manet ergo angulus d e b notus, et duo latera d e et e b, ergo unusquisque duorum angulorum e b d, e d b est notus, ergo totus angulus d b t est notus. Et propterea quod angulus e d b est notus, remanet angulus z b d notus, et unumquodque duorum laterum z d, d b est notum, ergo unusquisque duorum angulorum d z b quod d b z est notus, ergo angulus a z b est notus, et est longitudo centri orbis reuolutionis in hora considerationis a puncto longitudinis longioris, et similiter angulus d b t iam fuit ostensum quod est notus, ergo totus angulus z b t est notus. Remanet ergo angulus n b t notus, ergo longitudo stellae a puncto longitudinis longioris mediae orbis reuolutionis in hora considerationis etiam est nota, et alliud est cuius uoluimus declarationem. Iam autem fuit locus stellae medius in longitudine et diuersitate in hora considerationis tertiae, quae fuit secundum tempus suum notus. Verificauit ergo quod est inter duo tempora, et diuisit super ipsum numerum reuolutionum centri orbis reuolutionis, et numerum reditionum stellae in orbe reuolutionis suae, et superfluitates additas, exiuit ergo quantitas motus stellae reuolubilis in longitudine et diuersitate, et illud est cuius uoluimus declararationem. Inuenit ergo motum diuersitatis in die uno Saturni quidam 57. minuta et 7. secunda et 43. tertia et 41. quartum et 43. quinta et 40. sexta per propinquitatem. Et Iouis quidem 54. minuta et 9. secunda et duo tertia et 46. quarta et 26. quinta. Et Martis quidem 27. minuta et 41. secundum et 40. 40 ed. tertia et 19. quarta et 20. quinta et 58. sexta. Et Veneris quidem 36. minuta et 59. secunda et 25. tertia et 53. quarta et 11. quinta et 20. sexta. Et Mercuij quidem tres partes et 6. minuta et 24. secunda et 6. tertia et 59. quarta et 35. quinta et 50. sexta. Postea ipse minuit ex motu solis medio diei motum cuiusque stellarum trium in die, et remanet motus longitudinis eius. Inuenit ergo illud Saturni quidem duo minuta 0. secunda et 33. tertia et 31. quartum et 28. quinta et 51. sextum. Et Iouis quidem 4. minuta et 59. secunda, et 14. tertia et 26. quarta et 46. quinta et 31. sextum. Et Martis quidem 31. minutum et 26. secunda et 36. tertia et 53. quarta et 51. quintum et 30. sexta.
⟨VII.4⟩ De ligatione comprehensionis motuum stellae in longitudine et diuersitate.
ET propterea quod uoluit scire in hora regni Nabuchodonosor loca stellarum trium in longitudine et diuersitate, accepit tempus quod fuit inter regnum Nabuchodonosor et inter horam considerationis antiquae, et uerificauit ipsum, et sciuit illud quod conuenit ei de reuolutionibus longitudinis et diuersitatis, et propter illud ex locis stellarum in hora illius considerationis, et sciuit per illud duo loca stellae per medium in longitudine et diuersitate in hora regni Nabuchodonosor. Inuenit ergo locum Saturni in longitudine super 26. partes et 43. minuta capricorni, et in diuersitate super 32. partes et duo minuta a longitudine longior, et locum Iouis in longitudine super 4. partes et 41. minutum librae, et in diuersitate super 144. in longitudine longiori, et locum Martis in longitudine super tres 32. arietis, et in diuersitate super 320. 13. a longitudine longiori. Et similiter comprehendit loca augium harum stellarum in illa hora, inuenit ergo augem Saturni in 20. 10. scorpionis, et Iouis super duas nouem uirginis, et Martis super 16. 40. cancri.
⟨VIII⟩ LIBER OCTAVVS. DE STATIONE ET retrogradatione stellarum.
PRopterea quod uir iste rememoratus est inuentionis stationis stellarum, secundum quod non sit ei nisi diuersitas una tantum, et est illa, quae est per comparationem ad solem, et propterea quod huius diuersitatis casus praeparatur secundum unamquanque duarum radicum, scilicet radicem orbis ecentrici et radicem orbis reuolutionis, fuit ei necessarium erigere demonstratrionem secundum assimilationem habitudinis stationis et temporis eius in unaquaque duarum radicum, uisum est nobis, ut abbreuiemus illud, com non sit nobis necessarium prolongare et frustra uociferare, propterea quod iam uerificauimus, quia est uanum, et quod res in stellis est secundum contrarium illius, quod est, quia ipse iam demonstratiue probauit quod stella habet duas diuersitates, quarum una est secundum orbem ecentricum, et secunda secundum orbem reuolutionis suae. Incipiamus ergo nunc praemittere quod praemittendum est in inuentione loci stellae, secundum quod sint ei duae diuersitates, sicut