Project icon: lavishly furnished initial letter with a painting of Ptolemy using an astrolab.

Ptolemaeus Arabus et Latinus

_ (the underscore) is the placeholder for exactly one character.
% (the percent sign) is the placeholder for no, one or more than one character.
%% (two percent signs) is the placeholder for no, one or more than one character, but not for blank space (so that a search ends at word boundaries).

At the beginning and at the end, these placeholders are superfluous.

Work A.6.1

Planispherium (tr. Hermann of Carinthia)

Translated from the Arabic by Hermann of Carinthia in Toulouse in 1143 and dedicated to Thierry of Chartres. Hermann used the version ‘edited’ by Maslama al-Majrīṭī (d. 1007/1008), who added a number of notes and an extra chapter to Ptolemy’s text, and to whom Hermann refers as ‘Maslem’, ‘Meslem’ or ‘Abualcacim Maslem filius Ameti’. Kunitzsch and Lorch (Kunitzsch/Lorch, 8-10 and 34-35) have divided the manuscripts into three classes, each by a different translator. Class I is Hermann’s translation, which includes Maslama’s notes 1-3, 6-7, 9 and 11 within the text. Class II is a reelaboration which includes Maslama’s notes 1-3 and 5-11, either in the margin or in the text, and Maslama’s extra chapter. Class III is another reelaboration which includes Maslama’s notes 1-11 in the margin, Maslama’s extra chapter in a different translation and Maslama’s astrolabe chapters. The author of Class III also translated portions of Ptolemy’s text anew. In most manuscripts of Class I and in the two manuscripts of Class III, the text is followed by a summary of Ptolemy’s 16 propositions under the title Propositiones planisperii. In ed. Venice 1536, the translation is ascribed to Rudolf of Bruges (‘Rodulphi Brughensis ad Theodorichum Platonicum in traductionem Planispherii Claudii Ptolemaei praefatio’). Although Kunitzsch and Lorch did not consider this possibility (they were not aware of the existence of ed. Venice 1536), Rudolf appears to be a good candidate for the authorship of either Class II or Class III, for in his treatise on the astrolabe (in or after 1144), he presents himself as Hermann’s pupil (‘Rodolfus Brugensis Hermanni Secundi discipulus’) and acknowledges his debt to ‘Ptolemy’s Planispherium translated by Hermann’ (‘Planisperium Ptolomei ab Hermanno Secundo translatum’). See R. Lorch, ‘The Treatise on the Astrolabe by Rudolf of Bruges’, in Between Demonstration and Imagination. Essays in the History of Science and Philosophy Presented to John D. North, eds L. Nauta, A. Vanderjagt, Leiden, 1999, 55-100 (60 and 67 for the Latin quotations); and C. Burnett, ‘Béziers as an Astronomical Center for Jews and Christians in the Mid-Twelfth Century’, Aleph 17 (2017), 197-219: 208-212.


A couple of short Latin fragments translated from the Arabic appear in the oldest Latin corpus on the astrolabe put together in Catalonia c. 1000 (see P. Kunitzsch, ‘Fragments of Ptolemy’s Planisphaerium in an Early Latin Translation’, Centaurus 36 (1993), 97-101 (reprinted in P. Kunitzsch, Stars and Numbers. Astronomy and Mathematics in the Medieval Arab and Western Worlds, Aldershot, 2004, VIII)).


‘(ed. Heiberg and Burnett) [translator’s preface] Quemadmodum Ptolomeus et ante eum nonnulli veteris auctoritatis viri antiquas seculi scribunt historias — quam qua id ipsum Maslem in Arabicam transtulit. [text] Cum sit possibile, Iesure, et plerumque necessarium ut in plano represententur circuli in speram corpoream incidentes, tamquam plana esset, consultum visum est in veritate scientie — cum ipsis circulis tropicis et cum circulis meridianis signa distinguentibus.’


Maslama’s notes   ‘(ed. Kunitzsch/Lorch) [1] In hunc librum Maslem commentans ait ut descriptis equidistantibus recto hinc unde circulis deducatur… [2] Addit Maslem argumentum: lineam HE in directum… [3] Hic locus est argumenti Maslem: quia deprehensum est, inquid, quota distantia… [4] Dixit Meslem: et est ad hoc etiam via facilior… [51] Dixit Maslem: et si intenderet Ptolemeus… [52] Dixit Meslem: si animadvertisset Ptholomeus… [6] Hic subiungit Maslem quod cum huiusmodi circulus… [71] Noto igitur, ut Maslem addit, circulo equidistante zodiaco… [72] Alia translatio, dixit Meslem: quando facies circulum equidistantem… [81] Dixit Maslem: et non declaravit quod centra non sunt super… [82] Dixit Meslem: non declaravit quod centra non sint super… [91] In alio, dixit Maslem: et ex complemento huius questionis… [92] Alia translatio, dixit Meslem: de complemento huius propositionis… [93] Deinde argumentum quod Maslem subiungit addends… [101] Et ex sermone eius etiam est: verumtamen complebo quod oportet… [102] Et ut compleam quod oportet compleri… [11] Addit Maslem quoniam hec linea recta secat — recto medium secet, et hunc per zodiaci polum necessario transire.’


Maslama’s extra chapter   ‘(ed. Kunitzsch/Lorch) [class ii] Capitulum quod non est de libro quod edidit Abualcacim Maslem filius Ameti. Dixit Maslem filius Hameti: Iam rememoratus est Ptolemeus in hoc libro qualiter describamus circulum orizontis — tibi quod volueris de scientia tabularum. Et laus sit Deo creatori gentium. [class iii] Sectio que non est de libro quam dixit Meslem usque ad primam sectionem quam Ptholomeus. Iam memoravit Ptholomeus in hoc libro quomodo lineentur orizontes — cum eodem numero elevatur cum quo occidit. Et secundum hoc fit artificium laminarum.’


Maslama’s astrolabe chapters   ‘(ed. Kunitzsch/Lorch) Et hec capitula non pretermittat qui voluerit facere astrolabium que compilavimus de figura sectionis. Ad scientiam extrahendi elevationis signorum in orbe recto — et quod provenerit est nadair gradus occasus. Intelligas. Explicit.’


Propositiones planisperii   ‘(ed. Kunitzsch/Lorch) Incipit prima propositio planisperii. Quoslibet duos circulos equidistantes recto in spera corporea — recto per polum zodiaci transire necesse est vel habet. Expliciunt propositiones. [two additional chapters] Si a termino unius diametri circuli recti ducatur linea per centrum circuli — ad ED semidiametrum circuli recti. Radicem planisperii sic colligere possumus. Constat planisperium nichil aliud esse quam planitiem equinoctialis — in plano datum punctum in spera potentialiter ostendit.’


A. d’Avezac, ‘Le planisphère de Claude Ptolémée’, Comptes Rendus des Séances de l’Académie des Inscriptions et Belles-Lettres 7 (1863), 333-337; F. Wüstenfeld, Die Übersetzungen Arabischer Werke in das Lateinische seit dem XI. Jahrhundert, Göttingen, 1877, 50-53; M. Steinschneider, Die hebraeischen Uebersetzungen des Mittelalters und die Juden als Doltmetscher. Ein Beitrag zur Literaturgeschichte des Mittelalters, Berlin, 1893, II, 534-536; C. H. Haskins, Studies in the History of Mediaeval Science, Cambridge, 1927 (2nd ed.), 47; E. Poulle, ‘L’astrolabe médiéval d’après les manuscrits de la Bibliothèque nationale’, Bibliothèque de l’Ecole des Chartes 112 (1954), 81-103: 100; F. J. Carmody, Arabic Astronomical and Astrological Sciences in Latin Translation. A Critical Bibliography, Berkeley-Los Angeles, 1956, 18 (no. 9); R. B. Thomson, Jordanus de Nemore and the Mathematics of Astrolabes: De plana spera, Toronto, 1978, 47-52; C. Burnett, ‘Arabic into Latin in Twelfth Century Spain: The Works of Hermann of Carinthia’, Mittellateinisches Jahrbuch 13 (1978), 100-134: 108-112; P. Kunitzsch, R. Lorch, Maslama’s Notes on Ptolemy’s Planisphaerium and Related Texts, München, 1994.


Critical edition by J. L. Heiberg, Claudii Ptolemaei opera quae exstant omnia, II: Opera astronomica minora, Leipzig, 1907, clxxx-clxxxvi (translator’s preface) and 227-259 (text, from six MSS: Dresden, SLUB, Db. 86; Oxford, BL, Auct. F.5.28; Paris, BnF, lat. 7214; Paris, BnF, lat. 7399; Vatican, BAV, Reg. lat. 1285; and Vatican, BAV, Vat. lat. 3096), and by R. Sinisgalli, S. Vastola, Il planisfero di Tolomeo, Firenze, 1992 (in three columns from the three early printed editions, with an Italian translation). Hermann’s preface has been re-edited by Burnett, 109-111 (with translation, 111-112), who improved on Heiberg’s edition by using MS Paris, BnF, lat. 7377B. German translation of Heiberg’s edition by J. Drecker, ‘Das Planisphaerium des Claudius Ptolemaeus’, Isis 9 (1927), 255-278. Maslama’s additions are edited by Kunitzsch/Lorch, 12-33 (Arabic text, with English translation), 36-54 (Latin notes), 54-63 (Latin extra chapter) and 65-71 (Latin astrolabe chapters). Kunitzsch/Lorch have also edited additions found in the two MSS of Class III (Appendix I, 99-104) and the Propositiones planisperii (Appendix II, 106-114). Maslama’s additions in Arabic had previously been edited by J. Vernet, M. A. Catalá, ‘Las obras matematicas de Maslama de Madrid’, Al-Andalus 30 (1965), 15-45: 22-26 (extra chapter) and 26-28 (astrolabe chapters), with a Spanish translation pp. 28-45.