Comparing computational features of manuscripts: variant propagation and co-
herency issues

The preceding section portrayed an individual historical actor computing with 
one manuscript at a time. In this final section, I shall consider a collective of 
historical actors and compare results given by the different manuscript versions. 
More precisely, the values of ΔT given by each manuscript version are com-
pared with those given by the edited version.

The case of V2 is representative of the different phenomena I was able to 
identify with respect to this question. Figure 15 shows the differences in min-
utes between the values of ΔT produced with V2 and those produced with the 
critical edition after one iteration. In most cases the two values of ΔT agree, 
except for two large sets of discrepancies of around 2 hours.

If the degrees of the values in V2 are ‘corrected’ to match those of the crit-
ical edition these two large sets of discrepancies disappear, thus showing that 
they are an effect of manuscript variability at this level.

35 If we exclude the very specific oscillation case of C.
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0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0,00 0,00 0,00 0,00 129,24 0,00 0,00  0,00 -129,28 0,00 0,00  0,00  0,00

 30 0,00 0,00 0,00 0,00 128,00 -13,21 0,00  0,00 -127,61 0,00 0,00  0,00  0,00

 60 0,00 0,00 0,00 0,00 112,00 -31,28 0,00  0,00 -123,27 0,00 0,00  0,00  0,00

 90 1,37 0,33 0,00 0,00  99,28 -36,57 1,35  0,00 -117,59 0,00 0,00  0,00  1,37

120 0,00 0,00 0,00 0,00  99,78 -29,28 0,00  0,01 -112,36 0,00 0,01  0,01  0,00

150 0,00 0,00 0,00 0,00 109,13 -12,56 0,00  0,00 -108,62 0,00 0,00  0,00  0,00

180 0,00 0,00 0,00 0,00 107,46  0,00 0,00  0,00 -107,46 0,00 0,00  0,00  0,00

210 0,00 0,00 0,00 0,00 108,62  0,00 0,00 12,56 -109,13 0,00 0,00  0,00  0,00

240 0,00 -0,01 -0,01 0,00 112,36  -0,01 0,00 29,28  -99,78 0,00 0,00  0,00  0,00

270 -1,37 0,00 0,00 0,00 117,59  0,00 -1,35 36,57  -99,28 0,00 0,00 -0,33 -1,37

300 0,00 0,00 0,00 0,00 123,27  0,00 0,00 31,28 -112,00 0,00 0,00  0,00  0,00

330 0,00 0,00 0,00 0,00 127,61  0,00 0,00 13,21 -128,00 0,00 0,00  0,00  0,00

360 0,00 0,00 0,00 0,00 129,24  0,00 0,00  0,00 -129,28 0,00 0,00  0,00  0,00

Figure 16: Differences in minutes between ΔT produced by V2 and by the critical edition after 
two iterations using integer arithmetic.

0 30 60 90 120 150 180 210 240 270 300 330 360

  0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

 30 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

 60 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

 90 1,37 0,33 0,00 0,00 0,00 0,23 1,35 0,00 0,00 0,00 0,00 0,00 1,37

120 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,01 0,01 0,00

150 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

180 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

210 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

240 0,00 -0,01 -0,01 0,00 -0,01 -0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00

270 -1,37 0,00 0,00 0,00 0,00 0,00 -1,35 -0,23 0,00 0,00 0,00 -0,33 -1,37

300 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

330 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

360 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Figure 17: Differences in minutes between ΔT produced by V2 with values corrected to match 
the critical edition in degrees and minutes and the critical edition after two iterations using 
integer arithmetic.

On the other hand, adding one iteration to the computation does not smoothen 
the differences between the critical edition and V2. As can be seen in Fig-
ure 16, not only are the two columns of large differences maintained at the 
same order of magnitude, but new discrepancies appear of a smaller but yet 
significant magnitude of more than 30 minutes. For the second iteration new 
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values from the tables are used. This explains the appearance of new discrep-
ancies. Discrepancies appearing at one stage of the iteration are usually main-
tained in the following iterations. This is linked to the fact that this iterative 
process is generally convergent. If the convergence target of a manuscript ver-
sion is slightly distinct from that of an edited text, successive iterations will 
only confirm the tendency and thus discrepancies will be conserved.

Finally, it is interesting to see that even when V2 is ‘corrected’ so that its 
degree values match those of the critical edition, these minor discrepancies 
between values of ΔT remain although their magnitude is much smaller and in 
most cases less than a minute, as can be seen in Figure 17.

Conclusion

In this article my aim was to explore the practice of computing with manu-
scripts that contain variant entries. For this I have selected a specific astronom-
ical issue and a single set of astronomical tables.

From a methodological perspective, this goal required a complete astronomi-
cal understanding of the table set and I thus relied on standard recomputation 
approaches. I have associated in specific ways these recomputation approaches 
with that of diplomatic description of tables and variants typology. I also 
designed my critical edition not as research of a hypothetical genuine version 
of the tables but as a tool to explore variants and potential ‘skilled corrections’ 
of these variants by table users. Finally, I developed new tools to ‘restore’ astro-
nomical tables as computational devices by attending to their accompanying 
canons.

The results obtained are encouraging. My approach allows us to isolate com-
putational effects proper from the effects of manuscript variants and to com-
pare differing arithmetical procedures. Analysis suggests that historical actors 
engaged with these types of tables and computations could probably have 
detected some of these effects. For instance, some manuscript versions generate 
results that converge more rapidly than others do; and some tables, like the 
tabula longitudinis horarum, have arithmetical performances significantly dif-
ferent from that of other ways to perform the computation.

I hope that some of the approaches and tools developed and used here man-
ually and on a small scale could be further refined and integrated into tool 
boxes for digital humanities that are being developed for the history of the 
astral sciences. For instance, the various alternative arithmetical algorithms may 
be useful in other contexts as well. The use of weighted majority rules to pro-
duce a specific type of critical edition could also be usefully implemented as 
a general digital tool. Finally, research on those diplomatic features of astro-
nomical tables that might have an impact on the way manuscripts can be used 
in computations, if only by being linked to certain kinds of manuscript vari-
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ants, ought also to be pursued. In the end, these tools might enable the design 
of digital diplomatic transcriptions of astronomical tables that could help us 
explore the use of tables in computations and as such provide more insight into 
actors’ practices than does a simple digital facsimile of a manuscript.
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Appendix A: Critical edition of the tables

A1. Conventions

Digits with variants are bold in the table. In the critical apparatus, variant 
positions are identified in parentheses using the line and column marks writ-
ten around the grid. Variant digits are given after the sigla of the witnesses that 
include them. Variants are listed column by column, from top to bottom.

In all tables, arguments and headings are marked in grey shaded cells.
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A2. Edition of the solar equation  

A B C D E F G H I J K L M N O

argument Solar Equation argument Solar Equation argument Solar Equation

d d d m s d d d m s d d d m s

 1  1 179 0  2 10 31 149 1  4 46 61 119 1 51 51

 2  2 178 0  4 19 32 148 1  6 37 62 118 1 52 56

 3  3 177 0  6 27 33 147 1  8 28 63 117 1 54  9

 4  4 176 0  8 36 34 146 1 10 19 64 116 1 55  6

 5  5 175 0 10 44 35 145 1 12  9 65 115 1 56  9

 6  6 174 0 12 53 36 144 1 13 58 66 114 1 57 11

 7  7 173 0 15 2 37 143 1 15 41 67 113 1 58  2

 8  8 172 0 17 10 38 142 1 17 24 68 112 1 58 52

 9  9 171 0 19 19 39 141 1 19  6 69 111 1 59 41

10 10 170 0 21 28 40 140 1 20 48 70 110 2  0 26

11 11 169 0 23 36 41 139 1 22 29 71 109 2  1 16

12 12 168 0 25 45 42 138 1 24 10 72 108 2  2  2

13 13 167 0 27 53 43 137 1 25 50 73 107 2  2 41

14 14 166 0 30 1 44 136 1 27 29 74 106 2  3 21

15 15 165 0 32 8 45 135 1 29  8 75 105 2  3 59

16 16 164 0 34 16 46 134 1 30 46 76 104 2  4 36

17 17 163 0 36 23 47 133 1 32 23 77 103 2  5 16

18 18 162 0 38 30 48 132 1 33 59 78 102 2  5 48

19 19 161 0 40 37 49 131 1 35 30 79 101 2  6 17

20 20 160 0 42 43 50 130 1 37  0 80 100 2  6 45

21 21 159 0 44 49 51 129 1 38 30 81  99 2  7 12

22 22 158 0 46 55 52 128 1 39 58 82  98 2  7 37

23 23 157 0 48 59 53 127 1 41 57 83  97 2  8  2

24 24 156 0 51 4 54 126 1 42 54 84  96 2  8 27

25 25 155 0 53 4 55 125 1 44 14 85  95 2  8 45

26 26 154 0 55 2 56 124 1 45 34 86  94 2  9  1

27 27 153 0 57 1 57 123 1 46 53 87  93 2  9 17

28 28 152 0 58 59 58 122 1 48 10 88  92 2  9 32

29 29 151 1  0 57 59 121 1 49 28 89  91 2  9 45

30 30 150 1  2 54 60 120 1 50 45 90  90 2  9 57

(D28) V3:59 (E4) V1:38 (E7) P:3 (I11) V1:24 (I12) P:23 (I15) V2:30 (I16) V2:32 (I17) V1:30; V2:33 (I18) 
V1, V2:32 (I19) V2:34 (I24) P,V2,V3:43 (I28) V3:46 ( J11) V1,V2,V3:10 ( J15) V2,V3:46 ( J16) V2:23 ( J17) 
V1:46; V2:59 ( J18) V1,V2:23 ( J19) V2:34 ( J23) E:27 ( J27) C,P:52 ( J28) V2:18 (O3) V3:0 (O6) P:12 (O11) 
V1,V2,V3:13 (O12) P:3 (O22) V2,V3:36    



 COMPUTING WITH MANUSCRIPTS 459

A B C D E F G H I J K L M N O

argument Solar Equation argument Solar Equation argument Solar Equation

d d d m s d d d m s d d d m s

 1  91 89 2  9 59 121 59 1 53 46 151 29 1  5  1

 2  92 88 2 10  0 122 58 1 52 35 152 28 1  2 54

 3  93 87 2 10  0 123 57 1 52 24 153 27 1  0 57

 4  94 86 2 10  0 124 56 1 50 15 154 26 0 58 40

 5  95 85 2  9 57 125 55 1 48 59 155 25 0 56 33

 6  96 84 2  9 51 126 54 1 47 46 156 24 0 54 25

 7  97 83 2  9 36 127 53 1 46 20 157 23 0 52 17

 8  98 82 2  9 20 128 52 1 44 53 158 22 0 50  9

 9  99 81 2  9  2 129 51 1 43 26 159 21 0 48 11

10 100 80 2  8 45 130 50 1 41 57 160 20 0 45 54

11 101 79 2  8 25 131 49 1 40 27 161 19 0 43 44

12 102 78 2  8  6 132 48 1 38 57 162 18 0 41 35

13 103 77 2  7 41 133 47 1 37 25 163 17 0 39 26

14 104 76 2  7 14 134 46 1 35 53 164 16 0 37 16

15 105 75 2  6 46 135 45 1 34 20 165 15 0 35  6

16 106 74 2  6 18 136 44 1 32 46 166 14 0 32 51

17 107 73 2  5 48 137 43 1 31 12 167 13 0 30 35

18 108 72 2  5 18 138 42 1 29 37 168 12 0 28 19

19 109 71 2  4 42 139 41 1 27 50 169 11 0 26  1

20 110 70 2  4  5 140 40 1 26  3 170 10 0 23 42

21 111 69 2  3 37 141 39 1 24 16 171 9 0 21 22

22 112 68 2  2 37 142 38 1 22 28 172 8 0 19  1

23 113 67 2  1 45 143 37 1 20 40 173 7 0 16 40

24 114 66 2  0 51 144 36 1 18 51 174 6 0 14 19

25 115 65 1 59 53 145 35 1 17  0 175 5 0 11 58

26 116 64 1 58 55 146 34 1 15  8 176 4 0  9 36

27 117 63 1 57 57 147 33 1 13 16 177 3 0  7 12

28 118 62 1 56 57 148 32 1 11 13 178 2 0  4 48

29 119 61 1 55 57 149 31 1  9 10 179 1 0  2 24

30 120 60 1 54 57 150 30 1  7  0 180 0 0  0  0

(C25) V2:2 (C26) V2:2 (C27) V2:2 (C28) V2:2 (C29) V2:2 (C30) V2:2 (D22) V3:1 (E7) V1:56 (E11) 
C,V1:26 (E14) V3:18 (E18) V2,V3:16 (E23) V3:47 (I2) P,V1:53 (I3) P,E:51 (I16) C,P:33 (I18) V1,V2:20 ( J1) 
V1:48 ( J4) E:12 ( J6) E:40 ( J7) P:30 ( J8) V1:52 ( J12) C:53; V2:53 ( J16) V2:26 ( J17) V2:13 ( J18) P:39; V2:40 
( J24) V2:11 ( J30) E:7 (M1) V2,V3:0 (M2) V1,V3:0 (M3) V1,V2:0 (N12) p:42 (O8) C:11; P:2 (O9) C,P:9; E:1 
(O10) E:53 (O12) P:38 (O16) V3:50 (O28) V1,V2,V3:28
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A3. Edition of the lunar equation

A B C D E F G H I J K L M N O

argument Lunar equation argument Lunar equation argument Lunar equation

d d d m s d d d m s d d d m s

 1  1 179 0  4 46 31 149 2 21 46 61 119 4  7 47

 2  2 178 0  9 31 32 148 2 25 55 62 118 4 10 27

 3  3 177 0 14 15 33 147 2 30  5 63 117 4 13  3

 4  4 176 0 19  0 34 146 2 34 12 64 116 4 15 35

 5  5 175 0 23 44 35 145 2 38 17 65 115 4 18  3

 6  6 174 0 28 28 36 144 2 42 21 66 114 4 20 27

 7  7 173 0 33 11 37 143 2 46 22 67 113 4 22 47

 8  8 172 0 37 54 38 142 2 50 19 68 112 4 25  2

 9  9 171 0 42 27 39 141 2 54 14 69 111 4 27 12

10 10 170 0 47 19 40 140 2 58  7 70 110 4 29 18

11 11 169 0 52  0 41 139 3  1 58 71 109 4 31 20

12 12 168 0 56 41 42 138 3  5 46 72 108 4 33 18

13 13 167 1  1 20 43 137 3  9 31 73 107 4 35 11

14 14 166 1  5 59 44 136 3 13 13 74 106 4 36 59

15 15 165 1 10 38 45 135 3 16 51 75 105 4 38 43

16 16 164 1 15 15 46 134 3 19 26 76 104 4 40 23

17 17 163 1 19 51 47 133 3 23 59 77 103 4 41 58

18 18 162 1 25 24 48 132 3 27 30 78 102 4 43 28

19 19 161 1 29  0 49 131 3 30 57 79 101 4 44 53

20 20 160 1 33 32 50 130 3 34 20 80 100 4 46 13

21 21 159 1 38  3 51 129 3 37 40 81 99 4 47 26

22 22 158 1 42 33 52 128 3 40 57 82 98 4 48 35

23 23 157 1 46  1 53 127 3 44 19 83 97 4 49 38

24 24 156 1 51 27 54 126 3 47 20 84 96 4 50 41

25 25 155 1 55 52 55 125 3 50 26 85 95 4 51 38

26 26 154 2  0 15 56 124 3 53 29 86 94 4 52 28

27 27 153 2  4 37 57 123 3 56 30 87 93 4 53 11

28 28 152 2  8 57 58 122 3 59 26 88 92 4 53 50

29 29 151 2 13 14 59 121 4  2 17 89 91 4 54 25

30 30 150 2 17 29 60 120 4  4  5 90 90 4 54 58

(C28) C,P:1 (D7) C:32 (D14) P:15 (D16) V3:19 (D18) C:22; P:27; E:24 (D23) E:47 (E9) E:37 (E12) 
V2,V3:14 (E18) C:34; E:27 (E19) V1:1 (E25) C,P:51 (E28) C,P:59 (E30) C,P:39 (H29) V3:3 (H30) V3:3 
(I8) V2:30 (I11) V1,V2:5 V3:2 (I15 V2,V3:19 (I16) E:20 (I17) V1,V2:19 (I18) V1,V2:23 (I19) V1,V2:27 (I20) 
V1,V2:30 (I21) V1,V2:34 (I22) V1,V2:47 (I30) V3,E:5 ( J1) E:43 ( J11) V1,V2,V3:46 ( J15) V2,V3:26 ( J1è) 
C,P:29; V1,V2:26 ( J18) V1,V2: 59 ( J19) V1,V2:30 ( J20) V1,V2:57 ( J21) V1,V2:20 ( J22) V1,V2:40 ( J25) 
V2:27 ( J30) C:2; E:4 (N9) V1:57 (N23) V3:45 (N28) V2:54 (O2) V1:37 (O5) V3:30 (O7) C,P:57 (O8) 
C,P:20 (O14) V2,V3:50 (O18) C,P,V1:48 (019):V2:51 (O23) p:28 (O26) V2:38 (O29) P:35 (O30) E:54
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A B C D E F G H I J K L M N O

argument Lunar equation argument Lunar equation argument Lunar equation

d d d m s d d d m s d d d m s

 1  91 89 4 55 18 121 59 4 24 38 151 29 2 34 52

 2  92 88 4 55 37 122 58 4 22  7 152 28 2 30  6

 3  93 87 4 55 49 123 57 4 19 38 153 27 2 25 16

 4  94 86 4 55 55 124 56 4 16 58 154 26 2 20 23

 5  95 85 4 56  0 125 55 4 14 13 155 25 2 15 26

 6  96 84 4 55 56 126 54 4 11 23 156 24 2 10 26

 7  97 83 4 55 43 127 53 4  8 28 157 23 2  5 22

 8  98 82 4 55 25 128 52 4  5 31 158 22 2 0 17

 9  99 81 4 55  4 129 51 4  2 30 159 21 1 55  9

10 100 80 4 54 41 130 50 3 59 29 160 20 1 49 58

11 101 79 4 54 12 131 49 3 56  5 161 19 1 44 44

12 102 78 4 53 38 132 48 3 52 47 162 18 1 39 27

13 103 77 4 52 59 133 47 3 49 23 163 17 1 34  9

14 104 76 4 52 14 134 46 3 45 52 164 16 1 28 49

15 105 75 4 51 22 135 45 3 42 17 165 15 1 23 26

16 106 74 4 50 22 136 44 3 38 37 166 14 1 18  1

17 107 73 4 49 17 137 43 3 34 53 167 13 1 12 34

18 108 72 4 48 10 138 42 3 31  3 168 12 1  7  6

19 109 71 4 46 54 139 41 3 27 10 169 11 1  1 36

20 110 70 4 45 33 140 40 3 23 12 170 10 0 56  5

21 111 69 4 44  7 141 39 3 19  9 171  9 0 50 32

22 112 68 4 42 34 142 38 3 15  2 172  8 0 44 58

23 113 67 4 40 56 143 37 3 10 50 173  7 0 39 23

24 114 66 4 39 15 144 36 3  6 35 174  6 0 33 47

25 115 65 4 37 29 145 35 3  2 15 175  5 0 28 10

26 116 64 4 35 37 146 34 2 57 51 176  4 0 22 33

27 117 63 4 33 41 147 33 2 53 23 177  3 0 16 56

28 118 62 4 31 34 148 32 2 48 51 178  2 0 11 18

29 119 61 4 29 20 149 31 2 44 15 179  1 0  5 40

30 120 60 4 27  0 150 30 2 39 35 180  0 0  0  0

(D5) V1,V2,V3:55 (D20) P:55 (E4) C,P:56; V1:51 (E9) C:41 (E19) C:59 (H28) C:3 (H:29) C:3 (H30) C:3 
(I12) V1,V2,V3:53 (I21) V1:10 (I21) V1:10 ( J2) V3,E:11 ( J10) C,E:20 ( J14) V2:53 ( J22) V3:8 ( J23) C,P:35 
( J24) C,P:15; V1:25 ( J25) C,P:51 ( J26) C,P:23 ( J27) C,P:51 ( J28) C,P:14 (N8) VA,V2:9 (O1) C,P:0 (O7) 
V3:25 (O10) V2,V3:59 (O11) V3:24 (O18) V1:16 (O25) P:50



462 MATTHIEU HUSSON

A4. Edition of the solar velocity

A B C D E F G H I J K L

argument
solar 

velocity
argument

solar 
velocity

argument
solar 

velocity

d d m s d d m s d d m s

 1  1 179 2 23 31 149 2 24 61 119 2 25

 2  2 178 2 23 32 148 2 24 62 118 2 25

 3  3 177 2 23 33 147 2 24 63 117 2 26

 4  4 176 2 23 34 146 2 24 64 116 2 26

 5  5 175 2 23 35 145 2 24 65 115 2 26

 6  6 174 2 23 36 144 2 24 66 114 2 26

 7  7 173 2 23 37 143 2 24 67 113 2 26

 8  8 172 2 23 38 142 2 24 68 112 2 26

 9  9 171 2 23 39 141 2 24 69 111 2 26

10 10 170 2 23 40 140 2 24 70 110 2 26

11 11 169 2 23 41 139 2 24 71 109 2 26

12 12 168 2 23 42 138 2 24 72 108 2 26

13 13 167 2 23 43 137 2 24 73 107 2 26

14 14 166 2 23 44 136 2 24 74 106 2 26

15 15 165 2 23 45 135 2 25 75 105 2 27

16 16 164 2 23 46 134 2 25 76 104 2 27

17 17 163 2 23 47 133 2 25 77 103 2 27

18 18 162 2 23 48 132 2 25 78 102 2 27

19 19 161 2 23 49 131 2 25 79 101 2 27

20 20 160 2 23 50 130 2 25 80 100 2 27

21 21 159 2 23 51 129 2 25 81 99 2 27

22 22 158 2 23 52 128 2 25 82 98 2 27

23 23 157 2 23 53 127 2 25 83 97 2 27

24 24 156 2 23 54 126 2 25 84 96 2 27

25 25 155 2 23 55 125 2 25 85 95 2 27

26 26 154 2 23 56 124 2 25 86 94 2 27

27 27 153 2 24 57 123 2 25 87 93 2 28

28 28 152 2 24 58 122 2 25 88 92 2 28

29 29 151 2 24 59 121 2 25 89 91 2 28

30 30 150 2 24 60 120 2 25 90 90 2 28

(H15) V2:24 (L2) C,P:26 (L14) V2:27
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A B C D E F G H I J K L

argument
solar 

velocity
argument

solar 
velocity

argument
solar 

velocity

d d m s d d m s d d m s

 1  91 89 2 28 121 59 2 30 151 29 2 32

 2  92 88 2 28 122 58 2 30 152 28 2 32

 3  93 87 2 28 123 57 2 30 153 27 2 32

 4  94 86 2 28 124 56 2 30 154 26 2 32

 5  95 85 2 28 125 55 2 30 155 25 2 32

 6  96 84 2 28 126 54 2 30 156 24 2 32

 7  97 83 2 28 127 53 2 30 157 23 2 32

 8  98 82 2 28 128 52 2 30 158 22 2 32

 9  99 81 2 29 129 51 2 30 159 21 2 33

10 100 80 2 29 130 50 2 30 160 20 2 33

11 101 79 2 29 131 49 2 30 161 19 2 33

12 102 78 2 29 132 48 2 30 162 18 2 33

13 103 77 2 29 133 47 2 30 163 17 2 33

14 104 76 2 29 134 46 2 30 164 16 2 33

15 105 75 2 29 135 45 2 30 165 15 2 33

16 106 74 2 29 136 44 2 30 166 14 2 33

17 107 73 2 29 137 43 2 30 167 13 2 33

18 108 72 2 29 138 42 2 32 168 12 2 33

19 109 71 2 29 139 41 2 32 169 11 2 33

20 110 70 2 29 140 40 2 32 170 10 2 33

21 111 69 2 29 141 39 2 32 171  9 2 32

22 112 68 2 29 142 38 2 32 172  8 2 32

23 113 67 2 29 143 37 2 32 173  7 2 32

24 114 66 2 29 144 36 2 32 174  6 2 32

25 115 65 2 29 145 35 2 32 175  5 2 32

26 116 64 2 29 146 34 2 32 176  4 2 32

27 117 63 2 29 147 33 2 32 177  3 2 32

28 118 62 2 29 148 32 2 32 178  2 2 32

29 119 61 2 29 149 31 2 32 179  1 2 32

30 120 60 2 29 150 30 2 32 180  0 2 32

(H1) E:29 (H2) E:29 (H14) E:31 (H15) E:31 (H16 E:31 (H17) E:32 (H18) C,P:30 
(H19) C,P:30 (H20 C,P:30 (H21) C,P:30 (H22) C,P:30 (H23) C,P:30 (H24) C,P:30 
(L1) V3:23 (L2) V3:23 (L4) V3:23 (L5) V3:23 (L6) V3:23 (L7) V3:23 (L8) V3:23 (L9) 
V3:23 (L10) V1,V2:33; V3:23 (L11) V2:32; V3:23 (L12) V3:32 (L13) V3:32 (L14) V3:32 
(L15) V3:32 (L16) V3:32 (L17) V3:32 (L18) V3:32 (L19) V3:32 (L20) V3:32 (L21) E:33
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A5. Edition of the lunar velocity

A B C D E F G H I J K L

argument
lunar 

velocity
argument

lunar 
velocity

argument
lunar 

velocity

d d m s d d m s d d m s

 1  1 179 30 18 31 149 30 37 61 119 31 26

 2  2 178 30 18 32 148 30 38 62 118 31 29

 3  3 177 30 18 33 147 30 40 63 117 31 31

 4  4 176 30 19 34 146 30 41 64 116 31 33

 5  5 175 30 19 35 145 30 42 65 115 31 36

 6  6 174 30 19 36 144 30 43 66 114 31 38

 7  7 173 30 20 37 143 30 44 67 113 31 41

 8  8 172 30 20 38 142 30 46 68 112 31 43

 9  9 171 30 20 39 141 30 47 69 111 31 46

10 10 170 30 21 40 140 30 48 70 110 31 48

11 11 169 30 21 41 139 30 50 71 109 31 51

12 12 168 30 21 42 138 30 51 72 108 31 53

13 13 167 30 22 43 137 30 53 73 107 31 56

14 14 166 30 22 44 136 30 54 74 106 31 58

15 15 165 30 23 45 135 30 58 75 105 32  1

16 16 164 30 23 46 134 30 58 76 104 32  3

17 17 163 30 24 47 133 31  0 77 103 32  6

18 18 162 30 24 48 132 31  1 78 102 32  8

19 19 161 30 25 49 131 31  3 79 101 32 11

20 20 160 30 25 50 130 31 5 80 100 32 14

21 21 159 30 26 51 129 31  7 81 99 32 17

22 22 158 30 27 52 128 31  8 82 98 32 19

23 23 157 30 27 53 127 31 10 83 97 32 22

24 24 156 30 28 54 126 31 12 84 96 32 25

25 25 155 30 29 55 125 31 14 85 95 32 28

26 26 154 30 31 56 124 31 16 86 94 32 31

27 27 153 30 32 57 123 31 18 87 93 32 34

28 28 152 30 33 58 122 31 20 88 92 32 36

29 29 151 30 35 59 121 31 22 89 91 32 38

30 30 150 30 36 60 120 31 24 90 90 32 42

(D4) C:19 (D7) E:19 (D10) E:20 (D26) E:30 (G16) V1,V2,V3:31 (G17) E:30 
(H4) V2,V3:42 (H5) V2,V3:43 (H6) V2,V3:44 (H7) V2,V3:45 (H15) E:56 (H16) 
V1,V2,V3:0 (H17) E:59 (L5) V3:37 (L8) V3:42 (L16) V2:2 (L19) C,P:15 (L25) 
V2:26 (L29) E:39
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A B C D E F G H I J K L

argument
lunar 

velocity
argument

lunar 
velocity

argument
lunar 

velocity

d d m s d d m s d d m s

 1  91 89 32 45 121 59 34 17 151 29 35 33

 2  92 88 32 48 122 58 34 20 152 28 35 35

 3  93 87 32 51 123 57 34 23 153 27 35 37

 4  94 86 32 53 124 56 34 26 154 26 35 39

 5  95 85 32 56 125 55 34 29 155 25 35 41

 6  96 84 32 59 126 54 34 32 156 24 35 43

 7  97 83 33  4 127 53 34 35 157 23 35 45

 8  98 82 33  8 128 52 34 38 158 22 35 46

 9  99 81 33 13 129 51 34 41 159 21 35 48

10 100 80 33 18 130 50 34 43 160 20 35 49

11 101 79 33 22 131 49 34 46 161 19 35 51

12 102 78 33 27 132 48 34 49 162 18 35 52

13 103 77 33 29 133 47 34 52 163 17 35 52

14 104 76 33 30 134 46 34 54 164 16 35 53

15 105 75 33 32 135 45 34 57 165 15 35 53

16 106 74 33 33 136 44 34 59 166 14 35 53

17 107 73 33 35 137 43 35  2 167 13 35 54

18 108 72 33 36 138 42 35  4 168 12 35 54

19 109 71 33 39 139 41 35  7 169 11 35 55

20 110 70 33 42 140 40 35  9 170 10 35 57

21 111 69 33 46 141 39 35 11 171  9 35 58

22 112 68 33 49 142 38 35 13 172  8 35 59

23 113 67 33 53 143 37 35 16 173  7 36  1

24 114 66 33 55 144 36 35 18 174  6 36  2

25 115 65 33 58 145 35 35 20 175  5 36  2

26 116 64 34  1 146 34 35 22 176  4 36  3

27 117 63 34  5 147 33 35 25 177  3 36  3

28 118 62 34  8 148 32 35 27 178  2 36  3

29 119 61 34 11 149 31 35 29 179  1 36  4

30 120 60 34 14 150 30 35 31 180  0 36  4

(D10) V2:16; V3:19 (D16) V3:32 (D23) V1,vé:54; E:52 (H5) V2:20 (H6) V2:22 
(H19) E:6 (H27) V2:22 (L1) V1:34 (L8) V2,V3:47 (L9) V1:47 (L10) V1:48 (L19) 
V3:57
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A6. Edition  of the Tabula longitudinis horarum

A
B

C
D

E
F

G
H

I
J

K
L

M
N

O
P

Q
R

S
T

U
V

W
X

Y

1
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2
d

h
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s
h

m
s

h
m

s
h

m
s

h
m

s
h

m
s

h
m

s
h

m
s

3
1
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1

3
20
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 8
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 2
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0

0
 1

56
 8

 1
52
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 1

49
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45
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26
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 4

0
0
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43
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0
0
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A B C D E F G H I J K L M N O P Q

 1 27 28 29 30 31 32 33 34

 2 m m s m s m s m s m s m s m s m s

 3  1  2 13  2  9  2  4  2 0  1 56  1 52  1 49  1 46
 4  2  4 27  4 17  4  8  4 0  3 52  3 45  3 38  3 32
 5  3  6 40  6 26  6 12  6 0  5 48  5 38  5 27  5 18
 6  4  8 53  8 34  8 17  8 0  7 45  7 30  7 16  7  4
 7  5 11  7 10 43 10 21 10 0  9 41  9 23  9  5  8 49
 8  6 13 20 12 51 12 25 12 0 11 37 11 15 10 55 10 35
 9  7 15 33 15  0 14 29 14 0 13 33 13 8 12 44 12 21
10  8 17 47 17  9 16 33 16 0 15 29 15  0 14 33 14  7
11  9 20  0 19 17 18 37 18 0 17 25 16 53 16 22 15 53
12 10 22 13 21 26 20 41 20 0 19 21 18 54 18 11 17 39
13 11 24 27 23 34 22 46 22 0 21 17 20 38 20  0 19 25
14 12 26 40 25 43 24 50 24 0 23 14 22 30 21 49 21 11
15 13 28 53 27 51 26 54 26 0 25 10 24 23 23 38 22 56
16 14 31  7 30  0 28 58 28 0 27  6 26 15 25 27 24 42
17 15 33 20 32  9 31  2 30 0 29  2 28 8 27 16 26 28

18 16 35 33 34 17 33  6 32 0 30 58 30  0 29  5 28 14
19 17 37 47 36 26 35 10 34 0 32 24 31 53 30 55 30  0
20 18 40  0 38 34 37 14 36 0 34 50 33 45 32 44 31 46
21 19 42 13 40 43 39 19 38 0 36 46 35 38 34 33 33 32
22 20 44 27 42 51 41 23 40 0 38 43 37 30 36 22 35 18
23 21 46 40 45  0 43 27 42 0 40 39 39 23 38 11 37  4
24 22 48 53 47  9 45 31 44 0 42 35 41 15 40  0 38 44
25 23 51  7 49 17 47 35 46 0 44 31 43 8 41 49 40 35
26 24 53 20 51 26 49 39 48 0 46 27 45  0 46 38 42 21
27 25 55 33 53 34 51 43 50 0 48 23 46 53 45 27 44  7
28 26 57 47 55 43 53 48 52 0 50 19 48 45 47 16 45 53
29 27 60  0 57 51 55 52 54 0 52 15 50 38 49  5 47 39
30 28 60  0 57 56 56 0 54 12 52 30 50 55 49 25
31 29 60  0 58 0 56  8 54 23 52 44 51 11
32 30 60 0 58  4 56 15 54 33 52 56
33 31 60  0 58  8 56 22 54 42
34 32 60  0 58 11 56 28

35 33 60  0 58 14
36 34 60  0

(C6) C:52; (C27) P:32; (E14) P:42; (K20) p:20; (K21) p:48; (K27) C, P:24; (K28) C,P:20; (K29) 
C,P:16; (M5) C, P:37; (M7) C,P:22; (M9) C, P:52; (M11) C, P:37; (M13) C, P:22; (M15) C, 
P:7; (M17) C, P:52; (M18) p:44; (M19) C, P:37; (M21) C, P:22; (M23) C,P:7; (M25) C:52; 

(M27) C, P:37; (M29) C,P:22; (M31) C, P:7; (P24) C, P:39; (Q17) C, P:26; (Q34) P:26;





Reverse Engineering Applied to Ephemerides

Analysis and Edition of the Arabic Ephemeris of 1326/7 ce 
(MS Cairo, Dār al-Kutub, mīqāt 817)

Johannes tHoMann

1. Introduction

Most contributions in this volume deal with astronomical handbooks and 
primary tables (i.e., tables that serve for calculating solar, lunar and planetary 
positions, and also other astronomical phenomena such as the length of the 
day and the time and magnitude of eclipses). These are the main sources for 
the teaching of astronomy, the development of astronomical theory and histor-
ical observations. However, handbooks and tables often do not contain much 
information about their practical use. New astronomical tables might not have 
been used immediately everywhere. Old tables might have survived in some 
places and among some groups of astronomers. For addressing such historical 
issues, other sources need to be consulted. Horoscopes are the final products 
of astronomical practice and bear important information on the use of astro-
nomical tools. Birth horoscopes and historical horoscopes were most probably 
calculated by means of primary astronomical tables, but for daily tasks such as 
elections, interrogational astrology or year horoscopes, yearbooks were the more 
convenient tools. These are tables that contain pre-calculated solar, lunar and 
planetary positions either for each day of the year or at longer time intervals, 
such as for each month or for the days on which a heavenly body entered a 
new zodiacal sign.

Astronomical handbooks and primary tables are preserved in great quantity, 
but in most cases our knowledge of these texts is based on manuscripts that 
were copied centuries later than their original production. Horoscopes and 
yearbooks, in contrast, lose their usefulness relatively quickly and were not cop-
ied by later generations. Consequently, their rate of survival is relatively small, 
and most of the existing documents are only fragments. However, the exclusive 
information they provide justifies any effort to analyse and reconstruct them.

Ancient Greek horoscopes and ephemerides have received much attention in 
research over the last 60 years, whereas the study of Arabic horoscopes and 
ephemerides is only at its beginning.

The focus of this chapter is on astronomical yearbooks. Their advantage is 
that, even if they are fragmentary, they usually contain astronomical informa-

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 469–510
© F  H  G  10.1484/M.PALS-EB.5.127705
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tion for a series of days. This allows for a deeper analysis than information for 
just a single day and hour, as is normally the case with horoscopes. In fact, if 
sufficient data exist, the tables used for the calculation of yearbooks can be 
fully reconstructed.1

The present contribution is mainly concerned with an Arabic ephemeris but, 
in general, the demonstrated methods can also be applied to Greek or Latin 
ephemerides as long as they are based on Ptolemaic models. For the sake of 
brevity and simplicity, the complete yearbook for the year 1326/7 ce that is 
extant in a manuscript in Cairo has been chosen as the main example.

At this point, it seems appropriate to say something about the terms 
‘ephemeris’ and ‘almanac’. Often these are used almost indistinctly. Here the 
distinction made by Alexander Jones in his edition of the Greek astronomical 
papyri from Oxyrhynchus will be adopted.2 ‘Ephemeris’ is only used to denote 
a yearbook that provides a complete set of solar, lunar and planetary positions 
for every day, since it is derived from the Greek word for ‘daily’. ‘Almanac’ 
or ‘almanac-ephemeris’ is used for a yearbook in a more compact format in 
which the intervals between consecutive entries consist of more than one day. 
This distinction made between Greek documents is even more appropriate for 
Arabic documents. In the tenth century, two clearly distinct types of yearbooks 
existed. One type very much resembled the Greek ephemerides in form and 
content, and therefore can justly be called ‘ephemeris’, since no precise Ara-
bic term was in use. Another type did not contain solar and planetary posi-
tions, but only the zodiacal signs in which the moon was located on a certain 
day. Nevertheless, solar and planetary positions are implicitly present, since the 
lunar transits across the sun and the planets and their aspects are indicated. 
Traditionally, this type of yearbook is called an ‘almanac’.

2. Ptolemy’s planetary models

For those readers who are not familiar with the details of Ptolemy’s models 
for the motions of the heavenly bodies, a brief summary may be welcome. The 
experts can safely skip it without missing any argument beyond the basic con-
cepts of Ptolemaic astronomy. The models looked at in this chapter are two-di-
mensional; the lunar and planetary orbits in space are projected onto the plane 
of the ecliptic (i.e., the plane of the solar orbit). Common to all models is the 
ancient Greek premise that the irregular motions of the planets must be gen-
erated by uniform circular motions. In the case of the lunar nodes, the two 
points where the lunar orbit crosses the ecliptic, the motion is simply a uniform 
circular motion and the only underlying parameters are their daily velocity  
 

1 For a list of Greek and Arabic ephemerides, see Appendix D.
2 Jones, Astronomical Papyri from Oxyrhynchus, vol. I, pp. 175–77.
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Figure 1: Ptolemy’s solar model.

and positions at epoch. Of the nonlinear motions, the solar motion can be 
modelled in a simpler way than the motion of the moon and the planets. The 
solar velocity oscillates between a minimum and a maximum value once every 
year. Ptolemy accounted for this by making the orbit of the sun an eccentric 
circle (see Figure 1).

Point O marks the place of the observer on the earth. The sun moves with 
a constant velocity on a circle with centre M, which has a distance e from the 
observer at O; e is called the solar eccentricity. Point A marks the apogee, the 
point where the sun has its maximal distance from the earth (O); point Π is 
the perigee, the point where it has its minimal distance. On its way from A 
to Π, the velocity of the sun P increases, then it decreases on the way back 
from Π to A. When the sun is situated at P, it is seen by the observer at O 
in the direction of the dotted line OP. The true ecliptic longitude λ of the 
sun corresponds to the angle ♈ OP. The direction to ♈  points to the start-
ing point of the ecliptic, the position of the sun at the vernal equinox. The  
mean solar longitude λ̄ corresponds to the angle ♈ MP and is a linear function 
of time. This is the starting value for the computation of the true longitude. 
This calculation consists of three steps. From the table of mean solar motion, 
the motions corresponding to the given years, months, days, hours and frac-
tions of hours are simply added together. Next, the longitude of the apogee 
(which is obtained in a similar way from the table of apogee motion) is sub-
tracted from the mean longitude. The result is the mean solar anomaly, which 
corresponds to the angle ΑMP in Figure 1. Next, in order to obtain the true 
longitude, the angle MPO, called the solar equation, must be found. This is 
done by entering the table of the solar equation with the solar anomaly as the 
argument. The result is subtracted from the mean longitude if the anomaly is 
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Figure 2: Ptolemy’s planetary model.

in the interval from 0° to 180°, and it is added to the mean longitude in the 
interval from 180° to 360°.

The topic of this article is how to carry out this procedure backwards. Eph-
emerides contain only true longitudes. From these the corresponding mean 
longitudes, and in the end the value of the solar eccentricity e, should be 
extracted. This is possible because the equation is a nonlinear function with 
a characteristic periodical pattern. Therefore, it can be separated from the lin-
ear component of the mean longitude. Before explaining how this can be done 
efficiently for all planets, a quick summary of the planetary and lunar models 
is given.

The motion of each of the five planets as seen from the earth shows two 
irregularities. According to modern theory, the first irregularity is produced by 
the eccentricity of the orbit of the earth, and the second by the motion of 
the earth around the sun, which is mirrored in the geocentric motions of the 
planets. In the case of the upper planets – Saturn, Jupiter and Mars – Ptolemy 
accounted for the first irregularity with an eccentric arrangement, as in the 
case of the sun, but with a significant difference, which will be explained in a 
moment. For the second irregularity, he introduced an epicycle. The centre of 
the epicycle moves on the deferent (‘carrier’, i.e., the circle that accounts for the 
eccentricity), and the planets perform a uniform circular motion on the periph-
ery of the epicycle. In the case of Venus and Mercury, the epicycle accounts for 
the first irregularity and the eccentricity for the second, since – from the mod-
ern perspective – the earth is inside the orbits of the upper planets but outside 
the orbits of the lower planets. In Figure 2, the point M is the centre of the 
deferent and C is the epicycle centre. The point O is the location of the ter-
restrial observer. The planet P moves with a constant angular velocity on the
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Figure 3: Ptolemy’s lunar model.

epicycle. However, the epicycle centre C does not move uniformly with respect 
to the centre M of the deferent, as in the case of the sun, but with respect to 
a point E, which has the same distance from M as the point O. This means 
that the bold line EC rotates with a constant velocity. The point E is called in 
Latin the punctum aequans, the equant point, i.e., ‘the point which makes [the 
motion] equal [to itself]’. Both the centre of the epicycle on the deferent and 
the planet on the epicycle move counter-clockwise. In the case of the upper 
planets (Saturn, Jupiter and Mars), the line CP from the centre of the epicy-
cle to the planet always points to the point of mean solar longitude. This is 
because, from the modern perspective, the motion of the epicycle, mirrors the 
motion of the earth around the sun. In the case of Venus and Mercury, the 
line EC from the equant point to the centre of the epicycle points to the mean 
solar longitude, since the motion on the deferent mirrors the motion of the 
earth around the sun. The model for Mercury shows a further complication, 
which will be explained below. The true longitude of a planet is a function of 
four quantities: the mean longitude of the planet (angle ♈ EC in Figure 2), the 
mean solar longitude (angle ♈ MP), the eccentricity of the planet (the length 
of ME and MO), and the radius of the epicycle (the length r of CP).

The lunar model shows further complications as well. The irregularity of 
the lunar motion produced by the eccentricity of its orbit around the earth 
was noticed early on. In the Ptolemaic model, it is generated by the moon’s 
motion on the epicycle. However, Ptolemy discovered two more irregularities 
by his analysis of observations. According to modern theory, evection, which 
is the second irregularity, is produced by the gravitation of the sun. It reaches 
its extreme values approximately at the first quarter and the third quarter of 
the synodic month, and it vanishes at the syzygies. Its period is half a synodic 
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month. Ptolemy accounted for this effect with a kind of crank mechanism. 
In the case of the planets (except for Mercury), the equant point was fixed 
on the line connecting the apogee and perigee. However, in the lunar model 
the equant point M moves in a clockwise direction on a small circle around 
the terrestrial observer at O (see Figure 3). The centre of the epicycle C again 
rotates uniformly with respect to M and is simultaneously drawn back and 
forth towards the eye of the observer by the crank mechanism. This has the 
effect that the first irregularity produced on the epicycle is increased at cer-
tain times and diminished at others. Ptolemy did not change the geometrical 
design of the model for the third irregularity, since it has the same period as 
the second; therefore, he used the same device for its generation. On the circle 
around O, a point B is constructed opposite to M. From there, a line is drawn 
through C, the centre of the epicycle meeting the periphery at Point Ā. The 
crank mechanism moves the point Ā back and forth relative to point A. The 
moon at point P moves with a constant velocity relative to point Ā. Despite 
these additional complications, the parameters of the lunar model are similar 
to those of the planetary model, but rather than feeding in the mean longi-
tude of the moon and the mean longitude of the sun separately, the true longi-
tude of the moon can be calculated as a function of the difference of the two, 
namely, the elongation. This is the arc ☉—OC in Figure 3.

Of all the planets, the orbit of Mercury posed the greatest problems to 
astronomers. Because of its small maximal elongation from the sun, observing 
it was difficult, and because the eccentricity of its orbit was very large, it could 
not be ignored in the model, as Ptolemy did in the case of Venus. Based on 
partly erroneous observations, he came to the conclusion that Mercury had one 
apogee but two perigees 120° apart. For Mercury he used a similar model to 
that of the moon, but with the inner circle having M as its centre instead of 
O. The point E midway between M and O has the same function as point B in 
the case of the lunar model, and the point F on the epicycle has the same func-
tion as the point Ā in the lunar model. The extension of the line EC (cf. Fig-
ure 2) meets the periphery of the epicycle at the point F, in relation to which 
Mercury at P moves with constant velocity. Despite these differences from the 
other planetary models, the set of quantities is the same as for the other plan-
ets but the formula for calculating the true longitude is different.

3. Extraction of the Implicit Parameters of Solar, Lunar and Planetary  
Motions

Fragments of ephemerides usually contain a series of daily solar, lunar and 
planetary positions. The task of extracting implicit parameters from such data 
can be done by hand, but this is not recommended, since it is cumbersome to 
do and barely executable for the moon and the planets.3 A more fundamental 

3 An example of such a manual approach can be found in Thomann, ‘An Arabic Ephemeris 
for the year 931–932 CE’.
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approach does not require any pre-assumptions concerning the eccentricity and 
epicycle radius. For primary astronomical tables, Benno van Dalen proposed 
using nonlinear least squares estimation.4 The advantage of this method is that 
only the function through which the data were produced needs to be defined, 
and the closest fit is searched for in the multidimensional parameter space. In 
the optimal case, this leads to perfect results. However, in its traditional form, 
using the Gauss–Newton method, the algorithm often does not terminate, 
since it is very sensitive to the choice of initial values, which must be defined 
for the parameters to be estimated.

A method based on the Levenberg–Marquardt algorithm is more stable 
and less sensitive to the choice of initial values.5 In the following, this method 
will be used exclusively for estimating parameters. All calculations and graph-
ics are produced in R.6 Other implementations are available, for instance, in  
Scilab.7

The Gauss–Newton method of nonlinear least squares estimation uses the 
gradient with the first derivatives of the function for approximation. It is called 
the method of steepest descent. In each step, it chooses the direction in which 
the gradient is most inclined towards the desired minimum. Since the model 
function is known, the second derivatives are also available. In cases where 
the method of steepest descent fails, the matrix of second derivatives (Hes-
sian matrix) can be used instead. In this way, the curvature of the function is 
taken into consideration. The Levenberg–Marquart method switches, if neces-
sary, between the method of steepest descent and use of the curvature matrix 
(one half of the Hessian matrix). Thus the Levenberg–Marquart method is 
more robust than the Gauss–Newton method, even if it does not guarantee  
convergence.

The method presupposes that the underlying function is differentiable twice 
at all data points. This is not the case with all historical ephemerides. For 
instance, P. Oxy. 4179, an ephemeris for the year 349 ce, is not based on Ptol-
emaic models but on Babylonian zig-zag functions, which, at some points, are 
not differentiable. The lunar positions in this ephemeris are calculated accord-
ing to the Standard Lunar Scheme.8 The daily lunar velocities exhibit the pat-
tern shown in Figure 5.

4 van Dalen, Ancient and Mediaeval Astronomical Tables, pp. 55–60.
5 Press et al., Numerical Recipes, pp. 799–806.
6 https://www.r-project.org.
7 https://www.scilab.org.
8 Jones, ‘Studies in the Astronomy of the Roman Period I’; Jones, Astronomical Papyri from 

Oxyrhynchus, vol. I, p. 187.
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Figure 4: The solar equation as a  
function of the solar anomaly in  

Ptolemy’s model.
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Figure 5: Daily lunar velocities based on 
Babylonian zig-zag functions.

In contrast, velocities according to the Ptolemaic model show an entirely 
smooth pattern, as is clear from Figure 4, which displays the solar equation.

Besides the positions of the sun, moon and planets, medieval ephemerides 
also contain the positions of the ascending lunar node. In Ptolemaic astron-
omy, the velocity of the lunar node is assumed to be constant. The acceleration 
of the lunar node is indeed very small: the quadratic component in its cal-
culation is +0.0020754°, if time is measured in Julian centuries.9 This means 
that it would take about 300 years to deviate from the linear model by one 
arc-minute. Thus a linear least squares method can be used for estimating the 
parameters of the motion of the lunar node, and two values suffice for an esti-
mate. The positions calculated by different historical tables differ from each 
other by at least several arc-minutes. Generally, this allows for an identification 
if a known astronomical table was used.

4. Tests of Parameter Estimations with Synthetic Data

Up to now, no parameter estimations of ephemeris data by means of the non-
linear least squares method have been carried out. Before applying this method 

9 Meeus, Astronomical Algorithms, p. 342.
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to historical data, it is advisable to investigate its efficiency in controlled tests 
with synthetic data. These data are obtained by using the Ptolemaic formulae 
and by rounding the results to arc-minutes. This includes a simplification, since 
the results may differ from the values obtained by calculations based on tables 
rounded to arc-minutes. In the next section, intermediate rounding errors will 
be simulated by adding random noise. Our first test concerns solar longitudes. 
The parameters to be estimated are the value of the solar mean longitude at 
the beginning of the time interval covered by the ephemeris (referred to as ‘the 
value at epoch’), the longitude of the apogee at epoch and the eccentricity. In 
the following, the days of the ephemerides will be counted as 1, 2, 3, …, and 
the epoch values are defined as being for Day 0. The mean velocity is assumed 
to be a constant, since for short periods of time, the differences found from 
historical tables are far below the accuracy of ephemerides, which generally 
give positions in signs, degrees and minutes. Thus the differences can safely 
be neglected for time spans of a few months. From antiquity to the end of 
the thirteenth century, only fragments of ephemerides exist that contain less 
than two months of data; the majority of the fragments contain less than 15 
days. Therefore, the tests with synthetic data are made with samples of differ-
ent length.

In the case of the epoch values of the mean solar longitude and the solar 
apogee, the accuracy of the estimates is very different. One may assume that it 
matters where in the solar orbit the positions covered by the ephemeris are situ-
ated, since the change in solar velocity is smallest when the sun is in the vicin-
ity of the apogee and largest close to the perigee. Therefore, all simulations are 
carried out for positions around the apogee, quadrature and perigee. In each 
case, the simulations are carried out for 20 consecutive years at approximately 
the same positions in the solar orbit. The boxplots display the range of esti-
mates found for each particular situation. The bold horizontal line indicates 
the median of the estimates. The box contains the lower and upper quartile of 
the estimates, which, between them, cover half of the estimates. The vertical 
lines, called the ‘whiskers’, either mark the extreme values or they end at 1.5 
times the interquartile distance from the end of the box, if there are values far-
ther away. In the latter case, the extreme values are represented as single dots. 
These are considered to be outliers.

Indeed, the errors in the estimates of the mean solar longitude at epoch are 
significantly greater around the apogee than around the quadrature and perigee 
(see Figure 6). For a reliable identification of the mean motion tables used for 
the calculation, at least 30 values appear to be necessary.
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Figure 6: Errors in estimates of the mean solar longitude at epoch (simulated data) when the 
given solar positions lie (a) around the apogee, (b) around quadrature, and (c) around the perigee.

The errors in the longitude of the apogee are about 10 times as large as the 
errors in the mean longitudes at epoch (Figure 7). This reflects the fact that 
the longitude of the apogee contributes much less to the value of the true lon-
gitude than the mean longitude. Note that the size of the errors in the apogee 
longitude does not depend on the part of the solar orbit for which the ephem-
eris positions are given.
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Figure 7: Errors in estimates of the solar apogee (simulated data) when the given solar positions 
lie (a) around the apogee, (b) around quadrature, and (c) around the perigee.
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Figure 8: Errors in estimates of the solar eccentricity (simulated data) when the given solar 
positions lie (a) around the apogee, (b) around quadrature, and (c) around the perigee.

For the estimates of the solar eccentricity, the increase in accuracy from 10 
data points to 20 is particularly significant (Figure 8).

The lunar and planetary motions depend on the mean solar motion. There-
fore, if estimates for the mean solar longitudes based on the true solar posi-
tions given in the ephemeris are available, they can be used to estimate the 
parameters underlying the lunar and planetary positions. The differences in the 
daily mean motions in longitude and in anomaly among different astronomical 
tables are too small for being relevant for the true longitudes in the timespan 
of a month or even a year. Thus only four parameters need to be estimated: the 
epoch values of the mean longitude and the mean anomaly, the eccentricity, 
and the epicycle radius. If no solar positions are available, the mean solar lon-
gitudes must be estimated from the lunar and planetary positions themselves. 
In the following simulations, true solar longitudes are supposed to be available, 
and the mean solar longitudes are estimated from them as explained above.

Figures 9 to 12 display the results of the estimation of the lunar parameters 
from synthetic ephemeris data. For all parameters, significantly fewer positions 
are necessary for a useful estimate than in the case of the sun. This reflects 
the larger and quicker change in the lunar velocities in longitude and anomaly. 
Ten values suffice to estimate the epoch values of the mean lunar longitude 
and anomaly with an accuracy of, respectively, 2 and 20 arc-minutes. With 15 
values, the errors are below an arc-minute.

The errors in the estimates of the mean solar longitudes influence the esti-
mates of the motion of the inferior planets directly, since their mean longitude 
is equal to the mean solar longitude. Therefore, no higher accuracy is to be
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Figure 9: Errors in estimates of the mean lunar longitude at epoch (simulated data): (a) with 5 
to 10 values, and (b) with 20 to 100 values.
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Figure 10: Errors in estimates of the mean lunar anomaly at epoch (simulated data), (a) with 5 
to 10 values, and (b) with 20 to 100 values.
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Figure 11: Errors in estimates of the lunar eccentricity (simulated data), (a) with 5 to 10 values, 
and (b) with 20 to 100 values.
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Figure 12: Errors in estimates of the lunar epicycle radius (simulated data), (a) with 5 to 10 
values, and (b) with 20 to 100 values.
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Figure 13: Estimates of the parameters of the Mercury model (simulated data): (a) the mean 
epicyclic anomaly at epoch, and (b) the apogee.
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Figure 14: Estimates of the parameters of the Mercury model (simulated data): (a) the eccen-
tricity of Mercury, and (b) the epicycle radius.
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Figure 15: (a) Estimates of the eccentricity of Mars (simulated data); (b) Estimates of the posi-
tion of the lunar node at epoch based on linear and nonlinear models (simulated data).
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expected. The slightly simplified diagrams for Mercury in Figures 13 and 14 
confirm this.

For the upper planets, larger errors are to be expected, since their changes 
in velocity are slower. The single example for Mars in Figure 15a indeed shows 
that the errors are about 50% greater than in the case of Mercury.

The tests show that the performance of the method varies significantly for 
the sun, moon and planets. The number of values necessary to reach an accu-
racy of one arc-minute in the case of angular parameters, and minutes of parts 
(R = 60) in the case of eccentricities and epicycle radii, are very different. The 
results of the tests with synthetic data make clear that each case needs to be 
examined separately.

As we have seen above, the longitudes of the moon and the planets all 
depend on the mean solar longitude, even if their sensitivities are different. 
The only positions independent of the sun are those of the lunar node. In 
the Ptolemaic lunar model, the motion of the lunar node was assumed to be 
constant; therefore, its approximation from very few data points is particularly 
efficient. Actually, to use a nonlinear least squares method for fitting data to 
a linear function is not standard practice, because linear models are generally 
used instead. A comparison of the tests with both methods shows a remarkable 
difference (Figure 15b).

If 30 values are available, the linear method produces a slightly better result. 
If fewer values are available, the results of the nonlinear method are clearly 
better. Even if only one value is available, the estimate is accurate to within 
arc-minutes. Different primary tables in general produce much larger differ-
ences and therefore values of the node turn out to be the best first criterium 
for their identification, especially in the case of smaller fragments.

Nevertheless, it is worth the effort to also estimate the parameters of lunar 
and planetary motions. No positions of the lunar node may be available, as 
is the case with Greek ephemerides from antiquity, or with smaller fragments 
from later periods. Alternatively, an ephemeris may have been based on an oth-
erwise unknown set of tables.

5. Preparatory simulations for the analysis of the 1326/7 ephemeris

Before analysing the Arabic ephemeris of 1326/7 ce, it seems advisable to exe-
cute some further simulations tailored to this particular historical case in order 
to see if, under the given conditions, an identification of the underlying pri-
mary tables may be assumed to be reliable. For reasons that will become clear 
in the next section, positions of the sun in the neighbourhood of 0° are to be 
avoided. The positions are calculated for every day from 16 March 1327 to 
13 March 1328. In order to make the simulations more realistic, intermediate 
rounding errors are simulated by adding random values generated according
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Figure 16: Estimation of the solar parameters according to data of al-Battānī, al-Bīrūnī and 
Ibn Yūnus: (a) the mean solar longitude at epoch, (b) the mean solar anomaly at epoch, and 
(c) the solar eccentricity.

to a normal distribution with a mean of 0 and a standard deviation of 1′. 
Next the values are rounded to the nearest arc-minute. The historical sets of 
tables against which the results of the estimations will be checked are the zīj 
of al-Battānī, al-Qānūn al-Masʿ ūdī of al-Bīrūnī and al-Zīj al-Ḥākimī of Ibn 
Yūnus. Here this limitation is possible because we already know that the tables 
of Ibn Yūnus were used (cf. p. 487). In a case where no such information is 
available, a larger number of tables may need to be checked. The parameters 
from these zījes are taken from Raymond Mercier’s program ‘Devplo’. For each 
parameter set, 100 sets of positions for the entire solar year are calculated, 
which differ in the random noise added before they are rounded to the nearest 
arc-minute. A nonlinear least squares fit of the parameters is executed for each 
of the 100 sets of positions. In the boxplots in Figures 16 to 20, the distribu-
tion of the parameter estimates obtained in this way are shown.

In the case of the sun (Figure 16), it turns out that only the estimates of 
the mean longitudes at epoch are sufficiently different to allow a distinction 
between the sources. In the cases of the mean anomaly at epoch and the eccen-
tricity, the distributions overlap too much for a reliable identification.

In the case of the moon (Figures 17 and 18), all four parameters, namely 
the mean longitude and the mean anomaly at epoch, the eccentricity and the 
radius of the epicycle, are clearly separated among the three sources.

In the case of Mercury (Figures 19 and 20), all four parameters show well 
separated distributions, except in the case of the epicycle radius, for which 
al-Battānī and al-Bīrūnī use the same value (cf. Figure 20b).
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Figure 17: Estimation of the lunar parameters according to data of al-Battānī, al-Bīrūnī and 
Ibn Yūnus: (a) the mean lunar longitude at epoch, and (b) the lunar apogee at epoch.
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Figure 18: Estimation of the lunar parameters according to data of al-Battānī, al-Bīrūnī and 
Ibn Yūnus: (a) the lunar eccentricity, and (b) the lunar epicycle radius.
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Figure 19: Estimation of the parameters of the Mercury model according to data of al-Battānī, 
al-Bīrūnī and Ibn Yūnus: (a) the mean anomaly at epoch, (b) the apogee, and (c) the eccen-
tricity.
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Figure 20: Estimation of the epicycle radius of Mercury: (a) according to data of al-Battānī, 
al-Bīrūnī and Ibn Yūnus, and (b) according to data of al-Battānī and al-Bīrūnī only.
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The tests discussed in this section have shown, that (i) even relatively small 
sets of data allow for useful parameter estimates (Figures 6 to 15), and that (ii) 
for identifying the use of a particular table, the epoch values of the mean solar 
longitude, the lunar mean anomaly, the lunar node and the planetary anomaly, 
as well as the longitude of the planetary apogee and the planetary eccentricity, 
are suitable (Figures 16 to 20).

6. The 1326/7 Ephemeris as a test case for parameter estimation

The ephemeris for 727 Hijra (1326/7 ce) is the earliest complete Arabic ephem-
eris that has survived (see Appendix A for a description of the Cairo manu-
script in which it is included, and Plate 14 for the first page of the ephemeris 
with planetary positions for the month Ramaḍān). It seems particularly suited 
to be used as a test case for parameter estimation because the text accompa-
nying one of the four seasonal horoscopes immediately preceding the ephem-
eris (see Plate 15) states that the horoscopes were established by means of the 
‘Ḥakimite tables’, i.e., the tables of Ibn Yūnus. Therefore one may assume that 
this also holds for the following ephemeris.

In order to start with the most stable estimation, the values for the ascend-
ing lunar node will be analysed first. The linear least squares method does not 
require initial values. In calculating with R, a linear model is fitted to a data 
frame containing values for the variable t (which runs from 1 to 354 days in 
our case) and the positions of the node are converted from sexagesimal to dec-
imal notation.

In the following table, the position estimated by the linear model is com-
pared with the positions based on a selection of historically plausible astronom-
ical tables. Since the tables of al-Battanī and al-Bīrūnī produce almost identical 
results, al-Battanī has been replaced here by al-Ṭūsī:

Source Position Difference from estimation
Estimation ephemeris 1326/7 183;16,56 –
Ibn Yūnus 183;16,28 0;00,28

Al-Bīrūnī 183;53,32 0;36,36

Al-Ṭūsī 183;27,45 0;10,49

The agreement of the value of Ibn Yūnus with the value of the ephemeris for 
727 Hijra is perfect: the calculated difference (28′′) is below the precision of 
the ephemeris (±0.5′). Furthermore, the values based on the other tables are 
significantly different (37′ and 11′, respectively). Thus the use of the Ḥakimite 
tables by Ibn Yūnus, as explicitly indicated in the text, is corroborated by the 
analysis of the positions of the lunar node in the ephemeris. In other words, 
the test shows that, in this particular historical case, the tables used for calcu-
lating the ephemeris are identified correctly by an analysis of the positions of 
the lunar node alone.
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Next, the positions of the sun will be used as a second test. In the follow-
ing report, all problems encountered will be documented for giving a realis-
tic impression of the process that leads to the final results, even if a differ-
ent approach would have led more directly to the result, as will become clear 
afterwards. The slightly rounded values obtained from the tables of Ibn Yūnus 
are used as initial values for the nonlinear least squares estimation. An ini-
tial attempt with all 354 solar positions leads to some historically impossible 
results:
Source Mean Longitude Apogee Eccentricity
Ephemeris (t=1 to 354) 249;36,27.00 91;46,05.00 0;0,56.00

Ibn Yūnus 251;45,21.74 90;45,48.10 0;2,06.16

Al-Bīrūnī 252;17,02.41 89;27,36.22 0;1,59.00

Al-Ṭūsī 251;48,10.43 89;46,12.49 0;2,06.16

The estimated values for the mean longitude and apogee at epoch differ sig-
nificantly from the values found from Ibn Yūnus, al-Bīrūnī and al-Ṭūsī, but 
could easily correspond to another historical set of parameters. However, the 
estimated value for the eccentricity (0;0,56) is historically impossible and 
points to a problem either in the estimation process or in the data themselves. 
One possibility to localise this problem is to split the 354 values into bins of 
50 values (54 in the last bin). The mean of the estimates derived from each of 
the bins can then be calculated:

Range of t Mean Longitude Apogee Eccentricity
01–50 251;50,35" 92;32,19 0;2,04
051–100 251;42,27 89;35,19 0;2,09
101–150 249;36,27 97;53,18 0;2,01

151–200 251;51,23 88;43,37 0;2,02

201–250 251;46,40 90;54,56 0;2,07

251–300 251;45,26 91;06,16 0;2,05
301–354 251;51,35 91;58,20 0;2,11

mean 251;29,13 91;25,14 0;2,05

The estimates of the eccentricity in all seven intervals now vary within histori-
cally possible limits – in contrast to the overall estimation. Only the estimates 
calculated from the solar positions in the interval 101–150, especially that for 
the mean longitude, seem to indicate a problem in the data. Therefore these 
are split into bins of 25 values and the estimations are repeated:
 Range of t Mean Longitude Apogee Eccentricity
101–125 249;41,50 108;32,31 0;2,05
126–150 251;28,07 093;29,54 0;2,24
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The results are now somewhat contradictory. The mean longitude in the sec-
ond bin is close to that of the other bins and the value of the apogee is only 
slightly too high, but the eccentricity is much too high. None of the values of 
the first bin is within the limits of the other bins. For this reason, it seems 
sensible to exclude the values of the bin 101–150 entirely and to use the means 
of the other bins:

Range of t Mean Longitude Apogee Eccentricity
Mean of bins
1–50, 51–100, 151–200, … 251;48,1 90;48,28 0;2,6

Difference from Ibn Yūnus +0;2,39 +0;2,40 0;0,0

Instead of taking the means of the binned data, an overall estimate can be 
made from all data without those from the interval 101–150:
Range of t Mean Longitude Apogee Eccentricity
All except 101–150 251;46,31 90;41,47 0;2,6

Difference from Ibn Yūnus +0;1,9 –0;4,1 0;0,0

The mean longitude is now closer to Ibn Yūnus, but the apogee differs slightly 
more. The eccentricity again fits perfectly. This corroborates the suspicion that 
there is a problem with the data for the interval 101–150. Inspection of the dif-
ferences between these problematic data and the solar positions calculated with 
the parameters estimated from the other bins may give a clue to the solution of  
the problem. These differences are plotted in Figure 21. The 101–150 bin is 
the only interval with a difference of more than one arc-minute.

However, this two-minute difference occurs in the second half of the inter-
val and thus cannot account for the problems diagnosed in the first half. Fur-
thermore, two-minute differences could hardly be the cause of the significant 
deviation of the estimates. In order to verify this, the estimation for this bin 
has been repeated with simulated data based on the parameters estimated from 
the other bins:

Range of t Mean Longitude Apogee Eccentricity
Ephemeris (101–150) 249;36,27 95;5,53 0;1,56
Simulated data 249;40,20 97;53,1 0;2,1

The mean longitudes at epoch are almost identical but the apogee in the simu-
lated data is even worse. Only the eccentricity is slightly better. Consequently, 
the problem cannot be caused by errors in the data, but its cause must lie in 
the process of estimation. After some trials, the problematic interval could be 
reduced to 108–109:
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Figure 21: Differences between the problematic mean solar longitudes in the ephemeris and the 
calculated positions.

Range of t Mean Longitude Apogee Eccentricity
Simulated (60–107) 251;47,47 90;18,29 0;2,5
Simulated (110–150) 251;48,02 90;15,20 0;2,4

If the values of the true solar longitudes for the interval 107–110 are consid-
ered, the reason for the problem becomes clear:
t=107 t=108 t=109 t=110
359;14,0 0;14,0 1;12,60 2;12,0

The discontinuity from 359;59 to 0;0 seems to disturb the estimation process. 
Therefore, it is advisable to improve the results in cases where the data include 
this discontinuity by excluding some data points in its neighbourhood.10 In our 
case, the omission of two values (108 and 109) suffices:
Range of t Mean Longitude Apogee Eccentricity
Ephemeris (1–107, 110–354) 251;46,32 90;42,06 0;2,6

Ibn Yūnus 251;45,22 90;45,48 0;2,6

The differences between the estimated values and the values found from Ibn 
Yūnus are now very small (+0;1, −0;4 and 0;0,0, respectively), and lie well 
within the range of intermediate rounding errors that are customary in such 
calculations. The use of the other historical tables taken into consideration 
here can be excluded.

10 An alternative would be to operate with angles greater than 360° in order to avoid the 
discontinuity.
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The test has shown that the method applied is effective and leads to unam-
biguous results. However, the example has shown that the method is not fool-
proof. It is advisable to check the data by looking at the pattern of differences 
in order to detect scribal errors or mistakes in the calculation. If enough data 
are available, as in the present case, it is advisable to make estimates of subsets 
of the data in order to test for their consistency.
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Appendix A: Description of MS Cairo, Dār al-Kutub, mīqāt 817

The manuscript in the Egyptian National Library that contains the ephemeris 
for the year 727 Hijra was discovered and described by David King.11 It con-
sists of 85 folios and measures 20 × 27 cm. The manuscript contains five parts:
(1) fols 1v–54r: Kitāb maʿārij al-fikr al-wahīj fī ḥall mushkilāt al-zīj (‘Ascen-
sion of Flaming Thoughts on the Resolution of the Difficulties of a Zīj’) by 
Muḥammad ibn Abī Bakr al-Fārisī (d. 1278/9 ce).12 He was in the service of 
the Rasulid Sultan al-Malik al-Muẓaffar Shams al-Dīn Yūsuf I (1249–1295 ce). 
The Maʿārij are extant in a number of copies but have not yet been edited. In 
the present manuscript, it was copied approximately in 725/1325.13

(2) fols 55v–68v: Tables on astronomical-astrological subjects by an anon-
ymous author. The section starts with a richly decorated dedication to the 
caliph written in a mandorla: li-l-sulṭān ibn al-sulṭān ibn al-sulṭān al-malik 
al-Muʾayyad Hazīr al-Dunyā wa-l-Dīn Dāʾūd ibn khalīfa amīr al-Muʾminīn 
Yūsuf ibn ʿUmar ibn ʿAlī ibn Rasūl khullad Allāh mulkahu (‘For the Sultan, 
son of the Sultan, son of the Sultan, the King al-Muʾayyad Hazīr al-Dunyā 
wa-l-Dīn Dāʾūd, son of the caliph, the commander of the believers Yūsuf ibn 
ʿUmar ibn Rasūl, may God make his kingdom eternal’). This is the Rasulid 
Sultan al-Malik al-Muʾayyad Dāwūd ibn Yūsuf I, who ruled from 1296 until 
1321 ce.14 After the dedication come tables on astronomical–astrological sub-
jects such as the lunar mansions, etc.
(3) fols 69r–80v: An astronomical yearbook with an ephemeris  for the Hijra 
year 727 (26 November 1326–14 November 1327). Since this year is five years 
later than the death of al-Muʾayyad Dāʾūd ibn Yūsuf it seems to be independent 
from the previous section. Folio 69r contains four horoscope diagrams with 
introductory texts. The text for the top left horoscope for Sunday, 24 Rajab 
727 AH/14 June 1327 ce, the day of the summer solstice, closes with the sen-
tence al-falak al-aʿẓam ʿalā mā huwa muthbat fī hādhihi l-zāʾ irja maʿmūl dhā-
lika bi-l-zīj al-ḥākimī wa-bi-llāhi l-tawfīq (‘The largest sphere concerning what 
is registered in this horoscope diagram, this is done by means of the Ḥākimite 
Tables, may God be reconciled’). The ephemeris begins on fol. 59v and ends on 

11 King, Fihris al-makhṭūṭāt, vol. I, p. 145; vol. II, p. 148. I thank Aymon Kreil for con-
veying digital images of a black-and-white microfilm of the manuscript, and Flora Vafea for 
obtaining the colour images here reproduced as Plates 14 and 15 with kind permission of the 
directorate of the Egyptian National Library.

12 For the life and works of al-Fārisī, see Schmidl, Volkstümliche Astronomie im islamischen 
Mittelalter, vol. I, pp. 18–23; Rosenfeld and İhsanoğlu, Mathematicians, Astronomers, and oth-
er Scholars, pp. 219–20 (no. 608).

13 King, Fihris al-makhṭūṭāt, vol. II, p. 112.
14 Bostworth, The New Islamic Dynasties, p. 108.
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fol. 80v. Every double page contains the data for one month. The calendarium 
with the days of the weeks and the dates in four calendars, together with the 
solar, lunar and planetary positions, are found on the right-hand pages. The 
right margin contains further calendrical data and data concerning the lunar 
mansions. The top header contains the positions of the ascendant and mid-
heaven at the time of the opposition (istiqbāl) of sun and moon. The footer 
contains the corresponding data for the conjunction (ijtimāʿ). The prognoses 
based on the aspects of the moon, the ikhtiyārāt, are found on the left-side 
pages. For the last month, the page with the ikhtiyārāt is missing. The central 
fields contain information on the entry of the moon into the zodiacal signs 
and its aspects with the sun and the planets. To the left, aspects of the planets 
and the sun with themselves (muzājāt) are found. To the right is a reduced 
calendarium with the number of days in the Arabic month and the days of the 
week written in words.
(4) fols 81r–84v: Drawings and horoscopes.
(5) fol 85v: Manẓūma fī bayān al-dukhūl bi-l-zawja ʿalā ḥasab al-manzila 
fīhā l-qamar (‘Poem on the explanation of having intercourse with the spouse, 
depending on the mansion the moon is in’).15 The text was added much later 
(c. 1100 AH) on the originally empty page.

A critical edition of the entire yearbook in part (3) would go far beyond the 
frame of the present study. If we consider the difficulties caused by the many 
worn parts of the manuscript and the often cursive and careless script without 
dots, the effort of producing such an edition would be considerable and can-
not be promised in the near future. However, in Appendix B, the numerical 
material of the planetary positions is presented in a standardised format in the 
conventional notation of sexagesimal numbers.

15 King, Fihris al-makhṭūṭāt, vol. II, p. 802.
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Appendix B: Edition of the ephemeris for 727 Hijra

The following table contains only the numerical material of the ephemeris 
parts. The astrological parts, which follow on the pages to the left of the 
ephemeris parts, are not included, nor is the calendrical information in the 
right margins of the ephemeris parts. The following abbreviations are used in 
the header of the tables:
wd Day of the week
ar Date in the Arabic calendar

sy Date in the Syriac calendar

co Date in the Coptic calendar

ya Date in the Persian Yazdgird calendar
so Solar position

lu Lunar position
sa Position of Saturn
ju Position of Jupiter
ma Position of Mars
ve Position of Venus
me Position of Mercury
no Position of the ascending lunar node
dl Length of the day from sunrise to sunset
mh Maximal height of the sun at noon
In one case an entry has been corrected: The solar position for Jumādā 15 is given 
in the MS as 0s24;42, but it should be 0s24;43 in order to fit in smoothly between 
the adjacent values.
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Appendix C: A brief timeline of astronomical yearbooks in the Mediter-
ranean and the Middle East

• Babylon, 700 bce. Yearbooks with daily information on the motions 
of the sun, moon and planets were already produced in Mesopotamia 
from the seventh century bce onwards. In modern research, they are 
called ‘astronomical diaries’ or ‘almanacs’. These contain instances of 
the rising phenomena of the moon and the planets, such as first and 
last appearance above the eastern and western horizons. For the planets, 
the zodiacal sign in which these phenomena occur is noted.

• Egypt, 100 bce. Similar yearbooks exist among Greek papyri from 
the first century bce until the second century ce, called ‘almanacs’, or 
‘almanac-ephemerides’.

• Egypt, 100 ce. At the beginning of the second century ce, a new type 
of yearbook arose, which was called ‘ephemerides’. These contain, for 
each day, complete sets of ecliptic longitudes for the sun, moon and 
planets in degrees and minutes. The latest known ephemeris on papy-
rus was produced for the year 489 ce.

• After that, for a period of more than 400 years, no traces of astronom-
ical yearbooks exist among Egyptian documents.

• Egypt, 910 ce. The first extant Arabic yearbook was produced for the 
year 910 ce.1 It is of an unknown type, probably based on a model 
from the East. It contains only the daily positions of the moon; there-
fore, it must be called an almanac.

• Egypt, 931 ce. An Arabic yearbook for the year 931/2 ce is of another 
type and shows a layout similar to that of ancient Greek ephemerides.2 
I have dubbed this an ephemeris of Type I.

• Egypt, 1044 ce. In the eleventh century ce, a new type of ephemeris 
appeared, called Type II. The first known example was made for the 
year 1044/5 ce.3 In Type II ephemerides, the content of the former 
Type I ephemerides was placed on the right side of a double page. On 
the left side, the content of the almanacs was presented. Although the 
Type I ephemerides disappeared – the last known example was made 
for 1026 ce

4 – , the almanacs survived. They seem to have been the 
more popular form of yearbook in the following centuries.

1 Thomann, ‘A Fragment of an Unusual Arabic Almanac’.
2 Thomann, ‘An Arabic Ephemeris for the year 931–932 CE’.
3 Thomann, ‘Kat.-Nr. 65: Ephemeride für das persische Jahr 413’.
4 Thomann, ‘An Arabic Ephemeris for the Year 1026/1027 CE’.
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• Several examples from the twelfth century have been found among the 
documents from the Cairo Geniza, but no Type II ephemerides are 
included among them.

• Ottoman Empire, 1500 ce. Later on, Type II ephemerides were pro-
duced as ambitious deluxe manuscripts. The first example of an ephem-
eris outside Egypt is a document found in a book binding. It was made 
for the year 1182/3 ce, probably in Northern Syria, possibly in Aleppo.5

• Trebizond, 1336 ce. Type II ephemerides found their way to the Byzan-
tine world. A Greek ephemeris for the year 1336 ce was made in Tre-
bizond. Mercier’s analysis has shown that it was calculated according to 
methods found in Islamic zījes.6 The form and content of this ephem-
eris correspond closely to those of the Arabic Type II ephemerides with 
the characteristic double page layout. Of course, the writing direction 
was changed to left-to-right.

• Paris, 1294 ce. Type II ephemerides also found their way to Western 
Europe. The stages of transmission are entirely unknown. A Latin 
ephemeris for the years 1293–1312 was produced in Paris. I thank 
David Juste, who pointed the manuscript of this ephemeris out to me.7 
It shows a high similarity in form and content to its Arabic Type II 
predecessors. Again, naturally, the writing direction was changed to 
left-to-right.

• The Paris ephemeris became the model for the early modern printed 
ephemerides by Regiomontanus, Stöffler and Kepler. Later, after the 
decline of astrology as a scientific discipline, European astronomers 
returned to the Type I format in their ephemerides.

Appendix D: Greek and Arabic Ephemerides8

This list contains all known and surviving ephemerides in Greek and Arabic 
up to the ephemeris for 1326/7 ce, which is the main topic of this article.
Abbreviation for the references: Oxy = Jones, Astronomical Papyri from Oxy-
rhynchus.
24 bce P. Oxy. 4175: Oxy, vol. I, pp. 177–79; vol. II, pp. 170–73.
100 ce P. Dublin TCD F.7: Jones, ‘On the Planetary Table’.

5 Thomann, ‘From katarchai to ikhtiyārāt’, p. 349.
6 Mercier, An Almanac for Trebizond.
7 MS Paris, BnF, lat. 16210; see https://archivesetmanuscrits.bnf.fr/ark:/12148/cc766833.
8 Information pertaining to Greek ephemerides is found in Jones, Astronomical Papyri 

from Oxyrhynchus, vol. I, p. 175; almanacs that do not contain the daily planetary positions 
are not included in the present list. For a list of ancient and some medieval horoscopes, see 
Heilen, Hadriani genitura, vol. I, pp. 204–333.
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111 ce P. Oxy. 4176: Oxy, vol. I, pp. 179–80; vol. II, pp. 174–75.
121 ce P. Oxy. 4177: Oxy, vol. I, pp. 180–85; vol. II, pp. 176–83.
140 ce P. Harris I 60: Jones, ‘An Astronomical Ephemeris for a.D. 140’.
161 ce P. Oxy. 4181: Oxy, vol. I, pp. 191–93; vol. II, pp. 200–03.
245 ce P. Oxy. 4177a: Oxy, vol. I, p. 185; vol. II, pp. 184–85.
261 ce P. Oxy. 4178: Oxy, vol. I, p. 186; vol. II, pp. 186–87.
348 ce P. Oxy. 4179: Oxy, vol. I, pp. 186–90; vol. II, pp. 188–91.
465 ce P. Oxy. 4180: Oxy, vol. I, pp. 190–91; vol. II, pp. 192–99.
467 ce P. Mich. Inv. 1454: Curtis and Robbins, ‘An Ephemeris’.
471 ce P. Vind. G. 29370b: Gerstinger and Neugebauer; Jones, ‘Two Astro-

nomical Papyri Revisited’.
489 ce  P. Vind. G. 29370: Gerstinger/Neugebauer 1962; Jones, ‘Two Astro-

nomical Papyri Revisited’.
– P. Oxy. 4182: Oxy, p. 193.
– P. Oxy. 4183: Oxy, p. 194.
– P. Oxy. 4184: Oxy, p. 194.
– P. Oxy. 4184a: Oxy, pp. 194–95.
– P. Dublin TCD F.7: Jones, ‘On the Planetary Table’.
931 ce P. Vind. A.Ch. 12868: Thomann, ‘An Arabic Ephemeris for the year 

931–932 CE’.
954 ce P. Stras. Inv. Ar. 446: Thomann, ‘An Arabic Ephemeris for the Year 

954/955 CE’.
994 ce P. Vind. A.Ch. 13577: Thomann, ‘Kat.-Nr. 62’.
1002 ce P. Vind. A.Ch. 32363: Thomann, ‘Kat.-Nr. 63’.
1026 ce P. Vind. A.Ch. 25613g: Thomann, ‘An Arabic Ephemeris for the 

Year 1026/1027 CE’.
1044 ce P. Vind. A.Ch. 1252 + P. Vind. A.Ch. 14324: Thomann, ‘Kat.-Nr. 

65’.
1149 ce P. Cambridge UL Inv. Michael. Chartae D 58: Thomann, ‘The Ara-

bic Ephemeris for the Year 1149/1150 CE’.
1182 ce Berlin, Islamisches Museum (no inventory number): Thomann, 

‘From katarchai to ikhtiyārāt’, p. 324.
1326 ce Cairo, Dār al-Kutub, mīqāt 817: King, Mathematical Astronomy in 

Medieval Yemen, p. 33, Plate 2; King, In Synchrony with the Heav-
ens I, p. 420, note 13.



The Geographical Table in the Shāmil Zīj

Tackling a Thirteenth-Century Arabic Source  
with the Aid of a Computer Database

Benno van Dalen

In  fond memory of Ted and Mary Helen Kennedy

1. The Shāmil Zīj

The Shāmil Zīj (i.e., ‘Comprehensive Zīj’) is an Arabic astronomical hand-
book with tables from the first half of the thirteenth century.1 It was primarily 
intended for the practising astronomer or astrologer, since in most of its sur-
viving manuscripts it consists of, on average, 12 folios of very compact instruc-
tions for solving the common problems in spherical and planetary astronomy 
and astrology as well as a standard set of tables covering 60 folios. The title 
of the work is explicitly mentioned in the introduction of only three of the 
twelve more or less complete manuscripts that I have consulted, whereas one 
other, the earliest surviving manuscript, has ornamented title pages stating the 
title explicitly for both the explanatory text and the tables.2 The author of the 
Shāmil Zīj is unknown, but judging from similarities between the Shāmil Zīj 
and the two contemporary zījes by the well-known philosopher Athīr al-Dīn 
al-Mufaḍḍal ibn ʿUmar al-Abharī (fl. in Mosul from c. 1230 onwards, d. 1263– 
1265),3 it is possible that al-Abharī was also the author of the Shāmil Zīj. The 
fact that the geographical table in the Shāmil Zīj, as one of only relatively 
few Islamic geographical sources, also presents coordinates for the small town 
Abhar in northwestern Iran, and that the mean motion tables are set up for its 
meridian, may be further evidence for this attribution.4

1 For Islamic zījes and their contents, and for overviews of the most important zījes that 
are extant or known from references, see Kennedy, ‘A Survey’ and King & Samsó, ‘Astronom-
ical Handbooks’.

2 Furthermore, the title page of Tehran, Majlis Library, MS 6445 gives a distorted form of 
the title. For extensive information on all manuscripts, see Section 2.

3 For al-Abharī, see the BEA article by Hüseyin Sarıoğlu; the EI³ article by Heidrun Eich-
ner; MAOSIC, no. 595, pp. 209–10, and Hasse, ‘Mosul and Frederick II’.

4 GAS, vol. XIII, p. 381 presents al-Abharī as the author of the Shāmil Zīj on the basis of 
a second entry for the work (with the same incipit) in the Yaltkaya edition of Ḥājjī Khalīfa’s 
Kashf al-ẓunūn (see Yaltkaya and Bilge, Keşf-el-zunun, vol. II, cols 968–69 and the EI² article 

Editing and Analysing Numerical Tables: Towards a Digital Information System for the History of Astral Sciences, 
ed. by Matthieu Husson, Clemency Montelle and Benno van Dalen, PALS 2 (Turnhout, 2021), pp. 511–566
© F  H  G  10.1484/M.PALS-EB.5.127706
t H i s  i s  a n  o p e n  ac c e s s  c H a p t e r  D i s t r i b u t e D  u n D e r  a  c c  b y- n c - n D  4 . 0  i n t e r n at i o n a l  l i c e n s e
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The author of the Shāmil Zīj states both in the preface and in a later sec-
tion that he used the planetary mean motion parameters of the important 
tenth-century mathematician and astronomer Abū l-Wafāʾ al-Būzjānī (Bagh-
dad, 940–997/8).5 He criticizes the author of the Aʿlāʾ ī Zīj (i.e., al-Fahhād, 
Shirwan in northwestern Iran, c. 1176) for presenting his planetary parameters 
as having been observed by himself, but instead actually having taken them 
from Abū l-Wafā .ʾ6 Since the chapters on planetary theory and all tables of 
Abū l-Wafāʾ’s major zīj, entitled al-Majisṭī after Ptolemy’s Almagest, are miss-
ing from the unique manuscript Paris, Bibliothèque nationale de France, arabe 
2494, and planetary mean motion parameters attributed to Abū l-Wafāʾ in the 
margins of the thirteenth-century Berlin manuscript of a revision of the zīj of 

‘Kātib Čelebi’ by Orhan Şaik Gökyay, esp. vol. IV, p. 761b, no. 12). This second entry is not 
found in the edition by Flügel (Kashf al-ẓunūn, vol. III, p. 565) and in the online Bologna 
manuscript of the work, which both contain only the attribution to Abū l-Wafā .ʾ However, 
Flora Vafea kindly confirmed for me that the second entry is found in one of the two manu-
scripts used by Yaltkaya and Bilge, namely Istanbul, Süleymaniye, Carullah 1619, fol. 70v. This 
is an ‘autograph draft’ dated aH 1051 (aD 1641) and consists of a main text with numerous 
marginal additions. The second entry for the Shāmil Zīj is written upside down and diagonally 
in the margin. It does not repeat the title of the work, but is linked to the main entry by a line 
drawn with the same black ink.

GAS, ibid., also states that the Shāmil Zīj was the earliest work to integrate corrections of 
coordinates in the eastern part of the Islamic world with those from the Maghrib and al-An-
dalus relative to the meridian of water (cf. footnote 10). However, since the geographical table 
in the Shāmil Zīj associated with al-Abharī does not include any localities west of Constanti-
nople, I suspect that this merit should rather be assigned to the Shāmil Zīj by Ibn al-Raqqām, 
as indicated in Comes, ‘The “Meridian of Water”’, p. 47.

5 For Abū l-Wafā ,ʾ see the DSB article by A. P. Youschkevitch, the BEA article ‘Būzjānī: 
Abū al-Wafāʾ’ by Behnaz Hashemipour, the EI³ article by Ulrich Rebstock, and MAOSIC, 
no. 256, pp. 96–98. On Abū l-Wafāʾ’s astronomical work al-Majisṭī, see, among others, Car-
ra de Vaux, ‘L’Almageste’; van Dalen, Ancient and Mediaeval Astronomical Tables, Chapter 4; 
Moussa, ‘Mathematical Methods’, and several sections and footnotes in van Dalen, Ptolemaic 
Tradition. The explicit mention of Abū l-Wafāʾ in the preface of the Shāmil Zīj misled several 
cataloguers, and thence also authors of modern biobibliographical works, into naming him as 
the author of the zīj.

6 This paragraph is transcribed from the manuscript Paris, Bibliothèque nationale de 
France, arabe 2528 in de Slane, Catalogue des manuscrits arabes, p. 451 (with a French trans-
lation) and in King, Fihris al-makhṭūṭāt, Part II, pp. 107–08. See also Suter, ‘Nachträge’, 
no. 167, pp. 166–67. For the Aʿlāʾ ī Zīj, see Pingree, The Astronomical Works (containing an 
edition of the Byzantine version) and van Dalen, ‘The Zīj-i Nāṣirī ’. An incomplete Persian 
manuscript of the Aʿlāʾ ī Zīj was noted by Sonja Brentjes to be present in the library of the 
Salar Jung Museum in Hyderabad. Mohammad Mozaffari informs me that the introduction of 
the Aʿlāʾ ī Zīj makes clear that al-Fahhād did make regular observations and that he compared 
the results with calculations based on the Mumtaḥan Zīj by Yaḥyā ibn Abī Manṣūr (Baghdad/
Damascus, c. 830), the lost Aʿḍūdī Zīj by Ibn al-Aʿlam (Baghdad, c. 960) and the Sanjarī Zīj 
by al-Khāzinī (Marw, c. 1120).
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Ḥabash al-Ḥāsib (Damascus/Samarra, c. 870) appear unreliable, it has not yet 
been possible to verify this claim. In any case, it can be seen that the author 
of the Shāmil Zīj makes use of the same parameters as the Aʿlāʾ ī Zīj, which he 
lists in a table together with epoch values for the beginning of the year 600 
Yazdigird (aD 1231/2).7 The Shāmil Zīj is therefore of interest both for recov-
ering the values of Abū l-Wafāʾ’s mean motion parameters and for studying the 
transmission of the Aʿlāʾ ī Zīj to Byzantium, where it was translated into Greek 
by Gregory Chioniades around the year 1300.

All extant manuscripts of the Shāmil Zīj contain basically the same 
explanatory text and the same set of accompanying tables.8 The explanatory 
text, headed al-qawl fī muʾāmarat al-aʿmāl ‘Statement on the Restoration of 
Astronomical Operations’, consists of ten numbered chapters (abwāb), further 
divided into unnumbered sections ( fuṣūl), and an epilogue (khātima). The top-
ics of the chapters are as follows:

 1. Calendars: year and month lengths in the Arabic, Persian, Byzantine 
and Maliki calendars; numbers of days since epoch, date conversion, 
days of the week of month beginnings.

 2. Sines and versed sines: finding the sine and versed sine from an arc and 
vice versa, by means of the sine table.

 3. Tangents: finding the tangent and cotangent of an arc and vice versa, 
by means of the tables of the first and second tangents.

 4. Fundamental arcs on the heavenly sphere: first and second declinations, 
right ascensions, geographical longitudes and latitudes, equation of day-
light, and oblique ascensions.

 5. True planetary positions: mean motions and epoch positions, apogee 
longitudes, true longitudes of the sun, the moon, the lunar nodes, and 
the five planets.

 6. Progressive and retrograde motion and planetary latitudes: first and sec-
ond stations, lunar latitude, latitudes of the superior and the inferior 
planets, positions of the fixed stars.

 7. Preliminaries for the operations on ascendants: distance of a planet or 
star from the equator, equation of daylight, maximum altitude, half arc 

7 See van Dalen, ‘The Zīj-i Nāṣirī ’, pp. 830–36.
8 Unlike early European sets of astronomical tables, most extant Arabic and Persian zījes 

appear in a fixed form with a consistent set of instructions and tables. Only occasionally tables 
were replaced for use at a different geographical latitude; more often additional tables were 
provided at the end of the manuscript of a zīj. The major exceptions among extant manuscripts 
are the two recensions of the Mumtaḥan Zīj by Yaḥyā ibn Abī Manṣūr (cf. footnote 6) and 
those of the zīj by Ḥabash al-Ḥāsib (see above), which were all copied four centuries after the 
original works were written and also include materials from later centuries.
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of daylight, hours of daylight, degree of transit, degree of rising and set-
ting.

 8. Ascendants: calculating the ascendant from the altitude of a star and 
from the time of day or night, ascendant of a year transfer.

 9. Conjunctions and eclipses: time of a conjunction or opposition, solar 
eclipses, lunar eclipses, lunar crescent visibility, lunar conjunctions with 
planets or stars.

10. Other astronomical operations: equalisation of the houses, projection of 
the rays, rising amplitude, altitude of the ecliptic pole, proportion and 
equation of the azimuth, azimuth and its direction, latitude of the inci-
dent horizon, prorogations (tasyīrs).

11. Epilogue. On the azimuth of the qibla (i.e., the direction of prayer  
towards Mecca).

The standard set of tables provided in the Shāmil Zīj includes all tables that 
are necessary to carry out the basic operations of astronomy and astrology, but 
nothing further. Various tables have a non-standard arrangement, as indicated 
in the following overview. Some tables (especially the first and second decli-
nation and solar equation) are tabulated not only for integer degrees but for 
every 6′ of arc, several others (especially the lunar and planetary equations) for 
every 12′.

 1. Sines and versed sines (these are combined into a single table, in which 
shared additive values for 2, 4, 6, …, 60′ must be added to the sine and 
versed sine values for integer degrees given at the top of each column).

 2. First tangent, second tangent.

 3. First declination, second declination.

 4. Right ascension.

 5. Longitudes and latitudes of localities.

 6. Universal table of the equation of daylight (with values for every 10° of 
the ecliptic and the range of geographical latitudes 28, 29, 30, …, 45°).9

 7. Universal table of oblique ascensions, with tabular differences for carry-
ing out linear interpolation (with the same general set-up as the equa-
tion of daylight).

 8. Table of planetary mean motion parameters said to be taken from 
al-Būzjānī.

9 Tables and instruments are called ‘universal’ if they cannot only be used for specific geo-
graphical latitudes, but for all or at least a wide range of latitudes. Cf. King, ‘Universal Solu-
tions’.
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 9. Table of planetary apogee motion.

10. Mean motion tables: solar centrum; lunar centrum, anomaly and longi-
tude and lunar node; centrum and anomaly for each of the five planets. 
These display the planetary positions for the beginnings of the Yazdi-
gird years 600, 601, 602, …, 699 together with the motions in 100, 
200, …, 1400 Persian years and in 1, 2, 3, …, 365 days (arranged in 
13 columns for the months Farwardīn to Isfandār(mudh) plus the five 
‘stolen days’ al-mustaraqa). The mean motions are given for a longitude 
of 84° measured from the Fortunate Isles, i.e., the same as that used by 
al-Fahhād in the Aʿlāʾ ī Zīj.10

11. Equation tables: sun; lunar first and second equation, interpolation 
minutes and variation (ikhtilāf ); planetary first and second equation, 
interpolation minutes and variation (ikhtilāf ).

12. Equation of time (for an apogee longitude of 2s 28°, with the true solar 
longitude as the argument).

13. Planetary stations.

14. Lunar latitude and planetary latitudes.

15. Fixed stars.

16. Parallax for the 4th and 5th climates.

17. Eclipse tables: radius of the luminaries and of the shadow, ‘general dig-
its’ and ‘amount of darkness’ (for calculating eclipse magnitudes), times 
of solar eclipses and of lunar eclipses (for calculating eclipse durations).

18. The velocity of the moon and its distance (i.e., the distance traveled by 
the moon in multiples of half an hour as a function of its true velocity).

19. Ittiṣālāt (i.e., conjunctions of the moon and planets).

As in many surviving manuscripts of early zījes, in most of the manuscripts 
of the Shāmil Zīj we find additional tables, in particular of types that are not 
included in the work itself, for example chronological tables, the equation of 

10 Longitudes in medieval Islamic sources were traditionally measured from the Fortunate 
Isles (al-jazāʾir al-khālidāt), i.e., the Canaries, or from the ‘Western Shore (of the encompass-
ing sea)’ (sāḥil al-baḥr al-muḥīṭ al-gharbī), i.e., a point on the Atlantic coast of Africa that 
was assumed to be 10° east of the Fortunate Isles. (The actual situation was more complicated 
and stood in relation to a rescaling of Ptolemy’s longitudes, especially by the geographers of the 
caliph al-Maʾmūn around aD 830, which made the Mediterranean 10° shorter. See GAS, vol. X, 
Chapter 2 for an extensive description of this process, and Robles Macías, ‘The Longitude 
of the Mediterranean’ for an analysis based on geographical tables, maps and instruments. In 
western-Islamic sources the so-called ‘meridian of water’ became in use due to similar reasons; 
cf. Comes, ‘The “Meridian of Water”’, which also explains that in many geographical tables 
longitudes measured from different meridians would occur together).
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daylight and oblique ascensions for specific latitudes between 36 and 39°, and 
astrological tables (for example, duration of gestation, lots, and lunar mansions).

Only scattered materials from the Shāmil Zīj have been treated in the liter-
ature.11 In this article I will turn my attention to one of the only very few 
non-mathematical tables in the Shāmil Zīj, namely the geographical table with 
longitudes and latitudes of 79 localities, concentrated in and around northwest-
ern Iran. Geographical tables lack the standard features that allow us to analyse 
and restore many types of mathematically computed tables. Foremost, they can-
not be recomputed, and since the individual coordinates tended to be copied 
uncountable times during many centuries, an unusually large number of scribal 
errors would creep in, including of types that are almost impossible to correct 
without multiple copies of a table or the original source at hand. Although 
many geographical tables were arranged by climate,12 and within each climate 
by increasing longitude, in practice this only very rarely allows one to correct 
coordinates or the order of entries. As a result, we will see that even an exhaus-
tive critical edition incorporating eleven manuscript copies of the table from 
the Shāmil Zīj leaves several cases in which we cannot decide on the correct 
or original entries on the basis of the evidence in the table alone. Therefore it 
will be necessary to look at a database of a much wider range of Islamic geo-
graphical sources, which will not only allow us to make well-founded decisions 
for the edition, but will also show us on which earlier sources the author of 
the geographical table in the Shāmil Zīj based himself, and that he included 
several coordinates that appear to be entirely original.

Such a database of Islamic geographical data can be found in an indispens-
able secondary source for the study of Islamic geographical tables, namely Geo-
graphical Coordinates of Localities from Islamic Sources by Edward S. Kennedy 

11 Individual methods and tables were discussed in Kennedy, ‘Comets’, pp. 47–48; Berg-
gren, ‘The Origins’, pp. 5–7; and King, ‘Some Early Islamic Tables’, pp. 217 –218. In van 
Dalen, ‘A Statistical Method’, pp. 106–13, I used the solar equation table from the Shāmil Zīj 
as an example for the application of various statistical estimators that I had developed. (The 
result of my estimation of the solar eccentricity was confirmed in Bellhouse, ‘An Analysis of 
Errors’, pp. 287–92, by means of a different statistical method making use of integer-valued 
residuals). In van Dalen, ‘The Zīj-i Nāṣirī ’ (with a summary of results on p. 857), I compared 
the planetary tables in the Shāmil Zīj and their underlying parameters with those in several 
earlier zījes and found that the planetary equations were mostly taken from Kūshyār ibn Lab-
ban’s Jāmiʿ Zīj (Iran, c. 1025) and in some cases from al-Khāzinī’s Sanjarī Zīj (Marw, c. 1120), 
possibly through the intermediary of the Aʿlāʾ ī Zīj.

12 The climates (or climes) were seven bands of latitude values determined from round 
numbers for the maximum lengths of daylight. See Honigmann, Die sieben Klimata; the EI² 
article ‘Iḳlīm’ by A. Miquel; Dallal, Al-Bīrūnī on Climates; and King, Bringing Astronomical 
Instruments, pp. 6–9. For a more general introduction to Islamic mathematical geography, see 
Kennedy, ‘Mathematical Geography’ or King, World-Maps, Section 1.6, pp. 23–28.



 THE GEOGRAPHICAL TABLE IN THE SHĀMIL ZĪJ 517

and his wife Mary Helen Kennedy (here further abbreviated as K&K). This 
book contains lists of place names, longitudes and latitudes as found in about 
80 Islamic works, including zījes, instruments and several others. As will be 
explained in more detail in Section 5, the sources are indicated by a three- 
or six-letter alphabetical code as well as a chronologically ordered numerical 
one, with the data arranged in four different ways. The geographical table from 
the Shāmil Zīj is included in K&K as source SML, on the basis of a manu-
script that my edition will show to be defective in various respects.13

2. The Geographical Table in the Shāmil Zīj

The geographical table in the Shāmil Zīj is found among the trigonometric 
and spherical-astronomical tables that immediately follow the explanatory text 
and precede the planetary tables. It thus facilitates the use of the zīj for the 
computation of arcs on the celestial sphere and planetary positions for any 
locality covered by the table and, as described in Chapter 4 of the explanatory 
text, in other localities by means of interpolation between the longitudes of 
two localities with the same latitude and known distance (the text prescribes 
to find the latitude of other localities by direct observation of the solar altitude 
at noon). The table covers a single page in the manuscripts and includes 26 
localities in the first and second columns, and originally 27 in the third (some 
minor deviations are specified in the apparatus to my edition in Section 3). 
With its total of 79 localities it is one of the smaller geographical tables found 
in Islamic zījes.

For critically editing the table, I will make use of nearly every single copy 
that I have been able to get hold of. The Shāmil Zīj is extent in more or less 
complete form in the following twelve manuscripts, eight of which include the 
geographical table:

• Cairo, Dār al-kutub, mīqāt Ṭalʿat 138 (58 fols, only the tables, copied 
c. 900 Hijra; see King, Fihris al-makhṭūṭāt, Part I, p. 476 and Part II, 
pp. 107–09, as well as King, A Survey, B100, p. 52 and plate XVIII, 
p. 238). A fine copy in clear naskh with a variety of additional tables. 
An inlaid sheet misled some scholars in attributing the work in this 
manuscript to Ibn Yūnus. — This manuscript omits the geographical 
table and the universal tables for the equation of daylight and oblique 
ascensions and replaces them by specific tables for latitude 38°.

• C = Cairo, Dār al-Kutub, riyāḍī Taymūr 296/1 (pp. 1–160 [220 pp. in 
total], copied in 1123 Hijra = aD 1711/2; see King, Fihris al-makhṭūṭāt, 
Part I, p. 609 and Part II, pp. 107–09, as well as King, A Survey, B100, 

13 The description of source SML is found in Kennedy and Kennedy, Geographical Coor-
dinates, p. xxxii, and the coordinates from the table, arranged alphabetically by location, on 
pp. 471–73.
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p. 52). Written in a clear naskh, with several additional tables. — The 
geographical table is on fol. 21v. The place names are frequently written 
with diacritical dots, but occasionally the shapes of the letters are com-
pletely wrong. All text is in black; only the frame of the table, some-
what carelessly drawn, is in red. The first column with place names is 
preceded by a column containing only the word madīna ‘city’ for every 
entry. C has an unusually large number of scribal errors, nearly all of 
which are shared by manuscript J of a zīj written in Mosul, likewise in 
the 18th century (see below). Different from the common form ے  for 
abjad 10 found in all other witnesses, C and J both use the standard 
form ى  used for yāʾ in ordinary text. Since the tables in C and J can 
be seen to be descendants of the already rather faulty manuscript T2, to 
which they add further scribal errors of their own, variants from C and 
J are only included in the apparatus of my edition if they differ from 
T2 or show very typical or informative deviations.

• F1 = Florence, Biblioteca Medicea Laurenziana, Or. 95b (previously 
Palatina 289, 116 fols separately numbered from Or. 95a in the same 
volume, copied in 747 Hijra = aD 1347; see Assemanus, Bibliothecae 
Medicae Laurentianae, no. 289, p. 394). Written in a clear naskh on 
uneven lines. The explanatory text (up to fol. 18r) is followed by a sim-
ilar but unrelated text in Persian and some other smaller ones. This 
manuscript has an unusually large number of additional tables beyond 
the basic set. — The geographical table is found on fol. 41v. It omits 
the second column of the original table and distributes the localities 
from the first and third columns over three shorter columns, adding 
some further localities at the end. The place names are mostly writ-
ten without diacritical dots and the definite article al- is omitted even 
from place names for which most other manuscripts include it. As the 
only witness, this manuscript includes a label iqlīm awwal ‘first climate’ 
before the first entry and Hindu-Arabic numbers 2 to 7 roughly at the 
places where the other climates start. These undoubtedly do not stem 
from the original work, but their exact placement will be mentioned in 
the general comments to my edition.

• Florence, Biblioteca Medicea Laurenziana, Or. 106/1 (fols 1–71r 
[170 fols in total], 8th c. Hijra; see Assemanus, Bibliothecae Medi-
cae Laurentianae, no. 120, pp. 197–98). Written in a clear naskh on 
uneven lines. The last four pages of the explanatory text were replaced 
by a copy written on ruled lines within an outer frame in a different 
hand, apparently that of Or. 106/2. The second half of this manuscript 
contains one of the two zījes explicitly attributed to al-Abharī with a 
copy of the geographical table from the Shāmil Zīj; see F2 below. — 
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The geographical table is missing together with the second half of the 
right ascension table that would have immediately preceded it, possibly 
because the sheet concerned was lost or torn out. The two universal 
tables are included in this manuscript, but the oblique ascensions were 
never filled in.

• Istanbul, Süleymaniye Kütüphanesi, Carullah 1479 (65 fols, undated; 
very brief notice in Krause, Stambuler Handschriften, p. 466). Written 
in a clear, slightly cursive naskh. The title ‘Shāmil Zīj’ is explicitly men-
tioned in the preface. — The geographical table is missing from this 
manuscript, together with all spherical astronomical tables.

• Meshhed, Holy Shrine Library, MS 12086 (96 fols, copied in 781 
Hijra = aD 1379/80; see ʿIrfānian, Fihrist-i kutub-i khaṭṭī, no. 536, 
pp. 60–63). A fine copy in a very clear naskh, generally with diacritical 
dots. The title ‘Shāmil Zīj’ is explicitly mentioned in the preface. Both 
text and tables have a large number of well-informed glosses in the mar-
gins. The explanatory text is followed by sections on lunar crescent vis-
ibility from the (Il)khānī and Shāhī Zījes copied by a different hand. 
The tables are supplemented by an unusually large set of additional 
tables, including several for latitudes 38° and 39°, a table for the equal-
isation of the houses and an uncommon double-argument table for the 
lunar equation covering 35 pages. — The geographical table is missing 
from this manuscript together with all trigonometrical and spherical-as-
tronomical tables.

• P8 = Paris, Bibliothèque nationale de France, arabe 2528 (73 fols, man-
uscript from the 15th/16th c.; see de Slane, Catalogue des manuscrits 
arabes, pp. 451–52 and http://archivesetmanuscrits.bnf.fr/ark:/12148/
cc30444x). Written in a clear naskh on carefully drawn lines. Numbers 
that would have been in red are systematically missing from the head-
ings of the tables, probably because the manuscript from which this 
copy was made already lacked those. — The geographical table appears 
on fol. 19v. The diacritical dots on the place names are frequently miss-
ing. Each of the three columns with place names is preceded by a col-
umn containing only the word madīna ‘city’ for every entry. The coor-
dinates from this copy of the geographical table from the Shāmil Zīj 
were included in K&K as source SML (cf. p. 517).

• P9 = Paris, Bibliothèque nationale de France, arabe 2529 (76 fols, man-
uscript from the 16th c.; see de Slane, Catalogue des manuscrits arabes, 
p. 452 and http://archivesetmanuscrits.bnf.fr/ark:/12148/cc304455). 
Written in a clear and careful naskh. The title ‘Shāmil Zīj’ is explic-
itly mentioned in the preface. — The geographical table is included 
on fol. 27v (see Plate 16). It omits the entry for Siwas, but gives four 
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additional localities in the same hand as the 78 original ones. It pro-
vides diacritical dots for most place names with some exceptions near 
the end of the first column, where also the original latitudes of three 
localities appear to have been corrected to alternative ones. The definite 
article al- is omitted from all place names except al-Raqqa and al-Rayy.

• P0 = Paris, Bibliothèque nationale de France, arabe 2540 (fols 7v–15 and 
29v–99 [99 fols in total], manuscript from the 15th c.; see de Slane, Cata-
logue des manuscrits arabes, p. 454 and https://archivesetmanuscrits.bnf.fr/
ark:/12148/cc30455c). This manuscript was obtained in Aleppo in 1673.  
The remaining folios contain a rather sloppy copy of the explana-
tory text and tables of al-Dustūr al-ʿajīb by Naṣir al-Dīn ibn ʿĪsā ibn 
al-Ḥiṣkafī, pointing to a strong relationship to the Vatican manuscript 
(V below), which likewise contains this work together with the Shāmil 
Zīj. The text is written in a somewhat untidy but readable naskh. The 
tables of the Shāmil Zīj are nicely laid out as in most of the other man-
uscripts, but those of al-Dustūr are in a small and often unclear script. 
Numbers in red are systematically missing from the headings of the 
tables belonging to the Shāmil Zīj. In general the calligraphy of the 
headings of these tables is very similar to P8. Abjad 3 () and 4 () 
look very much alike in this manuscript when written separately. — 
The geographical table is on fol. 38v. It generally includes the diacritical 
dots on the place names. Each of the three columns with place names is 
preceded by a column containing only the word madīna ‘city’ for every 
entry.

• T1 = Tehran, Majlis Library, MS 6422 (76 fols, copied in 672 Hijra = 
aD 1273/4; see Ḥusaynī Ashkawarī, Fihrist-i nuskhahā-yi khaṭṭi, 
pp. 15–16 and https://dlib.ical.ir/site/catalogue/835022). This is the 
oldest surviving copy of the Shāmil Zīj. Fol. 1r gives the title with 
ornaments in gold and blue, fol. 11r the title of the second maqāla ‘On 
the tables of the Shāmil Zīj’ in gold. Folios 2–9, and therewith almost 
the entire explanatory text, are missing from the manuscript. Fol. 10 
contains the last part of the epilogue and several additional texts in dif-
ferent hands. The original set of tables is included in its entirety in the 
correct order. The tables were copied in an elegant naskh, possibly dif-
ferent from the explanatory text. Some additional tables and texts are 
found from fol. 71v onwards, including oblique ascensions for latitudes 
38° and 39° (Konya). — The geographical table is on fol. 20v. It gen-
erally includes the diacritical dots on place names. Different from all 
other manuscripts, the place names are here alternately written in black 
and in red. In the last column, the minutes of four longitude and six 
latitude values and the degrees for one latitude value have been omitted. 
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My edition of the table will make clear that these must in each case be 
taken to be equal to the last written digit above them (all minutes con-
cerned are zero, and the degrees for Aq sa ray are 38). These omissions 
have not been noted in the apparatus.

• T2 = Tehran, Majlis Library, MS 6445 (91 fols, copied in aD 1880 
according to the catalogue, but this is probably incorrect because the 
earlier manuscripts C and J depend on it (cf. below); see Ḥusaynī Ash-
kawarī, Fihrist-i nuskhahā-yi khaṭṭi, p. 29 and https://dlib.ical.ir/site/ 
catalogue/836523). I only became aware of this manuscript after an 
earlier version of this article had been submitted. The title is given 
on the title page (fol. 2r) in the distorted form al-Zāʾirja al-shāmila 
li-l-maḥāsin al-mukāmila ‘The Comprehensive zāʾirja for the Perfect 
Merits’.14 A different hand on fol. 1r describes the contents as ‘The zīj 
of Abū l-Wafāʾ Būzjānī and the introduction of the Athīrī Zīj ’. The 
Shāmil Zīj is here mixed with some texts, tables and diagrams from 
very different sources written on different paper by different hands. 
Text and tables of the zīj are in a naskh hand. The introduction starts 
at fol. 7r and is indeed followed by the opening lines of the Athīrī Zīj 
on fol. 15v; the opening section of the Shāmil Zīj is repeated on fol. 16v 
on different paper. — The geographical table is on fol. 27r. The place 
names are generally written with diacritical dots. The first two columns 
with place names (but not the third) are preceded by a column con-
taining only the word madīna ‘city’ for every entry. Since this table is 
clearly an ancestor of the even faultier copies C and J, I have included 
all variants from T2 in my edition but those from C and J only when 
they differ from T2 or provide typical or informative further deviations.

• V = Vatican, Biblioteca Apostolica Vaticana, Vat. ar. 1499 (fols 3v–10v 
and 14r–101v [102 fols in total], 984–87 Hijra = aD 1576–1580; see 
Levi della Vida, Secondo elenco, pp. 2–3). Like in P0, the Shāmil Zīj 
appears here mixed up with a copy of al-Ḥiṣkafī’s al-Dustūr al-ʿajīb. 
The Shāmil tables are neatly laid out, those from the Dustūr in a very 
small script. — The geographical table is found on fol. 48v. The scribe 
omitted most of the diacritical dots on place names and used a form 
for abjad zero () that is very close to the letter ʿayn ع. Instances in  
which the manuscript indeed has an actual ʿayn rather than a zero  
are not separately included in the apparatus. Each of the three columns 
with place names is preceded by a column containing only the word 
madīna ‘city’ for every entry. The first two longitude values (for Haba-

14 The zāʾirja is a divinatory device involving letter magic, geomancy and astrology; cf. the 
EI² article ‘Zāʾirdja’ by T. Fahd.
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sha and Sanaa, in black) were written over further copies of this word 
that were mistakenly inserted in red.

Some further fragments of the Shāmil Zīj are contained in London, British 
Library, Add. 7492/3 (fols 51v–67r with only the explanatory text, copied 
in 912 Hijra = aD 1506/7), and possibly in Mumbai, Cama Oriental Insti-
tute, R I.86. The commentary on the Shāmil Zīj by al-Qumnāṭī is extant in 
Paris, Bibliothèque nationale de France, arabe 2530 and Istanbul, Süleymaniye 
Kütüphanesi, Laleli 2137, and the commentary by Ḥasan Muḥam mad Ṭūsī in 
Isparta, Halil Hamit Paşa İl Halk Kütüphanesi, MS 2252.15

The geographical table from the Shāmil Zīj is also included in several works 
that are strongly related to the zīj. Of these works I have used the following 
manuscripts:

• F2 = Florence, Biblioteca Medicea Laurenziana, Or. 106/2 (fols 72v–170r, 
copied in the 8th c. Hijra; see Assemanus, Bibliothecae Medicae Lauren-
tianae, no. 120, pp. 197–98) of the Athīrī Zīj (described as a short-
ened version of al-Zīj al-mulakhkhaṣ ʿalā arṣād al-Aʿlāʾ ī in the opening 
sentences) by Athīr al-Dīn al-Abharī. This work appears to be contem-
porary and to share several tables and other characteristics with the 
Shāmil Zīj, but it also shows a large number of significant differences. 
The explanatory text of the Athīrī Zīj consists of 15 sections ( fuṣūl). 
The planetary mean motions are for geographical longitude 70°, most 
likely Damascus, and the planetary positions are given for the year 600 
Yazdigird. A detailed investigation is necessary in order to establish the 
exact relationships between the Shāmil Zīj, its slight reworking in the 
manuscript Dublin, Chester Beatty, Arabic 4076, and the two zījes of 
al-Abharī. This part of the manuscript is written in a clear naskh; the 
first half contains a copy of the Shāmil Zīj that is listed above but lacks 
the geographical table. — The geographical table from the Shāmil Zīj 
is included by al-Abharī on fol. 141v just after a set of spherical astro-
nomical tables for latitude 36°. Different from the Shāmil Zīj, the geo-
graphical table here comes after the planetary tables. Most of the dia-
critical dots on place names are omitted and some names are completely 
miswritten. Every single occurrence of a digit 50 in the coordinates is 
written as an unambiguous 55, making it plausible that in one of the 
ancestors of this manuscript the shapes of 50 and 55 were extremely 
close.

• J = Mosul, Pāshā Mosque (Jāmiʿ al-Bāshā), MS 323 (90 fols, copied in 
1141 Hijra = aD 1728/9; see al-Shantī, Fihris al-makhṭūṭāt al-muṣaw-

15 See GAS, vol. V, pp. 324–25 and vol. VI, pp. 223–24 (under Abu l-Wafāʾ). For the com-
mentaries see also OALT, vol. I, no. 6, p. 22 and vol. II, pp. 809–10, as well as MAOSIC, 
no. 766, p. 259 and no. 859, p. 290.
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wara, no. 319, p. 121) of the zīj by ʿAbd al-Qādir ibn Ṣafāʾī al-Mawṣilī. 
This manuscript might now very well have been lost for eternity if the 
Cairo Institute of Arabic Manuscripts had not prepared a microfilm of 
it many decades ago. Professor Edward S. Kennedy was kind enough 
to lend me a copy of this film. A more extensive description of the zīj 
of al-Mawṣilī will appear in my A New Survey of Islamic Astronomical 
Handbooks. Written in a very clear naskh. — The geographical table 
is on fol. 8v. The place names generally include the diacritical dots, 
shaddas and hamzas. However, the tabular frame was drawn in an ama-
teurish way without a ruler and with one column too many and two 
rows too few. The first column of place names (but not the second and 
third) is preceded by a column containing only the word madīna in 
every row. The shape of abjad zero ()  is somewhat similar to the Hin-
du-Arabic numeral 5, but is also repeatedly confused with abjad 8 (ح). 
This table can be seen to be a descendant from manuscript T2 through 
the intermediary of manuscript C. The three manuscripts share a large 
number of peculiar errors that do not appear in any of the other eight 
witnesses. These include grave mistakes in the spelling of place names, 
the confusion of abjad numbers 0 and 8 (especially in C and J), and 
the slide of 14 place names towards the end of the third column which 
made it impossible for Kennedy to recognize that J is in fact a copy of 
the table from the Shāmil Zīj. In my critical edition of the geographical 
table I have only included variants from C and J if they are different 
from those in T2 or show very typical or informative deviations.

• O = Oxford, Bodleian Library, Laud Or. 253 (88 fols, autograph; 
see Nicoll, Bibliothecae Bodleianae, no. 274, pp. 242–46) of al-Durr 
al-muntakhab by the Priest Cyriacus (in Arabic: al-Qiss Qiryāqus). The 
author presumably worked in Mardin, now in southeastern Turkey, 
toward the end of the 15th century. The introduction of his zīj states 
that it was based on the Athīrī Zīj by al-Abharī (cf. F2 above) and the 
planetary mean motion parameters of Abū l-Wafā .ʾ The highly original 
lunar and planetary equations with double arguments, displacements 
and further adjustments, as well as some other individual tables, were 
studied by Saliba and Kennedy.16 The author’s hand is a clear naskh. — 
The geographical table, basically identical with that in the Shāmil Zīj, 
appears on fol. 84v. As in most of the manuscripts described above, the 
title is written in suprascript; most of the diacritical dots on the place 
names are provided.

16 See Saliba, ‘The Double-Argument Lunar Tables’; Saliba, ‘The Planetary Tables’; Ken-
nedy, ‘Comets’; Kennedy and Agha, ‘Planetary Visibility Tables’, and Saliba, ‘Easter Compu-
tation’.
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As has already been mentioned in Section 1, K&K includes the geographical 
table from the Shāmil Zīj as source SML on the basis of manuscript P8. Fur-
thermore, since they appear in different works, K&K separately presents the 
table from manuscript J as source ABD and the table from manuscript O as 
source QIR. Besides these, it includes one further copy of the geographical table 
from the Shāmil Zīj, namely the source that it abbreviates as ULE because it 
is included on the inside of the back cover of the manuscript Oxford, Bodleian 
Library, Greaves 5 of the Zīj of Ulugh Beg (Samarqand, c. 1440).17 The title and 
place names in this table were copied in Arabic by a European hand, but most 
of the numbers are in European numerals rather than in the standard Arabic 
alphabetical notation. This is most likely a copy by the Savilian professor of 
astronomy John Greaves himself of a table from another manuscript from his 
own collection or from the Bodleian Library, or one that he inspected during 
his travels in the Levant from 1638 to 1640.18 A direct comparison seems to 
exclude that the table was copied from the Bodleian manuscript O of the zīj of 
the Priest Cyriacus. Whereas seven place names are incorrectly spelled, the tab-
ular values agree almost entirely with those in my edition, with the exception 
of a possible scribal error for Qum and glitches for Malatiya and Qaysariyya. 
For Egypt (Miṣr, i.e., Cairo), Greaves gives the correct longitude 64;40°, which 
is further only found as an obvious later correction in manuscript P8.19 So in 
some respects, ULE (or GRV as I will further call it) can be considered the 
earliest edition of the geographical table from the Shāmil Zīj. Because of the 
uncertainty of its exact sources I will nevertheless omit it from my own edition.

17 Kennedy and Kennedy, Geographical Coordinates, p. xxxv mistakenly states that this ta-
ble appears after the colophon of the manuscript used for source ULG (the Zīj of Ulugh Beg), 
namely Oxford, Bodleian Library, Marsh 396. The coordinates are listed in ibidem, pp. 564–
65.

18 See Maddison, ‘Greaves’; R. Mercier, ‘English Orientalists’, pp. 261–77, and the further 
literature mentioned by Maddison. Cf. also Greaves, Binae tabulae geographicae. The astro-
nomical sources used by Greaves and the astronomical marginalia in his manuscripts are cur-
rently being investigated in detail by Taha Yasin Arslan as part of the pilot project ‘The Arabic 
Books and Astronomy in Seventeenth Century Oxford’ led by Julia Bray.

19 Although most digits in Greaves’ copy are written with European numerals, their order 
remains as in the Arabic. Thus ‘30 73’ stands for the longitude 73;30° of Sanaa. The mistakes 
in the place names include curious ones such as مكيه for Mecca, ّاسكنديه for Alexandria and 
 for Qadisiyya. The longitude of Qum is given as 82;55°, different from all three values بادٮته
found in the eleven witnesses that I have used for my edition; the latitude of Malatiya is listed 
as 38;30°, possibly miscopied from the entry for Qaysariyya; and the latitude of Qaysariyya is 
written in a mixed form in incorrect order as ‘39 ى’. Seven incorrect digits of coordinates are 
underlined and were corrected in standard Arabic alphabetical notation above the numbers.
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3. Editing the Geographical Table

I present my edition of the entries from the geographical table in the Shāmil  
Zīj in Table 1 on pp. 529–31 and that of the further textual elements such as 
headings and marginal notes below. For easier reference I have indicated all entries 
in the original table with a letter (A, B and C for the first to third columns in 
the manuscripts) and a running number within each column (up to 26 for the 
first two columns and up to 27 for the third). For the modern equivalents of the 
place names in the second column of the edition I have used for easier com-
parison the exact forms as found in Kennedy and Kennedy, Geographical Coor-
dinates (K&K) with only very few exceptions.20 The apparatus to the table is 
given in the form of notes in the last column of the edition. Here any Ara-
bic form gives a variant to the place names, ‘long.’ refers to the longitude and 
‘lat.’ to the latitude. In a pair of coordinates separated by a slash the longi-
tude precedes the latitude. The symbols ° and ′ indicate variants in respectively 
the degrees and the minutes of longitude or latitude.21 In addition to the sigla 
for the manuscript sources introduced in Section 2, I use K for cases where 
K&K deviates from my reading of P8 (in all other cases K&K gives the value 
that I present for P8). A question mark indicates a reading that is uncertain or 
ambiguous.

I have applied the following general editing policies:
• Any variants in the apparatus for place names, longitudes and latitudes 

are given in the order T1P9F1F2OP8P0VT2CJ, i.e., as we will see, in the 
order of general correctness (or smallest number of errors) of the manu-
scripts. Note that variants from CJ are only given explicitly when they 
differ from T2 or are otherwise of interest.

• If an entry is unclear but can be read as what I consider to be correct 
on the basis of the entire manuscript evidence or the correct spelling of 
place names, I will assume that the correct entry was intended and not 
mark the unclarity in the apparatus.

• If an entry was corrected in the main hand, I will not include the 
incorrect original entry in the apparatus unless it appears relevant, for 
example because other witnesses have the same incorrect entry.

20 Specifically, I write Sanaa for Sana, Madāʾin for Ctesiphon, and Qum instead of Qumm.
21 As most numbers in Islamic astronomical sources, the coordinates in geographical tables 

are written in the Arabic alphabetical (abjad) notation, in which letters alif to ṭāʾ  denote the 
numbers 1 to 9, letters yāʾ to ṣād the numbers 10 to 90, and letters qāf to ghayn the numbers 
100 to 1000 (with small variations in a system that was mostly used in the western Arabic 
world). By combining the letters for one thousand, hundreds, tens and units, any number up to 
1999 can be written. For example, ghayn-shīn-nūn-wāw غشنو denotes 1356. See Irani, ‘Arabic 
Numeral Forms’ and Thomann, ‘Scientific and Archaic Arabic Numerals’. For the types of 
scribal errors that may result from the similarities between certain letters, see Section 4.
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• If an entry was corrected in a different hand, I will indicate this when-
ever the correction is clear.

In editing the place names I have applied the following specific policies:
• In the edition I generally write the place names with correct diacritical 

dots and shaddas, unless all witnesses concerned write them differently 
(e.g., several manuscripts write زيحان Zayhān with a dotted yāʾ for زنجان 
Zanjān, B17). I write dots on tāʾ marbūṭa even though they are almost 
never written in the manuscripts.

• In the apparatus I will write the variant names exactly as they appear 
in the manuscripts, i.e., often without diacritical dots. If two or more 
manuscripts have the same letter shapes for a place name, I will add any 
diacritical dots that are found in at least one of the witnesses.

• I have not been able to recognize any systematic patterns in the addi-
tion or omission of the definite article al- before certain place names 
and have therefore decided generally not to indicate such additions or 
omissions in the apparatus of the table.

In editing the coordinates, I have used the following general rules:
• All variants caused by the omission or inclusion of diacritical dots are 

indicated in the apparatus.

• A fāʾ or qāf without dot is read as 80; thus a reading as 100 requires 
both dots. Only for the longitudes of Kirman and Khwarizm is the 
presence of the dots explicitly specified in the apparatus, because the 
writing in most manuscripts is incorrect.

• Variants in place names or coordinates that are part of a slide in some 
of the manuscripts (cf. Section 4) are given for the locality for which 
they were originally intended, i.e., after the errors resulting from the 
slide itself have been corrected. Whenever a variant is the direct result 
of a slide, this is explicitly indicated.

Title of the table

الاستواء خطّ  عن  وعروضها  الخالدات  الجزائر  من  البلدان  اأطوال   جدول 
jadwal aṭwāl al-buldān min al-jazāʾir al-khālidāt wa-ʿurūḍihā ʿan khaṭṭ al-istiwāʾ
Table of the Longitudes of Cities from the Fortunate Isles and their Latitudes from the 
Equator

Apparatus.   جدول ] P8P0VT2C om., J جدول هذا   [ الجزائر  لطول P0V [ اأطوال   
T1F1OP8T2CJ جزائر, P0V الخالدات   خزاين ] F2 الخالده  [ عن   وعرضها F2 [ وعروضها   
T2CJ الاستواء   من خطّ  لز F1 om.   P8T2 add [ عن  .البلدان latitude 37°’ above‘ عرض 
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Column headers

al-buldān / al-aṭwāl / al-ʿurūḍ                                          العروض الاأطوال /  البلدان / 
Cities / Longitudes / Latitudes
Apparatus.   الاأطوال ] P9F1 العروض   الطول ] P9F1T2 العرض.

Other general characteristics

P8P0V add a column containing only the word madīna for every entry before 
each of the three columns with place names. T2 adds such a column before the 
first and second columns of place names, CJ only before the first column.

F1 adds indications of the climates as follows: iqlīm awwal above the first 
column, and Hindu-Arabic numerals ‘2’ before Madina (A5), ‘3’ in the cell of 
Egypt and Alexandria (A7–A8), ‘4’ before Tarsus (A23), ‘5’ before Khwarizm 
(C6), ‘6’ before Konya (C26) and ‘7’ before the unidentified al-ʿzh (see below) 
at the end of the table.

Marginal notes

T1 (right margin in two different hands):
مح نه  له  وتحريرهم  حسابهم  في  ووجد  بها  العمّالون  ذكر  ما  على  الموصل  عرض 

ʿarḍ al-Mawṣil ʿalā mā dhakara al-ʿammālūn bihā wa-wujida fī ḥisābihim wa-taḥrīri-
him lh nh mh.

The latitude of Mosul according to what those who work at 〈the city〉 stated and to 
what was found in their calculation and their redaction, is 35;55,48°.22

ل / كح  حماه  ى /  كح  ترابلس  م /  ٮو  حلب  ى /  لا  وجنوب  شرق  دمشق   انحراف 
مه كا  انطاكية 

inḥirāf dimashq sharq wa-janūb lā y / ḥalab yw m / tarābulus kḥ y / ḥamāh kḥ l / 
anṭakiya kā mh
The inclination 〈of the qibla〉 is 〈for〉 Damascus south-east 31;10, Aleppo 16;40, Trip-
oli 28;10, Hama 28;30, Antioch 21;45.23

A note in the margin of the table in P0 computes the longitude and latitude 
differences between Mecca (rounded coordinates 78° / 21°) and possibly Mar-
din (74° / 33°, correct latitude 37°), apparently with the purpose of calculating 
the qibla. The numbers are here written with Hindu-Arabic numerals.

22 This latitude is found in a section on solar eclipses (fols 7v–8r) and in an oblique ascen-
sion table for Mosul (fol. 100r–v) in the manuscript Escorial, RBMSL, árabe 927 of a thir-
teenth-century recension of the Mumtaḥan Zīj by Yaḥyā ibn Abī Manṣūr (cf. footnote 6).

23 These values are in full agreement with the qibla values found in the geographical table 
from al-Khāzinī’s Sanjarī Zīj (see King, World-Maps, pp. 71–75 and Appendix D).
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Additional localities

Several of the manuscripts give additional localities and coordinates in the 
table itself or in the bottom margin. In some cases these were copied into some 
of the other extant manuscripts as well, in others they appear to be incidental 
additions by the scribe or a user.24

P0V insert entries Mardin ماردين with longitude 74;30° (V 37′) and al-Ḥiṣn 
-with longi tude 75;35° after the first and third entries of the second col الحصن
umn. O adds the same entries in the opposite order with coordinates 75;30° / 
38;15° for al-Ḥiṣn and 75;0° / 37;30° for Mardin. In P0 these additions are 
clearly in a slightly lighter red and a different hand, in VO they are in the 
main hand. Because of its relative position with respect to Mardin and Harran, 
al-Ḥiṣn can be assumed to stand for Ḥiṣn Kayfā (now Hasankeyf), which is 
found in only very few Islamic sources with coordinates 74;35° / 37;35°.

P9 adds an entry ٮٮركى و   with coordinates 62;30° / 41;30° at the end of لادٮٯ 
the first column and an entry اياثلوغ with coordinates 61;0° / 41;0° at the end  
of the second column. These can be recognized as two localities in western  
Anatolia, namely respectively Laodicea (Lādhiq) of Lycos (or Phrygia), whose ruins 
are just north of present-day Denizli, and Ayathulūg or Ayasulūk, now Selçuk 
(cf. the EI² articles ‘Lādhiḳ’ and ‘Aya Solūk’). I have not been able to interpret 
the word following Lādhiq, but the excellent relative coordinates of the two cit- 
ies leave little doubt about their identification. Neither locality occurs in K&K.

Both P9 and F1 add entries Bulghar بلغار with coordinates 68;0° / 49;30° and 
Saray with coordinates 72;20° / 46;10° (F1 20′) at the end of the third column. 
The former stands for the Turkic people that founded a state on the Volga in 
the early Middle Ages, and the latter most probably for one of the two capitals 
of the Mongol Golden Horde, likewise in modern southern Russia. The coor-
dinates for Bulghar stem from al-Khāzinī, those for Saray are not attested. F1 
furthermore adds العزه al-ʿzh with longitude 43;11° and latitude 38;22°, which I 
have not been able to identify.25

F2 adds under the table باجوج  madīna Bājūj with longitude 172;30 (for مدينه 
  Mājūj (Magog), since 172;30° is the ماجوج Yājūj (Gog) or perhaps also ياجوج
latter’s commonly used longitude measured from the Western Shore). F1 adds 
ياجوح  madīna Yājūḥ (for Gog) with coordinates 65;0° / 21;5° which are مدٮنه 
unattested and nonsensical.

O writes under the last entry تغيير .’without any change‘ بغير 

24 Marginal notes with geographical coordinates that allow the use of, for example, plane-
tary tables at a different locality, may be found in many manuscripts of Islamic astronomical 
works.

25 Judging from its coordinates this locality should be near Ammuriya (Amorion) in wes-
tern Anatolia. Note that Ghazza غزّة is an unlikely candidate both because of the bad agree-
ment of the coordinates (it appears in most sources with longitude 64;50° and latitude 32;0°) 
and because it is generally written without definite article.
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4. Classifying the Errors in the Table

Variants in the place names in the geographical table from the Shāmil Zīj are 
rarer than those in the coordinates. It is often quite obvious from the omission 
of diacritical dots and ambiguous shapes of certain letters when a scribe did 
not actually know the localities. In some cases we see clear mistakes such as 
 ,Aden (A3), the various forms for Kabul (A22) given in Table 1 عدن for عند
Ṭanja طنجة for Kanja كنجة (C9), سلقان and صلقان for بيلقان Baylaqan (C10), etc. 
In some other cases we find slightly different but acceptable spellings of well-
known place names, such as صنعا and صنعه for Sanaa (A2), حما and حماه for 
Hama (B4), or اسفهان and اصفهان for Isfahan (B13). These could have been 
adjusted independently by any scribe, possibly depending on his or her philo-
logical background, and therefore coincidence of the way of writing does not 
need to point to a close relation ship of the manuscripts concerned. As men-
tioned in Section 3, I have not generally indicated additions or omissions of the 
definite article al- in certain place names in the apparatus of the table.

For most of the localities in the table it is relatively easy to decide on the 
correct values of the coordinates. For these, a clear majority of our ten wit-
nesses are in agreement, and most of the deviating digits are obvious scribal 
errors. A list of common scribal errors can be found in Table 2. In this table 
t stands for a number of tens (possibly also none) and u for a number of units 
not equal to zero. For example, the scribal error denoted by 1u–5u indicates 
all confusions 11–51, 12–52, …, 19–59 and the scribal error t2–t4 includes the 
confusions 2–4, 12–14, 22–24, … The somewhat less common and more spe-
cific scribal errors such as the confusion of 0 and 8 (especially in sources CJ) 
and 0 and the letter ʿayn (in source V) are not included in the table. The same 
holds for the confusion of digits such as 0 with 30 and 30 with 40 and several 
others that occur again and again in geographical tables. It is less likely that 
these were the result of a misreading of the correct digit; instead they may 
be the result of miscopying from a different entry in the table, or, whenever 
a digit is given as zero or is entirely omitted, from truncation or rounding of 
values given to a higher precision. Since the possibilities for such mistakes are 
almost infinite, I have not attempted to explain these unless other sources pro-
vide evidence for their likeliness.26

26 The eleven witnesses for the geographical table from the Shāmil Zīj that I have used 
show seven instances in which an original digit 0 was written incorrectly as 4, 5, 8, 10, 30 or 
44 (of these errors only the confusion with 5 is a common scribal one). In eleven cases were 
original digits 10, 15, 30 and 40 minutes written as 0, which in no case can be considered a 
common scribal error.
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scribal errors in tens (u > 0)

ٮد  1u – 3u لد ||
ٮد  1u – 4u مد 
ٮه 15 – 45 مه ||||| |
ٮد 1u – 5u ند |||

كد  2u – 3u لد 
لد  3u – 5u ند 
مد  4u – 5u ند |
فد  8u – 5u ند ||

صد  9u – 7u عد |
فد  8u – 10u قد ||||

other common scribal errors

 0 – 31 لا
د 4 – 20 ك
د 4 – 30 ل |
ز 7 – 30 ل |
ز 7 – 40 م
ز 7 – 50 ن
ط 9 – 20 ك ||
ط 9 – 21 كا
ل 30 – 50 ن |

scribal errors in units (t ≥ 0)
 t 0 – t 2, mainly:

ك 20 – 22 كب
ل 30 – 32 لب |

t 0 – t 5 (t≠1) |||||
 0 – 5 ه |
ن 50 – 55 نه ||||| |||||

 t 0– t 7, mainly:
م 40 – 47 مر

س 60 – 67 سر |
ف 80 – 87 فر |

ٮٮ t 2 – t 4 ٮد
ٮٮ t 2 – t 7 ٮر ||
ٮح  t 3 – t 4 ٮد
ٮح  t 3 – t 8 ٮح ||||| ||||| ||||| ||
ٮد t 4 – t 5 ٮه ||||| |
ٮد t 4 – t 6 ٮو |
ٮد t 4 – t 7 ٮر
ٮو t 6 – t 7 ٮر ||||| ||||

Table 2: Common scribal errors in Arabic and Persian numerical tables in abjad nota-
tion. Note that the forms of the letters as printed here in some cases deviate from those 
written in the manuscripts, and that the probability of certain errors further depends 
on the particular type of script (cf. Irani, ‘Arabic Numeral Forms’). Diacritical dots have 
been omitted from letters that often do not carry them in the manuscripts, especially: 
final 7 = ر ,3 = ح ,2 = ٮ, initial or medial  = 10. The examples for errors of the 
form t2–t4, etc. are given with an initial un dotted yā ,ʾ the examples for errors of the 
form 1u–3u etc. with a final dāl. The ticks after each error indicate the number of 
occurrences in the geographical table in the Shāmil Zīj. For some general forms particu-
lar occurrences that are especially common have been listed and counted separately (for 
example, 0–5 and 50–55 for t0–t5).

In Section 5, I will briefly discuss the usefulness of a frequency distribu-
tion of scribal errors in astronomical tables for judging the likeliness that one 
table is dependent on another. As an example I have indicated by tally marks 
after each possible error in Table 2 its number of occurrences in the geograph-
ical table from the Shāmil Zīj. Because of the clear interdependence of the 
manuscripts (see further below), the occurrence of the same error in multiple 
manuscripts is counted only once. The largest frequencies are found for scribal 
errors that are also known from general experience with numerical tables to be 
among the most common ones, namely t3–t8 and t6–t7. However, some  
other errors known to be common do not show up here so clearly due to the 
special characteristics of the table. In particular, the vast majority of all num-
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bers of minutes in the coordinates are multiples of 10 and/or 15,27 while the 
degrees of the longitudes lie overwhelmingly between 60 and 99 (leaving only 
three values between 50 and 60 and three values above 100) and those of the 
latitudes exclusively between 13 and 45. As a result, such common confusions 
as 1u–5u, t2–t4, t3–t4, t4–t7, 40–47 and 7–50 are found only rarely in 
the geographical table from the Shāmil Zīj, whereas 1u–4u only appears in the 
form 15–45. Also peculiarities of the handwriting of the manuscripts or their 
(often unknown) precursors will influence the probability of certain scribal 
errors. Thus all ten errors 50–55 are due to source F2, whereas the confusion 
of digits 0 and 3, which is not included in the table, appears very frequently in, 
for example, Abū l-Fidāʾ’s Taqwīm al-buldān.28

For a significant number of localities in the geographical table from the Shāmil 
Zīj, the errors in some of the manuscripts cannot so easily be recognised as 
scribal errors. In these cases there are multiple plausible scribal variants or 
even on first sight inexplicable variants and no clear majority of the sources 
in favour of any one of them. Examples are the wide variety of longitude and 
latitude values for Qum (B11), even after correction of the slide that will be 
discussed below, the differing latitudes for Tiflis (C8), and a range of signifi-
cant differences on which we will see that the eleven witnesses are divided into 
two groups of five and six manuscripts.

A type of scribal error that may cause great problems for a reliable transmis-
sion of coordinates is what the late Fritz S. Pedersen dubbed a ‘slide’:29 while 
copying a row or column of tabular values or digits, the scribe skipped or 
repeated one or more items. As a result, all following values or digits in the row 
or column concerned would ‘slide’ by a number of columns or rows until the 
scribe discovered the mistake and continued with the correct values. In most 
manuscripts of mathematical tables slides allow us to see that scribes generally

27 The minutes of only five coordinates in the geographical table in the Shāmil Zīj are a 
multiple of 5 which is not a multiple of 10 and/or 15. Furthermore, the table contains three 
‘irregular’ numbers of minutes that can nevertheless be confirmed from most of the witness-
es, and even on the basis of other sources, namely for Qadisiyya (A15), Damghan (B21) and 
Nishabur (B26). 74 of the 168 coordinates (i.e., nearly half of the total) have a number of 
minutes equal to zero.

28 For the historian, geographer and gouvernor-prince Abū l-Fidāʾ (1273–1331), see the 
DSB article by Juan Vernet, the EI² article by H. A. R. Gibb, or the EI³ article by Daniella 
Talmon-Heller. His Taqwīm al-buldān is particularly important for the history of geography 
because it systematically compares the information about many hundreds of localities on the 
basis of four or five earlier sources, of which some very important ones are now lost (see fur-
ther Section 5). The Taqwīm al-buldān was edited in Reinaud and MacGuckin de Slane, Géo-
graphie d ’Aboulféda. Texte Arabe and translated in Reinaud and Guyard, Géographie d ’Aboul-
féda. Traduite.

29 See for example, Pedersen, The Toledan Tables, vol. I, pp. 30–32.
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place names correct P0V

A12 Baghdad 80;00 33;25 80;10 33;46
A13 Wasit 81;30 32;20 81;30 32;10
A14 Basra 84;00 31;00 84;00 31;10
A15 Qadisiyya 79;25 *31;46* 79;25 31;00 * 47′ in CJO

A16 Hilla 79;10 32;10 79;10 32;00
A17 Madāʾin 80;20 33;10 80;20 33;00
A18 Ahwaz 85;00 30;00 85;00 30;00
A19 Shiraz 88;00 32;00 88;00 32;00
A20 Sabur 88;40 30;00 88;40 30;00

Table 3: Slide of the minutes of latitude in sources P0V (slid values underlined).

 place names coordinates

T1P9F2O P8P0VT2CJ
B7 Hulwan Shahrazur 81;45 34;00
B8 Shahrazur Nahawand 80;20 37;15
B9 Nahawand Hamadan 82;00 36;10
B10 Hamadan Qum 83;00 36;10
B11 Qum Hulwan 80;15 34;00

Table 4: Slide of five place names in sources P8P0VT2CJ (differences underlined).

copied tables column by column. Especially in tables with slowly increasing 
tabular values the slides of values in a column would only be discovered close 
to the end of the column.

Among the manuscripts of the geographical table in the Shāmil Zīj we find 
three examples of slides, in one case of digits, in the two other cases of place 
names (or, theoretically but much less plausibly, of the longitudes and latitudes 
corresponding to these place names). Table 3 illustrates the upward slide over 
three rows of the minutes (but not the degrees) of the latitudes of the locali-
ties Baghdad (A12) to Madāʾin (A17, Ctesiphon) in sources P0V. This slide is 
relatively easy to recognize because in these witnesses the highly uncommon 
number of minutes ‘46’ appears for Baghdad instead of for Qadisiyya. Table 4 
illustrates an apparent slide over one row of the place names for Hulwan (B7) 
to Qum (B11). In this case the sources are more or less equally divided over 
the two variants and a decision on the correct form cannot be made without 
further information. We will later see that the scribe of a common ancestor of 
sources P8P0VT2CJ must first have skipped Hulwan and when he noticed this 
mistake four rows further down, apparently ‘corrected’ it by inserting Hulwan 
with the coordinates of Qum.30

30 In mathematical tables the ‘lost’ entries at the end of an upward slide were usually filled 
up with the correct ones, which would thus be repeated from the rows above. Apparently this 
was not considered an appropriate strategy for a slide in the place names in a geographical 
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T1P9F2O P8P0VT2CJ
place names coordinates place names coordinates

B22 Bistam بسطام 89;15 35;40 Astam اسطام 89;15 35;40
B23 Astarabad اَستراباد 89;50 38;45 Shiraz* شيراز 89;50 38;15
B24 Jurjan جرجان 90;00 36;50 Anar اٮاد 95;00** 36;50
B25 Tus طوس 92;00 37;00 Jurjan جرجان 92;00 37;00

in CJ  ** 90;0 in P0V سيزات ,in T2 سيزاز *

Table 5: Two significantly different versions of four rows near the bottom of the 2nd column 
(deviations in the second version underlined).

A set of remarkable differences extending over four consecutive lines can be 
found near the bottom of the second column in six of the ten witnesses (see 
Table 5). Although the coordinates are basically in agreement and contain only 
two scribal mistakes, witnesses T1P9F2O on the one hand and P8P0VT2CJ on  
the other here partially give entirely different localities (note that the second 
column of the table is missing from F1). A plausible explanation for this confu-
sion that requires some imagination, is that in one early manuscript Astarabad 
(B23) was written with a rather large vertical descent, for example:

اٮاد ا سٮر 
In the common ancestor manuscript of P8P0VT2CJ, this might have led to the 
following mistakes: the initial alif was prepended to the preceding entry Bis-
tam (B22) in order to produce اسطام Astam; the middle part سٮر was restored 
to a well-known locality, namely Shīrāz, although this city already appears in 
the first column; the final اٮاد became a separate locality with the coordinates 
of the next one, Jurjan (B24); Jurjan received the coordi nates of Tus (B25), and 
Tus was discarded. Having only the manuscript P8 at his disposal, Kennedy 
could not do any better than identifying Abād with Anār, formerly Abān, in 
the province of Kirman (mentioned in Le Strange, The Lands of the Eastern 
Caliphate, p. 286), which does not appear in any other of the sources in K&K.

Tables 4 and 5 illustrate only two of a rather large number of cases in which 
witnesses T1P9F1F2O (from here on to be referred to as Group A) differ sig-
nificantly from manuscripts P8P0VT2CJ (Group B). Table 6 lists all of these 
cases. It turns out that only incidentally, especially where the differences con-
cern place names, is it possible to decide which of the two groups provides the 
better variant on the basis of the geographical table in the Shāmil Zīj alone. 
As for the other non-trivial cases discussed above, also here a comparison with 
further geographical data from Islamic sources is necessary in order to make

table, although the insertion of the omitted place name four rows further down can hardly be 
considered a better one.
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localities Group A Group B

entire table    — columns filled only with madīna
third column 27 localities 26 localities (Aqsaray omitted)
A4 Oman long. 94;30 long. 74;30
A7 Egypt lat. 29;45 lat. 29;47 (P8P0VT2) or 29;40 (CJ)
A8 Alexandria long. 60;30 long. 65;30
A12 Baghdad long. 80;00 long. 80;10
A24 Kabul كابل غاوند or ٮحاٮد

lat. 28;00 lat. 37;00
A27 Manbij long. 63;45 lat. 63;15
B7 Hulwan to B11 Qum    — upward slide of place names
B12 Sawa lat. 35;5* lat. 34;0
B18 Daylam الديلم (T2CJ) الرمله or (P8P0V) الرسلٮه
B22 Bistam to B25 Tus    — name Astarabad mutilated
B23 Astarabad / Shiraz lat. 38;45 lat. 38;15
C1 Sarakhs *سرخس حرحر or حرحس
C6 Khwarizm long. 101;50* long. 81;30
C17 Salmas سلماس سلاماس
C20 Arzan Rum lat. 39;0 lat. 39;44 (K&K 39;45)
C21 Arzingan lat. 38;0 lat. 37;0
C22 Siwas lat. 39;0 lat. 37;0 or 30;0
C23 Qaysariyya Rum lat. 38;30 lat. 38;2
C25 Aqsaray اقسرا (presumably for Konya) قومه
C26 Konya 65;0 / 38;0 om. (or combined with previous line?)

Table 6: Significant differences in place names and coordinates between Group A (man-
uscripts T1P9F1F2O) and Group B (manuscripts P8P0VT2CJ). The presence of further 
scribal errors that are not essential for the differences between the two groups is indi-
cated in this table by an asterisk, but these errors are further ignored. They are, of 
course, included in the apparatus to the edition of the table in Table 1.

plausible judgements about the correctness of the variants. In the next section I 
will therefore introduce in more detail the Kennedys’ Geographical Coordinates 
of Localities from Islamic Sources as well as the computer program that I have 
written on the basis of its raw data.

5. The Kennedys’ Database of Islamic Geographical Coordinates

In 1987, Edward S. Kennedy and his wife Mary Helen Kennedy published 
their Geographical Coordinates of Localities from Islamic Sources (Frankfurt: 
Institute for the History of Arabic-Islamic Sciences, abbreviated as K&K). This 
book includes a total of more than 13,000 entries from 74 geographical tables 
and several other types of Islamic sources covering more than 2500 different 
localities. Every entry consists of:

• the place name in a standardised modern form;
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• the Arabic form of the place name as found in the original Arabic 
sources (as opposed to translated and Latin sources);

• a numerical code and a three- or six-letter abbreviation for the source;
• a reference to the source usually consisting of the page or folio, column 

and line number at which the locality is found;
• the longitude and the latitude of the locality in degrees and minutes; 

and

• a field with brief comments.

The book contains four different listings of the entries, namely:
1. an alphabetical one by place name (pp. 1–386, with entries for each 

locality ordered by source code, i.e., roughly chronologically);
2. a listing by source (pp. 387–594, with the sources ordered chronologi-

cally and the place names for each source alphabetically);
3. a listing by increasing longitude (pp. 595–655, with abbreviated entries 

for each longitude ordered by increasing latitude); and
4. a listing by increasing latitude (pp. 657–709, with abbreviated entries 

for each latitude ordered by increasing longitude).

The Kennedys presented a measure for the dependence of a source A on a 
source B defined as the percentage of latitude values in A that is also found 
in B for the same localities. They did not include longitudes in this measure 
because of the different base meridians that these may refer to. They also did 
not consider the possibility of scribal errors. For example, the latitude value 
38;25° for Baghdad in our witness J of the geographical table in the Shāmil Zīj 
(source ABD in K&K) is undoubtedly a scribal error for the common 33;25°, 
but would not contribute to the Kennedys’ measure of dependence of J on any 
source with latitude 33;25°.31

In the early 1990s I received from Professor Kennedy a complete dump of 
the DBASE3 database in which the geographical data were stored at the time 
K&K was published. Since the collection of data was started long before com-
puters became as versatile as they are now, the only characters used in the orig-
inal data sets and in the book are capital letters, digits, periods and commas. 
Thus doubtful readings are indicated by a Q, standing for a question mark. 
Arabic place names (in the book reproduced in Arabic script) are in the data-
base encoded by means of the letters of the alphabet and the 10 digits. For 

31 In fact, K&K gives the latitude of Baghdad in source ABD as 33;25° although it is un-
ambiguously written as 38;25°. However, the value 38;25° is assigned to Baghdad for source 
GT2 (a manuscript from Gotha). Some further exploratory statistical analysis on the data of 
K&K were carried out in Regier, ‘Kennedy’s Geographical Tables’.
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example, the letter C stands for ṣād, X for khāʾ, the letter O or the digit 0 for 
undotted medial bāʾ, tāʾ, thāʾ, nūn or yā ,ʾ 1 for ghayn, 4 for ḍād, etc.32

In 1995, I programmed in Turbo Pascal a first version of an application 
KaK that displays the data from K&K and allows sorting in the same four 
ways as in the listings in the book (and in addition by decreasing longitudes 
and latitudes). In order not to make standard operations such as sorting and 
searching too time consuming, I made it possible to load into memory only 
the data from particular groups of sources, e.g., early Islamic ones, late Persian 
ones, western Islamic ones, or instruments. Consecutive selections of the data 
in memory could be made by specifying the sources, place names and ranges of 
longitudes and latitudes to be included or excluded. In this way it became pos-
sible, for example, to select all localities from the zījes of al-Battānī, Ibn Yūnus 
and al-Bīrūnī with longitudes between 75 and 85° and latitudes between 30 
and 35°, sorted first by longitude and then by latitude.

At around the same time, Mercè Comes took over the geographical coordi-
nates project from the Kennedys with as main purposes to convert the DBASE3 
database into a more modern format, to replace the limited set of characters 
by a more extensive one and add Arabic transcriptions for the place names, 
to correct the existing entries for errors that had crept in during the process 
of reading the sources, and to expand the database with further sources, espe-
cially also those from the various western Islamic zījes that her colleagues in 
Barcelona had explored. Unfortunately, Comes’s untimely death in 2010 did 
not allow her to finish this huge project. The partially corrected data, with a 
number of additional sources, are now available in Microsoft Access format, 
but are not yet ready for publication.

Since 2012, I have continued to work on my program KaK on and off. 
Most importantly, I made it possible to display the longitudes from all sources 
with respect to the Fortunate Isles by adjusting them for their particular base 
meridian. Converted longitudes are indicated in a slightly different colour, and 
comparison with modern longitudes measured from Greenwich is made easier 
by making it possible to adjust these in such a way that Baghdad receives a 
longitude of exactly 80;0° (i.e., by adding 35;34°). Making use of these adjust-
ments, I implemented a function for comparing any two sources, displaying 
the differences either in alphabetical order of place name or in the order in 
which the localities appear in one of the sources. I have also experimented 
with a measure for the dependence of geographical sources that compares the 
degrees and minutes of both latitude and longitude values and furthermore 
also attaches a weight to corresponding coordinates that differ only by a plau-
sible scribal error. As an example, the above-mentioned pair of latitude values 

32 These conventions, together with the developments in the early stage of the project, are 
described in Haddad and Kennedy, ‘Geographical Tables’.
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38;25° and 33;25° for Baghdad might be attached a weight of 0.8 or 0.9 (as 
compared with 1.0 if the values were equal). I have not yet attempted to apply 
such weights consistently; they could be based on frequency counts of scribal 
errors in a large number of sources (cf. Table 2), possibly to be distinguished 
by certain categories such as western and eastern Islamic manuscripts. Needless 
to say, a database containing multiple witnesses for a large number of Islamic 
mathematical, astronomical and geographical tables would enormously facilitate 
carrying out such frequency counts.

I also added to the program KaK the entries from the original database for 
the headers and the cross-references from K&K, so that an export to a text file 
of the whole database, sorted first by numerical source code and then alphabet-
ically by place name, produces exactly the alphabetical listing from the book. 
The headers and cross-references also make it possible to select, for example, all 
entries for Constantinople by searching for ‘Istanbul’, or to add localities to the 
current selection that appear in displayed headers with the indication ‘cf.’ or 
‘see also’ by invoking the command ‘Follow’. I systematized and cleaned up the 
references for each source, so that the entries from a particular source cannot 
only be displayed in alphabetical order of place name (as in the book), but also 
in the order in which they appear in the source. Finally, I started to make cor-
rections to the coordinates as published in the book, in several cases by using 
multiple manuscripts of the sources concerned, and added several new geo-
graphical tables, such as those from the Leipzig manuscript of the Mumtaḥan 
Zīj (based on al-Battānī), the Salar Jung Museum (Hyderabad) manuscript of 
the Aʿlāʾ ī Zīj, and the huge Timurid table (TMR) discovered and edited by 
David A. King.33 KaK is still a DOS program in a beta version, but thanks to 
FreePascal can also be compiled to an executable that runs on 32bit versions 
of Windows 7 and later. This I am happy to make available on request. Obvi-
ously, inclusion of the geographical data in a larger database of astronomical 
data and re-programming of the functionality of KaK in a platform-indepen-
dent, mouse-driven application that accesses such a database is a desideratum.

Although my more comprehensive measure of dependence between geo-
graphical sources explained above sharpens the Kennedys’ results (for exam-
ple, the measure for the basically identical sources SML (Shāmil Zīj) and QIR 
(Qyriacus) increases from K&K’s 68% and 71% to around 95%), the basic con-
clusions about dependences and the identification of the three main families of 
geographical sources presented on pp. xl–xliii of K&K remain valid. The Ken-
nedys’ conclusions that the likelihood of scribal errors in geographical data that 
were copied over and over again is particularly large, is also confirmed by my 
edition of the geographical table in the Shāmil Zīj (as well as by my edition of 
the table from the Jāmiʿ Zīj by Kūshyār ibn Labbān, recently published in the 

33 King, World-Maps, Section 3.3, pp. 149–61 and Appendix A, pp. 456–77.
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book series Ptolemaeus Arabus et Latinus,34 and by the experiences described 
by David A. King in his World-Maps). For this reason it is not possible to take 
the (presumably) earliest source from each of the three main traditions that 
Kennedy established (to which one may add Ptolemy’s Handy Tables and Geog-
raphy because of the influence they had on certain traditions of Islamic coordi-
nates for particular regions and localities) and use those as reference points for 
all other Islamic sources. Rather, it is necessary to look at the entire evidence of 
coordinates for each locality in order to determine whether the surviving wit-
nesses of the founding source for each tradition do not already include scribal 
errors, and which scribal errors that occurred in the transmission of the coordi-
nates became accepted and were included in later dependent sources as well. By 
thus analysing the data for all important localities, one may obtain a reference 
table of geographical coordinates in the three main Islamic traditions to which 
the coordinates in all other sources may be compared, and which may hence be 
used to make reasonable decisions on the correct coordinates in cases where the 
sources yield multiple possibilities. In the following section, I will attempt the 
compilation of such a reference table for all localities included in the geograph-
ical table in the Shāmil Zīj.

6. Creating a Reference Table for the Main Islamic Geographical Traditions

The main purpose of this section is to establish a geographical reference table, 
presented as Table 8, showing for all localities appearing in the Shāmil Zīj 
the coordinates in the three main Islamic traditions as well as in some smaller 
ones. For the purpose of convenient comparison, all longitudes are given with 
respect to the base meridian of the Fortunate Isles. This means that 10° has 
been added to the longitudes from all sources that have the Western Shore as 
their base meridian.35 Most of the abbreviations for the sources used in the 
table are briefly introduced below in the description of the traditions.36 Since 
only less than half of the localities from the Shāmil Zīj is found in Ptolemy’s 
Geography (PTO) or Handy Tables (HTP), and Ptolemy’s coordinates were in 

34 See van Dalen, Ptolemaic Tradition, Section IV.13, esp. pp. 508–09.
35 Cf. footnote 10. The possibility of different underlying meridians needs to be borne in 

mind in particular when it comes to judging the possibility of scribal errors in the coordinates. 
For example, the frequent confusion of degrees of longitude of the forms 1u and 5u (cf. Sec-
tion 4) may be visible in the reference table as a confusion of longitudes 2u and 6u if the 
underlying sources have the Western Shore as their base meridian.

36 Further information on these sources may be found in Kennedy and Kennedy, Geograph-
ical Coordinates, pp. xv–xxxvii. Note that, besides seven new sources, I use the following ab-
breviations different from those in K&K: ATW for ATH FID, BIRF for BIR FID, and SNJ 
for entries confirmed by SNB, SNH and SNS (all three conventions as in King, World-Maps), 
MAM for entries confirmed by KHU, KHZ, RES and SUH, DIM for QBL, WAB for MUN 
and MOS for ABD (i.e., witness J for the table from the Shāmil Zīj).
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only very few cases taken over by Islamic geographers, I have here omitted the 
data from Ptolemy’s works. Whenever coordinates in Islamic sources are equal, 
or close, to Ptolemy’s, this will be mentioned in the comments to the reference 
table.

The three main Islamic traditions of geographical coordinates as they were 
already established by the Kennedys are the following:

1. The generic abbreviation MAM stands for the results of the geographi-
cal survey carried out under the Abbasid caliph al-Maʾmūn (r. 813–833) 
with the purpose of creating a world map. The largest and presumably 
earliest set of coordinates from this survey is contained in KHU, the 
Kitāb Ṣūrat al-arḍ by al-Khwārizmī. KHZ is a table found together 
with treatises attributed to al-Khwā rizmī in MS Istanbul, Süleymaniye 
Kütüphanesi, Ayasofia 4830. RES, the Kitāb Rasm al-rubʿ al-maʿmūr, is 
said by Abū l-Fidāʾ (1273–1331) to have been translated from Greek into 
Arabic under al-Ma  ʾmūn, but turns out to be another name for KHU 
or the corresponding world-map. SUH, the Kitāb Aʿjāʾib al-aqālim 
al-sabʿa by Suhrāb or Serapion (c. 930) is a reworking of KHU with 
some significant differences in the coordinates. K&K also includes sev-
eral dozens of variant readings for MAM as found in Nallino’s edition 
of al-Battānī’s zīj and his article on al-Khwārizmī’s geography, as well 
as in Honigmann’s Die sieben Klimata.37 For many localities the four 
sources that constitute the tradition of MAM in the reference table 
agree with each other. But in many other cases they show differences 
that cannot all be explained as common scribal errors. In deciding on 
a value for MAM in such cases, I have given preference to KHU, but 
may have chosen a value from one of the other three sources (or even 
a mixed one) if the values in later sources that usually borrow from 
MAM (especially YUN and KUS, for which see below) give reason to 
do so. In such cases relevant deviating values from KHU, KHZ, RES 
and SUH are given in the comments. All Maʾmūnic sources measure 
the longitudes from the Western Shore.

2. BIR indicates the tradition of the geographical table in al-Bīrūnī’s 
major astronomical work, al-Qānūn al-Masʿ ūdī (Ghazna, c. 1030). In 
his Kitāb Taḥdīd nihāyāt al-amākin,38 al-Bīrūnī explained the methods 
for establishing the longitudes and latitudes of localities by astronomical 
observation (solar altitude for latitudes, lunar eclipses for longitude dif-
ferences) and surveying (triangulation of distances between localities). 

37 See Nallino, al-Battānī sive Albatenii; Nallino, ‘Al-Khuwārizmī e il suo rifacimento’, and 
Honigmann, Die sieben Klimata.

38 See the edition in Bulgakov and Aḥmad, Kitāb Nihāyāt al-amākin; the translation in 
Ali, The Determination, and the elucidations in Kennedy, A Commentary.
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With 604 localities, al-Qānūn contains one of the largest Islamic geo-
graphical tables, and it provides mostly new coordinates as compared 
to MAM.39 Many of the coordinates are cited in Abū l-Fidāʾ’s Taqwīm 
al-buldān, which hence provides a second source for al-Bīrūnī; in K&K 
this source is referred to as BIR FID, in King’s World-Maps and here 
as BIRF. BIR, with longitudes measured from the Western Shore, was 
the basis for the tradition of the geographical table from the Sanjarī Zīj 
by al-Khāzinī (Marw, c. 1125), which contains a selection of localities 
from BIR in a different arrangement by region, to which rather inac-
curate qibla values were added. Al-Khāzinī’s main table is contained in 
SNB, the manuscript London, British Library, Or. 6669 of the Sanjarī 
Zīj, which lacks one folio of the table. Two somewhat different extracts 
of the main table are found in SNH (Istanbul, Süleymaniye Library, 
Hamidiye 859) and SNS (Tehran, Madrasa-yi Āʿlī-i Shahīd Muṭahharī 
(previously Sipāhsalār), MS 682), two abridged versions of al-Khāzinī’s 
zīj. These contain some, but by far not all localities missing from SNB. 
Therefore the copy of al-Khāzinī’s table in SHA, the Jadīd Zīj of Ibn 
al-Shāṭir (Damascus, c. 1365), which in several of the surviving man-
uscripts even maintains the exact page layout of al-Khāzinī’s table, is 
our main source for the missing part of the table. I will follow King, 
World-Maps in using the abbreviation SNJ for al-Khāzinī’s coordinates 
whenever the three copies of the Sanjarī Zīj agree or the original val-
ues can be plausibly deduced from the complete set of available sources. 
Two somewhat different extracts of SHA can be found in NUZ, the 
Nuzhat al-nāẓir by Shihāb al-Dīn al-Ḥalabī (Damascus, c. 1435), 
and in the slightly later HLB, al-ʿIqd al-yamānī by the same author. 
NUZ is generally more faithful to SHA. HLB, already used by King, 
was obviously based on the table in SHA since it maintains the same 
arrangement of the localities within regions and includes the same qibla 
values, but while all other sources in this tradition are based on the 
meridian of the Western Shore, the coordinates in HLB were adjusted 
to the meridian of the Fortunate Isles and corrected on the basis of 
al-Bīrūnī’s original geographical table. Thus whenever SNJ deviates 
from BIR, HLB will generally follow BIR rather than SHA.

  SNJ was also  copied into ASH, the Ashrafī Zīj by Sayf-i munajjim 
Yazdī (Shiraz, c. 1303), which, however, has several distortions and in 
some cases appears to have chosen the coordinates from the tradition 
of ATW (see below). Occasionally, when the coordinate tradition for 

39 K&K does not make use of the useful edition of this table in Togan, Bīrūnī’s Picture. 
For a recent study of al-Bīrūnī’s coordinates of localities in Pakistan and India, see Weber, 
‘Neue Analysen und Identifikationen’.
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a given locality is unclear, I may also resort to the evidence from two 
further sources that appear to have relied upon BIR to some extent, 
namely TAJ, the Tāj al-azyāj by Muḥyi ’l-Dīn al-Maghribī (Damas-
cus, c. 1258), and TUQ, a treatise on the astrolabe by the otherwise 
unknown al-Ṭūqānī (GAS, vol. XIII, pp. 415–16 names him al-Ṭūqātī 
(‘from Tokat’ in present-day Turkey) and tentatively dates him to the 
14th century).

3. By ATW (in K&K: ATH FID) I refer to the tradition of the anon-
ymous Kitāb al-Aṭwāl wa l-ʿurūḍ li-l-Furs, which is itself lost but 
from which Abū l-Fidāʾ quotes the coordinates of 452 localities. These 
coordinates are usually different from those in MAM or BIR and are 
in many cases of a remarkable accuracy. ATW has been dated to the 
12th or early 13th century,40 but this leaves unexplained that the coor-
dinates in the much smaller table (although incomplete in the unique 
Paris manuscript) in DST, the Ismāʿīlī astronomical handbook Dustūr 
al-munajjimīn (Alamut (?), c. 1110) that is almost entirely derivative 
from earlier works, almost fully coincide with ATW. Besides DST, a 
whole range of Persian zījes depended heavily on ATW, especially TUS 
(al-Ṭūsī’s Īlkhānī Zīj, Maragha, 1271/2), WAB (Shams al-Dīn al-mu-
najjim al-Wābkanawī’s Muḥaqqaq Zīj, Tabriz, c. 1320; MUN in K&K 
and King, World-Maps), KAS (al-Kāshī’s Khāqānī Zīj, Kashan/Shiraz, 
1413/4), ULG (Ulugh Beg’s Sulṭānī Zīj, Samarqand, c. 1440), TMR 
(a Timurid table from the second half of the 15th century discovered, 
edited and analysed by David A. King; cf. footnote 33), THF (the Tuḥ-
fat-i sulaymānī by Muḥammad Zamān, Meshhed, 1667/8), ZAH (an 
anonymous collection in a Ẓāhiriyya manuscript, now in the al-Assad 
National Library in Damascus), and AIN (the Mughal administra-
tive manual Āʾ īn-i Akbarī by Abū l-Faḍl ʿAllāmī, India, c. 1580).41 All 
sources in this tradition, except for ATW itself, present the longitudes 
with respect to the Fortunate Isles. Of course, it is possible that Abu’l-
Fidāʾ adjusted the longitudes of the original Kitāb al-Aṭwāl, since all 
longitudes he quotes in the Taqwīm al-buldān are with respect to the 
Western Shore.

Besides the three main traditions, several smaller coordinate traditions can be 
recognized as well. Some of these, and especially those that are relevant for 

40 A survey of the literature on this source may be found in GAS, vol. XIII, pp. 369–75. 
See also King, World-Maps, pp. 42–43.

41 The geographical tables of al-Ṭūsī and Ulugh Beg were edited in Greaves, Binae tabulae 
geographicae, that of al-Kāshī in Kennedy and Kennedy, Al-Kāshī’s Geographical Table.
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understanding the sources of the Shāmil Zīj, are included in the comments for 
each locality in the reference table. It concerns the following works:

4. BAT+ is the small tradition of the Ṣābiʾ Zīj by al-Battānī (Raqqa, 
c. 900).42 This further consists of MUM, the recension of al-Bat-
tānī’s table in the second known manuscript copy of Yaḥyā ibn Abī 
Manṣūr’s Mumtaḥan Zīj (cf. footnote 6) extant in Leipzig, and DIM, 
al-Dimyāṭī’s (Egypt, 12th century) treatise on the determination of the 
qibla (in K&K and King, World-Maps: QBL). This is the only tradi-
tion in which some coordinates from Ptolemy’s Geography (PTO) are 
preserved, especially for the regions around the eastern part of the 
Mediterranean. In some cases BAG, the zīj by Jamāl al-Dīn al-Bagh-
dādī (Baghdad or Wasit, 1286), is helpful in confirming readings from 
BAT. Note that in his editions of al-Battānī’s table Nallino applied cor-
rections based on KHU and FID which produced geographically better 
coordinates that, however, are in most cases not historically attested or 
justified. K&K gives these corrected coordinates without further com-
ment, but I have used those from the unique Escorial manuscript of 
the Ṣābiʾ Zīj, which are indicated in the footnotes to Nallino’s editions. 
The longitudes in this tradition are given with respect to the meridian 
of the Fortunate Isles, as in Ptolemy.

5. YUN, the Ḥākimī Zīj by Ibn Yūnus (Cairo, c. 1000) stood at the basis 
of a tradition of several centuries of Egyptian and Yemeni zījes that 
also included extracts of its geographical table. YUN generally follows 
MAM, but there are frequent exceptions that cannot all be explained as 
scribal errors. In almost every single case the derivative works, namely 
SHR, BNA=FAR, MUH=ZAD and SAN,43 follow YUN to the let-
ter with incidental scribal errors. Only in very few cases has a subset 
of these zījes another particular error in common, which is then sepa-
rately mentioned in the comments to the reference table. All sources in 
this tradition measure the longitudes from the meridian of the Western 
Shore.

6. KUS is the Jāmiʿ Zīj by Kūshyār ibn Labbān (Iran, c. 1025). As men-
tioned above (cf. footnote 34), I have edited the tables from this work, 
including the geographical table, from the eight extant manuscripts that 
contain them. KUS was obviously heavily influenced by MAM, but in 

42 After Lelewel had been the first to investigate al-Battānī’s table in Géographie du moyen 
âge, Tome V (Épilogue), pp. 60–108, Nallino edited it in ‘Le tabelle geografiche’ and al-Bat-
tānī sive Albatenii, vol. II, pp. 33–54, whereas Honigmann attempted to identify some addi-
tional localities in ‘Bemerkungen’.

43 For details of these sources, see Kennedy and Kennedy, Geographical Coordinates, pp. xix, 
xxvii, xxxi–xxxii and xxxvi.
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numerous cases shows small differences, often but not always common 
scribal errors, that were copied into later sources. The table in MUF, 
the Mufrad Zīj by al-Ṭabarī (Amul in northern Iran, c. 1100), is clearly 
based on KUS but has enough modifications to be called a separate 
source. As we will see, the author of the Shāmil Zīj took a large part of 
his geographical coordinates from KUS. All three tables measure their 
longitudes from the Fortunate Isles.

7. ALA is the Āʿlāʾ ī Zīj by al-Fahhād (Shirwan, c. 1176; not in K&K), 
which is extant in a Persian manuscript at the Salar Jung Museum in 
Hyderabad as well as in a Byzantine Greek translation (the latter does 
not contain the geographical table). The smaller table in ABH/UTT, 
the Mulakhkhaṣ Zīj by al-Abharī (northern Iraq, c. 1240), is clearly 
dependent on ALA.44 Since the Shāmil Zīj shares with Ibn al-Fahhād 
the mean motion parameters as well as some of the planetary equa-
tions, and because the Florence manuscript of the other zīj by al-Abharī 
includes the geographical table from the Shāmil Zīj, it is worth check-
ing possible dependences of the geographical table in the Shāmil Zīj 
on ALA as well. While a separate study is necessary of the rather large 
number of unique coordinates in ALA and ABH/UTT, occasionally 
the coordinates from this small tradition will be mentioned in the 
comments as confirmation of coordinates in other traditions. Whereas 
ALA has the Fortunate Isles as its base meridian, ABH/UTT is unique 
in measuring the longitudes with respect to a meridian 84° east of the 
Fortunate Isles. Of the two longitude differences of 0° in the table, 
Kennedy chose Basra as the most likely candidate for the base meridian 
of UTT. Since we now know that the author of this work is Athīr 
al-Dīn al-Abharī, Abhar may appear to be the more plausible candidate. 
However, all coordinates concerned were taken from ALA, in which 
al-Fahhād also assigned the longitude of 84° to the city of Bardhaah 
and the region of Azerbaijan in which he was active. Since both sur-
viving manuscripts of ABH/UTT omit the indications in red ink of 
additive values, doubt about the intended longitudes exists in particular 
for some localities close to the meridian of 84;0°.

In order to establish the coordinates used in each of the above traditions, 
I omitted twelve small sources from K&K that seemed to fit less into the over-
all traditions, in particular the two Latin sources and all instruments. On the 
other hand, I added the seven new sources that have been mentioned above, 
two of which were already used in King, World-Maps. Of the remaining 69 

44 However, as indicated above, the Yemenī zīj by al-Fārisī (FAR), which uses al-Fahhād’s 
planetary mean motions and equations, and the reworking of this zīj extant in the same Cam-
bridge manuscript (SHR), borrowed their geographical data from Ibn Yūnus.
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sources, several more (especially ZAY, SAA, LYD and MAR) turned out not 
to be particularly suited for systematic inclusion in the comparisons because 
they often deviate from the most common coordinates, apparently at least to 
some extent due to serious defects in the transmission of the sources. These 
works should be investigated independently in order to discover the origin of 
the deviations and to place their geographical data into their proper historical 
context. Of course, for no geographical table can it be excluded that the coor-
dinates were more or less arbitrarily assembled from a variety of sources (possi-
bly with different base meridians) available to the author.

Underlying my decisions on the representative coordinates in each tradi-
tion is the basic assumption, also applied by Kennedy and King, that the vast 
majority of coordinates were simply copied from another source of the types 
included in K&K rather than newly observed or taken from an entirely differ-
ent kind of source. It follows that most of the deviations between coordinates 
within the same tradition may be expected to be the result of scribal confu-
sions. In many cases these will be common scribal errors as listed in Table 2, 
but in others they may be of more complex types as we have seen in Section 4, 
for example a slide of place names, coordinates or individual digits, or a mis-
copy from a different column. Using this basic assumption, it is inevitable that 
some newly introduced coordinates will be overlooked if they are not attested 
in sources known to us or clearly stand out in a different way. For the time 
being, I accept this risk and use the following specific criteria for deciding on 
the coordinates in each tradition.

• If a majority of the sources within a tradition agree on the same coor-
dinates for a given locality, these coordinates are chosen as the repre-
sentative ones. In the Maʾmūnic tradition I attach a larger weight to the 
coordinates from KHU and RES and a smaller weight to those from 
SUH. If the Maʾmūnic sources differ among them in a significant way, 
I may use YUN (and incidentally some of the other sources generally 
dependent on MAM such as KUS and ALA) to decide in favour of one 
of the candidates. In the traditions of al-Bīrūnī and the Sanjarī Zīj, I 
distinguish between the original coordinates as found in BIR/BIRF/
HLB (with occasional confirmations by TAJ and TUQ) on the one 
hand and those from SNJ/ASH/SHA/NUZ on the other. Al-Bīrūnī’s 
coordinates are given in the main table, those from the Sanjarī tradi-
tion in the comments (‘SNJ=BIR’ indicating that they are the same). In 
the tradition of the Kitāb al-Aṭwāl wa l-ʿurūḍ li-l-Furs I will consider 
coordinates not quoted by Abū l-Fidāʾ but included in DST as deriving 
from ATW.45 If TUS includes the earliest coordinates for a locality, or 

45 It is almost certain that Abū l-Fidāʾ did not cite all coordinates from ATW. Examples 
are the important cities Harran and Homs, which are missing from ATW, but for which DST 
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ones different from ATW/DST, these will be separately mentioned in 
the comments.

• Incidental deviating coordinates within each of the three main tra-
ditions are generally ignored, especially when they seem inexplicable 
and may, for example, result from a slide or a miscopy that we have 
no means of identifying. If the deviations can be explained as common 
scribal errors of the most likely candidates for the coordinates in a tra-
dition, they will be taken to support these candidates.

• If two or more independent sources from one of the three main tra-
ditions and that of Ibn Yūnus share coordinates that deviate from the 
representative ones, these will be mentioned as a sub-tradition, also in 
the cases that the difference can be explained as a scribal error. The 
same holds if the deviating sources differ among themselves by a com-
mon scribal error but all differ from the representative coordinates of 
the tradition in a non-trivial way.

• For the tradition of al-Battānī I select the coordinates (possibly the lon-
gitude and latitude separately) that are found in a majority of the three 
sources BAT, MUM and DIM, or are confirmed by BAG. For Kushyār 
I always use the reliable values that I have established in my edition 
of KUS, which are often confirmed by MUF and frequently adopted 
by SML. For the Aʿlāʾ ī Zīj I take the coordinates from ALA if they 
are confirmed by ABH/UTT, or those from ABH/UTT if they agree 
among themselves and have more plausible values than ALA.

• In the reference table I use the following notations: A superscript +  
after a source code indicates this source together with the sources usu-
ally dependent on it. Thus SNJ+ (or also SNB+ if the other sources 
for al-Khāzinī’s table do not contain coordinates for the locality con-
cerned) stands for SNJ, ASH, SHA and NUZ, and SHA+ for SHA, 
NUZ and HLB (whenever HLB differs from SHA, SHA/NUZ will 
be written out and HLB mentioned separately). ATW+ includes DST, 
TUS, WAB, KAS, ULG, TMR, AIN, THF and ZAH. The notation 
TUS+ is used for coordinates that are not yet present in ATW or DST 
but appear in TUS and the later sources from the tradition of ATW. 
KAS+ stands for KAS and AIN, since the latter appears to have fol-
lowed specific variants in the former relatively often. ULG+ indicates 
the sources that appear to have followed Ulugh Beg’s table specifically, 
namely TMR, THF and ZAH. In the smaller tradition of al-Battānī’s 
table, BAT indicates that the coordinates are found in BAT or MUM, 

already presents the coordinates that were also used by TUS and later sources from the ATW 
tradition.
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BAT+ that they are also included in DIM. ‘Not in BAT’ (as opposed to 
‘not in BAT+’) therefore means that the locality concerned is only con-
tained in DIM. KUS+ stands for KUS and MUF, ‘not in KUS’ implies 
that the locality is found in MUF. ALA+ stands for ALA together with 
ABH/UTT, ABH includes UTT since they are two copies of the same 
table. To indicate the sources generally dependent on a source XYZ 
without the source itself I write 〈XYZ〉+.

• In the comment column, BIR, SNJ and ATW and the four sources 
incorporated in MAM are written in bold face to indicate that there are 
deviations in these sources from the coordinates that I established for 
their tradition. A notation such as SML=BIR means that the Shāmil 
Zīj uses the coordinates from the tradition of al-Bīrūnī, rather than the 
possibly different specific values from BIR mentioned in the comment 
column. Individual coordinates may be referred to by λ for longitude 
and φ for latitude. Deviations or elucidations of main variants given in 
the comment column are placed between parentheses and may be given 
in the form x° or y′ if they involve only individual digits. For example, 
the entry ‘TUS+ 86;55/30;0 (WAB/ULG λ 15′)’ for Sabur indicates 
that WAB and ULG have for the longitude of this city the common 
scribal error 86;15° instead of 86;55°.

Please bear in mind that the purpose of the reference table is to establish the 
particular pairs of coordinates that were most likely generally used in each 
of the three main and four smaller traditions, not to provide an overview of 
all variants found in all sources belonging to each tradition. Also note that 
in most cases I have only considered the coordinates of the localities that the 
sources have in common, but not the evidence that the layout of the tables, the 
order in which the entries appear, the absence or presence of certain localities, 
and other characteristics of the tables may provide concerning the relationships 
between them. It is possible that the relations that I have noticed are valid only 
for localities in the Middle East as covered by the Shāmil Zīj, whereas further 
differences within the traditions might be present, for instance, for localities in 
the Maghrib and al-Andalus.46

It turns out that the localities appearing in the geographical table in the 
Shāmil Zīj (and in Islamic geographical tables in general) are of a widely vary-
ing character. Certain groups of localities show only very little variation in 
their coordinates over the entire set of available sources and some appear in 
only one or two of the three major traditions. These particularly include cit-
ies (or regions) that are far away from the central Islamic lands and where no

46 Further research in this direction and the compilation of reference tables for a much 
wider range of localities will be necessary to clarify such issues. See already Robles Macías, 
‘The Longitude of the Mediterranean’ and E. Mercier, ‘Mathematical Geography’.
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Samarqand Homs

HTP 112;30 39;45 PTO 69;40 34;00
KHU  99;30 37;30 KHU 71;00 34;00
RES  99;30 37;30 KHUB 71;10 34;00
KHZ  99;30 36;30 KHZ 71;00 33;10
SUH  99;30 36;30 SUH 71;00 34;00
ATW  99;00 40;00 BAT 69;05 34;00
YUN  99;30 36;30 MUM 69;00 34;00
BNY  99;30 37;30 YUN 71;35 33;10
DIM  99;00 36;00 BNY 71;35 33;10
KUS  99;30 36;30 DIM 69;05 34;00
BIR  98;20 40;00 KUS 71;00 33;40
BIRF  98;20 40;00 BIR 71;00 33;40
MUF  99;30 37;30 ZAY 71;00 33;45
SNB  98;20 40;00 MUF 71;00 33;40
SNH  98;20 40;00 DST 70;45 34;00
SNS  98;20 40;00 SNB 71;00 33;40
ALA  99;30 36;30 SML 71;00 33;40
ABH  99;30 36;30 SAA 71;31 34;00
UTT  99;30 36;30 TUQ 71;00 33;40
SML  99;30 36;30 TAJ 71;00 34;00
YAQ  99;30 36;30 FAR 69;00 34;50
SAA 101;52 36;30 TUS 70;45 34;00
TUQ  98;20 40;00 BNA 69;00 34;50
TAJ  98;20 40;00 LYD 71;00 34;00
SHR  99;30 36;30 MAG 70;40 34;30
FAR  99;30 36;30 MAR 69;05 33;40
TUS  99;00 40;00 BAG 71;00 33;00
BNA  99;30 36;30 MUH 71;35 33;10
MAG  98;20 39;00 SAN 69;00 34;50
BAG  97;00 37;00 QYSF 71;00 34;20
MUH  99;30 36;30 ASH 71;00 33;40
SAN  99;30 36;30 WAB 70;40 34;40
ASH  98;20 40;00 MSR 71;13 33;40
WAB  98;20 40;00 SHA 71;00 33;40
SHA  98;20 40;00 MIZ 71;00 34;20
GT1  49;00 37;30 KHL 71;00 34;20
GT2  99;30 39;30 GT1 71;00 33;40
KAS  99;00 40;00 KAS 70;45 34;00
ULG  99;16 39;37 ULG 70;45 34;00
TMR  99;16 39;37 TMR 70;45 34;00
NUZ  98;20 40;00 NUZ 71;00 34;20
HLB  98;20 40;00 HLB 71;00 34;40
QIR  99;30 36;30 QIR 71;00 33;40
ZAD  99;30 36;30 ZAD 71;35 33;10
AIN  99;00 40;00 AIN 70;15 34;20
THF  99;17 39;37 MOS 71;00 33;40
MOS  99;30 36;30
ZAH  99;16 39;37

Table 7: Examples of a rather clean (Samarqand, on the left) and a very convoluted coordinate 
tradition (Homs, on the right). The coordinates were taken from K&K with incidental 
corrections and additions on the basis of the actual sources.
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astronomical activity may be assumed to have taken place (e.g., Ethiopia and 
Kabul), famous cities from antiquity that were of lesser importance or were 
even in ruins through much of the Islamic period or not continuously in Mus-
lim hands (e.g., Tarsus or Qaysariyya), and localities of a mythical nature such 
as Kang (the cupola of the world) or Yājūj wa-Mājūj (Gog and Magog from 
the Bible). For many of the large and important cities in the Islamic lands the 
variation of the coordinates is much larger, partially due to a larger number of 
scribal errors that occurred during a more extensive copying history, but cer-
tainly also because of borrowing from additional sources or adoption of newly 
observed coordinates, especially latitudes. Obviously, localities of the first cat-
egory are most suitable for establishing the basic relationships between sources 
and the outline of the larger traditions of coordinates. Once these have been 
established, localities from the second category can be tackled with a little more 
prescience. Table 7 shows examples of a very clean coordinate tradition (Samar-
qand, on the left) and a much more convoluted one (Homs, on the right).47 For 
many other localities one would consider such deviating coordinates as 99;16° / 
39;37° for Samarqand in ULB and sources dependent on it to be the result 
of a non-obvious copying error, but in this case these are of course the results 
of the extensive, highly accurate observations at the observatory of Ulugh Beg 
himself.

7. Results and Conclusions

By now comparing the uncertain cases in my edition of the Shāmil Zīj with 
the reference table on pp. 552–56, it is possible to resolve most of them.

For Oman (A4), MAM and a clear majority of all other sources have λ = 
94;30°, although 74;30° appears not only in half of the witnesses for the Shāmil 
Zīj but also in the Aʿlāʾ ī Zīj. We conclude that 94;30° was the original value 
and 74;30° a scribal mistake.

For Egypt (A7), the longitude 54;40° that persists through the entire tradi-
tion of the Shāmil Zīj (and was apparently later corrected only in manuscript 
P8) is obviously a mistake for the value 64;40° from MAM/BIR, most likely 
due to a forgotten correction for the different meridian that these sources use. 
Interestingly enough, with longitude 73;0° for Fustat, which in Islamic sources 
usually receives coordinates very close to the ones assigned to Egypt, KUS errs 
consistently by around 10° in the other direction. For Alexandria (A8), the 
longitude 60;30° in the Shāmil Zīj is that used by PTO, BAT and KUS and 
is obviously the one intended, although it places Alexandria way too far west 
with respect to Egypt/Fustat.

For Baghdad (A12), the longitude value 80;10° does not appear in any other 
traditions and is hence most likely a copying mistake (possibly also from a nearby

47 As in the reference table, all longitudes are here given with respect to the Fortunate Isles.
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entry in the table from which it was copied) for the common value 80;0°. The 
reference table also confirms that the apparent slide of the minutes of latitude 
in P0V from Baghdad onwards is indeed in these two sources and not in the 
other eight.

For Kirman (A21), 100;0° is the longitude already found in PTO, MAM 
and KUS. It places the city (or region) around 8° too far east with respect to 
Baghdad, but the variants 80° and 105° are neither elsewhere attested nor geo-
graphically better. For Kabul (A22), the latitude 28° was the traditional value 
in MAM, but PTO, ATW and BIR all had values much closer to the actual 
latitude of 34;30°. So here we can not entirely exclude that a subtradition of 
SML introduced the improvement 37;0° (possibly a common scribal error for 
the even better value 34;0°).

For Tarsus (A23), the longitude 67;40° is already found in PTO, BAT and 
KUS, and the values in ATW and BIR (68;0°) are very near. So 60;40° and 
66;40° are undoubtedly scribal confusions. For Manbij (A25), the author of 
the Shāmil Zīj appears to have taken the longitude 63;45° from MAM and 
omitted to carry out the adjustment for the different meridian. Like for Egypt, 
he could here not directly rely on KUS. Note that the confusion of 15′ and 45′ 
found in five of the manuscripts is a very common one.

The coordinates that are found in T1P9F2O for Hulwan, Shahrazur, Naha-
wand and Hamadan (B7–B10) are in each case those from Kūshyār’s Jāmiʿ Zīj, 
which for Hulwan are the same as MAM and for the other three localities 
differ minimally from it by what may have been small scribal mistakes. It thus 
seems certain that the slide of these place names took place in Group B (i.e., 
sources P8P0VT2CJ). For Qum (B11) the situation is more complicated. Again 
T1P9F2O present the coordinates also found in KUS, whose longitude was cer-
tainly distorted. Thus the longitudes 84;15° (=MAM) and 87;0° (=BIR) and 
the latitude 35;0° found in Group B may in fact have been improvements. Note 
that the manuscripts P8P0VT2C also have an incorrect rendering of the name 
Shahrazur. Since Kennedy made use of P8, the combination of the incorrect 
spelling and the slid coordinates for Hulwan led him to identify the locality 
with Shahrud, which in medieval times was a tiny village just south of Bistam 
and hence does not appear in any other Islamic geographical tables.

For Sawa (B12) the decision is difficult because all latitude values found 
in the sources for the Shāmil Zīj are common scribal errors of each other. 
I decided for al-Bīrūnī’s value 35;5°, also because most other cases show that 
T1P9F2O are more reliable than the other witnesses. The value 35;0° does 
appear in some manuscripts of al-Qānūn al-Masʿ ūdī, in BIRF and in the entire 
tradition of al-Khāzinī. For Zanjan (B17) the coordinates in the Shāmil Zīj are 
otherwise unattested. I preferred the longitude value of 84;0° because T1P9F2O 
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are generally the more reliable witnesses and because this value, which is very 
accurate with respect to Baghdad, was also used in the tradition of al-Khāzinī.

The confusion between the entries for Bistam, Astarabad, Jurjan and Tus 
has already been explained in Section 4. Again the correct, undistorted entries 
appear in the sources from Group A (witnesses T1P9F2O). Note that the lati-
tude 38;45° for Astarabad (as compared to 38;15° in Group B) is the value from 
MAM and the longitude 90;0° for Jurjan (95;0° in three sources from Group B)  
the value from KUS and ATW. For Khwarizm the intended longitude may be 
assumed to be the value 101;50° from MAM, from which also the latitude was 
taken. The 30′ found in Group B can be explained as a scribal error.

For Tiflis it is now clear that the intended latitude is the 43;0° from the tra-
dition of ATW. Only very few Islamic sources give coordinates for Arzan Rum 
(Erzurum). The more reliable sources from Group A all have latitude 39;0°, but 
the value 39;44° in Group B is very close to the 39;45° quoted by Abū l-Fidāʾ 
for the Kitāb Rasm al-rubʿ al-maʿmūr (RES). Also for Qaysa riyya Rum the 
Shāmil Zīj presents new coordinates. I chose the latitude 38;30° from Group A 
because of the lesser reliability of Group B in general and the unlikeliness of 2′ 
in a geographical coordinate in particular (in fact, four of the five manuscripts 
here have a plain horizontal bar rather than a correctly shaped bāʾ ). Finally, the 
manuscripts from Group B omit the entry for Aqsaray but write its coordinates 
after Konya. For both cities the Shāmil Zīj has coordinates not found in the 
main tradition but in some incidental later sources.

The final version of my edition of the geographical table in the Shāmil Zīj as  
presented in Table 1 (pp. 529–31) allows us to establish a stemma for the 
eleven witnesses of the table, displayed in Figure 1. It is obvious that Group A 
(T1P9F1F2O) and Group B (P8P0VT2CJ) form two independent branches, with 
Group A being generally more correct and hence closer to the original table.

Group B stands out especially because of the slide of five place names in the 
middle of the second column and the distorted entries, starting with Astarabad 
(B23), at the end of the second column. But the group also shares a large 
number of other peculiarities and errors not found in Group A, ranging from 
additional columns with only the word madīna ‘city’ and deviating spellings 
of place names to the mix-up of the entries Aqsaray and Konya and numer-
ous mistakes in the coordinates (cf. Table 6). Within Group B some subgroups 
can be recognized. As was already to be expected on the basis of the descrip-
tion of the entire manuscripts, P0 and V are obviously strongly related. They 
share a number of deviations that do not appear in other witnesses, namely 
 ,عند in the title, the incorrect spelling of Aden (A3) as اطول instead of لطول
the slide of the minutes of latitude from Baghdad (A12) to Madāʾin (A17), the 
addition of interlinear entries for Mardin and al-Ḥiṣn in the first two cells of 
the second column, the coordinates for Qum (B11), and various other devi-
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Group A 

generally correct witnesses 

with mostly individual errors 

T2 

Group B 

with a large set of  

characteristic errors

C

 entries madīna (1 column)

 use of form ى for abjad 10 

 confusion of abjad 0 with 8

J

original table 

F1 

 entries madīna (2 col.)

 slide of 14 place names in 3rd col.

 هلالرم ,for Raqqa المرق  for Daylam 

 numerous other scribal errors

P0 

V

 frequent confusion of 0 and ع 

 six additional scribal errors

F2

 confusion of abjad 0 with Hindu 5 

 three additional scribal errors

O

G

?

 entries madīna (in 1, 2 or 3 columns)

 slide of 5 place names in the 2nd column

 distortion of entries at bottom of 2nd col. 

 many further common errors (cf. Table 6)

 [numbers in red missing from the table

headings (except in the different work J)] 

P9

 reverse order of A18–A20 
 coordinates Kufa / Tiflis 
 Khadāk instead of Akhlāt

 50 always written as 55

T1 

 ‘latitude 37°’ in heading 

 87;0 for longitude of Qum 

 95;0 for longitude of Jurjan 

 Ṭanja, Malāṭiya, Qūma

 header ʿarḍ for ʿurūḍ 
 additional localities 

Bulghar and Saray 

 [2 additional tables] 

 2nd column missing

 labels for the climates

 latitude of Balkh 
 omission of Siwas 
 [2 additional tables] 

 Ṭarṭūs for Ṭarsūs 

 omits entry for Siwas 

 4 modified latitudes

 Dāmghān for 
Damghān 

 longitude 81;0
for Baylaqan 
and Bardhaah 

 longitude 60;40
for Tarsus 

 li-ṭūl instead of al-ṭūl in heading 

  for Daylam الرسبله ,for Aden عند

 entries for Mardin and al-Ḥiṣn
 slide of latitude minutes in 1st col.

 [copied with al-Dustūr al-ʿAjīb]

 Shahrūr, Isfahān, 
Arz al-Rūm 

P8 

 entries madīna (3 cols) 

 دٮحاٮ  for Kabul, الرسلٮه for 

Daylam, شيروان for Shirwan

 longitude degrees for Con-

stantinople written as فھا

Figure 1: Stemma of the witnesses for the geographical table in the Shāmil Zīj on the basis 
of their errors and other characteristics and some additional information. Solid lines indicate 
direct dependences; the solid rectangles just above the sigla list the characteristics of the wit-
ness concerned that were passed on to its descendants. Dashed lines indicate the presence of 
shared characteristics, which are listed in dashed rectangles, in addition to individual errors. 
Characteristics given between square brackets relate to other tables in the manuscripts con-
cerned. In addition to the sigla introduced in Section 2, G stands for the transcription of the 
table by Greaves with its unique errors.

ating longitudes and latitudes. Since V has six minor errors not found in P0 
(namely, in the longitudes of Harran (B3), Bistam (B22) and Arzingan (C21) 
and the spelling of Sawa (B12), Baylaqan (C10) and Arzingan (C21)), but none 
the other way around, it is almost certain that V was copied from P0, which an 
investigation of the entire manuscripts should easily be able to confirm. Fur-
thermore, it is likely that P0V depend on P8 (which does not include the slide 



560 BENNO VAN DALEN

in the first column), since they follow this witness in the spelling of Sanaa 
(A2) as صنعه, the defective spellings of the names Kabul (A22) and Daylam 
(B18), the latitude for Egypt (A7), the incorrect latitude of Siwas (C22), and 
a peculiar writing of the degrees of longitude (59) of Constantinople (A27)  
( in P8, فها in P0V). As already mentioned, CJ include a large number of 
scribal errors that are otherwise only found in T2 and add several further ones 
of their own. J was copied 18 years after C and also other parts of the zīj con-
tained in it were derived from the Shāmil Zīj, so that it is more likely that of 
these two sources C was the original. This is confirmed by three small addi-
tional mistakes found in J but not in C.

Within Group A it is much more difficult to make out patterns, simply 
because the number of idiosyncratic and shared errors in each of the five wit-
nesses is too small. T1F2 share the errors in the longitude of Kufa (A11) and 
the latitude of Tiflis (C8), the reversal of the order of entries A18 to A20, 
and an incorrect spelling of Akhlat (C19). Additionally, T1 has a scribal error 
in the longitude for Kirman (A21) and inexplicable errors in the longitudes 
of Baylaqan (C10) and Bardhaah (C11), which are further only found in O. 
F2 adds to the common errors the systematic confusion of 50 with 55′ and 
incorrect spellings of Abhar and several other localities. It thus seems clear 
that T1 and F cannot have been copied from each other directly, but must have 
derived from a common ancestor. P9 has seven small deviations in longitudes 
and latitudes that are not found in any of the other sources and are no com-
mon scribal errors. Near the end of the first column several coordinates appear 
to have been corrected, as was the latitude of Constantinople (C27), which 
was traditionally much too high in most Islamic sources. Besides the omission 
of the entire second column and seven deviations in coordinates that are all 
common scribal errors and only occasionally appear in other witnesses, F1 has 
several distorted place names and some mix-ups at the transition from the first 
to the third column and for Constantinople. Also O has mostly individual 
errors, most of which are common scribal errors. The inexplicable errors in the 
longitudes of Baylaqan (C10) and Bardhaah (C11) suggest that T1 and O had 
a common ancestor. The addition of interlinear entries for Mardin and al-Ḥiṣn 
with different longitudes from P0V and added latitudes, may suggest that the 
Priest Cyriacus at least consulted a copy of the Shāmil Zīj from the family of 
P0V.

The reference table also allows us to easily identify the main sources for the 
geographical table in the Shāmil Zīj. The latter has 50 of its 79 localities in 
common with the table in Kūshyār ibn Labbān’s Jāmiʿ Zīj, for 49 (!) of which 
the coordinates are identical (the only exception being Baghdad (A12), for 
which Kūshyār has the anomalous longitude 75;0°). In 23 of these 49 cases the 
same coordinates are also found in the Maʾmūnic tradition, in four cases each 
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in al-Bīrūnī and in the Aʿlāʾ ī Zīj. Because we already know that the author 
of the Shāmil Zīj adopted some of Kūshyār’s tables for planetary equations, 
it is thus most probable that KUS was his main source. For seven localities 
the coordinates given in the Shāmil Zīj further only appear in the tradition 
of al-Bīrūnī’s al-Qānūn. The geographical table from the Aʿlāʾ ī Zīj is unlikely 
to have been an important source since it has only 32 localities in common 
with the Shāmil Zīj, and among these the coordinates are identical, or differ 
merely by a common scribal error, for only 19. For 18 localities, the Shāmil Zīj 
presents coordinates that are not found in any of the seven main and smaller 
traditions considered in the reference table.

To conclude, we have seen in this article how geographical tables in Islamic 
sources can be riddled with scribal errors of different types, and how even the 
availability of multiple copies of the same table may not suffice to establish the 
original coordinates reliably. We had to make use of the collection of longi-
tudes and latitudes in Kennedy and Kennedy, Geographical Coordinates (K&K) 
in order to be able to decide on the most likely original coordinates for more 
than a dozen of localities from the geographical table in the Shāmil Zīj. For 
this purpose, the reference table that I have set up of the coordinates in each of 
the main Islamic traditions turned out to be extremely helpful. The expansion 
of this table to a larger set of several hundreds of the most important locali-
ties, as well as its implementation in the form of a graphical computer database 
that can conveniently show all traditions and their variations, would be highly 
desirable. The implementation of a database of geographical coordinates based 
on K&K, taking into account corrections and additions that Mercè Comes and 
I have already made and including further ones, will not only facilitate the cre-
ation of a more extensive geographical reference table, but also analyses of the 
probability of scribal errors in numerical values in Arabic and Persian sources.
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Historical Persons 

The Arabic definite article al- is not considered in the alphabetisation; likewise, ibn ‘son (of)’ 
is not considered in the alphabetisation unless it is written with a capital. 

al-Abharī, Athīr al-Dīn al-Mufaḍḍal ibn 
ʿUmar — 511 and n. 4, 518, 522, 523, 
546, 554 note e
Works: Athīrī Zīj, Mulakhkhaṣ Zīj, 

Shāmil Zīj
Abraham Bar Ḥiyya — 58, 64, 72, 73, 74
Abraham Ibn Ezra — 72, 73 
Abū l-Faḍl ʿAllāmī — 544 

Work: Āʾīn-i Akbarī
Abū l-Fidāʾ — 534, 542, 543, 544, 547, 

556 note i, 558
Work: Taqwīm al-buldān

Abū Maʿshar: see Albumasar
Abū l-Wafāʾ al-Būzjānī — 33, 512, 513, 

514, 521, 522 n. 15, 523
Work: al-Majisṭī

Albumasar — 368
Alcabitius (al-Qabīṣī) — 410

Work: Liber introductorius ad iudicia 
astrorum

Alfraganus/Alfargani — 410, 434
Work: Liber de aggregationibus scien-

tiae stellarum
Albertus Magnus — 434
Aliénor de Bretagne — 367 
Albategnius: see al-Battānī
Alkhwarizmi: see al-Khwārizmī
Amann, Friedrich — 392, 411, 412
Ammonius: see Armenius
Amplonius Rating de Berka — 392 
Angelus, John — 26 
Aristotle — 47, 54

Work: Metaphysics
Armengaud Blaise (Ermengol Blasi) — 

53, 54

Armenius/Ammonius/Humeniz — 57 
Work: Almanac

Arnaud of Brussels — 434 
Āryabhaṭa — 202 n. 40, 209, 336, 339, 

341, 343 
Work: Āryabhaṭīya (Ābh)

Āsaf Khān — 187 
Athīr al-Dīn: see al-Abharī
Azarquiel/Azarchiel/al-Zarqālī — 53, 57, 

61, 75, 82 
Work: Almanac

al-Baghdādī, Jamāl al-Dīn Abū l-Qāsim 
ibn Maḥfūẓ — 545
Work: Baghdādī Zīj

Bartolomeo da Parma — 412 
Work: Breviloquium de fructu artis 

tocius astronomiae
al-Battānī, Muḥammad ibn Jābir (Al-

bategnius) — 3 n. 10, 25, 31, 32, 58, 
61, 65, 68, 70, 71, 72, 73, 75, 90, 91, 
107, 370, 371, 372, 373, 374, 375, 376, 
377, 378 and n. 46, 383, 399, 400, 
484, 485-86, 487, 539, 540, 542, 545, 
548, 553 note c, 554 note d
Work: Ṣābiʾ Zīj

Bede — 371, 399
Bhāskara II — 150, 154, 200

Works: Jyotpatti, Karaṇakutūhala, 
Sid dhāntaśiromaṇi

Bhojarāja — 150 
Bianchini, Giovanni — 8, 108, 109, 113-

117, 118, 120, 121, 122, 125, 129, 132-
34, 389, 391, 392, 410 and n. 87, 414
Works: Flores Almagesti, Tabulae 

astronomae, Tabulae de eclypsibus, 
Tabulae primi mobilis



570 INDEXES

al-Bīrūnī, Abū Rayḥān Muḥammad ibn 
Aḥmad — 484, 485-86, 487, 488, 
539, 542, 543, 547, 549, 557, 561 
Works: al-Qānūn al-Masʿūdī, K. Taḥ-

dīd nihāyāt al-amākin
Bonfils — 64

Brahmagupta — 150, 202 n. 40, 206, 
356 
Work: Brāhmasphuṭasiddhānta

al-Būzjānī: see Abū l-Wafāʾ

Campanus — 407 
Chioniades: see Gregory Chioniades
Choi Seongji 崔誠之 — 255 

Clement VI (pope) — 367, 368 
Cleopatra (daughter of Ptolemy) — 57 
Copernicus, Nicolaus — 117, 121

Work: De revolutionibus orbium coe-
lestium

Cortés de Albacar, Martin — 22-25 
Work: Arte de Navigar

Cyriacus (al-Qiss Qiryāqus) — 523, 524, 
560 
Work: al-Durr al-muntakhab

Dāmodara — 343 n. 26 
al-Dihlawī: see Farīd al-Dīn Masʿūd
al-Dimyāṭī, Zayn (?) al-Dīn — 545, 554 

note d

Dinakara — 9, 146 and passim 
Work: Candrārkī

de Epperies, Johannes — 407 
Ermengol Blasi: see Armengaud Blaise

D’Este, family — 113
Euclid — 53, 118 

Work: Elements

al-Fahhād al-Shirwānī — 512, 515, 546
Work: Aʿlāʾī Zīj

al-Farghānī: see Alfraganus

Farīd al-Dīn Masʿūd al-Dihlawī, Mullā 
— 187
Work: Zīj-i Shāh-Jahānī

al-Fārisī, Muḥammad ibn Abī Bakr — 
493, 546 n. 44
Works: K. Maʿārij al-fikr al-wahīj fī 

ḥall mushkilāt al-zīj, Zīj
Farissol Botarel, Moses — 70 
Firmin of Beauval — 10, 364 and passim 

Works: De mutatione aeris, Tabulae 
permanentes

Greaves, John — 524, 559 
Gregory Chioniades — 513 
Guo Boyu 郭伯玉 — 255 

Work: Datong li
Guo Shoujing 郭守敬 — 254, 255, 268, 

269, 271 n. 41, 279
Works: Shoushi li, Shoushili licheng, 

Shoushili licao

Ḥabash al-Ḥāsib — 513, 529
Work: Zīj

Ḥājjī Khalīfa (Katib Çelebi) — 511-12 
n. 4
Work: Kashf al-ẓunūn

al-Ḥalabī, Shihāb al-Dīn — 543 
Works: al-ʿIqd al-yamānī, Nuzhat 

al-nāẓir
Haly Abenragel — 368, 412 

Work: De judiciis astrologiae
Haridatta — 155, 156, 157, 331, 332, 

334, 336 
Works: Grahacāranibandhana, Jagad-

bhūṣana
Hermann of Carinthia — 412 

Hermann of Saxony — 391, 412
Work: Tabulae de motibus stellarum

Hipparchus of Rhodes — 107 
al-Ḥiṣkafī, Naṣir al-Dīn ibn ʿĪsā ibn — 

520, 521
Work: al-Dustūr al-ʿajīb

Humeniz: see Armenius

Hypsicles of Alexandria — 47-49 
Work: Anaphorikos
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Ibn al-Aʿlam — 512 n. 6
Work: Aʿḍūdī Zīj

Ibn al-Haytham — 53
Work: On the Configuration of the 

World
Ibn Isḥāq al-Tūnisī — 91, 306, 399 n. 74 

Work: Tunisian Zīj
Ibn al-Kammād — 373, 374, 376, 377, 

378, 381, 382, 427 n. 5
Ibn al-Raqqām — 399 n. 74, 512 n. 4

Work: Shāmil Zīj
Ibn al-Shāṭir — 47, 543 

Work: Jadīd Zīj
Ibn Waqār, Joseph: see Joseph ibn Waqār
Ibn Yūnus — 484, 485-86, 487, 488, 

489, 490, 517, 539, 545, 546 n. 44, 548 
Work: Ḥākimī Zīj

Jābir ibn Aflaḥ — 53, 107
Work: Iṣlāḥ al-Majisṭi

Jacob ben David Bonjorn — 393 n. 67, 
410

Jacob ben Makhir Ibn Tibbon (Profeit 
Tibbon/Profatius/Prophatius Judae-
us) — 8, 53 and passim, 411
Works: Almanac, De quadrante novo, 

Explanation of the Instrument 
Called the Quadrant of Israel

Jayasiṃha (regent of Jaipur) — 43, 44 
n. 38, 189 

Jeong Inji 鄭麟趾 — 279 
Works: Chiljeongsan Naepyon, 

Koryeo-Sa
Johannes Schindel — 410

Work: Tractatus de quantitate trium 
solidorum

Johannes Swab de Wutzbeich — 408
Work: Practica eclipsium solis et luna

John of Genoa — 379, 384, 385, 390, 
398 
Work: Canones eclipsium

John of Gmunden — 93, 369, 385 n. 53, 
389 n. 57, 390, 391, 392, 394, 395, 
407-11, 414 
Works: Tabulae breviores, Tabulae 

maiores

John of Lignères — 11, 377, 378, 380, 
382, 383 and n. 50, 410, 411, 412, 
413, 414, 425 and passim 
Works: Algorismus minutiarum, 

Ta bles of 1322, Tabule magne
John Maudith — 81 n. 10, 96, 97, 98 
John of Murs — 10, 363 and passim, 429 

Works: Musica speculativa, Tabula 
tabularum, and those listed on 
pp. 367-68

John of Saxony — 370, 378, 379, 382, 
383, 388, 389, 399, 410, 412, 413, 426 
n. 1, 432, 435, 437
Works: Almanac, Canons to the Pari-

sian Alfonsine Tables (Tempus est 
mensura motus primi mobilis)

John Vimond — 25 

John Walter — 94 n. 45 
John (of) Westwyk — 8, 80 and passim
Joseph Ibn Waqār — 70

Work: Zīj
Juan de Salaya — 54 

al-Kamālī, Sayf-i munajjim Yazdī — 543
Work: Ashrafī Zīj

al-Kāshī, Jamshīd Ghiyāth al-Dīn — 10, 
36, 37, 43, 203, 287 and passim, 544
Work: Khāqānī Zīj

Katib Çelebi: see Ḥājjī Khalīfa
Kauṭilīya — 209 

Work: Arthaśāstra
Kepler, Johannes — 509 
Kerver, Jacques — 368 

Kevalarāma — 43-44 
Work: Dṛkpakṣasāriṇī

al-Khalīlī, Shams al-Dīn — 33-35
al-Khāzinī, ʿAbd al-Raḥmān — 512 n. 6, 

516 n. 11, 527 n. 23, 528, 543, 548, 
555 note f, 557, 558
Work: Sanjarī Zīj

al-Khwārizmī/Alkhwarizmi — 33, 37, 
372 n. 35, 542
Works: K. Ṣūrat al-arḍ, Zīj
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al-Kindī, Abu Yūsuf Yaʿqūb ibn Isḥāq — 
368 

Kublai Khan (Mongol emperor of Chi-
na) — 254 n. 8

Kūshyār ibn Labban — 516 n. 11, 540, 
545, 548, 553 note c, 557, 560, 561
Work: Jāmiʿ Zīj

de La Hire, Philippe — 43-44, 189 
Work: Tabulae astronomicae

Lalla — 217 
Work: Śiṣyadhīvṛddhidatantra

Leopold of Austria — 410, 411, 412, 413 
Works: De astrorum scientia,  

De mutacione aeris
Levi ben Gerson — 54, 72, 73, 107 

Mādhava — 202 n. 40, 333 n. 5, 339, 
340, 352

al-Maghribī, Muḥyī l-Dīn — 544
Work: Tāj al-azyāj

Māhadeva — 150 
Makaranda — 188 

Work: Makaranda
al-Maʾmūn (Abbasid caliph) — 515 n. 10, 

542, 547, 561
Māshā’allāh: see Messahalla
Matthew of Vendôme — 371, 399 
Maurolico, Francesco — 108 n. 8

Work: Theodosii spaericorum elemen-
torum

al-Mawṣilī, ʿAbd al-Qādir ibn Ṣafāʾī — 
523 
Work: Zīj

Mei Wending 梅文鼎 — 257, 269, 271, 
273, 280 n. 61, 282 

Menelaus — 87 
Messahalla — 411

Work: Compositio et usus astrolabii
al-Muʾayyad Dāwūd ibn Yūsuf I (Rasulid 

sultan) — 493 
Muḥammad Zamān — 544 

Work: Tuḥfat-i sulaymānī

Munīśvara — 200 n. 36
Work: Marīciṭīkā

al-Muẓaffar Shams al-Dīn Yūsuf I (Ra-
sulid sultan) — 493 

Naṣīr al-Dīn: see al-Ṭūsī
Nicholaus de Heybech — 409, 411, 412, 

414 

Nilakaṇṭha — 202 n. 40, 206 n. 45, 339, 
340, 343 n. 26
Works: Commentary on the Āryabha- 

ṭīya, Tantrasaṅgraha
Nityānanda — 9, 187 and passim, 220

Works: Amṛtalaharī/Kheṭakṛti, Sar-
vasiddhāntarāja, Siddhāntasindhu

Otho, Lucius Valentin — 122 

Parameśvara — 10, 202 n. 40, 331 and 
passim
Works: Bhaṭadīpikā, Dṛggaṇita

Peter of Alexandria — 54

Peter of Cassel — 414 n. 99
Peurbach, Georg — 26, 117, 388-90, 395, 

399 
Philippe III d’Évreux (king of Navarro) 

— 367 
Pitiscus, Bartholomeus — 126 

Pötzlinger, Hermann — 392 
Profeit Tibbon/Profatius/Prophatius Ju-

daeus: see Jacob ben Makhir
Pruckner, Nikolaus — 413 n. 98
Prunner of Lower Ruspach, Georg — 

408 
pseudo-Thābit — 60 
Ptolemy, Claudius — 2, 6, 22, 23, 25, 31, 

32, 38, 40, 41, 42 n. 36, 47, 48 n. 50, 
54, 57, 66, 68, 70, 71, 72, 74, 86, 87, 
88, 90, 91, 93, 107, 114, 287, 288, 289 
n. 11, 290, 291-304, 306, 310, 312, 
368, 371 n. 31, 372, 373, 374, 375, 
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376, 377, 380, 381, 382 384, 388, 470-
74, 476, 512, 515 n. 10, 541, 542, 545
Works: Almagest, Geography, Handy 

Tables

al-Qabīṣī: see Alcabitius

al-Qumnāṭī — 522 

Ratdolt, Erhard — 24, 368, 378 n. 46 
Regiomontanus — 8, 108, 109, 111, 112, 

113, 117-121, 122, 125, 129, 135, 389, 
391, 396, 410, 509 
Works: De triangulis omnimodis, Epy - 

toma in Almagestum Ptolemei, Tabu- 
lae directionum, Tabulae primi mo- 
bilis

Rem de Weinsberg, Matthias — 408 
n. 82

Rheticus, Georg — 8, 108 n. 8, 109, 111 
n. 16, 121-28, 129, 136-38, 139-42
Works: Canon doctrinae triangulo-

rum, Narratio prima, Opus pala-
ti num

Richard of Wallingford — 8, 79, 81, 82, 
85, 86 and n. 25, 88, 91, 92, 93, 94 
Work: Albion (Tractatus Albionis)

Robertus Anglicus — 53 

Robert the Lombard — 428 
Romanus, Adrianus — 109, 125

Sacrobosco — 410
Sahl ibn Bishr — 412 

Work: Fatidica (Liber sextus astrono-
mie)

al-Samawʾal ibn Yaḥyā al-Maghribī — 37 
Work: Exposure of the Errors of the 

Astronomers
Schinnagel, Marcus — 45, 46 

Work: Polyptych

Sejong 世宗 (Korean king) — 255, 279 
Shen Gua 沈括 — 267, 268, 278 
da Silva, Pedro — 43 
Simon Tunsted — 80, 82, 84 
Stöffler, Johannes — 509 
Suhrāb (Serapion) — 542 

Work: K. Aʿjāʾib al-aqālim al-sabʿa

al-Ṭabarī, Abū Jaʿfar Muḥammad ibn 
Ayyūb al-Ḥāsib — 546 
Work: Mufrad Zīj

Thābit ibn Qurra — 58, 60, 61
see also: pseudo-Thābit

al-Ṭūqānī/al-Ṭūqātī — 544 
Ṭusī, Ḥasan Muḥammad — 522 
al-Ṭūsī, Naṣīr al-Dīn Muḥammad — 

289, 299, 310, 312, 487, 488, 544 and 
n. 41
Works: Īlkhānī Zīj, Tadhkira

Ulugh Beg — 289, 312, 524, 544 and 
n. 41, 548, 551
Work: Sulṭānī Zīj

al-Wābkanawī, Shams al-Dīn al-mu-
najjim — 544 
Work: Muḥaqqaq Zīj

Yaḥyā ibn Abī Manṣūr — 512 n. 6, 513 
n. 8, 527 n. 22, 545
Work: Mumtaḥan Zīj

Yi Soonji 李純之 — 279 
Work: Gyosik Chubobeob

Yuan Tong 元統 — 255 
Work: Datong li

Zacut, Abraham — 54 
Work: ha-Ḥibbur ha-gadol

al-Zarqālī: see Azarquiel
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An initial Kitāb (‘book’) in Arabic titles is abbreviated as ‘K.’ and is not considered in the al-
phabetisation. Likewise, the Arabic definite article al- and the Hebrew definite article ha- are 
not considered in the alphabetisation.

Aʿḍūdī Zīj (Ibn al-Aʿlam) — 512 n. 6

Āʾīn-i Akbarī (Abū l-Faḍl ʿAllāmī) — 
544 

K. Aʿjāʾib al-aqālim al-sabʿa (Suhrāb) — 
542

Aʿlāʾī Zīj (al-Fahhād) — 31, 512, 513, 
515, 516 n. 11, 522, 540, 546, 548, 
551, 554 note e, 561

Albion (Tractatus Albionis, Richard of 
Wallingford) — 8, 79, 80, 81, 82, 83, 
84, 85, 86, 88, 93, 94, 95-96, 99

Alfonsine Tables — 3, 4, 23, 70, 377, 435, 
437
see also: Parisian Alfonsine Tables

Algorismus minutiarum (John of Lig nè-
res) — 411 

Almagest (Ptolemy) — 2, 5, 6, 22, 38, 
39, 66, 68, 71, 74, 85, 86, 87, 88, 90, 
91, 93, 96, 99, 114, 117, 287, 288, 291, 
292, 293, 299, 302 n. 37, 313, 364, 
372, 376, 512

Almagesti minor (anonymous) — 371 
n. 31 

Almanac (Armenius) — 57
Almanac (Azarquiel) — 57, 61, 75
Almanac (Jacob ben Makhir) — 8, 53 

and passim 

Almanac (John of Saxony) — 432
Almanac of 1307 (anonymous) — 61
Amṛtalaharī (Kheṭakṛti, Nityānanda) — 

9, 187, 188, 191 and passim
Anaphorikos (Hypsicles) — 47-48 
Arte de Navigar (Cortés) — 22 

Arthaśāstra (Kauṭilīya) — 209 

Āryabhaṭīya (Ābh, Āryabhaṭa) — 202 
n. 40, 209, 336, 337, 338, 339, 340, 
341, 343, 345, 347, 348, 356, 357

Ashrafī Zīj (al-Kamālī) — 543 
Athīrī Zīj (al-Abharī) — 521, 522, 523
K. al-Aṭwāl wa l-ʿurūḍ li-l-Furs (anony-

mous) — 544, 547, 556 note i

Baghdādī Zīj (al-Baghdādī) — 33, 545 
Bhaṭadīpikā (commentary on the Ārya-

bhaṭīya, Parameśvara) — 337, 340
Brāhmasphuṭasiddhānta (Brahmagupta) 

— 206, 356
Breviloquium de fructu artis tocius as-

tronomiae (Bartolomeo da Parma) — 
412 

Candrārkī (Dinakara) — 9, 146 and pas-
sim 

Canon doctrinae triangulorum (Rheti-
cus) — 109, 122-25, 129, 136-38 

Canones eclipsium (John of Genoa) — 
379 n. 49

Canones tabularum Alfonsii (John of 
Murs) — 367, 379

Canons to the Parisian Alfonsine Tables 
(Tempus est mensura motus primi mo-
bilis, 1327, John of Saxony) — 370, 
378, 382, 389, 399, 410, 412, 413, 
435, 437 

Chiljeongsan Naepyon 七政算內篇 (In-
ner Chapter of Computation of Seven 
Regulators, Jeong Inji, Jeong Cho and 
Jeong Heum-ji) — 255, 258, 262, 263, 
278, 279, 282
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Commentary on the Āryabhaṭīya (Nila-
kaṇṭha) — 202 n. 40, 339, 340

Compositio et usus astrolabii (Messahalla) 
— 411 

Datong li 大統曆 (Great Concordance 
System, Yuan Tong and Guo Boyu) — 
254 n. 7, 255, 256, 258, 263, 269, 277, 
278, 279, 282

Datong richu riru fen 大統日出日入分 
(Times of Sunrise and Sunset in the 
Great Concordance System) — 258

Daye li 大業曆 (Great Patrimony System) 
— 253 

De astrorum scientia (Leopold of Austria) 
— 410, 412, 413 

De judiciis astrologiae (Haly Abenragel) 
— 412 

De mutacione aeris (Leopold of Austria) 
— 411

De mutatione aeris (Firmin of Beauval) 
— 368, 370 

De quadrante novo (Jacob ben Makhir) 
— 411 

De revolutionibus orbium coelestium 
(Copernicus) — 121

De triangulis omnimodis (Regiomonta-
nus) — 108, 117, 118 

Detailed Procedures: see Shoushili licao
Dṛggaṇita (Parameśvara) — 10, 331 and 

passim

Dṛkpakṣasāriṇī (Kevalarāma) — 43 
al-Durr al-muntakhab (Cyriacus) — 523

al-Dustūr al-ʿajīb (al-Ḥiṣkafī) — 520, 
521, 559 

Dustūr al-munajjimīn (anonymous) — 
544 

Elements (Euclid) — 53, 118 

Epistola magistri Iohannis de Muris ad 
Clementen sextum (John of Murs) — 
368 

Epistola super reformatione antique kal-
endarii (John of Murs and Firmin of 
Beauval) — 367 

Epytoma in Almagestum Ptolemei (Regio-
montanus) — 117 

Explanation of the Instrument Called the 
Quadrant of Israel (Jacob ben Ma- 
khir) — 53 

Expositio tabularum Alfonsi regis Castelle 
(John of Murs) — 367, 369 n. 24 

Exposure of the Errors of the Astronomers 
(al-Samawʾal) — 37 

Fatidica (Liber sextus astronomie, Sahl 
ibn Bishr) — 412

Flores Almagesti (Bianchini) — 114

Geography (Ptolemy) — 410 n. 87, 541, 
545

Grahacāranibandhana (Haridatta) — 
331, 332, 333, 334, 336, 352 

Great Concordance System: see Datong li
Guo Shoujing zhuan 郭守敬傳 (Biography 

of Guo Shoujing) — 269
Gyosik Chubobeob 交食推步法 (Method 

for the Calculation of the Eclipses, Yi 
Soonji) — 279 

Ḥākimī Zīj (Ibn Yūnus) — 484, 545 
Handy Tables (Ptolemy) — 2, 6, 68, 72, 

74, 90, 91, 287, 293, 541
ha-Ḥibbur ha-gadol (Zacut) — 54 

History of the Koryeo Dynasty: see Ko-
ryeo-Sa

History of the Ming Dynasty: see Mingshi
History of the Yuan Dynasty: see Yuanshi
Huihui lifa 回回歷法 (Islamic Astronomi-

cal System) — 4, 278, 306 n. 46

Īlkhānī Zīj (al-Ṭūsī) — 289, 291, 298, 
299, 302, 304, 306, 308, 312, 544

Inner Chapter of Computation of Seven 
Regulators: see Chiljeongsan Naepyon
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al-ʿIqd al-yamānī (al-Ḥalabī) — 543 
Iṣlāḥ al-Majisṭi (Correction of the Alma- 

gest, Jābir ibn Aflaḥ) — 53

Jadīd Zīj (Ibn al-Shāṭir) — 543 
Jagadbhūṣana (Haridatta) — 155, 156, 

157 
Jāmiʿ Zīj (Kūshyār) — 516 n. 11, 540, 

542, 545, 557, 560
Jiuzhang suanshu 九章算術 (Nine Chap-

ters of the Mathematical Art) — 268 
Joseon wangjo shillok 朝鮮王朝實錄 (The 

Veritable Records of the Joseon Dynas-
ty) — 278

Jyotpatti (Bhāskara II) — 200 and n. 36

Kalendarium et patefit (‘Patefit Tables’, 
John of Murs) — 367, 370 

Kalendarium solis et lune (John of Murs) 
— 367 

Karaṇakutūhala (Bhāskara II) — 153 
n. 19, 206 n. 45

Kashf al-ẓunūn (Ḥājjī Khalīfa) — 511-12 
n. 4

Khāqānī Zīj (al-Kāshī) — 10, 37, 287 
and passim, 544

Kheṭakṛti: see Amṛtalaharī
Koryeo-Sa 高麗史 (History of the Koryeo 

Dynasty, Jeong Inji) — 255, 258

Liber de aggregationibus scientiae stella-
rum (Alfraganus) — 410 

Liber introductorius ad iudicia astrorum 
(Alcabitius) — 410 

Liber sextus astronomie: see Fatidica
Libro de las estrellas de la ochuaua espera 

— 41 n. 36
Lü-lizhi 律曆志 (Monographs on Har-

monics and Astronomy), part of the 
Zhengshi 正史 (Standard Histories of 
the Chinese Dynasties) — 253, 254, 
257

K. Maʿārij al-fikr al-wahīj fī ḥall mush-
kilāt al-zīj (al-Fārisī) — 493 

al-Majisṭī (Abū l-Wafāʾ) — 512

Makaranda (Makaranda) — 188 
Marīciṭīkā (Munīśvara) — 200 n. 36
Metaphysics (Aristotle) — 54 

Mingshi 明史 (History of the Ming Dy-
nasty) — 257, 258, 269, 270, 271, 272, 
278, 282, 283

Monographs (on Harmonics and Astrono-
my): see Lü-lizhi

Mufrad Zīj — 546 

Muḥaqqaq Zīj (al-Wābkanawī) — 544 

Mulakhkhaṣ Zīj (al-Abharī) — 546, 554 
note e

Mumtaḥan Zīj (Yaḥyā ibn Abī Manṣūr) 
— 91, 512 n. 6, 513 n. 8, 527 n. 22, 
540, 545, 554 

Musica speculativa (John of Murs) — 
390 n. 64 

Narratio prima (Rheticus) — 121 

Navagrahapadakāni — 334 n. 8

Nuzhat al-nāẓir (al-Ḥalabī) — 543 

On the Configuration of the World (Ibn 
al-Haytham) — 53 

Opus palatinum (Rheticus) — 109, 111 
n. 16, 122, 125-28, 129, 139-42 

Oxford Tables (William Batecombe, 
1348) — 391, 409, 410-413, 414, 427 

Parisian Alfonsine Tables (PAT) — 23, 
24, 46, 64, 364, 366, 367, 370, 378, 
379, 379 and n. 49, 382, 383, 384, 
384 and n. 52, 388, 389, 392, 398, 
399 n. 74, 410 and n. 88, 411, 412, 
413, 435, 437
see also: Canons to the Parisian Alfon-

sine Tables
Pick-up Tables: see Shoushili licheng
Polyptych (Schinnagel) — 45, 46 
Practica eclipsium solis et luna (Johannes 

Swab) — 408 
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Prognosticatio super coniunctione Saturni 
(triple conjunction of 1345, John of 
Murs) — 367 

al-Qānūn al-Masʿūdī (al-Bīrūnī) — 484, 
542, 543, 555 note f, 557, 561 

K. Rasm al-rubʿ al-maʿmūr — 542, 558

Rishu 日書 (Day Book) — 253

Ṣābiʾ Zīj (al-Battānī) — 58, 61, 68, 70, 
71, 72, 73, 75, 374, 375, 383, 484, 
539, 542, 545 

Sanjarī Zīj (al-Khāzinī) — 512 n. 6 , 516 
n. 11, 527 n. 23, 543, 547

Sarvasiddhāntarāja (Nityānanda) — 
188, 199-201, 203, 205

Season-granting System: see Shoushi li
Sermo de regulis computistarum (John of 

Murs) — 367 
Shāmil Zīj (al-Abharī) — 11, 32, 511 and 

passim

Shāmil Zīj (Ibn al-Raqqām) — 399 
n. 74, 512 n. 4

Shoushi li 授時曆 (Season-granting Sys-
tem, Guo Shoujing) — 3, 254 and 
passim 

Shoushili licao 授時曆曆草 (Detailed Pro-
cedures of the Season-granting System, 
Guo Shoujing) — 256, 257, 269, 280

Shoushili licheng 授時曆立成 (Pick-up 
Tables of the Season-granting System, 
Guo Shoujing and Wang Xun) — 256, 
257, 258, 262

Siddhāntasindhu (Nityānanda) — 187, 
188 n. 4 

Siddhāntaśiromaṇi (Bhāskara II) — 154

Śiṣyadhīvṛddhidatantra (Lalla) — 217 
Songshu 宋書 (Book of Song) — 254 n. 6

Sulṭānī Zīj (Ulugh Beg) — 289, 291, 
312, 524, 544

K. Ṣūrat al-arḍ (al-Khwārizmī) — 542 
Sūryasiddhānta — 341 n. 23

Tables of 1321: see Tabule principales 
Tables of 1322 (John of Lignères) — 377, 

380, 382, 384 n. 50, 391, 412, 413, 
414 

Tables of Novara — 58 

Tabula tabularum (John of Murs) — 
369, 407, 408 

Tabulae astronomae (Bianchini) — 414

Tabulae astronomicae (de La Hire) — 
43-44, 189

Tabulae breviores (John of Gmunden) — 
408, 409 

Tabulae de eclypsibus (Bianchini) — 114 

Tabulae de motibus stellarum (Hermann 
of Saxony) — 412

Tabulae directionum (Regiomontanus) 
— 108, 109, 111, 113, 117, 118-120, 
129, 135

Tabulae maiores (John of Gmunden) — 
407, 408 

Tabulae permanentes (TP, John of Murs 
and Firmin of Beauval) — 10, 364 
and passim, 429 n. 11

Tabulae primi mobilis (Bianchini) — 
108, 109, 113, 114-117, 118, 120, 129, 
132-34

Tabulae primi mobilis (Regiomontanus) 
— 117 

Tabule magne (John of Lignères) — 11, 
377, 378, 384 n. 50, 391, 410, 413, 
425 and passim 

Tabule principales (‘Tables of 1321’, John 
of Murs) — 367, 369, 370, 428 n. 9

Tadhkira (al-Ṭūsī) — 289 n. 11
K. Taḥdīd nihāyāt al-amākin (al-Bīrūnī) 

— 542

Tāj al-azyāj (al-Maghribī) — 544 
Tantrasaṅgraha (Nilakaṇṭha) — 202 

n. 40, 206 n. 45, 209, 343 n. 26
Taqwīm al-buldān (Abū l-Fidāʾ) — 534, 

543, 544
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Tempus est mensura motus primi mobilis: 
see Canons to the Parisian Alfonsine 
Tables

Times of Sunrise and Sunset: see Datong 
richu riru fen

Theodosii spaericorum elementorum 
(Mau rolico) — 108 n.  8

Toledan Tables — 3, 8, 54, 57 and pas-
sim, 90, 91, 107, 335, 370, 371-83, 
399, 437, 438, 443 

Tongyuan li 統元曆 (Concordant Epoch 
System) — 254 n. 7

Tractatus de quantitate trium solidorum 
(Johannes Schindel) — 410 

Tractatus de reformatione kalendarii 
(John of Murs and Firmin of Beauval) 
— 367 

Tuḥfat-i sulaymānī (Muḥammad Za-
mān) — 544

Tunisian Zīj (Ibn Isḥāq) — 91, 306, 399 
n. 74

Xuanming li 宣明曆 (Extending Enlight-
enment System) — 255 

Yuanshi 元史 (History of the Yuan Dynas-
ty) — 257, 258, 269, 279, 282

Zīj (al-Fārisī) — 546 n. 44
Zīj (Ḥabash al-Ḥāsib) — 512-13, 513 

n. 8

Zīj (Joseph Ibn Waqār) — 70 
Zīj (al-Khwārizmī) — 37
Zīj (al-Mawṣilī) — 523 
Zīj-i Shāh-Jahānī (Farīd al-Dīn al-Dih- 

lawī) — 187



Manuscripts

Baroda, Central Library, 3119 — 148 
n. 11

Bergamo, Biblioteca Civica Angelo Mai, 
388 — 55 

Berlin, Islamisches Museum, papyrus (no 
inventory number) — 510 

Bernkastel-Kues, Cusanusstiftsbibliothek
MS 210 — 428 n. 4 
MS 212 — 428 n. 4
MS 215 — 55

Brussels, Bibliothèque royale de Belgique, 
281-83 — 55 

Cairo, Dār al-kutub al-miṣriyya (Egyp-
tian National Library)
mīqāt 817 — 469, 493-94, 510, Plates 

14 and 15 
mīqāt Ṭalʿat 138 — 517 
riyāḍī Taymūr 149 — 290, 309 n. 51, 

316 
riyāḍī Taymūr 296/1 — 517-18

Cambridge, Gonville and Caius College
MS 110 — 427 n. 4, 428 n. 6, n. 7 

and n. 10, 430, 432-34, 442
MS 141/191 — 55 

Cambridge, University Library
Add. 1741 — 55 
Gg. 6.3 — 80 n. 4 
Michael. Chartae D 58 — 510 
Peterhouse 75.I — 93 n. 41

Cracow, Biblioteka Jagiellońska
MS 459 — 385 n. 52
MS 556 — 109 n. 11, 114 n. 25
MS 563 — 385 n. 52
MS 610 — 384 n. 50
MS 613 — 55, 385 n. 52

Dublin, Chester Beatty, Arabic 4076 — 
522

Dublin, Trinity College, Pap. F.7 — 510 

Erfurt, Universitäts- und Forschungsbib-
liothek
Amplon. F. 376 — 428 n.  6
Amplon. F. 388 — 413, 428 n. 6 and 

n. 7, 329 n. 11
Amplon. Q. 366 — 427 n. 4
Amplon. Q. 377 — 377 n. 44
Amplon. Q. 379 — 55 

Escorial, Real Biblioteca del Monasterio 
de San Lorenzo 
árabe 908 — 545, 554 note d
árabe 927 — 527 n. 22
O.II.10 — 399 and n. 74

Florence, Biblioteca Medicea Laurenzi-
ana
Or. 95b — 518, 546 
Or. 106 — 518, 522
Plut. 18 — 56 

Hyderabad, Oriental Manuscripts Li-
brary & Research Institute, Āṣafiyya 
323 — 290 n. 85

Innsbruck, Bibliothek des Tiroler 
Landesmuseums Ferdinandeum, Ser-
vitenkloster I.b.62 — 408, Plate 12

Isparta, Halil Hamit Paşa İl Halk Kü- 
tüphanesi, 2252 — 522

Istanbul, Süleymaniye Kütüphanesi
Ayasofya 2692 — 290, 316 
Ayasofia 4830 — 542 
Carullah 1479 — 519 
Carullah 1619 — 512 n. 4
Hamidiye 859 — 543 
Laleli 2137 — 522 
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Jaipur, Maharaja Man Singh II Museum 
Library
MS 9 — 290 n. 15
Khasmohor 5015 — 148 n. 11, 149
Khasmohor 5081 — 149 

Jodhpur, Rajasthan Oriental Research 
Institute
MS 5482 — 148 n. 11
MS 7752 — 149, 150, Plate 7 
MS 9026 — 148 n. 11
MS 10180 — 148 n. 11, 149, 150
MS 11633 — 148 n. 11
MS 20220 — 149, 150, Plate 6 

Kathmandu, National Archive, Reel No. 
B 354/15 — 205 n. 43

Lisbon, Biblioteca da Ajuda, 52-XII-35 
— 428 n. 6

London, British Library
Add. 7492 — 522 
Add. 24070 — 408, 428 n. 6
Harley 80 — 84 n. 17, 96
Harley 267 — 56 
Harley 625 — 84 n. 17, 96
India Office 430 (Ethé 2232) — 290, 

316, Plate 11
Or. 6669 — 543 
Or. 7464 — 291 
Or. 10725 — 55 

London, British Museum
BM 55557 (clay tablet) — 28-29
P. Harris I 60 — 510

London, Wellcome Institute for the His-
tory of Medicine, Sans ɣ550 — 205 
n. 43

Madrid, Biblioteca Nacional, 9288 — 
55, Plates 2 and 3

Meshhed, Holy Shrine Library, 12086 — 
519 

Metz, Bibliothéque municipale, 287 — 
412

Mosul, Pāshā Mosque (Jāmiʿ al-Bāshā), 
323 — 522-23

Mumbai, Cama Oriental Institute
 R I.86 — 522 

Munich, Bayerische Staatsbibliothek
Cgm 739 — 409
Clm 83 — 56 
Clm 10662 — 93 n. 42
Clm 14111 — 392 n. 66
Clm 14583 — 392 n. 66
Clm 14783 — 411
Clm 19550 — 389
Heb. 343 — 55

Munich, Universitätsbibliothek, 4° 737 
— 408

New York, Columbia University, Plimp-
ton 322 — 44-45

Nuremberg, Stadtbibliothek
Cent. VI 23 — 409
Cent. V 57 — 389 

Oxford, Ashmolean Museum
P. Oxy. 4175 — 509
P. Oxy. 4176 — 510 
P. Oxy. 4177 — 510 
P. Oxy. 4177a — 510 
P. Oxy. 4178 — 510 
P. Oxy. 4179 — 475, 510 
P. Oxy. 4180 — 510 
P. Oxy. 4181 — 510 
P. Oxy. 4182 — 510 
P. Oxy. 4183 — 510 
P. Oxy. 4184 — 510
P. Oxy. 4184a — 510 

Oxford, Bodleian Library 
Ashmole 1796 — 79 n. 3, 84 n. 17, 

95
Bodley 464 — 56 
Canon. misc. 499 — 383-384 n. 50
Digby 97 — 385 n. 52
Digby 114/191 — 56 
Greaves 5 — 524 
Hertford 4 — 385 n. 52
Laud misc. 594 — 56 
Laud misc. 657 — 79 n. 3, 80 and 

passim, Plates 4b and 5 
Laud misc. 674 — 81 n. 10, 84 n. 18, 

88, 96
Laud Or. 253 — 523
Marsh 396 — 291, 524 n. 17
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Marshall Or. 95 — 55 
Rawlinson D.238 — 80 n. 4
Walker 208b — 148 n. 31

Oxford, Corpus Christi College, MS 144 
— 79 n. 3, 82 n. 14, 84, 88, 93 n. 40, 
95, Plate 4a

Oxford, University College, MS 41 — 56 

Paris, Bibliothèque nationale de France
arabe 2494 — 512 
arabe 2528 — 512 n. 6, 519
arabe 2529 — 519, Plate 16
arabe 2530 — 522 
arabe 2540 — 520
heb. 1046 — 55, 58
heb. 1102 — 58 n. 19
lat. 7272 — 56 
lat. 7281 — 427 n. 4 
lat. 7282 — 379 n. 49, 385 n. 52
lat. 7284 — 385 n. 52
lat. 7285 — 412
lat. 7286B — 56 
lat. 7286C — 385 n. 52, 399 n. 74, 

428 n. 6
lat. 7288 — 389 
lat. 7295A — 385 n. 52
lat. 7300 — 56 
lat. 7300A — 428 n. 6
lat. 7408A — 56
lat. 10263 — 56, 427 n. 4, 434, 435 
lat. 10264 — 428 n. 6, n. 7 and 

n. 10, 430, 434-35, Plate 13
lat. 16210 — 509 n. 22
lat. 16211 — 372 n. 32

Parma, Biblioteca Palatina
Heb. 2112 (de Rossi 1181) — 55 
Heb. 2113 (de Rossi 1374) — 55, 56, 

73, 75 
Heb. 2770 (de Rossi 749) — 55 

Prague, National Library
X.B.3 — 384 n. 50 
XIII-C-17 — 385 n. 52

Pune, Bhandarkar Oriental Research In-
stitute
308/1882-83 — 148 n. 11

315/Viśrambag — 148 n. 11

Qum, Marʿashī Library, 8144 — 290 
n. 15

Rome, Biblioteca Casanatense, 1673 — 
410

Segovia, Biblioteca de la Catedral, 84 — 
428 n. 6

Schøyen Collection, MS 3971 — 45
Seoul, National University, Gyujanggak 

Library
collection no. 48 — 284 
collection no. 67 — 284 
collection no. 893 — 285, Plate 10b
collection no. 3539 — 285 
collection nos 12434–39 — 284 

Strasbourg, Bibliothèque Nationale Uni-
versitaire, papyrus Inv. Ar. 446 — 510 

Tehran, Madrasa-yi ʿĀlī-i Shahīd Mu-
ṭahharī (previously Sipāhsalār), 682 
— 543 

Tehran, Majlis Library
MS 6422 — 520
MS 6445 — 511 n. 2, 521

Thiruvananthapuram, University of Ker-
ala, Oriental Research Institute and 
Manuscripts Library
411-B (C) — 336 n. 13, 345, 352, 

357, 358, 360, 361
13300-E (D) — 336 n. 13, 352, 357, 

361
L.1248-E (A) — 336 n. 13, 346 

n. 34, 357, 358
L.1248-I (E) — 336 n. 13, 352, 357, 

358 
MS from Koodallur Mana (B) — 

344 n. 29 and n. 30, 345, 346 
n. 34, 347 n. 35 and n. 36, 357

Tokyo, University Library, Sanskrit 19 — 
188 and passim, Plates 8 and 9

Toruń, University Library, 74 — 384 
n. 50
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Vatican, Biblioteca Apostolica Vaticana
heb. 393 — 55
Ott. lat. 1826 — 385 n. 52
Pal. lat. 446 — 385 n. 52
Pal. lat. 1354 — 412-13
Pal. lat. 1367 — 413, 428 n. 6 and  

n. 7, 429 n. 11, 430, 435
Pal. lat. 1374 — 385 n. 52, 428 n. 6 

and n. 7, 430, 435
Pal. lat. 1376 — 410, 428 n. 6 and  

n. 7, 429 n. 11
Pal. lat. 1387 — 56 
Pal. lat. 1412 — 428 n. 6 and n. 7, 

430, 435-36
Pal. lat. 1436 — 56 
Reg. lat. 1241 — 385 n. 52
Vat. ar. 1499 — 521
Vat. gr. 204 — 48 

Venice, Biblioteca Nazionale Marciana, 
lat. 342 — 389 

Vienna, Österreichische Nationalbiblio-
thek
Cod. 5291 — 389 
Cod. 5151 — 409
Cod. 5268 — 407
Cod. 5412 — 93 n. 42, 389
Cod. 5415 — 93 n. 42
P. Vind. A.Ch. 1252 — 510 
P. Vind. A.Ch. 12868 — 510 
P. Vind. A.Ch. 13577 — 510 
P. Vind. A.Ch. 14324 — 510 
P. Vind. A.Ch. 25613g — 510 
P. Vind. A.Ch. 32363 — 510 
P. Vind. G. 29370 — 510 
P. Vind. G. 29370b — 510



Parameters

Trigonometry 
Gnomon lengths 

7p — 192, 194, 209-16
12p — 192, 194, 209-16
60p — 192, 194, 209-16 

Number of degrees in a circle

360° — 37
480° (al-Samawʾal) — 37

Radius of the base circle (trigonometry, 

sinus totus)

60p — 37, 108, 199, 200, 289
150p (Indian sources) — 37
3437;44,48p (Mādhava) — 339
3438p (Āryabhaṭa) — 154 n. 21, 339
1,000p (Bianchini) — 118 n. 32

10,000p (Bianchini) — 114, 116, 132, 
134

60,000p (Bianchini, Regiomontanus) — 
111, 116, 117, 119-20, 121, 129, 133, 
134

100,000p (Regiomontanus) — 111, 118, 
119, 135

6,000,000p (Regiomontanus) — 111

10,000,000p (Regiomontanus, Rheticus) 
— 111, 122, 123-24, 125, 129, 136, 
137, 138

10,000,000,000p (Rheticus) — 125, 127, 
128, 129, 139-40, 141, 142

Value of pi

3 (Chinese sources) — 271, 278

Spherical astronomy
Length of longest day

15;18h (Montpellier, Jacob ben Makhir) 
— 72-74

15;30h (6th climate, al-Battānī) — 73
15;32h (Montpellier, Abraham ibn Ezra) 

— 72-74

Obliquity of the ecliptic

23;32,30° (Ibn Isḥāq) — 91
23;33,0° (Mumtaḥan Zīj) — 91

23;33,30° (Toledan Tables) — 90, 91, 94
23;35° (al-Battānī) — 90, 91, 93
23;51° (Ptolemy, Handy Tables) — 48 

n. 50, 73, 90, 91, 93
23;51,20° (Ptolemy, Almagest) — 87, 90, 

91
23.9 du (Mingshi) — 271, 273
23.903 du (Mingshi) — 271
24° (Indian sources) — 205

Sun

Apogee longitude

78° (2s18°, Indian sources) — 153
88° (2s28°, Shāmil Zīj) — 515

89;27,36.22° (al-Bīrūnī) — 488

89;46,12.49° (al-Ṭūsī) — 488
90;45,48.10° (Ibn Yūnus) — 488

Circumference of ‘slow’ epicycle

13;30° (Āryabhaṭīya) — 342
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Daily mean motion

0;59,8,10,12° (sidereal) — 155
0;59,8,11,28,27° (sidereal, Toledan Ta-

bles) — 25, 61

0;59,8,17,13,12,31° (Ptolemy) — 25
0;59,8,19,37,19,13,56° (Alfonsine traditi-

on) — 25

0;59,8,20,46,56,14° (al-Battānī) — 61
0;59,8,20,47° (al-Battānī) — 25

Eccentricity

1;59° (al-Bīrūnī) — 488
2;4,35,29,51° (Aʿlāʾī Zīj) — 31

2;4,45° (al-Battānī) — 31
2;6.16° (Ibn Yūnus, al-Ṭūsī) — 488
2;29,30° (Ptolemy) — 31

Length of tropical year

365;14,26 days (al-Battānī) — 25
365.2425 du (Season-granting System) — 

260 n. 30

Length of sidereal year

365.25 du — 271
365.2575 du (Season-granting System) — 

260

Maximum equation

1;59° (Aʿlāʾī Zīj) — 31, 32

1;59,10° (Toledan Tables) — 383
2;10° (Parisian Alfonsine Tables) — 383, 

431

2;10,31° (maximum manda equation, Di-
nakara) — 154 n. 21

Moon
Eccentricity

10;19p (Ptolemy, al-Battānī) — 375

Maximum equation of anomaly

7;40° (Jacob ben Makhir) — 67

Maximum equation of anomaly at the 

apogee of the deferent

4;55,59° (Ibn Isḥāq, Ibn al-Raqqām) — 
399

4;56° (Moses Botarel, Alfonsine Tables) 
— 70, 383, 399

5;1° (Ptolemy, Toledan Tables) — 68, 
383

5;2,35° (maximum manda equation, Di-
nakara) — 157-58

Maximum equation of centre

13;9° (Ptolemy) — 68

Maximum increment of the equation of 

anomaly (‘variation’)

2;39° (Ptolemy, Almagest) — 68

2;40° (Ptolemy, Handy Tables) — 68

Maximum lunar latitude

4;30° (Amṛtalaharī), 9/2 (Āryabhaṭīya) 
— 199, 217-20, 341 

5;0° (Ptolemy, Jacob ben Makhir) — 70, 
296-97

Mean motion in anomaly

0;32,39,45°/h (Toledan Tables) — 374
0;32,40,0°/h (Toledan Tables) — 437 

n. 25

13;3,54°/d (Dinakara) — 157 

Mean motion in longitude

0;32,56,0°/h (Toledan Tables) — 384, 
437 n. 25

0;32,56,27°/h (Toledan Tables) — 374
13;10,34,52,48,47°/d (Toledan Tables) 

— 65

13;10,35°/d (Dinakara) — 155, 157, 158 
13;10,35,2,7,17,10°/d (al-Battānī) — 65
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Motion of the lunar node

0;3,10,37,19°/d (al-Battānī) — 70
0;3,10,46,42,33°/d (Toledan Tables) — 

70

Radius of the deferent

49;11° (Ptolemy, al-Battānī) — 375

Size of the epicycle

5;15° (radius; Ptolemy, al-Battānī) — 375
31;30° (circumference of the ‘slow’ epicy-

cle; Āryabhaṭīya) – 342 

Velocity (minimum–maximum)

0;30,18–0;36,4°/h (Toledan Tables, 
al-Battānī) — 383, 437

0;30,21–0;36,1°/h (Ibn Isḥāq, Ibn al-Raq- 
qām) — 399

12;1,46–14;19,24°/d (Dinakara) — 158
Relative lunar velocity (with respect to 

the Sun, minimum-maximum)

0;27,30–0;33,30°/h (Ibn al-Kammād) — 
373

0;27,50–0;33,20°/h (Jacob ben Makhir) 
— 72

0;27–0;34°/h (Tabule magne) — 378

Planets and eighth sphere
Saturn

40;30–58;30° (circumference of ‘slow’ 
epicycle, min–max; Āryabhaṭīya) — 
342

36;30–40;30° (circumference of ‘fast’ ep-
icycle, min–max; Āryabhaṭīya) — 342

59y (planetary cycle, Jacob ben Makhir) 
— 58

Jupiter

31;30–36° (circumference of ‘slow’ epicy-
cle, min–max; Āryabhaṭīya) — 342

67;30–72° (circumference of ‘fast’ epicy-
cle, min–max; Āryabhaṭīya) — 342

83y (planetary cycle, Jacob ben Makhir) 
— 59

Mars

79 y (planetary cycle, Jacob ben Makhir) 
— 59

63–81° (circumference of ‘slow’ epicycle, 
min–max; Āryabhaṭīya) — 342 

229;30–238;30° (circumference of ‘slow’ 
epicycle, min–max; Āryabhaṭīya) — 
342

Venus

0;10° (maximum inclination imax, Ptole-
my) — 293, 295

2;30° (maximum deviation jmax, Ptolemy) 
— 293, 299

3;30° (maximum deviation jmax, ‘mod-
ern’) — 299

3;30° (maximum slant kmax, Ptolemy) — 
293

8y (planetary cycle, Jacob ben Makhir) — 
59

9–18° (circumference of ‘slow’ epicycle, 
min–max; Āryabhaṭīya) — 342

43;10° (epicycle radius, Ptolemy) — 299
45° (maximum central equation of anom-

aly) — 302
256;30–265;30° (circumference of ‘fast’ 

epicycle, min–max; Āryabhaṭīya) — 
342

Mercury

0;45° (maximum inclination imax, Ptole-
my) — 293, 295

6;15° (maximum deviation jmax, Ptolemy) 
— 293, 299, 310, 311

7;0° (maximum deviation jmax, ‘modern’) 
— 299, 310, 311

7° (maximum slant kmax, Ptolemy) — 293
19;1° (maximum central equation of 

anomaly, Ptolemy) — 302
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22;30° (epicycle radius) — 299
22;30–31;30° (circumference of the ‘slow’ 

epicycle, min–max; Āryabhaṭīya) — 
342

46y (planetary cycle, Jacob ben Makhir) 
— 59

130;30–139;30° (circumference of the 
‘fast’ epicycle, min–max; Āryabhaṭīya) 
— 342

8th sphere

0.0150 du/year (precession, Season-grant-
ing System) — 260 n. 30

10;45° (maximum equation, pseudo- 
Thābit) — 60

17;8° (precession since Ptolemy, Alfon-
sine Tables) — 41 n. 36

Geography
Latitudes

21° (Mecca) — 527
21;5° (Gog) — 528
28° (Kabul) — 557
30° (Alexandria) — 48 n. 50
32;0° (Ghazza) — 528 n. 25
33° (Mardin?) — 527
33;25° (Baghdad) — 538, 540
35;0° (Qum) — 557
35;0° (Sawa) — 557
35;5° (Sawa) — 557
35;32° (shortest/longest day 5:7) — 48
35;55,48° (Mosul) —527
36° — 522
37;0° (Kabul) — 557
37° (Mardin) — 527
37;30° (Mardin) — 528
37;35° (al-Ḥisn = Hasankeyf) — 528
38° — 517, 519, 520
38 du (Hanyang = Seoul) — 279
38⅟ du (Hanyang = Seoul) — 279
38⅙ du (Hanyang = Seoul) — 280
38¼ du (37;41°, Hanyang = Seoul) — 

256 n. 13

38¼ du (37;41°, Gaegyeong = Kaesong) 
— 279

38;15° (al-Ḥiṣn = Hasankeyf) — 528

38;22° (al-ʿzh) — 528

38;30° (Malatiya?) — 524 n. 19
38;30° (Qaysariyya Rum) — 558
38;45° (Astarabad) — 558
39° — 519, 520
39;0° (Arzan Rum) — 558
39;10° (Qaysariyya) — 524 n. 19
39;45° (Arzan Rum) — 558
39;37° (Samarqand) — 551
40.95 du (Dadu = Beijing) — 271, 272, 

274, 283
41;0° (Ayathulūg = Selçuk) — 528
41;30° (Laodicea) — 528
43° (Montpellier) — 57, 72, 73
43;0° (Tiflis) — 558
45;0° (6th climate) — 73
45;22° (6th climate) — 73
46;10° (Saray) — 528
49;30° (Bulghār) — 528
51;50° (Oxford) — 79 n. 3, 81, 84, 85, 

88, 92, 94
54;1° (longest day of 17h) — 86

55° (Tynemouth) — 81, 85, 88, 92, 93, 
102

Longitudes (including meridians  

of mean motion tables)

11° (Toledo, Toledan Tables) — 64 n. 26
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15° (distance from Toledo to Montpel- 
lier) — 64

28° (Toledo, ‘from the west’) — 63
30° (Alexandria)
32;0° (Montpellier, ‘from the west’) — 

57, 63
32;10° (Montpellier) — 64 n. 26
43;11° (al-ʿzh) — 528

54;40° (‘Egypt’) — 551
60;30° (Alexandria) — 551
61;0° (Ayathulūg = Selçuk) — 528
62;30° (Laodicea) — 528
63;45° (Manbij) — 557
64;40° (‘Egypt’) — 524
64;50° (Ghazza) — 528
65;0° (Gog) — 528
67;40° (Tarsus) — 557
68;0° (Bulghār) — 528
68;0° (Tarsus) — 557
70° (Damascus?) — 522
72;20° (Saray) — 528
73;0° (Fustat = Cairo) — 551
73;30 (Sanaa) — 524 n. 19

74° (Mardin?) — 527
74;30° (Mardin) — 528
74;35° (al-Ḥiṣn = Hasankayf) — 528
75;0° (Baghdad) — 560
75;0° (Mardin) — 528
75;30° (al-Ḥiṣn = Hasankeyf) — 528
75;35° (al-Ḥiṣn = Hasankeyf) — 528
78° (Mecca) — 527
80;0° (Baghdad) — 557
80;10° (Baghdad) — 551
82;55° (Qum) — 524 n. 19
84° (meridian, Aʿlāʾī Zīj, Shāmil Zīj) — 

546

84;0° (Zanjan) — 557
84;15° (Qum) — 557
87;0° (Qum) — 557
90;0° (Jurjan) — 558
94;30° (Oman) — 551
99;16° (Samarqand) — 551
100;0° (Kirman) — 557
101;50° (Khwarizm) — 558
172;30° (Gog or Magog) — 528

Others
2.5 ke (duration of twilight) — 254

12° (increase of lunar/solar elongation in 
one tithi) — 151, 193

13;20° (lunar motion in a nakṣatra) — 
151, 193

13;20° (increase of the sum of solar and 
lunar motion in a yoga) — 151, 193 

250 fen (duration of twilight) — 261, 276



Places

This index does not include localities that occur only in the tables of the article by van Dalen, 
but not in the main text. The Arabic definite article al- is not considered in the alphabeti-
sation. 

Abān — 536
Abhar — 511, 560
Aden — 532, 558

Akhlat — 560
Alamut — 544

Aleppo — 509, 520, 527
Alexandria — 48, 53, 524 n. 19, 527, 551
Amiens — 368

Ammuriya — 528 n. 25 
Amul — 546

Anār (formerly Abān) — 536
Anatolia — 528 and n. 25

al-Andalus — 53, 58, 373, 427 n. 5, 512 
n. 4, 549

Ansbach — 408 n. 82
Antioch — 527
Aqsaray — 512, 558
Ardabil — 556 note i

Arzan Rum (now Erzurum) 14 — 558

Arzingan — 559
Astarabad — 536, 558

Avignon — 70, 367, 370
Ayathulūg/Ayasulūk (now Selçuk) — 

528

Babylon — 508
Baghdad — 91, 512, 535, 538, 539, 540, 

545, 551, 552 note a, 556 note h, 557, 
558, 560

Barcelona — 58

Bardhaah (Bardaʿa) 14 — 546, 560
Bariya (Gujarat) 6 — 157

Basel — 413

Basra — 546

Baykand — 555 note f 
Baylaqan — 532, 559, 560
Beijing: see Dadu
Bianjing (now Kaifeng) — 269
Bistam — 536, 557, 558, 559
Bourges — 367
Bukhara — 555 note f

Bulghar — 528

Byzantium — 513

Cairo: see Egypt
Cambrai — 368

Castile — 371
China — 7, 253 and passim
Constantinople (now Istanbul) — 560
Cracow — 122

Ctesiphon: see Madāʾin
Culemborg (Netherlands) — 412

Dadu (now Beijing) — 254, 255, 257, 
262, 269, 271, 272, 274, 276, 281, 283

Damascus — 512 n. 6, 513, 522, 527, 
543, 544

Damghan — 534 n. 27
Darband — 554 note e 
Daylam — 560
Denizli (Turkey) — 528

Egypt (Cairo/Fustat) — 53, 57, 508, 524, 
527, 545, 551, 560
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Erfurt — 392, 394, 410 n. 88, 412, 413, 
414 n. 99

Erzurum: see Arzan Rum

Ethiopia: see Habasha

Évreux (Normandy) — 367

Ferrara — 113, 410 n. 87
Fontevraud — 367
France — 8, 371, 395, 412
Freiburg im Breisgau — 413
Fustat: see Egypt

Gaegyeong (now Kaesong) — 279
Ghazna — 542

Ghazza — 528 n. 25 

Gog and Magog (Yājūj wa-Mājūj) — 
528, 551

Gurganj: see Khwarizm

Habasha (Ethiopia) — 551 

Hama — 527, 532
Hamadan — 554 note d, 557
Hanyang (now Seoul) — 255, 256 and 

n. 13, 257, 262, 263, 276, 278, 279, 
280, 283

Harran — 528, 547 n. 45, 559
Heidelberg — 408 n. 82
Heilsbronn — 408
al-Ḥiṣn / Ḥiṣn Kayfā (now Hasankeyf) 

— 528, 558, 560
Homs — 547 n. 45, 550, 551
Hulwan — 535, 557

India — 4, 7, 9, 37, 107, 145 and passim, 
187 and passim, 331 and passim, 543 
n. 39, 544

Indrapurī — 191
Iran — 511, 512, 516 and n. 11, 545, 546

Isfahan — 532

Jurjan — 536, 558

Kabul — 532, 551, 557, 560
Kaesong: see Gaegyeong
Kaifeng: see Bianjing
Kang (cupola of the world) — 551

Kanja — 532
Kashan — 288, 312, 544

Kerala — 202 n. 40, 331, 332, 336, 358
Khwarizm (Gurganj) — 526, 527, 558
Kirman — 526, 536, 557, 560
Klosterneuburg — 408
Konstanz — 413

Konya — 520, 527, 558
Korea — 10, 255, 256, 257, 262, 277-82, 

283

Kufa — 552 note a, 560

Languedoc — 53
Laodicea of Lycos/Phrygia (Lādhiq) — 

528

Leipzig— 121, 413

Madāʾin (Ctesiphon) — 525 n. 20, 535, 
558

Madina — 527, 553 note c 
Malatiya — 524 and n. 19
Manbij — 557
Maragha — 26, 287 n. 3, 299 n. 30, 544
Marand — 556 note i
Mardin — 523, 527, 528, 558, 560
Marseille — 53
Marw — 512 n. 6, 516 n. 11, 543
Mecca — 33, 514, 524 n. 19, 527
Mesopotamia — 26, 28, 508
Metz — 392, 412
Montpellier — 53, 57, 63-64, 67, 72, 73, 

75
Mosul (Nineveh) — 511, 518, 527, 553 

note c

Mulhausen — 413 n. 98
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Nahawand — 557
Nanjing — 255, 257, 263, 283
Nishabur — 534 n. 27
Nuremberg — 93, 408 and n. 82, 409, 

411, 413

Oman — 551
Orange — 54
Oxford — 8, 79, 81, 93, 94 and n. 44, 

524 n. 18

Oxyrhynchus — 470

Paris — 10, 11, 25, 26, 367, 368, 371, 
377, 378, 384, 410, 412, 413, 429 
n. 11, 432, 435, 509

Prague — 384 n. 50, 413, 435

Qadisiyya — 524 n. 19, 534 n. 27, 535
Qaysariyya (Rum) — 524 and n. 19, 551, 

558

Qum — 524 and n. 19, 525 n. 20, 534, 
535, 557, 558

Raqqa — 58, 520, 545
Rayy — 520
Regensburg — 392, 394, 411, 412, 413

Sabur — 549
Salamanca — 54
Samarqand — 287 n. 3, 289, 312, 313, 

524, 544, 550, 551
Samarra — 513
Sanaa — 522, 524 n. 19, 525 n. 20, 532, 

560
Saray (capital of Golden Hord) — 528
Sawa — 557, 559
Selçuk: see Ayathulūg/Ayasulūk

Seoul: see Hanyang
Shahrazur — 557
Shiraz — 536, 543, 544, 553 note b
Shirwan — 512, 546, 556 note h
Shuihudi (Hubei) — 253
Siwas — 519, 560
St Albans — 79, 80, 81, 94
Strasbourg — 413
Swabia — 46

Tabriz — 544

Tanjore (Tamil Nadu) — 334 n. 8
Tarsus — 527, 551, 557
Tegernsee — 389, 410 n. 85
Tiflis — 534, 558, 560
Toledo — 57, 62-64, 67, 70, 75, 373, 407, 

409, 410-13
Trebizond — 509
Tripoli — 527
Tübingen — 413 n. 98
Tunis — 399 n. 74
Tus — 536, 558

Tynemouth — 8, 79 n. 3, 80, 81, 83 
n. 15, 84, 85, 93, 94

Venice — 368

Vienna — 26, 117, 389, 391, 392, 394, 
395, 407-10, 412-13

Wasit — 545

Wrocław — 413

Yājūj wa-Mājūj: see Gog and Magog

Zanjan 14



Modern Persons

Aaboe, Asger — 44

Albouy, Ségolène — ix
Andriani, Eleonora — 425 n. *

Bardi, Alberto — 400
Bellver, José — 561

Boffito, Giuseppe — 56

Brack-Bernsen, Lis — 2
Brentjes, Sonja — 512 n. 6, 561
Britton, John — 2, 28-29, 45
Brouwers, Paul — 166

Butler, Kenneth — 110

Campbell-Kelly, Martin — 2
Castelló, Francisco — 41 n. 36
Chabás, José — 3, 25-26, 41 n. 36, 365, 

366 n. 6, 369, 372, 373, 377 n. 4, 390 
n. 63, 400, 425 n. *

Chemla, Karine — 223, 256 n. 15

Chen Meidong — 253 n. 3, 254 n. 7
Comes, Mercè — 539, 561
Cullen, Christopher — 3

Dalen, Benno van — 3, 4, 5 n. 20, 31-32, 
33, 37, 40, 41, 110, 475

Desmond, Karen — 367 n. 7 and n. 12, 
371 n. 30, 400

Dobrzycki, Jerzy — 26
Dorce, Carlos — 3
Dorl-Klingenschmid, Claudia — ix

Eisermann, Falk — 400

Falk, Seb — 432 n. 16
Friberg, Jöran — 45

Garshtein, Niran — 75
Gauffier, Leni — ix
Gessner, Samuel — 425 n. *
Gingerich, Owen — 29
Goldstein, Bernard R. — 3, 25-26, 41 

n. 36, 366 n. 6, 369, 372, 373, 384

Hadravova, Alena — 384 n. 50
Halma, Nicolas — 2 n. 5

Hasse, Dag — 5 n. 20 
Heiberg, Johan Ludvig — 2
Husson, Matthieu — 2, 4 n. 19, 5 n. 21, 

367 n. 7
Hynd, Zachary — 187 n. *, 223

Jacobson, Nick — 400, 425 n. *
Jones, Alexander — 2, 470
Juste, David — 5 n. 20, 509

Keller, Agathe — 223

Kennedy, Edward S. — 2, 11, 25, 290 
and n. 16, 313, 511, 516, 523, 536, 
537-39, 540, 541, 542, 546, 547, 557, 
561

Kennedy, Mary Helen — 511, 517, 537-
39, 561

King, David A. — 3, 35, 313, 493, 540, 
541, 543, 544, 547, 561

Kovanov, Svyat — ix
Kreil, Aymon — 493
Kremer, Richard — 26, 45-46, 75, 223, 

253 n. *, 425 n. *, 447 n. 34

Lee Eun-Hee — 278
Li Liang — 4
Lin Jin-Chyuan — 254 n. 7
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Mancha, José Luis — 54
Martzloff, Jean-Claude — 268, 271
Melzi d’Eril, Camillo — 56
Mercier, Raymond — 2, 484, 509
Mimura, Taro — 190, 223
Miolo, Laure — 367 n. 8, 379 n. 49, 384 

n. 52, 400
Misra, Anuj — 3
Montelle, Clemency — 2, 3, 4 n. 18, 49, 

312 n. 53

Morgan, Daniel — 253 n. *
Mozaffari, Mohammad — 512 n. 6
Müller, Stefan — ix

Nallino, Carlo Alfonso — 3, 375, 542, 
545, 554 note d

Neugebauer, Otto — 2, 25, 30, 44
North, John — 81 and n. 10, 83 n. 16, 84 

and n. 19, 91, 96, 369, 375 n. 41
Nothaft, C. Philipp E. — 367 n. 7 and 

n. 9, 370, 379 and n. 49, 400

Ossendrijver, Mathieu — 2, 29-30
Otter, Monika — 400

Pedersen, Fritz S. — 3, 372, 374, 438, 
534

Penon, Antonin — ix

Pingree, David — 3, 145 n. 1, 188-89, 
191

Plofker, Kim — 3, 4 n. 18, 312 n. 53

Poulle, Emanuel — 3, 41 n. 36, 369
Proust, Christine — 45

Ramasubramanian, Krishnamurthi — 
223

Robson, Eleanor — 44-45

Saby, Marie‐Madeline — 377 n. 44, 400
Sachs, Abraham — 44
Samsó, Julio — 3, 41 n. 36
Schiaparelli, Giovanni — 374 n. 39, 375
Schmit, Christophe — 223
Sezgin, Fuat — 313
Shank, Michael — 400
Shi Yunli — 4, 278
Shnider, Steve — 45
Sivin, Nathan — 3, 256 n. 15
Stahlmann, William Duane — 2
Steele, John — 2, 49
Steinschneider, Moritz — 54, 56
Suter, Heinrich — 3

Takakusu, Junjirō — 190
Taub, Liba — 79 n. *
Tihon, Anne — 2

Toomer, Gerald J. — 2

Topalian, Galla — ix, 223

Tournès, Dominique — 4
Tukey, John W. — 363
Tur, Alexandre — 400

Vafea, Flora — 493 n. 11, 512 n. 4, 561
Van Brummelen, Glen — 2, 34-35, 38, 

40, 41, 79 n. *, 110, 130, 223, 400, 
425 n. *
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Colour Plates





Plate 1: Schinnagel’s 1489 polyptych (Inv. 1995-323).  
© Landesmuseum Württemberg (Stuttgart), P. Frankenstein / H. Zwietasch.



Plate 2: Jacob ben Makhir’s Almanac, Table 9 (true lunar anomaly, excerpt).  
Madrid, Biblioteca Nacional de España, MS 9288, fol. 50v.



Plate 3: Jacob ben Makhir’s Almanac, Table 10 (complete lunar equation with double arguments, excerpt).  
Madrid, Biblioteca Nacional de España, MS 9288, fol. 75r.



a)

b)

Plate 4a: Table of fixed stars, Tractatus Albionis IV.12, showing possible source of John Westwyk’s  
misspelling ‘Altayn’. Oxford, Corpus Christi College, MS 144, f. 76v.

Plate 4b: As above. Oxford, Bodleian Library, MS Laud Misc. 657, f. 37v.  
By permission of the Bodleian Libraries, The University of Oxford.



Plate 5: John Westwyk’s table of oblique ascensions for 55°. Oxford, Bodleian Library, MS Laud Misc. 657, f. 42v. 
By permission of the Bodleian Libraries, The University of Oxford.



Plate 6: The first page of the solar equation table and associated true velocity (arguments 1–55) from  
Dinakara’s Candrārkī. Jodhpur, Rajasthan Oriental Research Institute (RORI), MS 20220 (f. 1v).



Plate 7: The first page of the solar equation table and associated true velocity (arguments 1–89) from  
Dinakara’s Candrārkī. Jodhpur, Rajasthan Oriental Research Institute (RORI), MS 7752 (f. 1r).



Plate 8: Opening folio of Nityānanda’s Amṛtalaharī with a calendrical table for determining the current  
lunar day (tithi). Folio 1v of MS Sanskrit 19 from the collection of the University of Tokyo.



Plate 9: Second folio of Nityānanda’s Amṛtalaharī with the continuation of a calendrical table.  
Folio 2r of MS Sanskrit 19 from the collection of the University of Tokyo.



a)

b)
Plate 10a: ‘Declination and polar distance of the ecliptic, and half lengths of daytime and nighttime’ in the Canon 

of the Season-granting System (excerpt). From the copy of the Hongwu period, Ming dynasty (明洪武刊本, 1368–1398).
Plate 10b: Pick-up table of ‘Sunrise, sunset, dawn, dusk and half nighttime of the Season-Granting System’ (excerpt). 

From the Gyujanggak Library of Seoul National University, collection no. 893.



Plates 11: The first of the three pages of al-Kāshī’s double-argument latitude table for Venus (see pp. 36 and 307 
for the other two pages). © The British Library Board, MS India Office 430, fol. 153v.



Plate 12: First page of the Tabulae permanentes, here entitled Tabula … ostendens distanciae vere coniunctionis 
vel oppositionis a media. Innsbruck, Universitäts- und Landesbibliothek Tirol, Servitenkloster I.b.62, p. 74. 



Plate 13: Grid with the tables for the solar and lunar equations and velocities from John of Lignères’  
Tabula magne. Paris, Bibliothèque nationale de France, MS latin 10264, f. 29v.



Plate 14: Ephemeris for the month Muḥarram 727 Hijra. Cairo, Dār al-kutub al-miṣriyya, MS mīqāt 817, fol. 69v.



Plate 15: Horoscopes preceding the ephemeris for 727 Hijra and mentioning the Ḥākimī Zīj of Ibn Yūnus.  
Cairo, Dār al-kutub al-miṣriyya, MS mīqāt 817, fol. 69r.



Plate 16: Geographical table from the Shāmil Zīj. Paris, Bibliothèque nationale de France, MS arabe 2529, fol. 20v. 



A stronomical tables are a significant yet understudied part of the 

scientific historical corpus. They circulated among many cultures, 

and were adopted and transformed by astronomical practitioners for a 

variety of purposes. The numerical data conveyed in these tables provides 

rich evidence for pre-modern scientific practices. In the last fifty years, 

new approaches to the analysis and critical editing of astronomical tables 

have flourished due to advances in computing power and associated 

modern mathematical tools. In more recent times, the rapid growth of 

digital humanities and modern data analysis promises exciting further 

developments in this area. 

The present collection of studies on astronomical tables captures this 

momentum. It is a result of long-term collaborative work on building a 

database of astronomical tables and other objects found in manuscripts, 

released under the name DISHAS (Digital Information System for the 

History of Astral Sciences). The fourteen contributions in this volume 

provide a broad coverage of astronomical traditions throughout Eurasia 

and North Africa, which, with very few exceptions, find their roots in 

the mathematical astronomy of Ptolemy. The contributions include crit-

ical editions of previously unexamined astronomical tables along with 

insightful mathematical analyses, as well as reflective methodological 

surveys that open up new perspectives for research on these fundamental 

sources for the history of mathematics and astronomy.

Contributors: José Chabás, Benno van Dalen, Seb Falk, Bernard R. Gold-

stein, Sho Hirose, Matthieu Husson, Richard L. Kremer, Li Liang, Anuj 

Misra, Clemency Montelle, Kailyn Pritchard, Johannes Thomann, and 

Glen Van Brummelen.

Matthieu Matthieu HussonHusson is a researcher in the history of late medieval astronomy in 
Europe and is the PI of the ERC project ALFA based at the Paris Observatory.
Clemency Clemency MontelleMontelle is a researcher in the history of mathematics and astronomy 
in India and is a professor in the School of Mathematics and Statistics at the 
University of Canterbury, Christchurch, New Zealand.
Benno Benno van Dalenvan Dalen is a researcher in the history of Islamic astronomy and is one 
of the two research leaders of the project Ptolemaeus Arabus et Latinus at the 
Bayerische Akademie der Wissenschaften in Munich.
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