cente, tertie autem eius quod secundum unumquodque emimirion rectarum incrementi partem tricesimam, ut et unius sexagesime mediam habentes epybolam indifferentem ad sensum examinate et in in] om. V2 eis que infra dimidium partibus pertinentes invenire possimus quantitates. Facile vero intelligi quoniam per eadem et preiacentia theoremata, etsi in ambiguitate simus descriptive fallacie circa quedam adiacentium in canonio rectarum, facilem faciemus et inquisitionem et correctionem, sive ab ea que sub dupla inquisite, sive ab ea que datarum ad aliquas alias differentia, sive ab ea que relicta relicta] relicte V2 B in semicirculo periferie recta subtenditur. Et est canonii descriptio talis.
⟨I.11⟩ Canonium earum que in circulo rectarum
Perife riarum |
rectarum |
sexagessimarum |
perife ria |
rectarum |
sexagessimarum |
|||||||||
G |
M |
S |
M |
S |
T |
G |
M |
S |
M |
S |
T |
|||
Dimid g |
o |
xxxi |
xxv |
i |
ii |
l |
xxiii |
xxiii |
lv |
xxvii |
i |
i |
xxxiii |
|
i |
i |
ii |
l |
i |
ii |
l |
xxiii.ϛ |
xxiiii |
xxvi |
xiii |
i |
i |
xxx |
|
i et d |
i |
xxxiiii |
xv |
i |
ii |
l |
xxiiii |
xxiiii |
lvi |
lviii |
i |
i |
xxvi |
|
ii |
ii |
v |
xl |
i |
ii |
l |
xxiiii.ϛ |
xxv |
xxvii |
xli |
i |
i |
xxii |
|
ii et d |
ii |
xxxvii |
iiii |
i |
ii |
xlviii |
xxv |
xxv |
lviii |
xxii |
i |
i |
xix |
|
iii |
iii |
viii |
xxviii |
i |
ii |
xlviii |
xxv et d |
xxvi |
xxix |
i |
i |
i |
xv |
|
iii et d |
iii |
xxxix |
lii |
i |
ii |
xlviii |
xxvi |
xxvi |
lix |
xxxviii |
i |
i |
xi |
|
iiii |
iiii |
xi |
xvi |
i |
ii |
xlvii |
xxvi.ϛ |
xxvii |
xxx |
xiiii |
i |
i |
viii |
|
iiii.ϛ |
iiii |
xlii |
xl |
i |
ii |
xlvii |
xxvii |
xxxviii |
o |
xlviii |
i |
i |
xiiii |
|
v |
v |
xiiii |
iiii |
i |
ii |
xlvi |
xxvii.ϛ |
xxxviii |
xxxi |
xx |
i |
i |
o |
|
v.ϛ |
v |
xlv |
xxvii |
i |
ii |
xlv |
xxviii |
xxix |
i |
l |
i |
o |
lvi |
|
vi |
vi |
xvi |
xlix |
i |
ii |
xliiii |
xxviii.ϛ |
xxix |
xxxii |
xviii |
i |
o |
lii |
|
vi.ϛ |
vi |
xlviii |
xi |
i |
ii |
xliii |
xxix |
xxx |
ii |
xliiii |
i |
o |
xlviii |
|
vii |
vii |
xix |
xxxiii |
i |
ii |
xlii |
xxix.ϛ |
xxx |
xxxiii |
viii |
i |
o |
xliiii |
|
vii.ϛ |
vii |
l |
liiii |
i |
ii |
xli |
xxx |
xxxi |
iii |
xxx |
i |
o |
xl |
|
viii |
viii |
xxii |
xv |
i |
ii |
xl |
xxx.ϛ |
xxxi |
xxxiii |
l |
i |
o |
xxxv |
|
viii.ϛ |
viii |
liii |
xxv |
i |
ii |
xxxix |
xxxi |
xxxii |
iiii |
viii |
i |
o |
xxxi |
|
ix |
ix |
liiii |
li |
i |
ii |
xxxviii |
xxxi.ϛ |
xxxii |
xxxiiii |
xxii |
i |
o |
xxvii |
|
ix.ϛ |
ix |
lvi |
xiii |
i |
ii |
xxxvii |
xxxii |
xxxiii |
iiii |
xxxv |
i |
o |
xxii |
|
x |
x |
xxvii |
xxxii |
i |
ii |
xxxv |
xxxii.ϛ |
xxxiii |
xxxi |
xlvi |
i |
o |
xvii |
|
x.ϛ |
x |
lviii |
xlix |
i |
ii |
xxxiii |
xxxiii |
xxxiiii |
iiii |
lv |
i |
o |
xii |
|
xi |
xi |
xxx |
v |
i |
ii |
xxxii |
xxxiii.ϛ |
xxxiiii |
xxxv |
i |
i |
o |
viii |
|
xi.ϛ |
xii |
i |
xxi |
i |
ii |
xxx |
xxxiiii |
xxxv |
v |
v |
i |
o |
iii |
|
xii |
xii |
xxxii |
xxxvi |
i |
ii |
xxviii |
xxxiiii et d |
xxxv |
xxxv |
vi |
o |
lix |
lvii |
|
xii.ϛ |
xiii |
iii |
l |
i |
ii |
xxvii |
xxxv |
xxxvi |
v |
v |
o |
lix |
lii |
|
xiii |
xiii |
xxxv |
iiii |
i |
ii |
xxv |
xxxv.ϛ |
xxxvi |
xxxv |
i |
o |
lix |
xlviii |
|
xiii.ϛ |
xiiii |
v |
xvi |
i |
ii |
xxiii |
xxxvi |
xxxvii |
iiii |
lv |
o |
lix |
xliii |
|
xiiii |
xiiii |
xxxvii |
xxvii |
i |
ii |
xxi |
xxxvi.ϛ |
xxxvii |
xxxiiii |
xlvii |
o |
lix |
xxxviii |
|
xiiii.ϛ |
xv |
viii |
xxxviii |
i |
ii |
xix |
xxxvii |
xxxviii |
iiii |
xxxvi |
o |
lix |
xxxii |
|
xv |
xv |
xxxix |
xlvii |
i |
ii |
xvii |
xxxvii.ϛ |
xxxviii |
xxxiiii |
xxii |
o |
lix |
xxvii |
|
xv.ϛ |
xvi |
x |
lvi |
i |
ii |
xv |
xxxviii |
xxxix |
iiii |
v |
o |
lix |
xxii |
|
xvi |
xvi |
xlii |
iii |
i |
ii |
xiii |
xxxviii.ϛ |
xl |
xxxiii |
xlvi |
o |
lix |
xvi |
|
xvi.ϛ |
xvii |
xiii |
ix |
i |
ii |
x |
xxxix |
xl |
iii |
xxv |
o |
lix |
xi |
|
xvii |
xvii |
xiii |
ix |
i |
ii |
vii |
xxxix.ϛ |
xl |
xxxiiii |
o |
o |
lix |
v |
|
xvii.ϛ |
xviii |
xv |
xvii |
i |
ii |
v |
xl |
xli |
ii |
xxxiii |
o |
lix |
o |
|
xviii |
xviii |
xlvi |
xix |
i |
ii |
ii |
xl.ϛ |
xli |
xxxii |
iii |
o |
lviii |
liiii |
|
xviii.ϛ |
xix |
xvii |
xxi |
i |
ii |
o |
xli |
xlii |
i |
xxx |
o |
lviii |
xlviii |
|
xix |
xix |
xlviii |
xxi |
i |
i |
lvii |
xli.ϛ |
xlii |
xxx |
liiii |
o |
lviii |
xlii |
|
xix.ϛ |
xx |
xix |
xix |
i |
i |
liiii |
xlii |
xliii |
o |
xv |
o |
lviii |
xxxvi |
|
xx |
xx |
l |
xvi |
i |
i |
li |
xlii.ϛ |
xliii |
xxix |
xxxiii |
o |
lviii |
xxxi |
|
xx.ϛ |
xxi |
xxi |
xi |
i |
i |
xlviii |
xliii |
xliii |
lviii |
xlix |
o |
lviii |
xxv |
|
xxi |
xxi |
lii |
vi |
i |
i |
xlv |
xliii.ϛ |
xliiii |
xxviii |
i |
o |
lviii |
xviii |
|
xxi.ϛ |
xxii |
xxii |
xlviii |
i |
i |
xlii |
xliiii |
xliiii |
lvii |
x |
o |
lviii |
xii |
|
xxii |
xxii |
liii |
xlix |
i |
i |
xxxix |
xliiii.ϛ |
xlv |
xxvi |
xvi |
o |
lviii |
vi |
|
xxii.ϛ |
xxiii |
xxi |
xxxix |
i |
i |
xxxvi |
xlv |
xlv |
lv |
xix |
o |
lviii |
o |